4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/cpu_acct.h>
56 #include <linux/kthread.h>
57 #include <linux/seq_file.h>
58 #include <linux/sysctl.h>
59 #include <linux/syscalls.h>
60 #include <linux/times.h>
61 #include <linux/tsacct_kern.h>
62 #include <linux/kprobes.h>
63 #include <linux/delayacct.h>
64 #include <linux/reciprocal_div.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak
)) sched_clock(void)
77 return (unsigned long long)jiffies
* (1000000000 / HZ
);
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Some helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108 * These are the 'tuning knobs' of the scheduler:
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
113 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
122 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
129 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
131 sg
->__cpu_power
+= val
;
132 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
136 static inline int rt_policy(int policy
)
138 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
143 static inline int task_has_rt_policy(struct task_struct
*p
)
145 return rt_policy(p
->policy
);
149 * This is the priority-queue data structure of the RT scheduling class:
151 struct rt_prio_array
{
152 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
153 struct list_head queue
[MAX_RT_PRIO
];
156 #ifdef CONFIG_FAIR_GROUP_SCHED
158 #include <linux/cgroup.h>
162 /* task group related information */
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css
;
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity
**se
;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq
**cfs_rq
;
171 unsigned long shares
;
172 /* spinlock to serialize modification to shares */
176 /* Default task group's sched entity on each cpu */
177 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
178 /* Default task group's cfs_rq on each cpu */
179 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
181 static struct sched_entity
*init_sched_entity_p
[NR_CPUS
];
182 static struct cfs_rq
*init_cfs_rq_p
[NR_CPUS
];
184 /* Default task group.
185 * Every task in system belong to this group at bootup.
187 struct task_group init_task_group
= {
188 .se
= init_sched_entity_p
,
189 .cfs_rq
= init_cfs_rq_p
,
192 #ifdef CONFIG_FAIR_USER_SCHED
193 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
195 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
198 static int init_task_group_load
= INIT_TASK_GRP_LOAD
;
200 /* return group to which a task belongs */
201 static inline struct task_group
*task_group(struct task_struct
*p
)
203 struct task_group
*tg
;
205 #ifdef CONFIG_FAIR_USER_SCHED
207 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
208 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
209 struct task_group
, css
);
211 tg
= &init_task_group
;
217 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218 static inline void set_task_cfs_rq(struct task_struct
*p
)
220 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[task_cpu(p
)];
221 p
->se
.parent
= task_group(p
)->se
[task_cpu(p
)];
226 static inline void set_task_cfs_rq(struct task_struct
*p
) { }
228 #endif /* CONFIG_FAIR_GROUP_SCHED */
230 /* CFS-related fields in a runqueue */
232 struct load_weight load
;
233 unsigned long nr_running
;
238 struct rb_root tasks_timeline
;
239 struct rb_node
*rb_leftmost
;
240 struct rb_node
*rb_load_balance_curr
;
241 /* 'curr' points to currently running entity on this cfs_rq.
242 * It is set to NULL otherwise (i.e when none are currently running).
244 struct sched_entity
*curr
;
246 unsigned long nr_spread_over
;
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
251 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
252 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
253 * (like users, containers etc.)
255 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
256 * list is used during load balance.
258 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
259 struct task_group
*tg
; /* group that "owns" this runqueue */
264 /* Real-Time classes' related field in a runqueue: */
266 struct rt_prio_array active
;
267 int rt_load_balance_idx
;
268 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
272 * This is the main, per-CPU runqueue data structure.
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
286 unsigned long nr_running
;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
289 unsigned char idle_at_tick
;
291 unsigned char in_nohz_recently
;
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load
;
295 unsigned long nr_load_updates
;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list
;
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
311 unsigned long nr_uninterruptible
;
313 struct task_struct
*curr
, *idle
;
314 unsigned long next_balance
;
315 struct mm_struct
*prev_mm
;
317 u64 clock
, prev_clock_raw
;
320 unsigned int clock_warps
, clock_overflows
;
322 unsigned int clock_deep_idle_events
;
328 struct sched_domain
*sd
;
330 /* For active balancing */
333 /* cpu of this runqueue: */
336 struct task_struct
*migration_thread
;
337 struct list_head migration_queue
;
340 #ifdef CONFIG_SCHEDSTATS
342 struct sched_info rq_sched_info
;
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty
;
346 unsigned int yld_act_empty
;
347 unsigned int yld_both_empty
;
348 unsigned int yld_count
;
350 /* schedule() stats */
351 unsigned int sched_switch
;
352 unsigned int sched_count
;
353 unsigned int sched_goidle
;
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count
;
357 unsigned int ttwu_local
;
360 unsigned int bkl_count
;
362 struct lock_class_key rq_lock_key
;
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
366 static DEFINE_MUTEX(sched_hotcpu_mutex
);
368 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
370 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
373 static inline int cpu_of(struct rq
*rq
)
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
386 static void __update_rq_clock(struct rq
*rq
)
388 u64 prev_raw
= rq
->prev_clock_raw
;
389 u64 now
= sched_clock();
390 s64 delta
= now
- prev_raw
;
391 u64 clock
= rq
->clock
;
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
397 * Protect against sched_clock() occasionally going backwards:
399 if (unlikely(delta
< 0)) {
404 * Catch too large forward jumps too:
406 if (unlikely(clock
+ delta
> rq
->tick_timestamp
+ TICK_NSEC
)) {
407 if (clock
< rq
->tick_timestamp
+ TICK_NSEC
)
408 clock
= rq
->tick_timestamp
+ TICK_NSEC
;
411 rq
->clock_overflows
++;
413 if (unlikely(delta
> rq
->clock_max_delta
))
414 rq
->clock_max_delta
= delta
;
419 rq
->prev_clock_raw
= now
;
423 static void update_rq_clock(struct rq
*rq
)
425 if (likely(smp_processor_id() == cpu_of(rq
)))
426 __update_rq_clock(rq
);
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
450 # define const_debug static const
454 * Debugging: various feature bits
457 SCHED_FEAT_NEW_FAIR_SLEEPERS
= 1,
458 SCHED_FEAT_START_DEBIT
= 2,
459 SCHED_FEAT_TREE_AVG
= 4,
460 SCHED_FEAT_APPROX_AVG
= 8,
461 SCHED_FEAT_WAKEUP_PREEMPT
= 16,
462 SCHED_FEAT_PREEMPT_RESTRICT
= 32,
465 const_debug
unsigned int sysctl_sched_features
=
466 SCHED_FEAT_NEW_FAIR_SLEEPERS
* 1 |
467 SCHED_FEAT_START_DEBIT
* 1 |
468 SCHED_FEAT_TREE_AVG
* 0 |
469 SCHED_FEAT_APPROX_AVG
* 0 |
470 SCHED_FEAT_WAKEUP_PREEMPT
* 1 |
471 SCHED_FEAT_PREEMPT_RESTRICT
* 1;
473 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
476 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
477 * clock constructed from sched_clock():
479 unsigned long long cpu_clock(int cpu
)
481 unsigned long long now
;
485 local_irq_save(flags
);
489 local_irq_restore(flags
);
493 EXPORT_SYMBOL_GPL(cpu_clock
);
495 #ifndef prepare_arch_switch
496 # define prepare_arch_switch(next) do { } while (0)
498 #ifndef finish_arch_switch
499 # define finish_arch_switch(prev) do { } while (0)
502 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
503 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
505 return rq
->curr
== p
;
508 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
512 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
514 #ifdef CONFIG_DEBUG_SPINLOCK
515 /* this is a valid case when another task releases the spinlock */
516 rq
->lock
.owner
= current
;
519 * If we are tracking spinlock dependencies then we have to
520 * fix up the runqueue lock - which gets 'carried over' from
523 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
525 spin_unlock_irq(&rq
->lock
);
528 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
529 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
534 return rq
->curr
== p
;
538 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
542 * We can optimise this out completely for !SMP, because the
543 * SMP rebalancing from interrupt is the only thing that cares
548 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
549 spin_unlock_irq(&rq
->lock
);
551 spin_unlock(&rq
->lock
);
555 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
559 * After ->oncpu is cleared, the task can be moved to a different CPU.
560 * We must ensure this doesn't happen until the switch is completely
566 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
570 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
573 * __task_rq_lock - lock the runqueue a given task resides on.
574 * Must be called interrupts disabled.
576 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
580 struct rq
*rq
= task_rq(p
);
581 spin_lock(&rq
->lock
);
582 if (likely(rq
== task_rq(p
)))
584 spin_unlock(&rq
->lock
);
589 * task_rq_lock - lock the runqueue a given task resides on and disable
590 * interrupts. Note the ordering: we can safely lookup the task_rq without
591 * explicitly disabling preemption.
593 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
599 local_irq_save(*flags
);
601 spin_lock(&rq
->lock
);
602 if (likely(rq
== task_rq(p
)))
604 spin_unlock_irqrestore(&rq
->lock
, *flags
);
608 static void __task_rq_unlock(struct rq
*rq
)
611 spin_unlock(&rq
->lock
);
614 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
617 spin_unlock_irqrestore(&rq
->lock
, *flags
);
621 * this_rq_lock - lock this runqueue and disable interrupts.
623 static struct rq
*this_rq_lock(void)
630 spin_lock(&rq
->lock
);
636 * We are going deep-idle (irqs are disabled):
638 void sched_clock_idle_sleep_event(void)
640 struct rq
*rq
= cpu_rq(smp_processor_id());
642 spin_lock(&rq
->lock
);
643 __update_rq_clock(rq
);
644 spin_unlock(&rq
->lock
);
645 rq
->clock_deep_idle_events
++;
647 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
650 * We just idled delta nanoseconds (called with irqs disabled):
652 void sched_clock_idle_wakeup_event(u64 delta_ns
)
654 struct rq
*rq
= cpu_rq(smp_processor_id());
655 u64 now
= sched_clock();
657 rq
->idle_clock
+= delta_ns
;
659 * Override the previous timestamp and ignore all
660 * sched_clock() deltas that occured while we idled,
661 * and use the PM-provided delta_ns to advance the
664 spin_lock(&rq
->lock
);
665 rq
->prev_clock_raw
= now
;
666 rq
->clock
+= delta_ns
;
667 spin_unlock(&rq
->lock
);
669 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
672 * resched_task - mark a task 'to be rescheduled now'.
674 * On UP this means the setting of the need_resched flag, on SMP it
675 * might also involve a cross-CPU call to trigger the scheduler on
680 #ifndef tsk_is_polling
681 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
684 static void resched_task(struct task_struct
*p
)
688 assert_spin_locked(&task_rq(p
)->lock
);
690 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
693 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
696 if (cpu
== smp_processor_id())
699 /* NEED_RESCHED must be visible before we test polling */
701 if (!tsk_is_polling(p
))
702 smp_send_reschedule(cpu
);
705 static void resched_cpu(int cpu
)
707 struct rq
*rq
= cpu_rq(cpu
);
710 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
712 resched_task(cpu_curr(cpu
));
713 spin_unlock_irqrestore(&rq
->lock
, flags
);
716 static inline void resched_task(struct task_struct
*p
)
718 assert_spin_locked(&task_rq(p
)->lock
);
719 set_tsk_need_resched(p
);
723 #if BITS_PER_LONG == 32
724 # define WMULT_CONST (~0UL)
726 # define WMULT_CONST (1UL << 32)
729 #define WMULT_SHIFT 32
732 * Shift right and round:
734 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
737 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
738 struct load_weight
*lw
)
742 if (unlikely(!lw
->inv_weight
))
743 lw
->inv_weight
= (WMULT_CONST
- lw
->weight
/2) / lw
->weight
+ 1;
745 tmp
= (u64
)delta_exec
* weight
;
747 * Check whether we'd overflow the 64-bit multiplication:
749 if (unlikely(tmp
> WMULT_CONST
))
750 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
753 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
755 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
758 static inline unsigned long
759 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
761 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
764 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
769 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
775 * To aid in avoiding the subversion of "niceness" due to uneven distribution
776 * of tasks with abnormal "nice" values across CPUs the contribution that
777 * each task makes to its run queue's load is weighted according to its
778 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
779 * scaled version of the new time slice allocation that they receive on time
783 #define WEIGHT_IDLEPRIO 2
784 #define WMULT_IDLEPRIO (1 << 31)
787 * Nice levels are multiplicative, with a gentle 10% change for every
788 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
789 * nice 1, it will get ~10% less CPU time than another CPU-bound task
790 * that remained on nice 0.
792 * The "10% effect" is relative and cumulative: from _any_ nice level,
793 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
794 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
795 * If a task goes up by ~10% and another task goes down by ~10% then
796 * the relative distance between them is ~25%.)
798 static const int prio_to_weight
[40] = {
799 /* -20 */ 88761, 71755, 56483, 46273, 36291,
800 /* -15 */ 29154, 23254, 18705, 14949, 11916,
801 /* -10 */ 9548, 7620, 6100, 4904, 3906,
802 /* -5 */ 3121, 2501, 1991, 1586, 1277,
803 /* 0 */ 1024, 820, 655, 526, 423,
804 /* 5 */ 335, 272, 215, 172, 137,
805 /* 10 */ 110, 87, 70, 56, 45,
806 /* 15 */ 36, 29, 23, 18, 15,
810 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
812 * In cases where the weight does not change often, we can use the
813 * precalculated inverse to speed up arithmetics by turning divisions
814 * into multiplications:
816 static const u32 prio_to_wmult
[40] = {
817 /* -20 */ 48388, 59856, 76040, 92818, 118348,
818 /* -15 */ 147320, 184698, 229616, 287308, 360437,
819 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
820 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
821 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
822 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
823 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
824 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
827 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
830 * runqueue iterator, to support SMP load-balancing between different
831 * scheduling classes, without having to expose their internal data
832 * structures to the load-balancing proper:
836 struct task_struct
*(*start
)(void *);
837 struct task_struct
*(*next
)(void *);
840 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
841 unsigned long max_nr_move
, unsigned long max_load_move
,
842 struct sched_domain
*sd
, enum cpu_idle_type idle
,
843 int *all_pinned
, unsigned long *load_moved
,
844 int *this_best_prio
, struct rq_iterator
*iterator
);
846 #include "sched_stats.h"
847 #include "sched_idletask.c"
848 #include "sched_fair.c"
849 #include "sched_rt.c"
850 #ifdef CONFIG_SCHED_DEBUG
851 # include "sched_debug.c"
854 #define sched_class_highest (&rt_sched_class)
857 * Update delta_exec, delta_fair fields for rq.
859 * delta_fair clock advances at a rate inversely proportional to
860 * total load (rq->load.weight) on the runqueue, while
861 * delta_exec advances at the same rate as wall-clock (provided
864 * delta_exec / delta_fair is a measure of the (smoothened) load on this
865 * runqueue over any given interval. This (smoothened) load is used
866 * during load balance.
868 * This function is called /before/ updating rq->load
869 * and when switching tasks.
871 static inline void inc_load(struct rq
*rq
, const struct task_struct
*p
)
873 update_load_add(&rq
->load
, p
->se
.load
.weight
);
876 static inline void dec_load(struct rq
*rq
, const struct task_struct
*p
)
878 update_load_sub(&rq
->load
, p
->se
.load
.weight
);
881 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
887 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
893 static void set_load_weight(struct task_struct
*p
)
895 if (task_has_rt_policy(p
)) {
896 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
897 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
902 * SCHED_IDLE tasks get minimal weight:
904 if (p
->policy
== SCHED_IDLE
) {
905 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
906 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
910 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
911 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
914 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
916 sched_info_queued(p
);
917 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
921 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
923 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
928 * __normal_prio - return the priority that is based on the static prio
930 static inline int __normal_prio(struct task_struct
*p
)
932 return p
->static_prio
;
936 * Calculate the expected normal priority: i.e. priority
937 * without taking RT-inheritance into account. Might be
938 * boosted by interactivity modifiers. Changes upon fork,
939 * setprio syscalls, and whenever the interactivity
940 * estimator recalculates.
942 static inline int normal_prio(struct task_struct
*p
)
946 if (task_has_rt_policy(p
))
947 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
949 prio
= __normal_prio(p
);
954 * Calculate the current priority, i.e. the priority
955 * taken into account by the scheduler. This value might
956 * be boosted by RT tasks, or might be boosted by
957 * interactivity modifiers. Will be RT if the task got
958 * RT-boosted. If not then it returns p->normal_prio.
960 static int effective_prio(struct task_struct
*p
)
962 p
->normal_prio
= normal_prio(p
);
964 * If we are RT tasks or we were boosted to RT priority,
965 * keep the priority unchanged. Otherwise, update priority
966 * to the normal priority:
968 if (!rt_prio(p
->prio
))
969 return p
->normal_prio
;
974 * activate_task - move a task to the runqueue.
976 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
978 if (p
->state
== TASK_UNINTERRUPTIBLE
)
979 rq
->nr_uninterruptible
--;
981 enqueue_task(rq
, p
, wakeup
);
982 inc_nr_running(p
, rq
);
986 * deactivate_task - remove a task from the runqueue.
988 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
990 if (p
->state
== TASK_UNINTERRUPTIBLE
)
991 rq
->nr_uninterruptible
++;
993 dequeue_task(rq
, p
, sleep
);
994 dec_nr_running(p
, rq
);
998 * task_curr - is this task currently executing on a CPU?
999 * @p: the task in question.
1001 inline int task_curr(const struct task_struct
*p
)
1003 return cpu_curr(task_cpu(p
)) == p
;
1006 /* Used instead of source_load when we know the type == 0 */
1007 unsigned long weighted_cpuload(const int cpu
)
1009 return cpu_rq(cpu
)->load
.weight
;
1012 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1015 task_thread_info(p
)->cpu
= cpu
;
1023 * Is this task likely cache-hot:
1026 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1030 if (p
->sched_class
!= &fair_sched_class
)
1033 if (sysctl_sched_migration_cost
== -1)
1035 if (sysctl_sched_migration_cost
== 0)
1038 delta
= now
- p
->se
.exec_start
;
1040 return delta
< (s64
)sysctl_sched_migration_cost
;
1044 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1046 int old_cpu
= task_cpu(p
);
1047 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1048 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1049 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1052 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1054 #ifdef CONFIG_SCHEDSTATS
1055 if (p
->se
.wait_start
)
1056 p
->se
.wait_start
-= clock_offset
;
1057 if (p
->se
.sleep_start
)
1058 p
->se
.sleep_start
-= clock_offset
;
1059 if (p
->se
.block_start
)
1060 p
->se
.block_start
-= clock_offset
;
1061 if (old_cpu
!= new_cpu
) {
1062 schedstat_inc(p
, se
.nr_migrations
);
1063 if (task_hot(p
, old_rq
->clock
, NULL
))
1064 schedstat_inc(p
, se
.nr_forced2_migrations
);
1067 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1068 new_cfsrq
->min_vruntime
;
1070 __set_task_cpu(p
, new_cpu
);
1073 struct migration_req
{
1074 struct list_head list
;
1076 struct task_struct
*task
;
1079 struct completion done
;
1083 * The task's runqueue lock must be held.
