2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
52 #include <asm/tlbflush.h>
54 struct kmem_cache
*anon_vma_cachep
;
56 /* This must be called under the mmap_sem. */
57 int anon_vma_prepare(struct vm_area_struct
*vma
)
59 struct anon_vma
*anon_vma
= vma
->anon_vma
;
62 if (unlikely(!anon_vma
)) {
63 struct mm_struct
*mm
= vma
->vm_mm
;
64 struct anon_vma
*allocated
, *locked
;
66 anon_vma
= find_mergeable_anon_vma(vma
);
70 spin_lock(&locked
->lock
);
72 anon_vma
= anon_vma_alloc();
73 if (unlikely(!anon_vma
))
79 /* page_table_lock to protect against threads */
80 spin_lock(&mm
->page_table_lock
);
81 if (likely(!vma
->anon_vma
)) {
82 vma
->anon_vma
= anon_vma
;
83 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
86 spin_unlock(&mm
->page_table_lock
);
89 spin_unlock(&locked
->lock
);
90 if (unlikely(allocated
))
91 anon_vma_free(allocated
);
96 void __anon_vma_merge(struct vm_area_struct
*vma
, struct vm_area_struct
*next
)
98 BUG_ON(vma
->anon_vma
!= next
->anon_vma
);
99 list_del(&next
->anon_vma_node
);
102 void __anon_vma_link(struct vm_area_struct
*vma
)
104 struct anon_vma
*anon_vma
= vma
->anon_vma
;
107 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
110 void anon_vma_link(struct vm_area_struct
*vma
)
112 struct anon_vma
*anon_vma
= vma
->anon_vma
;
115 spin_lock(&anon_vma
->lock
);
116 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
117 spin_unlock(&anon_vma
->lock
);
121 void anon_vma_unlink(struct vm_area_struct
*vma
)
123 struct anon_vma
*anon_vma
= vma
->anon_vma
;
129 spin_lock(&anon_vma
->lock
);
130 list_del(&vma
->anon_vma_node
);
132 /* We must garbage collect the anon_vma if it's empty */
133 empty
= list_empty(&anon_vma
->head
);
134 spin_unlock(&anon_vma
->lock
);
137 anon_vma_free(anon_vma
);
140 static void anon_vma_ctor(void *data
, struct kmem_cache
*cachep
,
143 struct anon_vma
*anon_vma
= data
;
145 spin_lock_init(&anon_vma
->lock
);
146 INIT_LIST_HEAD(&anon_vma
->head
);
149 void __init
anon_vma_init(void)
151 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
152 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
156 * Getting a lock on a stable anon_vma from a page off the LRU is
157 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
159 static struct anon_vma
*page_lock_anon_vma(struct page
*page
)
161 struct anon_vma
*anon_vma
;
162 unsigned long anon_mapping
;
165 anon_mapping
= (unsigned long) page
->mapping
;
166 if (!(anon_mapping
& PAGE_MAPPING_ANON
))
168 if (!page_mapped(page
))
171 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
172 spin_lock(&anon_vma
->lock
);
179 static void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
181 spin_unlock(&anon_vma
->lock
);
186 * At what user virtual address is page expected in vma?
188 static inline unsigned long
189 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
191 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
192 unsigned long address
;
194 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
195 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
196 /* page should be within any vma from prio_tree_next */
197 BUG_ON(!PageAnon(page
));
204 * At what user virtual address is page expected in vma? checking that the
205 * page matches the vma: currently only used on anon pages, by unuse_vma;
207 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
209 if (PageAnon(page
)) {
210 if ((void *)vma
->anon_vma
!=
211 (void *)page
->mapping
- PAGE_MAPPING_ANON
)
213 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
215 vma
->vm_file
->f_mapping
!= page
->mapping
)
219 return vma_address(page
, vma
);
223 * Check that @page is mapped at @address into @mm.
225 * On success returns with pte mapped and locked.