1084 * Returns true if you have to wait for migration thread.
1087 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1089 struct rq
*rq
= task_rq(p
);
1092 * If the task is not on a runqueue (and not running), then
1093 * it is sufficient to simply update the task's cpu field.
1095 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1096 set_task_cpu(p
, dest_cpu
);
1100 init_completion(&req
->done
);
1102 req
->dest_cpu
= dest_cpu
;
1103 list_add(&req
->list
, &rq
->migration_queue
);
1109 * wait_task_inactive - wait for a thread to unschedule.
1111 * The caller must ensure that the task *will* unschedule sometime soon,
1112 * else this function might spin for a *long* time. This function can't
1113 * be called with interrupts off, or it may introduce deadlock with
1114 * smp_call_function() if an IPI is sent by the same process we are
1115 * waiting to become inactive.
1117 void wait_task_inactive(struct task_struct
*p
)
1119 unsigned long flags
;
1125 * We do the initial early heuristics without holding
1126 * any task-queue locks at all. We'll only try to get
1127 * the runqueue lock when things look like they will
1133 * If the task is actively running on another CPU
1134 * still, just relax and busy-wait without holding
1137 * NOTE! Since we don't hold any locks, it's not
1138 * even sure that "rq" stays as the right runqueue!
1139 * But we don't care, since "task_running()" will
1140 * return false if the runqueue has changed and p
1141 * is actually now running somewhere else!
1143 while (task_running(rq
, p
))
1147 * Ok, time to look more closely! We need the rq
1148 * lock now, to be *sure*. If we're wrong, we'll
1149 * just go back and repeat.
1151 rq
= task_rq_lock(p
, &flags
);
1152 running
= task_running(rq
, p
);
1153 on_rq
= p
->se
.on_rq
;
1154 task_rq_unlock(rq
, &flags
);
1157 * Was it really running after all now that we
1158 * checked with the proper locks actually held?
1160 * Oops. Go back and try again..
1162 if (unlikely(running
)) {
1168 * It's not enough that it's not actively running,
1169 * it must be off the runqueue _entirely_, and not
1172 * So if it wa still runnable (but just not actively
1173 * running right now), it's preempted, and we should
1174 * yield - it could be a while.
1176 if (unlikely(on_rq
)) {
1177 schedule_timeout_uninterruptible(1);
1182 * Ahh, all good. It wasn't running, and it wasn't
1183 * runnable, which means that it will never become
1184 * running in the future either. We're all done!
1191 * kick_process - kick a running thread to enter/exit the kernel
1192 * @p: the to-be-kicked thread
1194 * Cause a process which is running on another CPU to enter
1195 * kernel-mode, without any delay. (to get signals handled.)
1197 * NOTE: this function doesnt have to take the runqueue lock,
1198 * because all it wants to ensure is that the remote task enters
1199 * the kernel. If the IPI races and the task has been migrated
1200 * to another CPU then no harm is done and the purpose has been
1203 void kick_process(struct task_struct
*p
)
1209 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1210 smp_send_reschedule(cpu
);
1215 * Return a low guess at the load of a migration-source cpu weighted
1216 * according to the scheduling class and "nice" value.
1218 * We want to under-estimate the load of migration sources, to
1219 * balance conservatively.
1221 static unsigned long source_load(int cpu
, int type
)
1223 struct rq
*rq
= cpu_rq(cpu
);
1224 unsigned long total
= weighted_cpuload(cpu
);
1229 return min(rq
->cpu_load
[type
-1], total
);
1233 * Return a high guess at the load of a migration-target cpu weighted
1234 * according to the scheduling class and "nice" value.
1236 static unsigned long target_load(int cpu
, int type
)
1238 struct rq
*rq
= cpu_rq(cpu
);
1239 unsigned long total
= weighted_cpuload(cpu
);
1244 return max(rq
->cpu_load
[type
-1], total
);
1248 * Return the average load per task on the cpu's run queue
1250 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1252 struct rq
*rq
= cpu_rq(cpu
);
1253 unsigned long total
= weighted_cpuload(cpu
);
1254 unsigned long n
= rq
->nr_running
;
1256 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1260 * find_idlest_group finds and returns the least busy CPU group within the
1263 static struct sched_group
*
1264 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1266 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1267 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1268 int load_idx
= sd
->forkexec_idx
;
1269 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1272 unsigned long load
, avg_load
;
1276 /* Skip over this group if it has no CPUs allowed */
1277 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1280 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1282 /* Tally up the load of all CPUs in the group */
1285 for_each_cpu_mask(i
, group
->cpumask
) {
1286 /* Bias balancing toward cpus of our domain */
1288 load
= source_load(i
, load_idx
);
1290 load
= target_load(i
, load_idx
);
1295 /* Adjust by relative CPU power of the group */
1296 avg_load
= sg_div_cpu_power(group
,
1297 avg_load
* SCHED_LOAD_SCALE
);
1300 this_load
= avg_load
;
1302 } else if (avg_load
< min_load
) {
1303 min_load
= avg_load
;
1306 } while (group
= group
->next
, group
!= sd
->groups
);
1308 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1314 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1317 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1320 unsigned long load
, min_load
= ULONG_MAX
;
1324 /* Traverse only the allowed CPUs */
1325 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1327 for_each_cpu_mask(i
, tmp
) {
1328 load
= weighted_cpuload(i
);
1330 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1340 * sched_balance_self: balance the current task (running on cpu) in domains
1341 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1344 * Balance, ie. select the least loaded group.
1346 * Returns the target CPU number, or the same CPU if no balancing is needed.
1348 * preempt must be disabled.
1350 static int sched_balance_self(int cpu
, int flag
)
1352 struct task_struct
*t
= current
;
1353 struct sched_domain
*tmp
, *sd
= NULL
;
1355 for_each_domain(cpu
, tmp
) {
1357 * If power savings logic is enabled for a domain, stop there.
1359 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1361 if (tmp
->flags
& flag
)
1367 struct sched_group
*group
;
1368 int new_cpu
, weight
;
1370 if (!(sd
->flags
& flag
)) {
1376 group
= find_idlest_group(sd
, t
, cpu
);
1382 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1383 if (new_cpu
== -1 || new_cpu
== cpu
) {
1384 /* Now try balancing at a lower domain level of cpu */
1389 /* Now try balancing at a lower domain level of new_cpu */
1392 weight
= cpus_weight(span
);
1393 for_each_domain(cpu
, tmp
) {
1394 if (weight
<= cpus_weight(tmp
->span
))
1396 if (tmp
->flags
& flag
)
1399 /* while loop will break here if sd == NULL */
1405 #endif /* CONFIG_SMP */
1408 * wake_idle() will wake a task on an idle cpu if task->cpu is
1409 * not idle and an idle cpu is available. The span of cpus to
1410 * search starts with cpus closest then further out as needed,
1411 * so we always favor a closer, idle cpu.
1413 * Returns the CPU we should wake onto.
1415 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1416 static int wake_idle(int cpu
, struct task_struct
*p
)
1419 struct sched_domain
*sd
;
1423 * If it is idle, then it is the best cpu to run this task.
1425 * This cpu is also the best, if it has more than one task already.
1426 * Siblings must be also busy(in most cases) as they didn't already
1427 * pickup the extra load from this cpu and hence we need not check
1428 * sibling runqueue info. This will avoid the checks and cache miss
1429 * penalities associated with that.
1431 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1434 for_each_domain(cpu
, sd
) {
1435 if (sd
->flags
& SD_WAKE_IDLE
) {
1436 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1437 for_each_cpu_mask(i
, tmp
) {
1439 if (i
!= task_cpu(p
)) {
1441 se
.nr_wakeups_idle
);
1453 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1460 * try_to_wake_up - wake up a thread
1461 * @p: the to-be-woken-up thread
1462 * @state: the mask of task states that can be woken
1463 * @sync: do a synchronous wakeup?
1465 * Put it on the run-queue if it's not already there. The "current"
1466 * thread is always on the run-queue (except when the actual
1467 * re-schedule is in progress), and as such you're allowed to do
1468 * the simpler "current->state = TASK_RUNNING" to mark yourself
1469 * runnable without the overhead of this.
1471 * returns failure only if the task is already active.
1473 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1475 int cpu
, orig_cpu
, this_cpu
, success
= 0;
1476 unsigned long flags
;
1480 struct sched_domain
*sd
, *this_sd
= NULL
;
1481 unsigned long load
, this_load
;
1485 rq
= task_rq_lock(p
, &flags
);
1486 old_state
= p
->state
;
1487 if (!(old_state
& state
))
1495 this_cpu
= smp_processor_id();
1498 if (unlikely(task_running(rq
, p
)))
1503 schedstat_inc(rq
, ttwu_count
);
1504 if (cpu
== this_cpu
) {
1505 schedstat_inc(rq
, ttwu_local
);
1509 for_each_domain(this_cpu
, sd
) {
1510 if (cpu_isset(cpu
, sd
->span
)) {
1511 schedstat_inc(sd
, ttwu_wake_remote
);
1517 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1521 * Check for affine wakeup and passive balancing possibilities.
1524 int idx
= this_sd
->wake_idx
;
1525 unsigned int imbalance
;
1527 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1529 load
= source_load(cpu
, idx
);
1530 this_load
= target_load(this_cpu
, idx
);
1532 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1534 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1535 unsigned long tl
= this_load
;
1536 unsigned long tl_per_task
;
1539 * Attract cache-cold tasks on sync wakeups:
1541 if (sync
&& !task_hot(p
, rq
->clock
, this_sd
))
1544 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1545 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1548 * If sync wakeup then subtract the (maximum possible)
1549 * effect of the currently running task from the load
1550 * of the current CPU:
1553 tl
-= current
->se
.load
.weight
;
1556 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1557 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1559 * This domain has SD_WAKE_AFFINE and
1560 * p is cache cold in this domain, and
1561 * there is no bad imbalance.
1563 schedstat_inc(this_sd
, ttwu_move_affine
);
1564 schedstat_inc(p
, se
.nr_wakeups_affine
);
1570 * Start passive balancing when half the imbalance_pct
1573 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1574 if (imbalance
*this_load
<= 100*load
) {
1575 schedstat_inc(this_sd
, ttwu_move_balance
);
1576 schedstat_inc(p
, se
.nr_wakeups_passive
);
1582 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1584 new_cpu
= wake_idle(new_cpu
, p
);
1585 if (new_cpu
!= cpu
) {
1586 set_task_cpu(p
, new_cpu
);
1587 task_rq_unlock(rq
, &flags
);
1588 /* might preempt at this point */
1589 rq
= task_rq_lock(p
, &flags
);
1590 old_state
= p
->state
;
1591 if (!(old_state
& state
))
1596 this_cpu
= smp_processor_id();
1601 #endif /* CONFIG_SMP */
1602 schedstat_inc(p
, se
.nr_wakeups
);
1604 schedstat_inc(p
, se
.nr_wakeups_sync
);
1605 if (orig_cpu
!= cpu
)
1606 schedstat_inc(p
, se
.nr_wakeups_migrate
);
1607 if (cpu
== this_cpu
)
1608 schedstat_inc(p
, se
.nr_wakeups_local
);
1610 schedstat_inc(p
, se
.nr_wakeups_remote
);
1611 update_rq_clock(rq
);
1612 activate_task(rq
, p
, 1);
1613 check_preempt_curr(rq
, p
);
1617 p
->state
= TASK_RUNNING
;
1619 task_rq_unlock(rq
, &flags
);
1624 int fastcall
wake_up_process(struct task_struct
*p
)
1626 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1627 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1629 EXPORT_SYMBOL(wake_up_process
);
1631 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1633 return try_to_wake_up(p
, state
, 0);
1637 * Perform scheduler related setup for a newly forked process p.
1638 * p is forked by current.
1640 * __sched_fork() is basic setup used by init_idle() too:
1642 static void __sched_fork(struct task_struct
*p
)
1644 p
->se
.exec_start
= 0;
1645 p
->se
.sum_exec_runtime
= 0;
1646 p
->se
.prev_sum_exec_runtime
= 0;
1648 #ifdef CONFIG_SCHEDSTATS
1649 p
->se
.wait_start
= 0;
1650 p
->se
.sum_sleep_runtime
= 0;
1651 p
->se
.sleep_start
= 0;
1652 p
->se
.block_start
= 0;
1653 p
->se
.sleep_max
= 0;
1654 p
->se
.block_max
= 0;
1656 p
->se
.slice_max
= 0;
1660 INIT_LIST_HEAD(&p
->run_list
);
1663 #ifdef CONFIG_PREEMPT_NOTIFIERS
1664 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1668 * We mark the process as running here, but have not actually
1669 * inserted it onto the runqueue yet. This guarantees that
1670 * nobody will actually run it, and a signal or other external
1671 * event cannot wake it up and insert it on the runqueue either.
1673 p
->state
= TASK_RUNNING
;
1677 * fork()/clone()-time setup:
1679 void sched_fork(struct task_struct
*p
, int clone_flags
)
1681 int cpu
= get_cpu();
1686 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1688 set_task_cpu(p
, cpu
);
1691 * Make sure we do not leak PI boosting priority to the child:
1693 p
->prio
= current
->normal_prio
;
1694 if (!rt_prio(p
->prio
))
1695 p
->sched_class
= &fair_sched_class
;
1697 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1698 if (likely(sched_info_on()))
1699 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1701 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1704 #ifdef CONFIG_PREEMPT
1705 /* Want to start with kernel preemption disabled. */
1706 task_thread_info(p
)->preempt_count
= 1;
1712 * wake_up_new_task - wake up a newly created task for the first time.
1714 * This function will do some initial scheduler statistics housekeeping
1715 * that must be done for every newly created context, then puts the task
1716 * on the runqueue and wakes it.
1718 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1720 unsigned long flags
;
1723 rq
= task_rq_lock(p
, &flags
);
1724 BUG_ON(p
->state
!= TASK_RUNNING
);
1725 update_rq_clock(rq
);
1727 p
->prio
= effective_prio(p
);
1729 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
1730 activate_task(rq
, p
, 0);
1733 * Let the scheduling class do new task startup
1734 * management (if any):
1736 p
->sched_class
->task_new(rq
, p
);
1737 inc_nr_running(p
, rq
);
1739 check_preempt_curr(rq
, p
);
1740 task_rq_unlock(rq
, &flags
);
1743 #ifdef CONFIG_PREEMPT_NOTIFIERS
1746 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1747 * @notifier: notifier struct to register
1749 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1751 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1753 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1756 * preempt_notifier_unregister - no longer interested in preemption notifications
1757 * @notifier: notifier struct to unregister
1759 * This is safe to call from within a preemption notifier.
1761 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1763 hlist_del(¬ifier
->link
);
1765 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1767 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1769 struct preempt_notifier
*notifier
;
1770 struct hlist_node
*node
;
1772 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1773 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1777 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1778 struct task_struct
*next
)
1780 struct preempt_notifier
*notifier
;
1781 struct hlist_node
*node
;
1783 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1784 notifier
->ops
->sched_out(notifier
, next
);
1789 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1794 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1795 struct task_struct
*next
)
1802 * prepare_task_switch - prepare to switch tasks
1803 * @rq: the runqueue preparing to switch
1804 * @prev: the current task that is being switched out
1805 * @next: the task we are going to switch to.
1807 * This is called with the rq lock held and interrupts off. It must
1808 * be paired with a subsequent finish_task_switch after the context
1811 * prepare_task_switch sets up locking and calls architecture specific
1815 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1816 struct task_struct
*next
)
1818 fire_sched_out_preempt_notifiers(prev
, next
);
1819 prepare_lock_switch(rq
, next
);
1820 prepare_arch_switch(next
);
1824 * finish_task_switch - clean up after a task-switch
1825 * @rq: runqueue associated with task-switch
1826 * @prev: the thread we just switched away from.
1828 * finish_task_switch must be called after the context switch, paired
1829 * with a prepare_task_switch call before the context switch.
1830 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1831 * and do any other architecture-specific cleanup actions.
1833 * Note that we may have delayed dropping an mm in context_switch(). If
1834 * so, we finish that here outside of the runqueue lock. (Doing it
1835 * with the lock held can cause deadlocks; see schedule() for
1838 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1839 __releases(rq
->lock
)
1841 struct mm_struct
*mm
= rq
->prev_mm
;
1847 * A task struct has one reference for the use as "current".
1848 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1849 * schedule one last time. The schedule call will never return, and
1850 * the scheduled task must drop that reference.
1851 * The test for TASK_DEAD must occur while the runqueue locks are
1852 * still held, otherwise prev could be scheduled on another cpu, die
1853 * there before we look at prev->state, and then the reference would
1855 * Manfred Spraul <manfred@colorfullife.com>
1857 prev_state
= prev
->state
;
1858 finish_arch_switch(prev
);
1859 finish_lock_switch(rq
, prev
);
1860 fire_sched_in_preempt_notifiers(current
);
1863 if (unlikely(prev_state
== TASK_DEAD
)) {
1865 * Remove function-return probe instances associated with this
1866 * task and put them back on the free list.
1868 kprobe_flush_task(prev
);
1869 put_task_struct(prev
);
1874 * schedule_tail - first thing a freshly forked thread must call.
1875 * @prev: the thread we just switched away from.
1877 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1878 __releases(rq
->lock
)
1880 struct rq
*rq
= this_rq();
1882 finish_task_switch(rq
, prev
);
1883 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1884 /* In this case, finish_task_switch does not reenable preemption */
1887 if (current
->set_child_tid
)
1888 put_user(task_pid_vnr(current
), current
->set_child_tid
);
1892 * context_switch - switch to the new MM and the new
1893 * thread's register state.
1896 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1897 struct task_struct
*next
)
1899 struct mm_struct
*mm
, *oldmm
;
1901 prepare_task_switch(rq
, prev
, next
);
1903 oldmm
= prev
->active_mm
;
1905 * For paravirt, this is coupled with an exit in switch_to to
1906 * combine the page table reload and the switch backend into
1909 arch_enter_lazy_cpu_mode();
1911 if (unlikely(!mm
)) {
1912 next
->active_mm
= oldmm
;
1913 atomic_inc(&oldmm
->mm_count
);
1914 enter_lazy_tlb(oldmm
, next
);
1916 switch_mm(oldmm
, mm
, next
);
1918 if (unlikely(!prev
->mm
)) {
1919 prev
->active_mm
= NULL
;
1920 rq
->prev_mm
= oldmm
;
1923 * Since the runqueue lock will be released by the next
1924 * task (which is an invalid locking op but in the case
1925 * of the scheduler it's an obvious special-case), so we
1926 * do an early lockdep release here:
1928 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1929 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1932 /* Here we just switch the register state and the stack. */
1933 switch_to(prev
, next
, prev
);
1937 * this_rq must be evaluated again because prev may have moved
1938 * CPUs since it called schedule(), thus the 'rq' on its stack
1939 * frame will be invalid.
1941 finish_task_switch(this_rq(), prev
);
1945 * nr_running, nr_uninterruptible and nr_context_switches:
1947 * externally visible scheduler statistics: current number of runnable
1948 * threads, current number of uninterruptible-sleeping threads, total
1949 * number of context switches performed since bootup.
1951 unsigned long nr_running(void)
1953 unsigned long i
, sum
= 0;
1955 for_each_online_cpu(i
)
1956 sum
+= cpu_rq(i
)->nr_running
;
1961 unsigned long nr_uninterruptible(void)
1963 unsigned long i
, sum
= 0;
1965 for_each_possible_cpu(i
)
1966 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1969 * Since we read the counters lockless, it might be slightly
1970 * inaccurate. Do not allow it to go below zero though:
1972 if (unlikely((long)sum
< 0))
1978 unsigned long long nr_context_switches(void)
1981 unsigned long long sum
= 0;
1983 for_each_possible_cpu(i
)
1984 sum
+= cpu_rq(i
)->nr_switches
;
1989 unsigned long nr_iowait(void)
1991 unsigned long i
, sum
= 0;
1993 for_each_possible_cpu(i
)
1994 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1999 unsigned long nr_active(void)
2001 unsigned long i
, running
= 0, uninterruptible
= 0;
2003 for_each_online_cpu(i
) {
2004 running
+= cpu_rq(i
)->nr_running
;
2005 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2008 if (unlikely((long)uninterruptible
< 0))
2009 uninterruptible
= 0;
2011 return running
+ uninterruptible
;
2015 * Update rq->cpu_load[] statistics. This function is usually called every
2016 * scheduler tick (TICK_NSEC).
2018 static void update_cpu_load(struct rq
*this_rq
)
2020 unsigned long this_load
= this_rq
->load
.weight
;
2023 this_rq
->nr_load_updates
++;
2025 /* Update our load: */
2026 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2027 unsigned long old_load
, new_load
;
2029 /* scale is effectively 1 << i now, and >> i divides by scale */
2031 old_load
= this_rq
->cpu_load
[i
];
2032 new_load
= this_load
;
2034 * Round up the averaging division if load is increasing. This
2035 * prevents us from getting stuck on 9 if the load is 10, for
2038 if (new_load
> old_load
)
2039 new_load
+= scale
-1;
2040 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2047 * double_rq_lock - safely lock two runqueues
2049 * Note this does not disable interrupts like task_rq_lock,
2050 * you need to do so manually before calling.
2052 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2053 __acquires(rq1
->lock
)
2054 __acquires(rq2
->lock
)
2056 BUG_ON(!irqs_disabled());
2058 spin_lock(&rq1
->lock
);
2059 __acquire(rq2
->lock
); /* Fake it out ;) */
2062 spin_lock(&rq1
->lock
);
2063 spin_lock(&rq2
->lock
);
2065 spin_lock(&rq2
->lock
);
2066 spin_lock(&rq1
->lock
);
2069 update_rq_clock(rq1
);
2070 update_rq_clock(rq2
);
2074 * double_rq_unlock - safely unlock two runqueues
2076 * Note this does not restore interrupts like task_rq_unlock,
2077 * you need to do so manually after calling.
2079 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2080 __releases(rq1
->lock
)
2081 __releases(rq2
->lock
)
2083 spin_unlock(&rq1
->lock
);
2085 spin_unlock(&rq2
->lock
);
2087 __release(rq2
->lock
);
2091 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2093 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2094 __releases(this_rq
->lock
)
2095 __acquires(busiest
->lock
)
2096 __acquires(this_rq
->lock
)
2098 if (unlikely(!irqs_disabled())) {
2099 /* printk() doesn't work good under rq->lock */
2100 spin_unlock(&this_rq
->lock
);
2103 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2104 if (busiest
< this_rq
) {
2105 spin_unlock(&this_rq
->lock
);
2106 spin_lock(&busiest
->lock
);
2107 spin_lock(&this_rq
->lock
);
2109 spin_lock(&busiest
->lock
);
2114 * If dest_cpu is allowed for this process, migrate the task to it.
2115 * This is accomplished by forcing the cpu_allowed mask to only
2116 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2117 * the cpu_allowed mask is restored.
2119 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2121 struct migration_req req
;
2122 unsigned long flags
;
2125 rq
= task_rq_lock(p
, &flags
);
2126 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2127 || unlikely(cpu_is_offline(dest_cpu
)))
2130 /* force the process onto the specified CPU */
2131 if (migrate_task(p
, dest_cpu
, &req
)) {
2132 /* Need to wait for migration thread (might exit: take ref). */
2133 struct task_struct
*mt
= rq
->migration_thread
;
2135 get_task_struct(mt
);
2136 task_rq_unlock(rq
, &flags
);
2137 wake_up_process(mt
);
2138 put_task_struct(mt
);
2139 wait_for_completion(&req
.done
);
2144 task_rq_unlock(rq
, &flags
);
2148 * sched_exec - execve() is a valuable balancing opportunity, because at
2149 * this point the task has the smallest effective memory and cache footprint.
2151 void sched_exec(void)
2153 int new_cpu
, this_cpu
= get_cpu();
2154 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2156 if (new_cpu
!= this_cpu
)
2157 sched_migrate_task(current
, new_cpu
);
2161 * pull_task - move a task from a remote runqueue to the local runqueue.
2162 * Both runqueues must be locked.
2164 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2165 struct rq
*this_rq
, int this_cpu
)
2167 deactivate_task(src_rq
, p
, 0);
2168 set_task_cpu(p
, this_cpu
);
2169 activate_task(this_rq
, p
, 0);
2171 * Note that idle threads have a prio of MAX_PRIO, for this test
2172 * to be always true for them.
2174 check_preempt_curr(this_rq
, p
);
2178 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2181 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2182 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2186 * We do not migrate tasks that are:
2187 * 1) running (obviously), or
2188 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2189 * 3) are cache-hot on their current CPU.
2191 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2192 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2197 if (task_running(rq
, p
)) {
2198 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2203 * Aggressive migration if:
2204 * 1) task is cache cold, or
2205 * 2) too many balance attempts have failed.
2208 if (!task_hot(p
, rq
->clock
, sd
) ||
2209 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2210 #ifdef CONFIG_SCHEDSTATS
2211 if (task_hot(p
, rq
->clock
, sd
)) {
2212 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2213 schedstat_inc(p
, se
.nr_forced_migrations
);
2219 if (task_hot(p
, rq
->clock
, sd
)) {
2220 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2226 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2227 unsigned long max_nr_move
, unsigned long max_load_move
,
2228 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2229 int *all_pinned
, unsigned long *load_moved
,
2230 int *this_best_prio
, struct rq_iterator
*iterator
)
2232 int pulled
= 0, pinned
= 0, skip_for_load
;
2233 struct task_struct
*p
;
2234 long rem_load_move
= max_load_move
;
2236 if (max_nr_move
== 0 || max_load_move
== 0)
2242 * Start the load-balancing iterator:
2244 p
= iterator
->start(iterator
->arg
);
2249 * To help distribute high priority tasks accross CPUs we don't
2250 * skip a task if it will be the highest priority task (i.e. smallest
2251 * prio value) on its new queue regardless of its load weight
2253 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2254 SCHED_LOAD_SCALE_FUZZ
;
2255 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2256 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2257 p
= iterator
->next(iterator
->arg
);
2261 pull_task(busiest
, p
, this_rq
, this_cpu
);
2263 rem_load_move
-= p
->se
.load
.weight
;
2266 * We only want to steal up to the prescribed number of tasks
2267 * and the prescribed amount of weighted load.
2269 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2270 if (p
->prio
< *this_best_prio
)
2271 *this_best_prio
= p
->prio
;
2272 p
= iterator
->next(iterator
->arg
);
2277 * Right now, this is the only place pull_task() is called,
2278 * so we can safely collect pull_task() stats here rather than
2279 * inside pull_task().
2281 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2284 *all_pinned
= pinned
;
2285 *load_moved
= max_load_move
- rem_load_move
;
2290 * move_tasks tries to move up to max_load_move weighted load from busiest to
2291 * this_rq, as part of a balancing operation within domain "sd".
2292 * Returns 1 if successful and 0 otherwise.
2294 * Called with both runqueues locked.
2296 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2297 unsigned long max_load_move
,
2298 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2301 const struct sched_class
*class = sched_class_highest
;
2302 unsigned long total_load_moved
= 0;
2303 int this_best_prio
= this_rq
->curr
->prio
;
2307 class->load_balance(this_rq
, this_cpu
, busiest
,
2308 ULONG_MAX
, max_load_move
- total_load_moved
,
2309 sd
, idle
, all_pinned
, &this_best_prio
);
2310 class = class->next
;
2311 } while (class && max_load_move
> total_load_moved
);
2313 return total_load_moved
> 0;
2317 * move_one_task tries to move exactly one task from busiest to this_rq, as
2318 * part of active balancing operations within "domain".
2319 * Returns 1 if successful and 0 otherwise.
2321 * Called with both runqueues locked.
2323 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2324 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2326 const struct sched_class
*class;
2327 int this_best_prio
= MAX_PRIO
;
2329 for (class = sched_class_highest
; class; class = class->next
)
2330 if (class->load_balance(this_rq
, this_cpu
, busiest
,
2331 1, ULONG_MAX
, sd
, idle
, NULL
,
2339 * find_busiest_group finds and returns the busiest CPU group within the
2340 * domain. It calculates and returns the amount of weighted load which
2341 * should be moved to restore balance via the imbalance parameter.
2343 static struct sched_group
*
2344 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2345 unsigned long *imbalance
, enum cpu_idle_type idle
,
2346 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2348 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2349 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2350 unsigned long max_pull
;
2351 unsigned long busiest_load_per_task
, busiest_nr_running
;
2352 unsigned long this_load_per_task
, this_nr_running
;
2353 int load_idx
, group_imb
= 0;
2354 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2355 int power_savings_balance
= 1;
2356 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2357 unsigned long min_nr_running
= ULONG_MAX
;
2358 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2361 max_load
= this_load
= total_load
= total_pwr
= 0;
2362 busiest_load_per_task
= busiest_nr_running
= 0;
2363 this_load_per_task
= this_nr_running
= 0;
2364 if (idle
== CPU_NOT_IDLE
)
2365 load_idx
= sd
->busy_idx
;
2366 else if (idle
== CPU_NEWLY_IDLE
)
2367 load_idx
= sd
->newidle_idx
;
2369 load_idx
= sd
->idle_idx
;
2372 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
2375 int __group_imb
= 0;
2376 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2377 unsigned long sum_nr_running
, sum_weighted_load
;
2379 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2382 balance_cpu
= first_cpu(group
->cpumask
);
2384 /* Tally up the load of all CPUs in the group */
2385 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2387 min_cpu_load
= ~0UL;
2389 for_each_cpu_mask(i
, group
->cpumask
) {
2392 if (!cpu_isset(i
, *cpus
))
2397 if (*sd_idle
&& rq
->nr_running
)
2400 /* Bias balancing toward cpus of our domain */
2402 if (idle_cpu(i
) && !first_idle_cpu
) {
2407 load
= target_load(i
, load_idx
);
2409 load
= source_load(i
, load_idx
);
2410 if (load
> max_cpu_load
)
2411 max_cpu_load
= load
;
2412 if (min_cpu_load
> load
)
2413 min_cpu_load
= load
;
2417 sum_nr_running
+= rq
->nr_running
;
2418 sum_weighted_load
+= weighted_cpuload(i
);
2422 * First idle cpu or the first cpu(busiest) in this sched group
2423 * is eligible for doing load balancing at this and above
2424 * domains. In the newly idle case, we will allow all the cpu's
2425 * to do the newly idle load balance.
2427 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2428 balance_cpu
!= this_cpu
&& balance
) {
2433 total_load
+= avg_load
;
2434 total_pwr
+= group
->__cpu_power
;
2436 /* Adjust by relative CPU power of the group */
2437 avg_load
= sg_div_cpu_power(group
,
2438 avg_load
* SCHED_LOAD_SCALE
);
2440 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
2443 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2446 this_load
= avg_load
;
2448 this_nr_running
= sum_nr_running
;
2449 this_load_per_task
= sum_weighted_load
;
2450 } else if (avg_load
> max_load
&&
2451 (sum_nr_running
> group_capacity
|| __group_imb
)) {
2452 max_load
= avg_load
;
2454 busiest_nr_running
= sum_nr_running
;
2455 busiest_load_per_task
= sum_weighted_load
;
2456 group_imb
= __group_imb
;
2459 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2461 * Busy processors will not participate in power savings
2464 if (idle
== CPU_NOT_IDLE
||
2465 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2469 * If the local group is idle or completely loaded
2470 * no need to do power savings balance at this domain
2472 if (local_group
&& (this_nr_running
>= group_capacity
||
2474 power_savings_balance
= 0;
2477 * If a group is already running at full capacity or idle,
2478 * don't include that group in power savings calculations
2480 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2485 * Calculate the group which has the least non-idle load.
2486 * This is the group from where we need to pick up the load
2489 if ((sum_nr_running
< min_nr_running
) ||
2490 (sum_nr_running
== min_nr_running
&&
2491 first_cpu(group
->cpumask
) <
2492 first_cpu(group_min
->cpumask
))) {
2494 min_nr_running
= sum_nr_running
;
2495 min_load_per_task
= sum_weighted_load
/
2500 * Calculate the group which is almost near its
2501 * capacity but still has some space to pick up some load
2502 * from other group and save more power
2504 if (sum_nr_running
<= group_capacity
- 1) {
2505 if (sum_nr_running
> leader_nr_running
||
2506 (sum_nr_running
== leader_nr_running
&&
2507 first_cpu(group
->cpumask
) >
2508 first_cpu(group_leader
->cpumask
))) {
2509 group_leader
= group
;
2510 leader_nr_running
= sum_nr_running
;
2515 group
= group
->next
;
2516 } while (group
!= sd
->groups
);
2518 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2521 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2523 if (this_load
>= avg_load
||
2524 100*max_load
<= sd
->imbalance_pct
*this_load
)
2527 busiest_load_per_task
/= busiest_nr_running
;
2529 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
2532 * We're trying to get all the cpus to the average_load, so we don't
2533 * want to push ourselves above the average load, nor do we wish to
2534 * reduce the max loaded cpu below the average load, as either of these
2535 * actions would just result in more rebalancing later, and ping-pong
2536 * tasks around. Thus we look for the minimum possible imbalance.
2537 * Negative imbalances (*we* are more loaded than anyone else) will
2538 * be counted as no imbalance for these purposes -- we can't fix that
2539 * by pulling tasks to us. Be careful of negative numbers as they'll
2540 * appear as very large values with unsigned longs.
2542 if (max_load
<= busiest_load_per_task
)
2546 * In the presence of smp nice balancing, certain scenarios can have
2547 * max load less than avg load(as we skip the groups at or below
2548 * its cpu_power, while calculating max_load..)
2550 if (max_load
< avg_load
) {
2552 goto small_imbalance
;
2555 /* Don't want to pull so many tasks that a group would go idle */
2556 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2558 /* How much load to actually move to equalise the imbalance */
2559 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2560 (avg_load
- this_load
) * this->__cpu_power
)
2564 * if *imbalance is less than the average load per runnable task
2565 * there is no gaurantee that any tasks will be moved so we'll have
2566 * a think about bumping its value to force at least one task to be
2569 if (*imbalance
< busiest_load_per_task
) {
2570 unsigned long tmp
, pwr_now
, pwr_move
;
2574 pwr_move
= pwr_now
= 0;
2576 if (this_nr_running
) {
2577 this_load_per_task
/= this_nr_running
;
2578 if (busiest_load_per_task
> this_load_per_task
)
2581 this_load_per_task
= SCHED_LOAD_SCALE
;
2583 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2584 busiest_load_per_task
* imbn
) {
2585 *imbalance
= busiest_load_per_task
;
2590 * OK, we don't have enough imbalance to justify moving tasks,
2591 * however we may be able to increase total CPU power used by
2595 pwr_now
+= busiest
->__cpu_power
*
2596 min(busiest_load_per_task
, max_load
);
2597 pwr_now
+= this->__cpu_power
*
2598 min(this_load_per_task
, this_load
);
2599 pwr_now
/= SCHED_LOAD_SCALE
;
2601 /* Amount of load we'd subtract */
2602 tmp
= sg_div_cpu_power(busiest
,
2603 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2605 pwr_move
+= busiest
->__cpu_power
*
2606 min(busiest_load_per_task
, max_load
- tmp
);
2608 /* Amount of load we'd add */
2609 if (max_load
* busiest
->__cpu_power
<
2610 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2611 tmp
= sg_div_cpu_power(this,
2612 max_load
* busiest
->__cpu_power
);
2614 tmp
= sg_div_cpu_power(this,
2615 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2616 pwr_move
+= this->__cpu_power
*
2617 min(this_load_per_task
, this_load
+ tmp
);
2618 pwr_move
/= SCHED_LOAD_SCALE
;
2620 /* Move if we gain throughput */
2621 if (pwr_move
> pwr_now
)
2622 *imbalance
= busiest_load_per_task
;
2628 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2629 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2632 if (this == group_leader
&& group_leader
!= group_min
) {
2633 *imbalance
= min_load_per_task
;
2643 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2646 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2647 unsigned long imbalance
, cpumask_t
*cpus
)
2649 struct rq
*busiest
= NULL
, *rq
;
2650 unsigned long max_load
= 0;
2653 for_each_cpu_mask(i
, group
->cpumask
) {
2656 if (!cpu_isset(i
, *cpus
))
2660 wl
= weighted_cpuload(i
);
2662 if (rq
->nr_running
== 1 && wl
> imbalance
)
2665 if (wl
> max_load
) {
2675 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2676 * so long as it is large enough.
2678 #define MAX_PINNED_INTERVAL 512
2681 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2682 * tasks if there is an imbalance.
2684 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2685 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2688 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2689 struct sched_group
*group
;
2690 unsigned long imbalance
;
2692 cpumask_t cpus
= CPU_MASK_ALL
;
2693 unsigned long flags
;
2696 * When power savings policy is enabled for the parent domain, idle
2697 * sibling can pick up load irrespective of busy siblings. In this case,
2698 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2699 * portraying it as CPU_NOT_IDLE.