227 pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
228 unsigned long address
, spinlock_t
**ptlp
)
236 pgd
= pgd_offset(mm
, address
);
237 if (!pgd_present(*pgd
))
240 pud
= pud_offset(pgd
, address
);
241 if (!pud_present(*pud
))
244 pmd
= pmd_offset(pud
, address
);
245 if (!pmd_present(*pmd
))
248 pte
= pte_offset_map(pmd
, address
);
249 /* Make a quick check before getting the lock */
250 if (!pte_present(*pte
)) {
255 ptl
= pte_lockptr(mm
, pmd
);
257 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
261 pte_unmap_unlock(pte
, ptl
);
266 * Subfunctions of page_referenced: page_referenced_one called
267 * repeatedly from either page_referenced_anon or page_referenced_file.
269 static int page_referenced_one(struct page
*page
,
270 struct vm_area_struct
*vma
, unsigned int *mapcount
)
272 struct mm_struct
*mm
= vma
->vm_mm
;
273 unsigned long address
;
278 address
= vma_address(page
, vma
);
279 if (address
== -EFAULT
)
282 pte
= page_check_address(page
, mm
, address
, &ptl
);
286 if (ptep_clear_flush_young(vma
, address
, pte
))
289 /* Pretend the page is referenced if the task has the
290 swap token and is in the middle of a page fault. */
291 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
292 rwsem_is_locked(&mm
->mmap_sem
))
296 pte_unmap_unlock(pte
, ptl
);
301 static int page_referenced_anon(struct page
*page
)
303 unsigned int mapcount
;
304 struct anon_vma
*anon_vma
;
305 struct vm_area_struct
*vma
;
308 anon_vma
= page_lock_anon_vma(page
);
312 mapcount
= page_mapcount(page
);
313 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
314 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
319 page_unlock_anon_vma(anon_vma
);
324 * page_referenced_file - referenced check for object-based rmap
325 * @page: the page we're checking references on.
327 * For an object-based mapped page, find all the places it is mapped and
328 * check/clear the referenced flag. This is done by following the page->mapping
329 * pointer, then walking the chain of vmas it holds. It returns the number
330 * of references it found.
332 * This function is only called from page_referenced for object-based pages.
334 static int page_referenced_file(struct page
*page
)
336 unsigned int mapcount
;
337 struct address_space
*mapping
= page
->mapping
;
338 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
339 struct vm_area_struct
*vma
;
340 struct prio_tree_iter iter
;
344 * The caller's checks on page->mapping and !PageAnon have made
345 * sure that this is a file page: the check for page->mapping
346 * excludes the case just before it gets set on an anon page.
348 BUG_ON(PageAnon(page
));
351 * The page lock not only makes sure that page->mapping cannot
352 * suddenly be NULLified by truncation, it makes sure that the
353 * structure at mapping cannot be freed and reused yet,
354 * so we can safely take mapping->i_mmap_lock.
356 BUG_ON(!PageLocked(page
));
358 spin_lock(&mapping
->i_mmap_lock
);
361 * i_mmap_lock does not stabilize mapcount at all, but mapcount
362 * is more likely to be accurate if we note it after spinning.
364 mapcount
= page_mapcount(page
);
366 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
367 if ((vma
->vm_flags
& (VM_LOCKED
|VM_MAYSHARE
))
368 == (VM_LOCKED
|VM_MAYSHARE
)) {
372 referenced
+= page_referenced_one(page
, vma
, &mapcount
);
377 spin_unlock(&mapping
->i_mmap_lock
);
382 * page_referenced - test if the page was referenced
383 * @page: the page to test
384 * @is_locked: caller holds lock on the page
386 * Quick test_and_clear_referenced for all mappings to a page,
387 * returns the number of ptes which referenced the page.