2701 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2702 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2705 schedstat_inc(sd
, lb_count
[idle
]);
2708 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2715 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2719 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2721 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2725 BUG_ON(busiest
== this_rq
);
2727 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2730 if (busiest
->nr_running
> 1) {
2732 * Attempt to move tasks. If find_busiest_group has found
2733 * an imbalance but busiest->nr_running <= 1, the group is
2734 * still unbalanced. ld_moved simply stays zero, so it is
2735 * correctly treated as an imbalance.
2737 local_irq_save(flags
);
2738 double_rq_lock(this_rq
, busiest
);
2739 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2740 imbalance
, sd
, idle
, &all_pinned
);
2741 double_rq_unlock(this_rq
, busiest
);
2742 local_irq_restore(flags
);
2745 * some other cpu did the load balance for us.
2747 if (ld_moved
&& this_cpu
!= smp_processor_id())
2748 resched_cpu(this_cpu
);
2750 /* All tasks on this runqueue were pinned by CPU affinity */
2751 if (unlikely(all_pinned
)) {
2752 cpu_clear(cpu_of(busiest
), cpus
);
2753 if (!cpus_empty(cpus
))
2760 schedstat_inc(sd
, lb_failed
[idle
]);
2761 sd
->nr_balance_failed
++;
2763 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2765 spin_lock_irqsave(&busiest
->lock
, flags
);
2767 /* don't kick the migration_thread, if the curr
2768 * task on busiest cpu can't be moved to this_cpu
2770 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2771 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2773 goto out_one_pinned
;
2776 if (!busiest
->active_balance
) {
2777 busiest
->active_balance
= 1;
2778 busiest
->push_cpu
= this_cpu
;
2781 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2783 wake_up_process(busiest
->migration_thread
);
2786 * We've kicked active balancing, reset the failure
2789 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2792 sd
->nr_balance_failed
= 0;
2794 if (likely(!active_balance
)) {
2795 /* We were unbalanced, so reset the balancing interval */
2796 sd
->balance_interval
= sd
->min_interval
;
2799 * If we've begun active balancing, start to back off. This
2800 * case may not be covered by the all_pinned logic if there
2801 * is only 1 task on the busy runqueue (because we don't call
2804 if (sd
->balance_interval
< sd
->max_interval
)
2805 sd
->balance_interval
*= 2;
2808 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2809 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2814 schedstat_inc(sd
, lb_balanced
[idle
]);
2816 sd
->nr_balance_failed
= 0;
2819 /* tune up the balancing interval */
2820 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2821 (sd
->balance_interval
< sd
->max_interval
))
2822 sd
->balance_interval
*= 2;
2824 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2825 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2831 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2832 * tasks if there is an imbalance.
2834 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2835 * this_rq is locked.
2838 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2840 struct sched_group
*group
;
2841 struct rq
*busiest
= NULL
;
2842 unsigned long imbalance
;
2846 cpumask_t cpus
= CPU_MASK_ALL
;
2849 * When power savings policy is enabled for the parent domain, idle
2850 * sibling can pick up load irrespective of busy siblings. In this case,
2851 * let the state of idle sibling percolate up as IDLE, instead of
2852 * portraying it as CPU_NOT_IDLE.
2854 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2855 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2858 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
2860 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2861 &sd_idle
, &cpus
, NULL
);
2863 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2867 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2870 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2874 BUG_ON(busiest
== this_rq
);
2876 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2879 if (busiest
->nr_running
> 1) {
2880 /* Attempt to move tasks */
2881 double_lock_balance(this_rq
, busiest
);
2882 /* this_rq->clock is already updated */
2883 update_rq_clock(busiest
);
2884 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2885 imbalance
, sd
, CPU_NEWLY_IDLE
,
2887 spin_unlock(&busiest
->lock
);
2889 if (unlikely(all_pinned
)) {
2890 cpu_clear(cpu_of(busiest
), cpus
);
2891 if (!cpus_empty(cpus
))
2897 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2898 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2899 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2902 sd
->nr_balance_failed
= 0;
2907 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2908 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2909 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2911 sd
->nr_balance_failed
= 0;
2917 * idle_balance is called by schedule() if this_cpu is about to become
2918 * idle. Attempts to pull tasks from other CPUs.
2920 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2922 struct sched_domain
*sd
;
2923 int pulled_task
= -1;
2924 unsigned long next_balance
= jiffies
+ HZ
;
2926 for_each_domain(this_cpu
, sd
) {
2927 unsigned long interval
;
2929 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2932 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2933 /* If we've pulled tasks over stop searching: */
2934 pulled_task
= load_balance_newidle(this_cpu
,
2937 interval
= msecs_to_jiffies(sd
->balance_interval
);
2938 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2939 next_balance
= sd
->last_balance
+ interval
;
2943 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2945 * We are going idle. next_balance may be set based on
2946 * a busy processor. So reset next_balance.
2948 this_rq
->next_balance
= next_balance
;
2953 * active_load_balance is run by migration threads. It pushes running tasks
2954 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2955 * running on each physical CPU where possible, and avoids physical /
2956 * logical imbalances.
2958 * Called with busiest_rq locked.
2960 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2962 int target_cpu
= busiest_rq
->push_cpu
;
2963 struct sched_domain
*sd
;
2964 struct rq
*target_rq
;
2966 /* Is there any task to move? */
2967 if (busiest_rq
->nr_running
<= 1)
2970 target_rq
= cpu_rq(target_cpu
);
2973 * This condition is "impossible", if it occurs
2974 * we need to fix it. Originally reported by
2975 * Bjorn Helgaas on a 128-cpu setup.
2977 BUG_ON(busiest_rq
== target_rq
);
2979 /* move a task from busiest_rq to target_rq */
2980 double_lock_balance(busiest_rq
, target_rq
);
2981 update_rq_clock(busiest_rq
);
2982 update_rq_clock(target_rq
);
2984 /* Search for an sd spanning us and the target CPU. */
2985 for_each_domain(target_cpu
, sd
) {
2986 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2987 cpu_isset(busiest_cpu
, sd
->span
))
2992 schedstat_inc(sd
, alb_count
);
2994 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
2996 schedstat_inc(sd
, alb_pushed
);
2998 schedstat_inc(sd
, alb_failed
);
3000 spin_unlock(&target_rq
->lock
);
3005 atomic_t load_balancer
;
3007 } nohz ____cacheline_aligned
= {
3008 .load_balancer
= ATOMIC_INIT(-1),
3009 .cpu_mask
= CPU_MASK_NONE
,
3013 * This routine will try to nominate the ilb (idle load balancing)
3014 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3015 * load balancing on behalf of all those cpus. If all the cpus in the system
3016 * go into this tickless mode, then there will be no ilb owner (as there is
3017 * no need for one) and all the cpus will sleep till the next wakeup event
3020 * For the ilb owner, tick is not stopped. And this tick will be used
3021 * for idle load balancing. ilb owner will still be part of
3024 * While stopping the tick, this cpu will become the ilb owner if there
3025 * is no other owner. And will be the owner till that cpu becomes busy
3026 * or if all cpus in the system stop their ticks at which point
3027 * there is no need for ilb owner.
3029 * When the ilb owner becomes busy, it nominates another owner, during the
3030 * next busy scheduler_tick()
3032 int select_nohz_load_balancer(int stop_tick
)
3034 int cpu
= smp_processor_id();
3037 cpu_set(cpu
, nohz
.cpu_mask
);
3038 cpu_rq(cpu
)->in_nohz_recently
= 1;
3041 * If we are going offline and still the leader, give up!
3043 if (cpu_is_offline(cpu
) &&
3044 atomic_read(&nohz
.load_balancer
) == cpu
) {
3045 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3050 /* time for ilb owner also to sleep */
3051 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3052 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3053 atomic_set(&nohz
.load_balancer
, -1);
3057 if (atomic_read(&nohz
.load_balancer
) == -1) {
3058 /* make me the ilb owner */
3059 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3061 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3064 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3067 cpu_clear(cpu
, nohz
.cpu_mask
);
3069 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3070 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3077 static DEFINE_SPINLOCK(balancing
);
3080 * It checks each scheduling domain to see if it is due to be balanced,
3081 * and initiates a balancing operation if so.
3083 * Balancing parameters are set up in arch_init_sched_domains.
3085 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3088 struct rq
*rq
= cpu_rq(cpu
);
3089 unsigned long interval
;
3090 struct sched_domain
*sd
;
3091 /* Earliest time when we have to do rebalance again */
3092 unsigned long next_balance
= jiffies
+ 60*HZ
;
3093 int update_next_balance
= 0;
3095 for_each_domain(cpu
, sd
) {
3096 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3099 interval
= sd
->balance_interval
;
3100 if (idle
!= CPU_IDLE
)
3101 interval
*= sd
->busy_factor
;
3103 /* scale ms to jiffies */
3104 interval
= msecs_to_jiffies(interval
);
3105 if (unlikely(!interval
))
3107 if (interval
> HZ
*NR_CPUS
/10)
3108 interval
= HZ
*NR_CPUS
/10;
3111 if (sd
->flags
& SD_SERIALIZE
) {
3112 if (!spin_trylock(&balancing
))
3116 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3117 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3119 * We've pulled tasks over so either we're no
3120 * longer idle, or one of our SMT siblings is
3123 idle
= CPU_NOT_IDLE
;
3125 sd
->last_balance
= jiffies
;
3127 if (sd
->flags
& SD_SERIALIZE
)
3128 spin_unlock(&balancing
);
3130 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3131 next_balance
= sd
->last_balance
+ interval
;
3132 update_next_balance
= 1;
3136 * Stop the load balance at this level. There is another
3137 * CPU in our sched group which is doing load balancing more
3145 * next_balance will be updated only when there is a need.
3146 * When the cpu is attached to null domain for ex, it will not be
3149 if (likely(update_next_balance
))
3150 rq
->next_balance
= next_balance
;
3154 * run_rebalance_domains is triggered when needed from the scheduler tick.
3155 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3156 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3158 static void run_rebalance_domains(struct softirq_action
*h
)
3160 int this_cpu
= smp_processor_id();
3161 struct rq
*this_rq
= cpu_rq(this_cpu
);
3162 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3163 CPU_IDLE
: CPU_NOT_IDLE
;
3165 rebalance_domains(this_cpu
, idle
);
3169 * If this cpu is the owner for idle load balancing, then do the
3170 * balancing on behalf of the other idle cpus whose ticks are
3173 if (this_rq
->idle_at_tick
&&
3174 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3175 cpumask_t cpus
= nohz
.cpu_mask
;
3179 cpu_clear(this_cpu
, cpus
);
3180 for_each_cpu_mask(balance_cpu
, cpus
) {
3182 * If this cpu gets work to do, stop the load balancing
3183 * work being done for other cpus. Next load
3184 * balancing owner will pick it up.
3189 rebalance_domains(balance_cpu
, CPU_IDLE
);
3191 rq
= cpu_rq(balance_cpu
);
3192 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3193 this_rq
->next_balance
= rq
->next_balance
;
3200 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3202 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3203 * idle load balancing owner or decide to stop the periodic load balancing,
3204 * if the whole system is idle.
3206 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3210 * If we were in the nohz mode recently and busy at the current
3211 * scheduler tick, then check if we need to nominate new idle
3214 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3215 rq
->in_nohz_recently
= 0;
3217 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3218 cpu_clear(cpu
, nohz
.cpu_mask
);
3219 atomic_set(&nohz
.load_balancer
, -1);
3222 if (atomic_read(&nohz
.load_balancer
) == -1) {
3224 * simple selection for now: Nominate the
3225 * first cpu in the nohz list to be the next
3228 * TBD: Traverse the sched domains and nominate
3229 * the nearest cpu in the nohz.cpu_mask.
3231 int ilb
= first_cpu(nohz
.cpu_mask
);
3239 * If this cpu is idle and doing idle load balancing for all the
3240 * cpus with ticks stopped, is it time for that to stop?
3242 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3243 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3249 * If this cpu is idle and the idle load balancing is done by
3250 * someone else, then no need raise the SCHED_SOFTIRQ
3252 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3253 cpu_isset(cpu
, nohz
.cpu_mask
))
3256 if (time_after_eq(jiffies
, rq
->next_balance
))
3257 raise_softirq(SCHED_SOFTIRQ
);
3260 #else /* CONFIG_SMP */
3263 * on UP we do not need to balance between CPUs:
3265 static inline void idle_balance(int cpu
, struct rq
*rq
)
3269 /* Avoid "used but not defined" warning on UP */
3270 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3271 unsigned long max_nr_move
, unsigned long max_load_move
,
3272 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3273 int *all_pinned
, unsigned long *load_moved
,
3274 int *this_best_prio
, struct rq_iterator
*iterator
)
3283 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3285 EXPORT_PER_CPU_SYMBOL(kstat
);
3288 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3289 * that have not yet been banked in case the task is currently running.
3291 unsigned long long task_sched_runtime(struct task_struct
*p
)
3293 unsigned long flags
;
3297 rq
= task_rq_lock(p
, &flags
);
3298 ns
= p
->se
.sum_exec_runtime
;
3299 if (rq
->curr
== p
) {
3300 update_rq_clock(rq
);
3301 delta_exec
= rq
->clock
- p
->se
.exec_start
;
3302 if ((s64
)delta_exec
> 0)
3305 task_rq_unlock(rq
, &flags
);
3311 * Account user cpu time to a process.
3312 * @p: the process that the cpu time gets accounted to
3313 * @cputime: the cpu time spent in user space since the last update
3315 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3317 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3319 struct rq
*rq
= this_rq();
3321 p
->utime
= cputime_add(p
->utime
, cputime
);
3324 cpuacct_charge(p
, cputime
);
3326 /* Add user time to cpustat. */
3327 tmp
= cputime_to_cputime64(cputime
);
3328 if (TASK_NICE(p
) > 0)
3329 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3331 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3335 * Account guest cpu time to a process.
3336 * @p: the process that the cpu time gets accounted to
3337 * @cputime: the cpu time spent in virtual machine since the last update
3339 void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
3342 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3344 tmp
= cputime_to_cputime64(cputime
);
3346 p
->utime
= cputime_add(p
->utime
, cputime
);
3347 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3349 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3350 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3354 * Account scaled user cpu time to a process.
3355 * @p: the process that the cpu time gets accounted to
3356 * @cputime: the cpu time spent in user space since the last update
3358 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3360 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
3364 * Account system cpu time to a process.
3365 * @p: the process that the cpu time gets accounted to
3366 * @hardirq_offset: the offset to subtract from hardirq_count()
3367 * @cputime: the cpu time spent in kernel space since the last update
3369 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3372 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3373 struct rq
*rq
= this_rq();
3376 if (p
->flags
& PF_VCPU
) {
3377 account_guest_time(p
, cputime
);
3378 p
->flags
&= ~PF_VCPU
;
3382 p
->stime
= cputime_add(p
->stime
, cputime
);
3384 /* Add system time to cpustat. */
3385 tmp
= cputime_to_cputime64(cputime
);
3386 if (hardirq_count() - hardirq_offset
)
3387 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3388 else if (softirq_count())
3389 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3390 else if (p
!= rq
->idle
) {
3391 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3392 cpuacct_charge(p
, cputime
);
3393 } else if (atomic_read(&rq
->nr_iowait
) > 0)
3394 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3396 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3397 /* Account for system time used */
3398 acct_update_integrals(p
);
3402 * Account scaled system cpu time to a process.
3403 * @p: the process that the cpu time gets accounted to
3404 * @hardirq_offset: the offset to subtract from hardirq_count()
3405 * @cputime: the cpu time spent in kernel space since the last update
3407 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
3409 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
3413 * Account for involuntary wait time.
3414 * @p: the process from which the cpu time has been stolen
3415 * @steal: the cpu time spent in involuntary wait
3417 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3419 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3420 cputime64_t tmp
= cputime_to_cputime64(steal
);
3421 struct rq
*rq
= this_rq();
3423 if (p
== rq
->idle
) {
3424 p
->stime
= cputime_add(p
->stime
, steal
);
3425 if (atomic_read(&rq
->nr_iowait
) > 0)
3426 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3428 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3430 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3431 cpuacct_charge(p
, -tmp
);
3436 * This function gets called by the timer code, with HZ frequency.
3437 * We call it with interrupts disabled.
3439 * It also gets called by the fork code, when changing the parent's
3442 void scheduler_tick(void)
3444 int cpu
= smp_processor_id();
3445 struct rq
*rq
= cpu_rq(cpu
);
3446 struct task_struct
*curr
= rq
->curr
;
3447 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
3449 spin_lock(&rq
->lock
);
3450 __update_rq_clock(rq
);
3452 * Let rq->clock advance by at least TICK_NSEC:
3454 if (unlikely(rq
->clock
< next_tick
))
3455 rq
->clock
= next_tick
;
3456 rq
->tick_timestamp
= rq
->clock
;
3457 update_cpu_load(rq
);
3458 if (curr
!= rq
->idle
) /* FIXME: needed? */
3459 curr
->sched_class
->task_tick(rq
, curr
);
3460 spin_unlock(&rq
->lock
);
3463 rq
->idle_at_tick
= idle_cpu(cpu
);
3464 trigger_load_balance(rq
, cpu
);
3468 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3470 void fastcall
add_preempt_count(int val
)
3475 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3477 preempt_count() += val
;
3479 * Spinlock count overflowing soon?
3481 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3484 EXPORT_SYMBOL(add_preempt_count
);
3486 void fastcall
sub_preempt_count(int val
)
3491 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3494 * Is the spinlock portion underflowing?
3496 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3497 !(preempt_count() & PREEMPT_MASK
)))
3500 preempt_count() -= val
;
3502 EXPORT_SYMBOL(sub_preempt_count
);
3507 * Print scheduling while atomic bug:
3509 static noinline
void __schedule_bug(struct task_struct
*prev
)
3511 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3512 prev
->comm
, preempt_count(), task_pid_nr(prev
));
3513 debug_show_held_locks(prev
);
3514 if (irqs_disabled())
3515 print_irqtrace_events(prev
);
3520 * Various schedule()-time debugging checks and statistics:
3522 static inline void schedule_debug(struct task_struct
*prev
)
3525 * Test if we are atomic. Since do_exit() needs to call into
3526 * schedule() atomically, we ignore that path for now.
3527 * Otherwise, whine if we are scheduling when we should not be.
3529 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3530 __schedule_bug(prev
);
3532 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3534 schedstat_inc(this_rq(), sched_count
);
3535 #ifdef CONFIG_SCHEDSTATS
3536 if (unlikely(prev
->lock_depth
>= 0)) {
3537 schedstat_inc(this_rq(), bkl_count
);
3538 schedstat_inc(prev
, sched_info
.bkl_count
);
3544 * Pick up the highest-prio task:
3546 static inline struct task_struct
*
3547 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
3549 const struct sched_class
*class;
3550 struct task_struct
*p
;
3553 * Optimization: we know that if all tasks are in
3554 * the fair class we can call that function directly:
3556 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3557 p
= fair_sched_class
.pick_next_task(rq
);
3562 class = sched_class_highest
;
3564 p
= class->pick_next_task(rq
);
3568 * Will never be NULL as the idle class always
3569 * returns a non-NULL p:
3571 class = class->next
;
3576 * schedule() is the main scheduler function.