389 int page_referenced(struct page
*page
, int is_locked
)
393 if (page_test_and_clear_young(page
))
396 if (TestClearPageReferenced(page
))
399 if (page_mapped(page
) && page
->mapping
) {
401 referenced
+= page_referenced_anon(page
);
403 referenced
+= page_referenced_file(page
);
404 else if (TestSetPageLocked(page
))
408 referenced
+= page_referenced_file(page
);
415 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
)
417 struct mm_struct
*mm
= vma
->vm_mm
;
418 unsigned long address
;
423 address
= vma_address(page
, vma
);
424 if (address
== -EFAULT
)
427 pte
= page_check_address(page
, mm
, address
, &ptl
);
431 if (pte_dirty(*pte
) || pte_write(*pte
)) {
434 flush_cache_page(vma
, address
, pte_pfn(*pte
));
435 entry
= ptep_clear_flush(vma
, address
, pte
);
436 entry
= pte_wrprotect(entry
);
437 entry
= pte_mkclean(entry
);
438 set_pte_at(mm
, address
, pte
, entry
);
439 lazy_mmu_prot_update(entry
);
443 pte_unmap_unlock(pte
, ptl
);
448 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
450 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
451 struct vm_area_struct
*vma
;
452 struct prio_tree_iter iter
;
455 BUG_ON(PageAnon(page
));
457 spin_lock(&mapping
->i_mmap_lock
);
458 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
459 if (vma
->vm_flags
& VM_SHARED
)
460 ret
+= page_mkclean_one(page
, vma
);
462 spin_unlock(&mapping
->i_mmap_lock
);
466 int page_mkclean(struct page
*page
)
470 BUG_ON(!PageLocked(page
));
472 if (page_mapped(page
)) {
473 struct address_space
*mapping
= page_mapping(page
);
475 ret
= page_mkclean_file(mapping
, page
);
476 if (page_test_dirty(page
)) {
477 page_clear_dirty(page
);
484 EXPORT_SYMBOL_GPL(page_mkclean
);
487 * page_set_anon_rmap - setup new anonymous rmap
488 * @page: the page to add the mapping to
489 * @vma: the vm area in which the mapping is added
490 * @address: the user virtual address mapped
492 static void __page_set_anon_rmap(struct page
*page
,
493 struct vm_area_struct
*vma
, unsigned long address
)
495 struct anon_vma
*anon_vma
= vma
->anon_vma
;
498 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
499 page
->mapping
= (struct address_space
*) anon_vma
;
501 page
->index
= linear_page_index(vma
, address
);
504 * nr_mapped state can be updated without turning off
505 * interrupts because it is not modified via interrupt.
507 __inc_zone_page_state(page
, NR_ANON_PAGES
);
511 * page_set_anon_rmap - sanity check anonymous rmap addition
512 * @page: the page to add the mapping to
513 * @vma: the vm area in which the mapping is added
514 * @address: the user virtual address mapped
516 static void __page_check_anon_rmap(struct page
*page
,
517 struct vm_area_struct
*vma
, unsigned long address
)
519 #ifdef CONFIG_DEBUG_VM
521 * The page's anon-rmap details (mapping and index) are guaranteed to
522 * be set up correctly at this point.
524 * We have exclusion against page_add_anon_rmap because the caller
525 * always holds the page locked, except if called from page_dup_rmap,
526 * in which case the page is already known to be setup.
528 * We have exclusion against page_add_new_anon_rmap because those pages
529 * are initially only visible via the pagetables, and the pte is locked
530 * over the call to page_add_new_anon_rmap.
532 struct anon_vma
*anon_vma
= vma
->anon_vma
;
533 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
534 BUG_ON(page
->mapping
!= (struct address_space
*)anon_vma
);
535 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
540 * page_add_anon_rmap - add pte mapping to an anonymous page
541 * @page: the page to add the mapping to
542 * @vma: the vm area in which the mapping is added
543 * @address: the user virtual address mapped
545 * The caller needs to hold the pte lock and the page must be locked.
547 void page_add_anon_rmap(struct page
*page
,
548 struct vm_area_struct
*vma
, unsigned long address
)
550 VM_BUG_ON(!PageLocked(page
));
551 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
552 if (atomic_inc_and_test(&page
->_mapcount
))
553 __page_set_anon_rmap(page
, vma
, address
);
555 __page_check_anon_rmap(page
, vma
, address
);
559 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
560 * @page: the page to add the mapping to
561 * @vma: the vm area in which the mapping is added
562 * @address: the user virtual address mapped
564 * Same as page_add_anon_rmap but must only be called on *new* pages.
565 * This means the inc-and-test can be bypassed.
566 * Page does not have to be locked.