3578 asmlinkage
void __sched
schedule(void)
3580 struct task_struct
*prev
, *next
;
3587 cpu
= smp_processor_id();
3591 switch_count
= &prev
->nivcsw
;
3593 release_kernel_lock(prev
);
3594 need_resched_nonpreemptible
:
3596 schedule_debug(prev
);
3599 * Do the rq-clock update outside the rq lock:
3601 local_irq_disable();
3602 __update_rq_clock(rq
);
3603 spin_lock(&rq
->lock
);
3604 clear_tsk_need_resched(prev
);
3606 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3607 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3608 unlikely(signal_pending(prev
)))) {
3609 prev
->state
= TASK_RUNNING
;
3611 deactivate_task(rq
, prev
, 1);
3613 switch_count
= &prev
->nvcsw
;
3616 if (unlikely(!rq
->nr_running
))
3617 idle_balance(cpu
, rq
);
3619 prev
->sched_class
->put_prev_task(rq
, prev
);
3620 next
= pick_next_task(rq
, prev
);
3622 sched_info_switch(prev
, next
);
3624 if (likely(prev
!= next
)) {
3629 context_switch(rq
, prev
, next
); /* unlocks the rq */
3631 spin_unlock_irq(&rq
->lock
);
3633 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3634 cpu
= smp_processor_id();
3636 goto need_resched_nonpreemptible
;
3638 preempt_enable_no_resched();
3639 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3642 EXPORT_SYMBOL(schedule
);
3644 #ifdef CONFIG_PREEMPT
3646 * this is the entry point to schedule() from in-kernel preemption
3647 * off of preempt_enable. Kernel preemptions off return from interrupt
3648 * occur there and call schedule directly.
3650 asmlinkage
void __sched
preempt_schedule(void)
3652 struct thread_info
*ti
= current_thread_info();
3653 #ifdef CONFIG_PREEMPT_BKL
3654 struct task_struct
*task
= current
;
3655 int saved_lock_depth
;
3658 * If there is a non-zero preempt_count or interrupts are disabled,
3659 * we do not want to preempt the current task. Just return..
3661 if (likely(ti
->preempt_count
|| irqs_disabled()))
3665 add_preempt_count(PREEMPT_ACTIVE
);
3668 * We keep the big kernel semaphore locked, but we
3669 * clear ->lock_depth so that schedule() doesnt
3670 * auto-release the semaphore:
3672 #ifdef CONFIG_PREEMPT_BKL
3673 saved_lock_depth
= task
->lock_depth
;
3674 task
->lock_depth
= -1;
3677 #ifdef CONFIG_PREEMPT_BKL
3678 task
->lock_depth
= saved_lock_depth
;
3680 sub_preempt_count(PREEMPT_ACTIVE
);
3683 * Check again in case we missed a preemption opportunity
3684 * between schedule and now.
3687 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3689 EXPORT_SYMBOL(preempt_schedule
);
3692 * this is the entry point to schedule() from kernel preemption
3693 * off of irq context.
3694 * Note, that this is called and return with irqs disabled. This will
3695 * protect us against recursive calling from irq.
3697 asmlinkage
void __sched
preempt_schedule_irq(void)
3699 struct thread_info
*ti
= current_thread_info();
3700 #ifdef CONFIG_PREEMPT_BKL
3701 struct task_struct
*task
= current
;
3702 int saved_lock_depth
;
3704 /* Catch callers which need to be fixed */
3705 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3708 add_preempt_count(PREEMPT_ACTIVE
);
3711 * We keep the big kernel semaphore locked, but we
3712 * clear ->lock_depth so that schedule() doesnt
3713 * auto-release the semaphore:
3715 #ifdef CONFIG_PREEMPT_BKL
3716 saved_lock_depth
= task
->lock_depth
;
3717 task
->lock_depth
= -1;
3721 local_irq_disable();
3722 #ifdef CONFIG_PREEMPT_BKL
3723 task
->lock_depth
= saved_lock_depth
;
3725 sub_preempt_count(PREEMPT_ACTIVE
);
3728 * Check again in case we missed a preemption opportunity
3729 * between schedule and now.
3732 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
3735 #endif /* CONFIG_PREEMPT */
3737 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3740 return try_to_wake_up(curr
->private, mode
, sync
);
3742 EXPORT_SYMBOL(default_wake_function
);
3745 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3746 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3747 * number) then we wake all the non-exclusive tasks and one exclusive task.
3749 * There are circumstances in which we can try to wake a task which has already
3750 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3751 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3753 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3754 int nr_exclusive
, int sync
, void *key
)
3756 wait_queue_t
*curr
, *next
;
3758 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3759 unsigned flags
= curr
->flags
;
3761 if (curr
->func(curr
, mode
, sync
, key
) &&
3762 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3768 * __wake_up - wake up threads blocked on a waitqueue.
3770 * @mode: which threads
3771 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3772 * @key: is directly passed to the wakeup function
3774 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3775 int nr_exclusive
, void *key
)
3777 unsigned long flags
;
3779 spin_lock_irqsave(&q
->lock
, flags
);
3780 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3781 spin_unlock_irqrestore(&q
->lock
, flags
);
3783 EXPORT_SYMBOL(__wake_up
);
3786 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3788 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3790 __wake_up_common(q
, mode
, 1, 0, NULL
);
3794 * __wake_up_sync - wake up threads blocked on a waitqueue.
3796 * @mode: which threads
3797 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3799 * The sync wakeup differs that the waker knows that it will schedule
3800 * away soon, so while the target thread will be woken up, it will not
3801 * be migrated to another CPU - ie. the two threads are 'synchronized'
3802 * with each other. This can prevent needless bouncing between CPUs.
3804 * On UP it can prevent extra preemption.
3807 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3809 unsigned long flags
;
3815 if (unlikely(!nr_exclusive
))
3818 spin_lock_irqsave(&q
->lock
, flags
);
3819 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3820 spin_unlock_irqrestore(&q
->lock
, flags
);
3822 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3824 void fastcall
complete(struct completion
*x
)
3826 unsigned long flags
;
3828 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3830 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3832 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3834 EXPORT_SYMBOL(complete
);
3836 void fastcall
complete_all(struct completion
*x
)
3838 unsigned long flags
;
3840 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3841 x
->done
+= UINT_MAX
/2;
3842 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3844 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3846 EXPORT_SYMBOL(complete_all
);
3848 static inline long __sched
3849 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3852 DECLARE_WAITQUEUE(wait
, current
);
3854 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3855 __add_wait_queue_tail(&x
->wait
, &wait
);
3857 if (state
== TASK_INTERRUPTIBLE
&&
3858 signal_pending(current
)) {
3859 __remove_wait_queue(&x
->wait
, &wait
);
3860 return -ERESTARTSYS
;
3862 __set_current_state(state
);
3863 spin_unlock_irq(&x
->wait
.lock
);
3864 timeout
= schedule_timeout(timeout
);
3865 spin_lock_irq(&x
->wait
.lock
);
3867 __remove_wait_queue(&x
->wait
, &wait
);
3871 __remove_wait_queue(&x
->wait
, &wait
);
3878 wait_for_common(struct completion
*x
, long timeout
, int state
)
3882 spin_lock_irq(&x
->wait
.lock
);
3883 timeout
= do_wait_for_common(x
, timeout
, state
);
3884 spin_unlock_irq(&x
->wait
.lock
);
3888 void fastcall __sched
wait_for_completion(struct completion
*x
)
3890 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3892 EXPORT_SYMBOL(wait_for_completion
);
3894 unsigned long fastcall __sched
3895 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3897 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
3899 EXPORT_SYMBOL(wait_for_completion_timeout
);
3901 int __sched
wait_for_completion_interruptible(struct completion
*x
)
3903 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
3904 if (t
== -ERESTARTSYS
)
3908 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3910 unsigned long fastcall __sched
3911 wait_for_completion_interruptible_timeout(struct completion
*x
,
3912 unsigned long timeout
)
3914 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
3916 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3919 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
3921 unsigned long flags
;
3924 init_waitqueue_entry(&wait
, current
);
3926 __set_current_state(state
);
3928 spin_lock_irqsave(&q
->lock
, flags
);
3929 __add_wait_queue(q
, &wait
);
3930 spin_unlock(&q
->lock
);
3931 timeout
= schedule_timeout(timeout
);
3932 spin_lock_irq(&q
->lock
);
3933 __remove_wait_queue(q
, &wait
);
3934 spin_unlock_irqrestore(&q
->lock
, flags
);
3939 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3941 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3943 EXPORT_SYMBOL(interruptible_sleep_on
);
3946 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3948 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
3950 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3952 void __sched
sleep_on(wait_queue_head_t
*q
)
3954 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
3956 EXPORT_SYMBOL(sleep_on
);
3958 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3960 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
3962 EXPORT_SYMBOL(sleep_on_timeout
);
3964 #ifdef CONFIG_RT_MUTEXES
3967 * rt_mutex_setprio - set the current priority of a task
3969 * @prio: prio value (kernel-internal form)
3971 * This function changes the 'effective' priority of a task. It does
3972 * not touch ->normal_prio like __setscheduler().
3974 * Used by the rt_mutex code to implement priority inheritance logic.
3976 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3978 unsigned long flags
;
3979 int oldprio
, on_rq
, running
;
3982 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3984 rq
= task_rq_lock(p
, &flags
);
3985 update_rq_clock(rq
);
3988 on_rq
= p
->se
.on_rq
;
3989 running
= task_running(rq
, p
);
3991 dequeue_task(rq
, p
, 0);
3993 p
->sched_class
->put_prev_task(rq
, p
);
3997 p
->sched_class
= &rt_sched_class
;
3999 p
->sched_class
= &fair_sched_class
;
4005 p
->sched_class
->set_curr_task(rq
);
4006 enqueue_task(rq
, p
, 0);
4008 * Reschedule if we are currently running on this runqueue and
4009 * our priority decreased, or if we are not currently running on
4010 * this runqueue and our priority is higher than the current's
4013 if (p
->prio
> oldprio
)
4014 resched_task(rq
->curr
);
4016 check_preempt_curr(rq
, p
);
4019 task_rq_unlock(rq
, &flags
);
4024 void set_user_nice(struct task_struct
*p
, long nice
)
4026 int old_prio
, delta
, on_rq
;
4027 unsigned long flags
;
4030 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4033 * We have to be careful, if called from sys_setpriority(),
4034 * the task might be in the middle of scheduling on another CPU.
4036 rq
= task_rq_lock(p
, &flags
);
4037 update_rq_clock(rq
);
4039 * The RT priorities are set via sched_setscheduler(), but we still
4040 * allow the 'normal' nice value to be set - but as expected
4041 * it wont have any effect on scheduling until the task is
4042 * SCHED_FIFO/SCHED_RR:
4044 if (task_has_rt_policy(p
)) {
4045 p
->static_prio
= NICE_TO_PRIO(nice
);
4048 on_rq
= p
->se
.on_rq
;
4050 dequeue_task(rq
, p
, 0);
4054 p
->static_prio
= NICE_TO_PRIO(nice
);
4057 p
->prio
= effective_prio(p
);
4058 delta
= p
->prio
- old_prio
;
4061 enqueue_task(rq
, p
, 0);
4064 * If the task increased its priority or is running and
4065 * lowered its priority, then reschedule its CPU:
4067 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4068 resched_task(rq
->curr
);
4071 task_rq_unlock(rq
, &flags
);
4073 EXPORT_SYMBOL(set_user_nice
);
4076 * can_nice - check if a task can reduce its nice value
4080 int can_nice(const struct task_struct
*p
, const int nice
)
4082 /* convert nice value [19,-20] to rlimit style value [1,40] */
4083 int nice_rlim
= 20 - nice
;
4085 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4086 capable(CAP_SYS_NICE
));
4089 #ifdef __ARCH_WANT_SYS_NICE
4092 * sys_nice - change the priority of the current process.
4093 * @increment: priority increment
4095 * sys_setpriority is a more generic, but much slower function that
4096 * does similar things.
4098 asmlinkage
long sys_nice(int increment
)
4103 * Setpriority might change our priority at the same moment.
4104 * We don't have to worry. Conceptually one call occurs first
4105 * and we have a single winner.
4107 if (increment
< -40)
4112 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4118 if (increment
< 0 && !can_nice(current
, nice
))
4121 retval
= security_task_setnice(current
, nice
);
4125 set_user_nice(current
, nice
);
4132 * task_prio - return the priority value of a given task.
4133 * @p: the task in question.
4135 * This is the priority value as seen by users in /proc.
4136 * RT tasks are offset by -200. Normal tasks are centered
4137 * around 0, value goes from -16 to +15.
4139 int task_prio(const struct task_struct
*p
)
4141 return p
->prio
- MAX_RT_PRIO
;
4145 * task_nice - return the nice value of a given task.
4146 * @p: the task in question.
4148 int task_nice(const struct task_struct
*p
)
4150 return TASK_NICE(p
);
4152 EXPORT_SYMBOL_GPL(task_nice
);
4155 * idle_cpu - is a given cpu idle currently?
4156 * @cpu: the processor in question.
4158 int idle_cpu(int cpu
)
4160 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4164 * idle_task - return the idle task for a given cpu.
4165 * @cpu: the processor in question.
4167 struct task_struct
*idle_task(int cpu
)
4169 return cpu_rq(cpu
)->idle
;
4173 * find_process_by_pid - find a process with a matching PID value.
4174 * @pid: the pid in question.
4176 static struct task_struct
*find_process_by_pid(pid_t pid
)
4178 return pid
? find_task_by_vpid(pid
) : current
;
4181 /* Actually do priority change: must hold rq lock. */
4183 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4185 BUG_ON(p
->se
.on_rq
);
4188 switch (p
->policy
) {
4192 p
->sched_class
= &fair_sched_class
;
4196 p
->sched_class
= &rt_sched_class
;
4200 p
->rt_priority
= prio
;
4201 p
->normal_prio
= normal_prio(p
);
4202 /* we are holding p->pi_lock already */
4203 p
->prio
= rt_mutex_getprio(p
);
4208 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4209 * @p: the task in question.
4210 * @policy: new policy.
4211 * @param: structure containing the new RT priority.
4213 * NOTE that the task may be already dead.
4215 int sched_setscheduler(struct task_struct
*p
, int policy
,
4216 struct sched_param
*param
)
4218 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4219 unsigned long flags
;
4222 /* may grab non-irq protected spin_locks */
4223 BUG_ON(in_interrupt());
4225 /* double check policy once rq lock held */
4227 policy
= oldpolicy
= p
->policy
;
4228 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4229 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4230 policy
!= SCHED_IDLE
)
4233 * Valid priorities for SCHED_FIFO and SCHED_RR are
4234 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4235 * SCHED_BATCH and SCHED_IDLE is 0.
4237 if (param
->sched_priority
< 0 ||
4238 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4239 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4241 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4245 * Allow unprivileged RT tasks to decrease priority:
4247 if (!capable(CAP_SYS_NICE
)) {
4248 if (rt_policy(policy
)) {
4249 unsigned long rlim_rtprio
;
4251 if (!lock_task_sighand(p
, &flags
))
4253 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4254 unlock_task_sighand(p
, &flags
);
4256 /* can't set/change the rt policy */
4257 if (policy
!= p
->policy
&& !rlim_rtprio
)
4260 /* can't increase priority */
4261 if (param
->sched_priority
> p
->rt_priority
&&
4262 param
->sched_priority
> rlim_rtprio
)
4266 * Like positive nice levels, dont allow tasks to
4267 * move out of SCHED_IDLE either:
4269 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4272 /* can't change other user's priorities */
4273 if ((current
->euid
!= p
->euid
) &&
4274 (current
->euid
!= p
->uid
))
4278 retval
= security_task_setscheduler(p
, policy
, param
);
4282 * make sure no PI-waiters arrive (or leave) while we are
4283 * changing the priority of the task:
4285 spin_lock_irqsave(&p
->pi_lock
, flags
);
4287 * To be able to change p->policy safely, the apropriate
4288 * runqueue lock must be held.
4290 rq
= __task_rq_lock(p
);
4291 /* recheck policy now with rq lock held */
4292 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4293 policy
= oldpolicy
= -1;
4294 __task_rq_unlock(rq
);
4295 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4298 update_rq_clock(rq
);
4299 on_rq
= p
->se
.on_rq
;
4300 running
= task_running(rq
, p
);
4302 deactivate_task(rq
, p
, 0);
4304 p
->sched_class
->put_prev_task(rq
, p
);
4308 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4312 p
->sched_class
->set_curr_task(rq
);
4313 activate_task(rq
, p
, 0);
4315 * Reschedule if we are currently running on this runqueue and
4316 * our priority decreased, or if we are not currently running on
4317 * this runqueue and our priority is higher than the current's
4320 if (p
->prio
> oldprio
)
4321 resched_task(rq
->curr
);
4323 check_preempt_curr(rq
, p
);
4326 __task_rq_unlock(rq
);
4327 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4329 rt_mutex_adjust_pi(p
);
4333 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4336 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4338 struct sched_param lparam
;
4339 struct task_struct
*p
;
4342 if (!param
|| pid
< 0)
4344 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4349 p
= find_process_by_pid(pid
);
4351 retval
= sched_setscheduler(p
, policy
, &lparam
);
4358 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4359 * @pid: the pid in question.
4360 * @policy: new policy.
4361 * @param: structure containing the new RT priority.
4363 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4364 struct sched_param __user
*param
)
4366 /* negative values for policy are not valid */
4370 return do_sched_setscheduler(pid
, policy
, param
);
4374 * sys_sched_setparam - set/change the RT priority of a thread
4375 * @pid: the pid in question.
4376 * @param: structure containing the new RT priority.
4378 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4380 return do_sched_setscheduler(pid
, -1, param
);
4384 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4385 * @pid: the pid in question.
4387 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4389 struct task_struct
*p
;
4396 read_lock(&tasklist_lock
);
4397 p
= find_process_by_pid(pid
);
4399 retval
= security_task_getscheduler(p
);
4403 read_unlock(&tasklist_lock
);
4408 * sys_sched_getscheduler - get the RT priority of a thread
4409 * @pid: the pid in question.
4410 * @param: structure containing the RT priority.
4412 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4414 struct sched_param lp
;
4415 struct task_struct
*p
;
4418 if (!param
|| pid
< 0)
4421 read_lock(&tasklist_lock
);
4422 p
= find_process_by_pid(pid
);
4427 retval
= security_task_getscheduler(p
);
4431 lp
.sched_priority
= p
->rt_priority
;
4432 read_unlock(&tasklist_lock
);
4435 * This one might sleep, we cannot do it with a spinlock held ...
4437 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4442 read_unlock(&tasklist_lock
);
4446 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4448 cpumask_t cpus_allowed
;
4449 struct task_struct
*p
;
4452 mutex_lock(&sched_hotcpu_mutex
);
4453 read_lock(&tasklist_lock
);
4455 p
= find_process_by_pid(pid
);
4457 read_unlock(&tasklist_lock
);
4458 mutex_unlock(&sched_hotcpu_mutex
);
4463 * It is not safe to call set_cpus_allowed with the
4464 * tasklist_lock held. We will bump the task_struct's
4465 * usage count and then drop tasklist_lock.
4468 read_unlock(&tasklist_lock
);
4471 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4472 !capable(CAP_SYS_NICE
))
4475 retval
= security_task_setscheduler(p
, 0, NULL
);
4479 cpus_allowed
= cpuset_cpus_allowed(p
);
4480 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4482 retval
= set_cpus_allowed(p
, new_mask
);
4485 cpus_allowed
= cpuset_cpus_allowed(p
);
4486 if (!cpus_subset(new_mask
, cpus_allowed
)) {
4488 * We must have raced with a concurrent cpuset
4489 * update. Just reset the cpus_allowed to the
4490 * cpuset's cpus_allowed
4492 new_mask
= cpus_allowed
;
4498 mutex_unlock(&sched_hotcpu_mutex
);
4502 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4503 cpumask_t
*new_mask
)
4505 if (len
< sizeof(cpumask_t
)) {
4506 memset(new_mask
, 0, sizeof(cpumask_t
));
4507 } else if (len
> sizeof(cpumask_t
)) {
4508 len
= sizeof(cpumask_t
);
4510 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4514 * sys_sched_setaffinity - set the cpu affinity of a process
4515 * @pid: pid of the process
4516 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4517 * @user_mask_ptr: user-space pointer to the new cpu mask
4519 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4520 unsigned long __user
*user_mask_ptr
)
4525 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4529 return sched_setaffinity(pid
, new_mask
);
4533 * Represents all cpu's present in the system
4534 * In systems capable of hotplug, this map could dynamically grow
4535 * as new cpu's are detected in the system via any platform specific
4536 * method, such as ACPI for e.g.
4539 cpumask_t cpu_present_map __read_mostly
;
4540 EXPORT_SYMBOL(cpu_present_map
);
4543 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4544 EXPORT_SYMBOL(cpu_online_map
);
4546 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4547 EXPORT_SYMBOL(cpu_possible_map
);
4550 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4552 struct task_struct
*p
;
4555 mutex_lock(&sched_hotcpu_mutex
);
4556 read_lock(&tasklist_lock
);
4559 p
= find_process_by_pid(pid
);
4563 retval
= security_task_getscheduler(p
);
4567 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4570 read_unlock(&tasklist_lock
);
4571 mutex_unlock(&sched_hotcpu_mutex
);
4577 * sys_sched_getaffinity - get the cpu affinity of a process
4578 * @pid: pid of the process
4579 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4580 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4582 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4583 unsigned long __user
*user_mask_ptr
)
4588 if (len
< sizeof(cpumask_t
))
4591 ret
= sched_getaffinity(pid
, &mask
);
4595 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4598 return sizeof(cpumask_t
);
4602 * sys_sched_yield - yield the current processor to other threads.
4604 * This function yields the current CPU to other tasks. If there are no
4605 * other threads running on this CPU then this function will return.
4607 asmlinkage
long sys_sched_yield(void)
4609 struct rq
*rq
= this_rq_lock();
4611 schedstat_inc(rq
, yld_count
);
4612 current
->sched_class
->yield_task(rq
);
4615 * Since we are going to call schedule() anyway, there's
4616 * no need to preempt or enable interrupts:
4618 __release(rq
->lock
);
4619 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4620 _raw_spin_unlock(&rq
->lock
);
4621 preempt_enable_no_resched();
4628 static void __cond_resched(void)
4630 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4631 __might_sleep(__FILE__
, __LINE__
);
4634 * The BKS might be reacquired before we have dropped
4635 * PREEMPT_ACTIVE, which could trigger a second
4636 * cond_resched() call.
4639 add_preempt_count(PREEMPT_ACTIVE
);
4641 sub_preempt_count(PREEMPT_ACTIVE
);
4642 } while (need_resched());
4645 int __sched
cond_resched(void)
4647 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4648 system_state
== SYSTEM_RUNNING
) {
4654 EXPORT_SYMBOL(cond_resched
);
4657 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4658 * call schedule, and on return reacquire the lock.
4660 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4661 * operations here to prevent schedule() from being called twice (once via
4662 * spin_unlock(), once by hand).
4664 int cond_resched_lock(spinlock_t
*lock
)
4668 if (need_lockbreak(lock
)) {
4674 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4675 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4676 _raw_spin_unlock(lock
);
4677 preempt_enable_no_resched();
4684 EXPORT_SYMBOL(cond_resched_lock
);
4686 int __sched
cond_resched_softirq(void)
4688 BUG_ON(!in_softirq());
4690 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4698 EXPORT_SYMBOL(cond_resched_softirq
);
4701 * yield - yield the current processor to other threads.
4703 * This is a shortcut for kernel-space yielding - it marks the
4704 * thread runnable and calls sys_sched_yield().
4706 void __sched
yield(void)
4708 set_current_state(TASK_RUNNING
);
4711 EXPORT_SYMBOL(yield
);
4714 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4715 * that process accounting knows that this is a task in IO wait state.
4717 * But don't do that if it is a deliberate, throttling IO wait (this task
4718 * has set its backing_dev_info: the queue against which it should throttle)
4720 void __sched
io_schedule(void)
4722 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4724 delayacct_blkio_start();
4725 atomic_inc(&rq
->nr_iowait
);
4727 atomic_dec(&rq
->nr_iowait
);
4728 delayacct_blkio_end();
4730 EXPORT_SYMBOL(io_schedule
);
4732 long __sched
io_schedule_timeout(long timeout
)
4734 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4737 delayacct_blkio_start();
4738 atomic_inc(&rq
->nr_iowait
);
4739 ret
= schedule_timeout(timeout
);
4740 atomic_dec(&rq
->nr_iowait
);
4741 delayacct_blkio_end();
4746 * sys_sched_get_priority_max - return maximum RT priority.
4747 * @policy: scheduling class.
4749 * this syscall returns the maximum rt_priority that can be used
4750 * by a given scheduling class.
4752 asmlinkage
long sys_sched_get_priority_max(int policy
)
4759 ret
= MAX_USER_RT_PRIO
-1;
4771 * sys_sched_get_priority_min - return minimum RT priority.
4772 * @policy: scheduling class.
4774 * this syscall returns the minimum rt_priority that can be used
4775 * by a given scheduling class.
4777 asmlinkage
long sys_sched_get_priority_min(int policy
)
4795 * sys_sched_rr_get_interval - return the default timeslice of a process.
4796 * @pid: pid of the process.
4797 * @interval: userspace pointer to the timeslice value.
4799 * this syscall writes the default timeslice value of a given process
4800 * into the user-space timespec buffer. A value of '0' means infinity.
4803 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4805 struct task_struct
*p
;
4806 unsigned int time_slice
;
4814 read_lock(&tasklist_lock
);
4815 p
= find_process_by_pid(pid
);
4819 retval
= security_task_getscheduler(p
);
4823 if (p
->policy
== SCHED_FIFO
)
4825 else if (p
->policy
== SCHED_RR
)
4826 time_slice
= DEF_TIMESLICE
;
4828 struct sched_entity
*se
= &p
->se
;
4829 unsigned long flags
;
4832 rq
= task_rq_lock(p
, &flags
);
4833 time_slice
= NS_TO_JIFFIES(sched_slice(cfs_rq_of(se
), se
));
4834 task_rq_unlock(rq
, &flags
);
4836 read_unlock(&tasklist_lock
);
4837 jiffies_to_timespec(time_slice
, &t
);
4838 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4842 read_unlock(&tasklist_lock
);
4846 static const char stat_nam
[] = "RSDTtZX";
4848 static void show_task(struct task_struct
*p
)
4850 unsigned long free
= 0;
4853 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4854 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
4855 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4856 #if BITS_PER_LONG == 32
4857 if (state
== TASK_RUNNING
)
4858 printk(KERN_CONT
" running ");
4860 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
4862 if (state
== TASK_RUNNING
)
4863 printk(KERN_CONT
" running task ");
4865 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
4867 #ifdef CONFIG_DEBUG_STACK_USAGE
4869 unsigned long *n
= end_of_stack(p
);
4872 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4875 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
4876 task_pid_nr(p
), task_pid_nr(p
->parent
));
4878 if (state
!= TASK_RUNNING
)
4879 show_stack(p
, NULL
);
4882 void show_state_filter(unsigned long state_filter
)
4884 struct task_struct
*g
, *p
;
4886 #if BITS_PER_LONG == 32
4888 " task PC stack pid father\n");
4891 " task PC stack pid father\n");
4893 read_lock(&tasklist_lock
);
4894 do_each_thread(g
, p
) {
4896 * reset the NMI-timeout, listing all files on a slow
4897 * console might take alot of time:
4899 touch_nmi_watchdog();
4900 if (!state_filter
|| (p
->state
& state_filter
))
4902 } while_each_thread(g
, p
);
4904 touch_all_softlockup_watchdogs();
4906 #ifdef CONFIG_SCHED_DEBUG
4907 sysrq_sched_debug_show();
4909 read_unlock(&tasklist_lock
);
4911 * Only show locks if all tasks are dumped:
4913 if (state_filter
== -1)
4914 debug_show_all_locks();
4917 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4919 idle
->sched_class
= &idle_sched_class
;
4923 * init_idle - set up an idle thread for a given CPU
4924 * @idle: task in question
4925 * @cpu: cpu the idle task belongs to
4927 * NOTE: this function does not set the idle thread's NEED_RESCHED
4928 * flag, to make booting more robust.
4930 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4932 struct rq
*rq
= cpu_rq(cpu
);
4933 unsigned long flags
;
4936 idle
->se
.exec_start
= sched_clock();
4938 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4939 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4940 __set_task_cpu(idle
, cpu
);
4942 spin_lock_irqsave(&rq
->lock
, flags
);
4943 rq
->curr
= rq
->idle
= idle
;
4944 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4947 spin_unlock_irqrestore(&rq
->lock
, flags
);
4949 /* Set the preempt count _outside_ the spinlocks! */
4950 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4951 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4953 task_thread_info(idle
)->preempt_count
= 0;
4956 * The idle tasks have their own, simple scheduling class:
4958 idle
->sched_class
= &idle_sched_class
;
4962 * In a system that switches off the HZ timer nohz_cpu_mask
4963 * indicates which cpus entered this state. This is used
4964 * in the rcu update to wait only for active cpus. For system
4965 * which do not switch off the HZ timer nohz_cpu_mask should
4966 * always be CPU_MASK_NONE.
4968 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4972 * This is how migration works:
4974 * 1) we queue a struct migration_req structure in the source CPU's
4975 * runqueue and wake up that CPU's migration thread.
4976 * 2) we down() the locked semaphore => thread blocks.
4977 * 3) migration thread wakes up (implicitly it forces the migrated
4978 * thread off the CPU)
4979 * 4) it gets the migration request and checks whether the migrated
4980 * task is still in the wrong runqueue.
4981 * 5) if it's in the wrong runqueue then the migration thread removes
4982 * it and puts it into the right queue.
4983 * 6) migration thread up()s the semaphore.
4984 * 7) we wake up and the migration is done.
4988 * Change a given task's CPU affinity. Migrate the thread to a
4989 * proper CPU and schedule it away if the CPU it's executing on
4990 * is removed from the allowed bitmask.
4992 * NOTE: the caller must have a valid reference to the task, the
4993 * task must not exit() & deallocate itself prematurely. The
4994 * call is not atomic; no spinlocks may be held.
4996 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4998 struct migration_req req
;
4999 unsigned long flags
;
5003 rq
= task_rq_lock(p
, &flags
);
5004 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
5009 p
->cpus_allowed
= new_mask
;
5010 /* Can the task run on the task's current CPU? If so, we're done */
5011 if (cpu_isset(task_cpu(p
), new_mask
))
5014 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
5015 /* Need help from migration thread: drop lock and wait. */
5016 task_rq_unlock(rq
, &flags
);
5017 wake_up_process(rq
->migration_thread
);
5018 wait_for_completion(&req
.done
);
5019 tlb_migrate_finish(p
->mm
);
5023 task_rq_unlock(rq
, &flags
);
5027 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
5030 * Move (not current) task off this cpu, onto dest cpu. We're doing
5031 * this because either it can't run here any more (set_cpus_allowed()
5032 * away from this CPU, or CPU going down), or because we're
5033 * attempting to rebalance this task on exec (sched_exec).
5035 * So we race with normal scheduler movements, but that's OK, as long
5036 * as the task is no longer on this CPU.
5038 * Returns non-zero if task was successfully migrated.
5040 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5042 struct rq
*rq_dest
, *rq_src
;
5045 if (unlikely(cpu_is_offline(dest_cpu
)))
5048 rq_src
= cpu_rq(src_cpu
);
5049 rq_dest
= cpu_rq(dest_cpu
);
5051 double_rq_lock(rq_src
, rq_dest
);
5052 /* Already moved. */
5053 if (task_cpu(p
) != src_cpu
)
5055 /* Affinity changed (again). */
5056 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5059 on_rq
= p
->se
.on_rq
;
5061 deactivate_task(rq_src
, p
, 0);
5063 set_task_cpu(p
, dest_cpu
);
5065 activate_task(rq_dest
, p
, 0);
5066 check_preempt_curr(rq_dest
, p
);
5070 double_rq_unlock(rq_src
, rq_dest
);
5075 * migration_thread - this is a highprio system thread that performs
5076 * thread migration by bumping thread off CPU then 'pushing' onto
5079 static int migration_thread(void *data
)
5081 int cpu
= (long)data
;
5085 BUG_ON(rq
->migration_thread
!= current
);
5087 set_current_state(TASK_INTERRUPTIBLE
);
5088 while (!kthread_should_stop()) {
5089 struct migration_req
*req
;
5090 struct list_head
*head
;
5092 spin_lock_irq(&rq
->lock
);
5094 if (cpu_is_offline(cpu
)) {
5095 spin_unlock_irq(&rq
->lock
);
5099 if (rq
->active_balance
) {
5100 active_load_balance(rq
, cpu
);
5101 rq
->active_balance
= 0;
5104 head
= &rq
->migration_queue
;
5106 if (list_empty(head
)) {
5107 spin_unlock_irq(&rq
->lock
);
5109 set_current_state(TASK_INTERRUPTIBLE
);
5112 req
= list_entry(head
->next
, struct migration_req
, list
);
5113 list_del_init(head
->next
);
5115 spin_unlock(&rq
->lock
);
5116 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5119 complete(&req
->done
);
5121 __set_current_state(TASK_RUNNING
);
5125 /* Wait for kthread_stop */
5126 set_current_state(TASK_INTERRUPTIBLE
);
5127 while (!kthread_should_stop()) {
5129 set_current_state(TASK_INTERRUPTIBLE
);
5131 __set_current_state(TASK_RUNNING
);
5135 #ifdef CONFIG_HOTPLUG_CPU
5137 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5141 local_irq_disable();
5142 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5148 * Figure out where task on dead CPU should go, use force if necessary.
5149 * NOTE: interrupts should be disabled by the caller
5151 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5153 unsigned long flags
;
5160 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5161 cpus_and(mask
, mask
, p
->cpus_allowed
);
5162 dest_cpu
= any_online_cpu(mask
);
5164 /* On any allowed CPU? */
5165 if (dest_cpu
== NR_CPUS
)
5166 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5168 /* No more Mr. Nice Guy. */
5169 if (dest_cpu
== NR_CPUS
) {
5170 cpumask_t cpus_allowed
= cpuset_cpus_allowed_locked(p
);
5172 * Try to stay on the same cpuset, where the
5173 * current cpuset may be a subset of all cpus.
5174 * The cpuset_cpus_allowed_locked() variant of
5175 * cpuset_cpus_allowed() will not block. It must be
5176 * called within calls to cpuset_lock/cpuset_unlock.
5178 rq
= task_rq_lock(p
, &flags
);
5179 p
->cpus_allowed
= cpus_allowed
;
5180 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5181 task_rq_unlock(rq
, &flags
);
5184 * Don't tell them about moving exiting tasks or
5185 * kernel threads (both mm NULL), since they never
5188 if (p
->mm
&& printk_ratelimit())
5189 printk(KERN_INFO
"process %d (%s) no "
5190 "longer affine to cpu%d\n",
5191 task_pid_nr(p
), p
->comm
, dead_cpu
);
5193 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
5197 * While a dead CPU has no uninterruptible tasks queued at this point,
5198 * it might still have a nonzero ->nr_uninterruptible counter, because
5199 * for performance reasons the counter is not stricly tracking tasks to
5200 * their home CPUs. So we just add the counter to another CPU's counter,
5201 * to keep the global sum constant after CPU-down:
5203 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5205 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5206 unsigned long flags
;
5208 local_irq_save(flags
);
5209 double_rq_lock(rq_src
, rq_dest
);
5210 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5211 rq_src
->nr_uninterruptible
= 0;
5212 double_rq_unlock(rq_src
, rq_dest
);
5213 local_irq_restore(flags
);
5216 /* Run through task list and migrate tasks from the dead cpu. */
5217 static void migrate_live_tasks(int src_cpu
)
5219 struct task_struct
*p
, *t
;
5221 read_lock(&tasklist_lock
);
5223 do_each_thread(t
, p
) {
5227 if (task_cpu(p
) == src_cpu
)
5228 move_task_off_dead_cpu(src_cpu
, p
);
5229 } while_each_thread(t
, p
);
5231 read_unlock(&tasklist_lock
);
5235 * activate_idle_task - move idle task to the _front_ of runqueue.
5237 static void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
5239 update_rq_clock(rq
);
5241 if (p
->state
== TASK_UNINTERRUPTIBLE
)
5242 rq
->nr_uninterruptible
--;
5244 enqueue_task(rq
, p
, 0);
5245 inc_nr_running(p
, rq
);
5249 * Schedules idle task to be the next runnable task on current CPU.
5250 * It does so by boosting its priority to highest possible and adding it to
5251 * the _front_ of the runqueue. Used by CPU offline code.
5253 void sched_idle_next(void)
5255 int this_cpu
= smp_processor_id();
5256 struct rq
*rq
= cpu_rq(this_cpu
);
5257 struct task_struct
*p
= rq
->idle
;
5258 unsigned long flags
;
5260 /* cpu has to be offline */
5261 BUG_ON(cpu_online(this_cpu
));
5264 * Strictly not necessary since rest of the CPUs are stopped by now
5265 * and interrupts disabled on the current cpu.