568 void page_add_new_anon_rmap(struct page
*page
,
569 struct vm_area_struct
*vma
, unsigned long address
)
571 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
572 atomic_set(&page
->_mapcount
, 0); /* elevate count by 1 (starts at -1) */
573 __page_set_anon_rmap(page
, vma
, address
);
577 * page_add_file_rmap - add pte mapping to a file page
578 * @page: the page to add the mapping to
580 * The caller needs to hold the pte lock.
582 void page_add_file_rmap(struct page
*page
)
584 if (atomic_inc_and_test(&page
->_mapcount
))
585 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
588 #ifdef CONFIG_DEBUG_VM
590 * page_dup_rmap - duplicate pte mapping to a page
591 * @page: the page to add the mapping to
593 * For copy_page_range only: minimal extract from page_add_file_rmap /
594 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
597 * The caller needs to hold the pte lock.
599 void page_dup_rmap(struct page
*page
, struct vm_area_struct
*vma
, unsigned long address
)
601 BUG_ON(page_mapcount(page
) == 0);
603 __page_check_anon_rmap(page
, vma
, address
);
604 atomic_inc(&page
->_mapcount
);
609 * page_remove_rmap - take down pte mapping from a page
610 * @page: page to remove mapping from
612 * The caller needs to hold the pte lock.
614 void page_remove_rmap(struct page
*page
, struct vm_area_struct
*vma
)
616 if (atomic_add_negative(-1, &page
->_mapcount
)) {
617 if (unlikely(page_mapcount(page
) < 0)) {
618 printk (KERN_EMERG
"Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page
));
619 printk (KERN_EMERG
" page pfn = %lx\n", page_to_pfn(page
));
620 printk (KERN_EMERG
" page->flags = %lx\n", page
->flags
);
621 printk (KERN_EMERG
" page->count = %x\n", page_count(page
));
622 printk (KERN_EMERG
" page->mapping = %p\n", page
->mapping
);
623 print_symbol (KERN_EMERG
" vma->vm_ops = %s\n", (unsigned long)vma
->vm_ops
);
625 print_symbol (KERN_EMERG
" vma->vm_ops->nopage = %s\n", (unsigned long)vma
->vm_ops
->nopage
);
626 print_symbol (KERN_EMERG
" vma->vm_ops->fault = %s\n", (unsigned long)vma
->vm_ops
->fault
);
628 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
629 print_symbol (KERN_EMERG
" vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma
->vm_file
->f_op
->mmap
);
634 * It would be tidy to reset the PageAnon mapping here,
635 * but that might overwrite a racing page_add_anon_rmap
636 * which increments mapcount after us but sets mapping
637 * before us: so leave the reset to free_hot_cold_page,
638 * and remember that it's only reliable while mapped.
639 * Leaving it set also helps swapoff to reinstate ptes
640 * faster for those pages still in swapcache.
642 if (page_test_dirty(page
)) {
643 page_clear_dirty(page
);
644 set_page_dirty(page
);
646 __dec_zone_page_state(page
,
647 PageAnon(page
) ? NR_ANON_PAGES
: NR_FILE_MAPPED
);
652 * Subfunctions of try_to_unmap: try_to_unmap_one called
653 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
655 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
658 struct mm_struct
*mm
= vma
->vm_mm
;
659 unsigned long address
;
663 int ret
= SWAP_AGAIN
;
665 address
= vma_address(page
, vma
);
666 if (address
== -EFAULT
)
669 pte
= page_check_address(page
, mm
, address
, &ptl
);
674 * If the page is mlock()d, we cannot swap it out.
675 * If it's recently referenced (perhaps page_referenced
676 * skipped over this mm) then we should reactivate it.
678 if (!migration
&& ((vma
->vm_flags
& VM_LOCKED
) ||
679 (ptep_clear_flush_young(vma
, address
, pte
)))) {
684 /* Nuke the page table entry. */
685 flush_cache_page(vma
, address
, page_to_pfn(page
));
686 pteval
= ptep_clear_flush(vma
, address
, pte
);
688 /* Move the dirty bit to the physical page now the pte is gone. */
689 if (pte_dirty(pteval
))
690 set_page_dirty(page
);
692 /* Update high watermark before we lower rss */
693 update_hiwater_rss(mm
);
695 if (PageAnon(page
)) {
696 swp_entry_t entry
= { .val
= page_private(page
) };
698 if (PageSwapCache(page
)) {
700 * Store the swap location in the pte.