5267 spin_lock_irqsave(&rq
->lock
, flags
);
5269 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5271 /* Add idle task to the _front_ of its priority queue: */
5272 activate_idle_task(p
, rq
);
5274 spin_unlock_irqrestore(&rq
->lock
, flags
);
5278 * Ensures that the idle task is using init_mm right before its cpu goes
5281 void idle_task_exit(void)
5283 struct mm_struct
*mm
= current
->active_mm
;
5285 BUG_ON(cpu_online(smp_processor_id()));
5288 switch_mm(mm
, &init_mm
, current
);
5292 /* called under rq->lock with disabled interrupts */
5293 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5295 struct rq
*rq
= cpu_rq(dead_cpu
);
5297 /* Must be exiting, otherwise would be on tasklist. */
5298 BUG_ON(!p
->exit_state
);
5300 /* Cannot have done final schedule yet: would have vanished. */
5301 BUG_ON(p
->state
== TASK_DEAD
);
5306 * Drop lock around migration; if someone else moves it,
5307 * that's OK. No task can be added to this CPU, so iteration is
5310 spin_unlock_irq(&rq
->lock
);
5311 move_task_off_dead_cpu(dead_cpu
, p
);
5312 spin_lock_irq(&rq
->lock
);
5317 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5318 static void migrate_dead_tasks(unsigned int dead_cpu
)
5320 struct rq
*rq
= cpu_rq(dead_cpu
);
5321 struct task_struct
*next
;
5324 if (!rq
->nr_running
)
5326 update_rq_clock(rq
);
5327 next
= pick_next_task(rq
, rq
->curr
);
5330 migrate_dead(dead_cpu
, next
);
5334 #endif /* CONFIG_HOTPLUG_CPU */
5336 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5338 static struct ctl_table sd_ctl_dir
[] = {
5340 .procname
= "sched_domain",
5346 static struct ctl_table sd_ctl_root
[] = {
5348 .ctl_name
= CTL_KERN
,
5349 .procname
= "kernel",
5351 .child
= sd_ctl_dir
,
5356 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5358 struct ctl_table
*entry
=
5359 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5364 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5366 struct ctl_table
*entry
;
5369 * In the intermediate directories, both the child directory and
5370 * procname are dynamically allocated and could fail but the mode
5371 * will always be set. In the lowest directory the names are
5372 * static strings and all have proc handlers.
5374 for (entry
= *tablep
; entry
->mode
; entry
++) {
5376 sd_free_ctl_entry(&entry
->child
);
5377 if (entry
->proc_handler
== NULL
)
5378 kfree(entry
->procname
);
5386 set_table_entry(struct ctl_table
*entry
,
5387 const char *procname
, void *data
, int maxlen
,
5388 mode_t mode
, proc_handler
*proc_handler
)
5390 entry
->procname
= procname
;
5392 entry
->maxlen
= maxlen
;
5394 entry
->proc_handler
= proc_handler
;
5397 static struct ctl_table
*
5398 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5400 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
5405 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5406 sizeof(long), 0644, proc_doulongvec_minmax
);
5407 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5408 sizeof(long), 0644, proc_doulongvec_minmax
);
5409 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5410 sizeof(int), 0644, proc_dointvec_minmax
);
5411 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5412 sizeof(int), 0644, proc_dointvec_minmax
);
5413 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5414 sizeof(int), 0644, proc_dointvec_minmax
);
5415 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5416 sizeof(int), 0644, proc_dointvec_minmax
);
5417 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5418 sizeof(int), 0644, proc_dointvec_minmax
);
5419 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5420 sizeof(int), 0644, proc_dointvec_minmax
);
5421 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5422 sizeof(int), 0644, proc_dointvec_minmax
);
5423 set_table_entry(&table
[9], "cache_nice_tries",
5424 &sd
->cache_nice_tries
,
5425 sizeof(int), 0644, proc_dointvec_minmax
);
5426 set_table_entry(&table
[10], "flags", &sd
->flags
,
5427 sizeof(int), 0644, proc_dointvec_minmax
);
5428 /* &table[11] is terminator */
5433 static ctl_table
* sd_alloc_ctl_cpu_table(int cpu
)
5435 struct ctl_table
*entry
, *table
;
5436 struct sched_domain
*sd
;
5437 int domain_num
= 0, i
;
5440 for_each_domain(cpu
, sd
)
5442 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5447 for_each_domain(cpu
, sd
) {
5448 snprintf(buf
, 32, "domain%d", i
);
5449 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5451 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5458 static struct ctl_table_header
*sd_sysctl_header
;
5459 static void register_sched_domain_sysctl(void)
5461 int i
, cpu_num
= num_online_cpus();
5462 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5468 sd_ctl_dir
[0].child
= entry
;
5470 for_each_online_cpu(i
) {
5471 snprintf(buf
, 32, "cpu%d", i
);
5472 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5474 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5477 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5480 static void unregister_sched_domain_sysctl(void)
5482 unregister_sysctl_table(sd_sysctl_header
);
5483 sd_sysctl_header
= NULL
;
5484 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5487 static void register_sched_domain_sysctl(void)
5490 static void unregister_sched_domain_sysctl(void)
5496 * migration_call - callback that gets triggered when a CPU is added.
5497 * Here we can start up the necessary migration thread for the new CPU.
5499 static int __cpuinit
5500 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5502 struct task_struct
*p
;
5503 int cpu
= (long)hcpu
;
5504 unsigned long flags
;
5508 case CPU_LOCK_ACQUIRE
:
5509 mutex_lock(&sched_hotcpu_mutex
);
5512 case CPU_UP_PREPARE
:
5513 case CPU_UP_PREPARE_FROZEN
:
5514 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5517 kthread_bind(p
, cpu
);
5518 /* Must be high prio: stop_machine expects to yield to it. */
5519 rq
= task_rq_lock(p
, &flags
);
5520 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5521 task_rq_unlock(rq
, &flags
);
5522 cpu_rq(cpu
)->migration_thread
= p
;
5526 case CPU_ONLINE_FROZEN
:
5527 /* Strictly unnecessary, as first user will wake it. */
5528 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5531 #ifdef CONFIG_HOTPLUG_CPU
5532 case CPU_UP_CANCELED
:
5533 case CPU_UP_CANCELED_FROZEN
:
5534 if (!cpu_rq(cpu
)->migration_thread
)
5536 /* Unbind it from offline cpu so it can run. Fall thru. */
5537 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5538 any_online_cpu(cpu_online_map
));
5539 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5540 cpu_rq(cpu
)->migration_thread
= NULL
;
5544 case CPU_DEAD_FROZEN
:
5545 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5546 migrate_live_tasks(cpu
);
5548 kthread_stop(rq
->migration_thread
);
5549 rq
->migration_thread
= NULL
;
5550 /* Idle task back to normal (off runqueue, low prio) */
5551 spin_lock_irq(&rq
->lock
);
5552 update_rq_clock(rq
);
5553 deactivate_task(rq
, rq
->idle
, 0);
5554 rq
->idle
->static_prio
= MAX_PRIO
;
5555 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5556 rq
->idle
->sched_class
= &idle_sched_class
;
5557 migrate_dead_tasks(cpu
);
5558 spin_unlock_irq(&rq
->lock
);
5560 migrate_nr_uninterruptible(rq
);
5561 BUG_ON(rq
->nr_running
!= 0);
5563 /* No need to migrate the tasks: it was best-effort if
5564 * they didn't take sched_hotcpu_mutex. Just wake up
5565 * the requestors. */
5566 spin_lock_irq(&rq
->lock
);
5567 while (!list_empty(&rq
->migration_queue
)) {
5568 struct migration_req
*req
;
5570 req
= list_entry(rq
->migration_queue
.next
,
5571 struct migration_req
, list
);
5572 list_del_init(&req
->list
);
5573 complete(&req
->done
);
5575 spin_unlock_irq(&rq
->lock
);
5578 case CPU_LOCK_RELEASE
:
5579 mutex_unlock(&sched_hotcpu_mutex
);
5585 /* Register at highest priority so that task migration (migrate_all_tasks)
5586 * happens before everything else.
5588 static struct notifier_block __cpuinitdata migration_notifier
= {
5589 .notifier_call
= migration_call
,
5593 int __init
migration_init(void)
5595 void *cpu
= (void *)(long)smp_processor_id();
5598 /* Start one for the boot CPU: */
5599 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5600 BUG_ON(err
== NOTIFY_BAD
);
5601 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5602 register_cpu_notifier(&migration_notifier
);
5610 /* Number of possible processor ids */
5611 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5612 EXPORT_SYMBOL(nr_cpu_ids
);
5614 #ifdef CONFIG_SCHED_DEBUG
5615 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5620 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5624 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5629 struct sched_group
*group
= sd
->groups
;
5630 cpumask_t groupmask
;
5632 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5633 cpus_clear(groupmask
);
5636 for (i
= 0; i
< level
+ 1; i
++)
5638 printk("domain %d: ", level
);
5640 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5641 printk("does not load-balance\n");
5643 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5648 printk("span %s\n", str
);
5650 if (!cpu_isset(cpu
, sd
->span
))
5651 printk(KERN_ERR
"ERROR: domain->span does not contain "
5653 if (!cpu_isset(cpu
, group
->cpumask
))
5654 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5658 for (i
= 0; i
< level
+ 2; i
++)
5664 printk(KERN_ERR
"ERROR: group is NULL\n");
5668 if (!group
->__cpu_power
) {
5669 printk(KERN_CONT
"\n");
5670 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5675 if (!cpus_weight(group
->cpumask
)) {
5676 printk(KERN_CONT
"\n");
5677 printk(KERN_ERR
"ERROR: empty group\n");
5681 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5682 printk(KERN_CONT
"\n");
5683 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5687 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5689 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5690 printk(KERN_CONT
" %s", str
);
5692 group
= group
->next
;
5693 } while (group
!= sd
->groups
);
5694 printk(KERN_CONT
"\n");
5696 if (!cpus_equal(sd
->span
, groupmask
))
5697 printk(KERN_ERR
"ERROR: groups don't span "
5705 if (!cpus_subset(groupmask
, sd
->span
))
5706 printk(KERN_ERR
"ERROR: parent span is not a superset "
5707 "of domain->span\n");
5712 # define sched_domain_debug(sd, cpu) do { } while (0)
5715 static int sd_degenerate(struct sched_domain
*sd
)
5717 if (cpus_weight(sd
->span
) == 1)
5720 /* Following flags need at least 2 groups */
5721 if (sd
->flags
& (SD_LOAD_BALANCE
|
5722 SD_BALANCE_NEWIDLE
|
5726 SD_SHARE_PKG_RESOURCES
)) {
5727 if (sd
->groups
!= sd
->groups
->next
)
5731 /* Following flags don't use groups */
5732 if (sd
->flags
& (SD_WAKE_IDLE
|
5741 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5743 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5745 if (sd_degenerate(parent
))
5748 if (!cpus_equal(sd
->span
, parent
->span
))
5751 /* Does parent contain flags not in child? */
5752 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5753 if (cflags
& SD_WAKE_AFFINE
)
5754 pflags
&= ~SD_WAKE_BALANCE
;
5755 /* Flags needing groups don't count if only 1 group in parent */
5756 if (parent
->groups
== parent
->groups
->next
) {
5757 pflags
&= ~(SD_LOAD_BALANCE
|
5758 SD_BALANCE_NEWIDLE
|
5762 SD_SHARE_PKG_RESOURCES
);
5764 if (~cflags
& pflags
)
5771 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5772 * hold the hotplug lock.
5774 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5776 struct rq
*rq
= cpu_rq(cpu
);
5777 struct sched_domain
*tmp
;
5779 /* Remove the sched domains which do not contribute to scheduling. */
5780 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5781 struct sched_domain
*parent
= tmp
->parent
;
5784 if (sd_parent_degenerate(tmp
, parent
)) {
5785 tmp
->parent
= parent
->parent
;
5787 parent
->parent
->child
= tmp
;
5791 if (sd
&& sd_degenerate(sd
)) {
5797 sched_domain_debug(sd
, cpu
);
5799 rcu_assign_pointer(rq
->sd
, sd
);
5802 /* cpus with isolated domains */
5803 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5805 /* Setup the mask of cpus configured for isolated domains */
5806 static int __init
isolated_cpu_setup(char *str
)
5808 int ints
[NR_CPUS
], i
;
5810 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5811 cpus_clear(cpu_isolated_map
);
5812 for (i
= 1; i
<= ints
[0]; i
++)
5813 if (ints
[i
] < NR_CPUS
)
5814 cpu_set(ints
[i
], cpu_isolated_map
);
5818 __setup("isolcpus=", isolated_cpu_setup
);
5821 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5822 * to a function which identifies what group(along with sched group) a CPU
5823 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5824 * (due to the fact that we keep track of groups covered with a cpumask_t).
5826 * init_sched_build_groups will build a circular linked list of the groups
5827 * covered by the given span, and will set each group's ->cpumask correctly,
5828 * and ->cpu_power to 0.
5831 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5832 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5833 struct sched_group
**sg
))
5835 struct sched_group
*first
= NULL
, *last
= NULL
;
5836 cpumask_t covered
= CPU_MASK_NONE
;
5839 for_each_cpu_mask(i
, span
) {
5840 struct sched_group
*sg
;
5841 int group
= group_fn(i
, cpu_map
, &sg
);
5844 if (cpu_isset(i
, covered
))
5847 sg
->cpumask
= CPU_MASK_NONE
;
5848 sg
->__cpu_power
= 0;
5850 for_each_cpu_mask(j
, span
) {
5851 if (group_fn(j
, cpu_map
, NULL
) != group
)
5854 cpu_set(j
, covered
);
5855 cpu_set(j
, sg
->cpumask
);
5866 #define SD_NODES_PER_DOMAIN 16
5871 * find_next_best_node - find the next node to include in a sched_domain
5872 * @node: node whose sched_domain we're building
5873 * @used_nodes: nodes already in the sched_domain
5875 * Find the next node to include in a given scheduling domain. Simply
5876 * finds the closest node not already in the @used_nodes map.
5878 * Should use nodemask_t.
5880 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5882 int i
, n
, val
, min_val
, best_node
= 0;
5886 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5887 /* Start at @node */
5888 n
= (node
+ i
) % MAX_NUMNODES
;
5890 if (!nr_cpus_node(n
))
5893 /* Skip already used nodes */
5894 if (test_bit(n
, used_nodes
))
5897 /* Simple min distance search */
5898 val
= node_distance(node
, n
);
5900 if (val
< min_val
) {
5906 set_bit(best_node
, used_nodes
);
5911 * sched_domain_node_span - get a cpumask for a node's sched_domain
5912 * @node: node whose cpumask we're constructing
5913 * @size: number of nodes to include in this span
5915 * Given a node, construct a good cpumask for its sched_domain to span. It
5916 * should be one that prevents unnecessary balancing, but also spreads tasks
5919 static cpumask_t
sched_domain_node_span(int node
)
5921 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5922 cpumask_t span
, nodemask
;
5926 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5928 nodemask
= node_to_cpumask(node
);
5929 cpus_or(span
, span
, nodemask
);
5930 set_bit(node
, used_nodes
);
5932 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5933 int next_node
= find_next_best_node(node
, used_nodes
);
5935 nodemask
= node_to_cpumask(next_node
);
5936 cpus_or(span
, span
, nodemask
);
5943 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5946 * SMT sched-domains:
5948 #ifdef CONFIG_SCHED_SMT
5949 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5950 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5952 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5953 struct sched_group
**sg
)
5956 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5962 * multi-core sched-domains:
5964 #ifdef CONFIG_SCHED_MC
5965 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5966 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5969 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5970 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5971 struct sched_group
**sg
)
5974 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
5975 cpus_and(mask
, mask
, *cpu_map
);
5976 group
= first_cpu(mask
);
5978 *sg
= &per_cpu(sched_group_core
, group
);
5981 #elif defined(CONFIG_SCHED_MC)
5982 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5983 struct sched_group
**sg
)
5986 *sg
= &per_cpu(sched_group_core
, cpu
);
5991 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5992 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5994 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5995 struct sched_group
**sg
)
5998 #ifdef CONFIG_SCHED_MC
5999 cpumask_t mask
= cpu_coregroup_map(cpu
);
6000 cpus_and(mask
, mask
, *cpu_map
);
6001 group
= first_cpu(mask
);
6002 #elif defined(CONFIG_SCHED_SMT)
6003 cpumask_t mask
= per_cpu(cpu_sibling_map
, cpu
);
6004 cpus_and(mask
, mask
, *cpu_map
);
6005 group
= first_cpu(mask
);
6010 *sg
= &per_cpu(sched_group_phys
, group
);
6016 * The init_sched_build_groups can't handle what we want to do with node
6017 * groups, so roll our own. Now each node has its own list of groups which
6018 * gets dynamically allocated.
6020 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6021 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6023 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6024 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6026 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6027 struct sched_group
**sg
)
6029 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
6032 cpus_and(nodemask
, nodemask
, *cpu_map
);
6033 group
= first_cpu(nodemask
);
6036 *sg
= &per_cpu(sched_group_allnodes
, group
);
6040 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6042 struct sched_group
*sg
= group_head
;
6048 for_each_cpu_mask(j
, sg
->cpumask
) {
6049 struct sched_domain
*sd
;
6051 sd
= &per_cpu(phys_domains
, j
);
6052 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6054 * Only add "power" once for each
6060 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
6063 } while (sg
!= group_head
);
6068 /* Free memory allocated for various sched_group structures */
6069 static void free_sched_groups(const cpumask_t
*cpu_map
)
6073 for_each_cpu_mask(cpu
, *cpu_map
) {
6074 struct sched_group
**sched_group_nodes
6075 = sched_group_nodes_bycpu
[cpu
];
6077 if (!sched_group_nodes
)
6080 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6081 cpumask_t nodemask
= node_to_cpumask(i
);
6082 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6084 cpus_and(nodemask
, nodemask
, *cpu_map
);
6085 if (cpus_empty(nodemask
))
6095 if (oldsg
!= sched_group_nodes
[i
])
6098 kfree(sched_group_nodes
);
6099 sched_group_nodes_bycpu
[cpu
] = NULL
;
6103 static void free_sched_groups(const cpumask_t
*cpu_map
)
6109 * Initialize sched groups cpu_power.
6111 * cpu_power indicates the capacity of sched group, which is used while
6112 * distributing the load between different sched groups in a sched domain.
6113 * Typically cpu_power for all the groups in a sched domain will be same unless
6114 * there are asymmetries in the topology. If there are asymmetries, group
6115 * having more cpu_power will pickup more load compared to the group having
6118 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6119 * the maximum number of tasks a group can handle in the presence of other idle
6120 * or lightly loaded groups in the same sched domain.