701 * See handle_pte_fault() ...
703 swap_duplicate(entry
);
704 if (list_empty(&mm
->mmlist
)) {
705 spin_lock(&mmlist_lock
);
706 if (list_empty(&mm
->mmlist
))
707 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
708 spin_unlock(&mmlist_lock
);
710 dec_mm_counter(mm
, anon_rss
);
711 #ifdef CONFIG_MIGRATION
714 * Store the pfn of the page in a special migration
715 * pte. do_swap_page() will wait until the migration
716 * pte is removed and then restart fault handling.
719 entry
= make_migration_entry(page
, pte_write(pteval
));
722 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
723 BUG_ON(pte_file(*pte
));
725 #ifdef CONFIG_MIGRATION
727 /* Establish migration entry for a file page */
729 entry
= make_migration_entry(page
, pte_write(pteval
));
730 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
733 dec_mm_counter(mm
, file_rss
);
736 page_remove_rmap(page
, vma
);
737 page_cache_release(page
);
740 pte_unmap_unlock(pte
, ptl
);
746 * objrmap doesn't work for nonlinear VMAs because the assumption that
747 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
748 * Consequently, given a particular page and its ->index, we cannot locate the
749 * ptes which are mapping that page without an exhaustive linear search.
751 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
752 * maps the file to which the target page belongs. The ->vm_private_data field
753 * holds the current cursor into that scan. Successive searches will circulate
754 * around the vma's virtual address space.
756 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
757 * more scanning pressure is placed against them as well. Eventually pages
758 * will become fully unmapped and are eligible for eviction.
760 * For very sparsely populated VMAs this is a little inefficient - chances are
761 * there there won't be many ptes located within the scan cluster. In this case
762 * maybe we could scan further - to the end of the pte page, perhaps.
764 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
765 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
767 static void try_to_unmap_cluster(unsigned long cursor
,
768 unsigned int *mapcount
, struct vm_area_struct
*vma
)
770 struct mm_struct
*mm
= vma
->vm_mm
;
778 unsigned long address
;
781 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
782 end
= address
+ CLUSTER_SIZE
;
783 if (address
< vma
->vm_start
)
784 address
= vma
->vm_start
;
785 if (end
> vma
->vm_end
)
788 pgd
= pgd_offset(mm
, address
);
789 if (!pgd_present(*pgd
))
792 pud
= pud_offset(pgd
, address
);
793 if (!pud_present(*pud
))
796 pmd
= pmd_offset(pud
, address
);
797 if (!pmd_present(*pmd
))
800 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
802 /* Update high watermark before we lower rss */
803 update_hiwater_rss(mm
);
805 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
806 if (!pte_present(*pte
))
808 page
= vm_normal_page(vma
, address
, *pte
);
809 BUG_ON(!page
|| PageAnon(page
));
811 if (ptep_clear_flush_young(vma
, address
, pte
))
814 /* Nuke the page table entry. */
815 flush_cache_page(vma
, address
, pte_pfn(*pte
));
816 pteval
= ptep_clear_flush(vma
, address
, pte
);
818 /* If nonlinear, store the file page offset in the pte. */
819 if (page
->index
!= linear_page_index(vma
, address
))
820 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
822 /* Move the dirty bit to the physical page now the pte is gone. */
823 if (pte_dirty(pteval
))
824 set_page_dirty(page
);
826 page_remove_rmap(page
, vma
);
827 page_cache_release(page
);
828 dec_mm_counter(mm
, file_rss
);
831 pte_unmap_unlock(pte
- 1, ptl
);
834 static int try_to_unmap_anon(struct page
*page
, int migration
)
836 struct anon_vma
*anon_vma
;
837 struct vm_area_struct
*vma
;
838 int ret
= SWAP_AGAIN
;
840 anon_vma
= page_lock_anon_vma(page
);
844 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
845 ret
= try_to_unmap_one(page
, vma
, migration
);
846 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
850 page_unlock_anon_vma(anon_vma
);
855 * try_to_unmap_file - unmap file page using the object-based rmap method
856 * @page: the page to unmap
858 * Find all the mappings of a page using the mapping pointer and the vma chains
859 * contained in the address_space struct it points to.
861 * This function is only called from try_to_unmap for object-based pages.
863 static int try_to_unmap_file(struct page
*page
, int migration
)
865 struct address_space
*mapping
= page
->mapping
;
866 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
867 struct vm_area_struct
*vma
;
868 struct prio_tree_iter iter
;
869 int ret
= SWAP_AGAIN
;
870 unsigned long cursor
;
871 unsigned long max_nl_cursor
= 0;
872 unsigned long max_nl_size
= 0;
873 unsigned int mapcount
;
875 spin_lock(&mapping
->i_mmap_lock
);
876 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
877 ret
= try_to_unmap_one(page
, vma
, migration
);
878 if (ret
== SWAP_FAIL
|| !page_mapped(page
))
882 if (list_empty(&mapping
->i_mmap_nonlinear
))
885 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
886 shared
.vm_set
.list
) {
887 if ((vma
->vm_flags
& VM_LOCKED
) && !migration
)
889 cursor
= (unsigned long) vma
->vm_private_data
;
890 if (cursor
> max_nl_cursor
)
891 max_nl_cursor
= cursor
;
892 cursor
= vma
->vm_end
- vma
->vm_start
;
893 if (cursor
> max_nl_size
)
894 max_nl_size
= cursor
;
897 if (max_nl_size
== 0) { /* any nonlinears locked or reserved */
903 * We don't try to search for this page in the nonlinear vmas,
904 * and page_referenced wouldn't have found it anyway. Instead
905 * just walk the nonlinear vmas trying to age and unmap some.
906 * The mapcount of the page we came in with is irrelevant,
907 * but even so use it as a guide to how hard we should try?
909 mapcount
= page_mapcount(page
);
912 cond_resched_lock(&mapping
->i_mmap_lock
);
914 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
915 if (max_nl_cursor
== 0)
916 max_nl_cursor
= CLUSTER_SIZE
;
919 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
920 shared
.vm_set
.list
) {
921 if ((vma
->vm_flags
& VM_LOCKED
) && !migration
)
923 cursor
= (unsigned long) vma
->vm_private_data
;
924 while ( cursor
< max_nl_cursor
&&
925 cursor
< vma
->vm_end
- vma
->vm_start
) {
926 try_to_unmap_cluster(cursor
, &mapcount
, vma
);
927 cursor
+= CLUSTER_SIZE
;
928 vma
->vm_private_data
= (void *) cursor
;
929 if ((int)mapcount
<= 0)
932 vma
->vm_private_data
= (void *) max_nl_cursor
;
934 cond_resched_lock(&mapping
->i_mmap_lock
);
935 max_nl_cursor
+= CLUSTER_SIZE
;
936 } while (max_nl_cursor
<= max_nl_size
);
939 * Don't loop forever (perhaps all the remaining pages are
940 * in locked vmas). Reset cursor on all unreserved nonlinear
941 * vmas, now forgetting on which ones it had fallen behind.
943 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
944 vma
->vm_private_data
= NULL
;
946 spin_unlock(&mapping
->i_mmap_lock
);
951 * try_to_unmap - try to remove all page table mappings to a page
952 * @page: the page to get unmapped
954 * Tries to remove all the page table entries which are mapping this
955 * page, used in the pageout path. Caller must hold the page lock.
958 * SWAP_SUCCESS - we succeeded in removing all mappings
959 * SWAP_AGAIN - we missed a mapping, try again later
960 * SWAP_FAIL - the page is unswappable
962 int try_to_unmap(struct page
*page
, int migration
)
966 BUG_ON(!PageLocked(page
));
969 ret
= try_to_unmap_anon(page
, migration
);
971 ret
= try_to_unmap_file(page
, migration
);
973 if (!page_mapped(page
))