6122 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6124 struct sched_domain
*child
;
6125 struct sched_group
*group
;
6127 WARN_ON(!sd
|| !sd
->groups
);
6129 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
6134 sd
->groups
->__cpu_power
= 0;
6137 * For perf policy, if the groups in child domain share resources
6138 * (for example cores sharing some portions of the cache hierarchy
6139 * or SMT), then set this domain groups cpu_power such that each group
6140 * can handle only one task, when there are other idle groups in the
6141 * same sched domain.
6143 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
6145 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
6146 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
6151 * add cpu_power of each child group to this groups cpu_power
6153 group
= child
->groups
;
6155 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
6156 group
= group
->next
;
6157 } while (group
!= child
->groups
);
6161 * Build sched domains for a given set of cpus and attach the sched domains
6162 * to the individual cpus
6164 static int build_sched_domains(const cpumask_t
*cpu_map
)
6168 struct sched_group
**sched_group_nodes
= NULL
;
6169 int sd_allnodes
= 0;
6172 * Allocate the per-node list of sched groups
6174 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
6176 if (!sched_group_nodes
) {
6177 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6180 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6184 * Set up domains for cpus specified by the cpu_map.
6186 for_each_cpu_mask(i
, *cpu_map
) {
6187 struct sched_domain
*sd
= NULL
, *p
;
6188 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6190 cpus_and(nodemask
, nodemask
, *cpu_map
);
6193 if (cpus_weight(*cpu_map
) >
6194 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6195 sd
= &per_cpu(allnodes_domains
, i
);
6196 *sd
= SD_ALLNODES_INIT
;
6197 sd
->span
= *cpu_map
;
6198 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6204 sd
= &per_cpu(node_domains
, i
);
6206 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6210 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6214 sd
= &per_cpu(phys_domains
, i
);
6216 sd
->span
= nodemask
;
6220 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6222 #ifdef CONFIG_SCHED_MC
6224 sd
= &per_cpu(core_domains
, i
);
6226 sd
->span
= cpu_coregroup_map(i
);
6227 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6230 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6233 #ifdef CONFIG_SCHED_SMT
6235 sd
= &per_cpu(cpu_domains
, i
);
6236 *sd
= SD_SIBLING_INIT
;
6237 sd
->span
= per_cpu(cpu_sibling_map
, i
);
6238 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6241 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6245 #ifdef CONFIG_SCHED_SMT
6246 /* Set up CPU (sibling) groups */
6247 for_each_cpu_mask(i
, *cpu_map
) {
6248 cpumask_t this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
6249 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6250 if (i
!= first_cpu(this_sibling_map
))
6253 init_sched_build_groups(this_sibling_map
, cpu_map
,
6258 #ifdef CONFIG_SCHED_MC
6259 /* Set up multi-core groups */
6260 for_each_cpu_mask(i
, *cpu_map
) {
6261 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6262 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6263 if (i
!= first_cpu(this_core_map
))
6265 init_sched_build_groups(this_core_map
, cpu_map
,
6266 &cpu_to_core_group
);
6270 /* Set up physical groups */
6271 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6272 cpumask_t nodemask
= node_to_cpumask(i
);
6274 cpus_and(nodemask
, nodemask
, *cpu_map
);
6275 if (cpus_empty(nodemask
))
6278 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6282 /* Set up node groups */
6284 init_sched_build_groups(*cpu_map
, cpu_map
,
6285 &cpu_to_allnodes_group
);
6287 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6288 /* Set up node groups */
6289 struct sched_group
*sg
, *prev
;
6290 cpumask_t nodemask
= node_to_cpumask(i
);
6291 cpumask_t domainspan
;
6292 cpumask_t covered
= CPU_MASK_NONE
;
6295 cpus_and(nodemask
, nodemask
, *cpu_map
);
6296 if (cpus_empty(nodemask
)) {
6297 sched_group_nodes
[i
] = NULL
;
6301 domainspan
= sched_domain_node_span(i
);
6302 cpus_and(domainspan
, domainspan
, *cpu_map
);
6304 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6306 printk(KERN_WARNING
"Can not alloc domain group for "
6310 sched_group_nodes
[i
] = sg
;
6311 for_each_cpu_mask(j
, nodemask
) {
6312 struct sched_domain
*sd
;
6314 sd
= &per_cpu(node_domains
, j
);
6317 sg
->__cpu_power
= 0;
6318 sg
->cpumask
= nodemask
;
6320 cpus_or(covered
, covered
, nodemask
);
6323 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6324 cpumask_t tmp
, notcovered
;
6325 int n
= (i
+ j
) % MAX_NUMNODES
;
6327 cpus_complement(notcovered
, covered
);
6328 cpus_and(tmp
, notcovered
, *cpu_map
);
6329 cpus_and(tmp
, tmp
, domainspan
);
6330 if (cpus_empty(tmp
))
6333 nodemask
= node_to_cpumask(n
);
6334 cpus_and(tmp
, tmp
, nodemask
);
6335 if (cpus_empty(tmp
))
6338 sg
= kmalloc_node(sizeof(struct sched_group
),
6342 "Can not alloc domain group for node %d\n", j
);
6345 sg
->__cpu_power
= 0;
6347 sg
->next
= prev
->next
;
6348 cpus_or(covered
, covered
, tmp
);
6355 /* Calculate CPU power for physical packages and nodes */
6356 #ifdef CONFIG_SCHED_SMT
6357 for_each_cpu_mask(i
, *cpu_map
) {
6358 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6360 init_sched_groups_power(i
, sd
);
6363 #ifdef CONFIG_SCHED_MC
6364 for_each_cpu_mask(i
, *cpu_map
) {
6365 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6367 init_sched_groups_power(i
, sd
);
6371 for_each_cpu_mask(i
, *cpu_map
) {
6372 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6374 init_sched_groups_power(i
, sd
);
6378 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6379 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6382 struct sched_group
*sg
;
6384 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6385 init_numa_sched_groups_power(sg
);
6389 /* Attach the domains */
6390 for_each_cpu_mask(i
, *cpu_map
) {
6391 struct sched_domain
*sd
;
6392 #ifdef CONFIG_SCHED_SMT
6393 sd
= &per_cpu(cpu_domains
, i
);
6394 #elif defined(CONFIG_SCHED_MC)
6395 sd
= &per_cpu(core_domains
, i
);
6397 sd
= &per_cpu(phys_domains
, i
);
6399 cpu_attach_domain(sd
, i
);
6406 free_sched_groups(cpu_map
);
6411 static cpumask_t
*doms_cur
; /* current sched domains */
6412 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
6415 * Special case: If a kmalloc of a doms_cur partition (array of
6416 * cpumask_t) fails, then fallback to a single sched domain,
6417 * as determined by the single cpumask_t fallback_doms.
6419 static cpumask_t fallback_doms
;
6422 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6423 * For now this just excludes isolated cpus, but could be used to
6424 * exclude other special cases in the future.
6426 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6429 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6431 doms_cur
= &fallback_doms
;
6432 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
6433 register_sched_domain_sysctl();
6434 return build_sched_domains(doms_cur
);
6437 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6439 free_sched_groups(cpu_map
);
6443 * Detach sched domains from a group of cpus specified in cpu_map
6444 * These cpus will now be attached to the NULL domain
6446 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6450 unregister_sched_domain_sysctl();
6452 for_each_cpu_mask(i
, *cpu_map
)
6453 cpu_attach_domain(NULL
, i
);
6454 synchronize_sched();
6455 arch_destroy_sched_domains(cpu_map
);
6459 * Partition sched domains as specified by the 'ndoms_new'
6460 * cpumasks in the array doms_new[] of cpumasks. This compares
6461 * doms_new[] to the current sched domain partitioning, doms_cur[].
6462 * It destroys each deleted domain and builds each new domain.
6464 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6465 * The masks don't intersect (don't overlap.) We should setup one
6466 * sched domain for each mask. CPUs not in any of the cpumasks will
6467 * not be load balanced. If the same cpumask appears both in the
6468 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6471 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6472 * ownership of it and will kfree it when done with it. If the caller
6473 * failed the kmalloc call, then it can pass in doms_new == NULL,
6474 * and partition_sched_domains() will fallback to the single partition
6477 * Call with hotplug lock held
6479 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
)
6483 if (doms_new
== NULL
) {
6485 doms_new
= &fallback_doms
;
6486 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
6489 /* Destroy deleted domains */
6490 for (i
= 0; i
< ndoms_cur
; i
++) {
6491 for (j
= 0; j
< ndoms_new
; j
++) {
6492 if (cpus_equal(doms_cur
[i
], doms_new
[j
]))
6495 /* no match - a current sched domain not in new doms_new[] */
6496 detach_destroy_domains(doms_cur
+ i
);
6501 /* Build new domains */
6502 for (i
= 0; i
< ndoms_new
; i
++) {
6503 for (j
= 0; j
< ndoms_cur
; j
++) {
6504 if (cpus_equal(doms_new
[i
], doms_cur
[j
]))
6507 /* no match - add a new doms_new */
6508 build_sched_domains(doms_new
+ i
);
6513 /* Remember the new sched domains */
6514 if (doms_cur
!= &fallback_doms
)
6516 doms_cur
= doms_new
;
6517 ndoms_cur
= ndoms_new
;
6520 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6521 static int arch_reinit_sched_domains(void)
6525 mutex_lock(&sched_hotcpu_mutex
);
6526 detach_destroy_domains(&cpu_online_map
);
6527 err
= arch_init_sched_domains(&cpu_online_map
);
6528 mutex_unlock(&sched_hotcpu_mutex
);
6533 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6537 if (buf
[0] != '0' && buf
[0] != '1')
6541 sched_smt_power_savings
= (buf
[0] == '1');
6543 sched_mc_power_savings
= (buf
[0] == '1');
6545 ret
= arch_reinit_sched_domains();
6547 return ret
? ret
: count
;
6550 #ifdef CONFIG_SCHED_MC
6551 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6553 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6555 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6556 const char *buf
, size_t count
)
6558 return sched_power_savings_store(buf
, count
, 0);
6560 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6561 sched_mc_power_savings_store
);
6564 #ifdef CONFIG_SCHED_SMT
6565 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6567 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6569 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6570 const char *buf
, size_t count
)
6572 return sched_power_savings_store(buf
, count
, 1);
6574 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6575 sched_smt_power_savings_store
);
6578 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6582 #ifdef CONFIG_SCHED_SMT
6584 err
= sysfs_create_file(&cls
->kset
.kobj
,
6585 &attr_sched_smt_power_savings
.attr
);
6587 #ifdef CONFIG_SCHED_MC
6588 if (!err
&& mc_capable())
6589 err
= sysfs_create_file(&cls
->kset
.kobj
,
6590 &attr_sched_mc_power_savings
.attr
);
6597 * Force a reinitialization of the sched domains hierarchy. The domains
6598 * and groups cannot be updated in place without racing with the balancing
6599 * code, so we temporarily attach all running cpus to the NULL domain
6600 * which will prevent rebalancing while the sched domains are recalculated.
6602 static int update_sched_domains(struct notifier_block
*nfb
,
6603 unsigned long action
, void *hcpu
)
6606 case CPU_UP_PREPARE
:
6607 case CPU_UP_PREPARE_FROZEN
:
6608 case CPU_DOWN_PREPARE
:
6609 case CPU_DOWN_PREPARE_FROZEN
:
6610 detach_destroy_domains(&cpu_online_map
);
6613 case CPU_UP_CANCELED
:
6614 case CPU_UP_CANCELED_FROZEN
:
6615 case CPU_DOWN_FAILED
:
6616 case CPU_DOWN_FAILED_FROZEN
:
6618 case CPU_ONLINE_FROZEN
:
6620 case CPU_DEAD_FROZEN
:
6622 * Fall through and re-initialise the domains.
6629 /* The hotplug lock is already held by cpu_up/cpu_down */
6630 arch_init_sched_domains(&cpu_online_map
);
6635 void __init
sched_init_smp(void)
6637 cpumask_t non_isolated_cpus
;
6639 mutex_lock(&sched_hotcpu_mutex
);
6640 arch_init_sched_domains(&cpu_online_map
);
6641 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6642 if (cpus_empty(non_isolated_cpus
))
6643 cpu_set(smp_processor_id(), non_isolated_cpus
);
6644 mutex_unlock(&sched_hotcpu_mutex
);
6645 /* XXX: Theoretical race here - CPU may be hotplugged now */
6646 hotcpu_notifier(update_sched_domains
, 0);
6648 /* Move init over to a non-isolated CPU */
6649 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6653 void __init
sched_init_smp(void)
6656 #endif /* CONFIG_SMP */
6658 int in_sched_functions(unsigned long addr
)
6660 /* Linker adds these: start and end of __sched functions */
6661 extern char __sched_text_start
[], __sched_text_end
[];
6663 return in_lock_functions(addr
) ||
6664 (addr
>= (unsigned long)__sched_text_start
6665 && addr
< (unsigned long)__sched_text_end
);
6668 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6670 cfs_rq
->tasks_timeline
= RB_ROOT
;
6671 #ifdef CONFIG_FAIR_GROUP_SCHED
6674 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
6677 void __init
sched_init(void)
6679 int highest_cpu
= 0;
6682 for_each_possible_cpu(i
) {
6683 struct rt_prio_array
*array
;
6687 spin_lock_init(&rq
->lock
);
6688 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6691 init_cfs_rq(&rq
->cfs
, rq
);
6692 #ifdef CONFIG_FAIR_GROUP_SCHED
6693 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6695 struct cfs_rq
*cfs_rq
= &per_cpu(init_cfs_rq
, i
);
6696 struct sched_entity
*se
=
6697 &per_cpu(init_sched_entity
, i
);
6699 init_cfs_rq_p
[i
] = cfs_rq
;
6700 init_cfs_rq(cfs_rq
, rq
);
6701 cfs_rq
->tg
= &init_task_group
;
6702 list_add(&cfs_rq
->leaf_cfs_rq_list
,
6703 &rq
->leaf_cfs_rq_list
);
6705 init_sched_entity_p
[i
] = se
;
6706 se
->cfs_rq
= &rq
->cfs
;
6708 se
->load
.weight
= init_task_group_load
;
6709 se
->load
.inv_weight
=
6710 div64_64(1ULL<<32, init_task_group_load
);
6713 init_task_group
.shares
= init_task_group_load
;
6714 spin_lock_init(&init_task_group
.lock
);
6717 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6718 rq
->cpu_load
[j
] = 0;
6721 rq
->active_balance
= 0;
6722 rq
->next_balance
= jiffies
;
6725 rq
->migration_thread
= NULL
;
6726 INIT_LIST_HEAD(&rq
->migration_queue
);
6728 atomic_set(&rq
->nr_iowait
, 0);
6730 array
= &rq
->rt
.active
;
6731 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6732 INIT_LIST_HEAD(array
->queue
+ j
);
6733 __clear_bit(j
, array
->bitmap
);
6736 /* delimiter for bitsearch: */
6737 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6740 set_load_weight(&init_task
);
6742 #ifdef CONFIG_PREEMPT_NOTIFIERS
6743 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6747 nr_cpu_ids
= highest_cpu
+ 1;
6748 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6751 #ifdef CONFIG_RT_MUTEXES
6752 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6756 * The boot idle thread does lazy MMU switching as well:
6758 atomic_inc(&init_mm
.mm_count
);
6759 enter_lazy_tlb(&init_mm
, current
);
6762 * Make us the idle thread. Technically, schedule() should not be
6763 * called from this thread, however somewhere below it might be,
6764 * but because we are the idle thread, we just pick up running again
6765 * when this runqueue becomes "idle".
6767 init_idle(current
, smp_processor_id());
6769 * During early bootup we pretend to be a normal task:
6771 current
->sched_class
= &fair_sched_class
;
6774 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6775 void __might_sleep(char *file
, int line
)
6778 static unsigned long prev_jiffy
; /* ratelimiting */
6780 if ((in_atomic() || irqs_disabled()) &&
6781 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6782 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6784 prev_jiffy
= jiffies
;
6785 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6786 " context at %s:%d\n", file
, line
);
6787 printk("in_atomic():%d, irqs_disabled():%d\n",
6788 in_atomic(), irqs_disabled());
6789 debug_show_held_locks(current
);
6790 if (irqs_disabled())
6791 print_irqtrace_events(current
);
6796 EXPORT_SYMBOL(__might_sleep
);
6799 #ifdef CONFIG_MAGIC_SYSRQ
6800 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
6803 update_rq_clock(rq
);
6804 on_rq
= p
->se
.on_rq
;
6806 deactivate_task(rq
, p
, 0);
6807 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6809 activate_task(rq
, p
, 0);
6810 resched_task(rq
->curr
);
6814 void normalize_rt_tasks(void)
6816 struct task_struct
*g
, *p
;
6817 unsigned long flags
;
6820 read_lock_irq(&tasklist_lock
);
6821 do_each_thread(g
, p
) {
6823 * Only normalize user tasks:
6828 p
->se
.exec_start
= 0;
6829 #ifdef CONFIG_SCHEDSTATS
6830 p
->se
.wait_start
= 0;
6831 p
->se
.sleep_start
= 0;
6832 p
->se
.block_start
= 0;
6834 task_rq(p
)->clock
= 0;
6838 * Renice negative nice level userspace
6841 if (TASK_NICE(p
) < 0 && p
->mm
)
6842 set_user_nice(p
, 0);
6846 spin_lock_irqsave(&p
->pi_lock
, flags
);
6847 rq
= __task_rq_lock(p
);
6849 normalize_task(rq
, p
);
6851 __task_rq_unlock(rq
);
6852 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6853 } while_each_thread(g
, p
);
6855 read_unlock_irq(&tasklist_lock
);
6858 #endif /* CONFIG_MAGIC_SYSRQ */
6862 * These functions are only useful for the IA64 MCA handling.
6864 * They can only be called when the whole system has been
6865 * stopped - every CPU needs to be quiescent, and no scheduling
6866 * activity can take place. Using them for anything else would
6867 * be a serious bug, and as a result, they aren't even visible
6868 * under any other configuration.
6872 * curr_task - return the current task for a given cpu.
6873 * @cpu: the processor in question.
6875 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6877 struct task_struct
*curr_task(int cpu
)
6879 return cpu_curr(cpu
);
6883 * set_curr_task - set the current task for a given cpu.
6884 * @cpu: the processor in question.
6885 * @p: the task pointer to set.
6887 * Description: This function must only be used when non-maskable interrupts
6888 * are serviced on a separate stack. It allows the architecture to switch the
6889 * notion of the current task on a cpu in a non-blocking manner. This function
6890 * must be called with all CPU's synchronized, and interrupts disabled, the
6891 * and caller must save the original value of the current task (see
6892 * curr_task() above) and restore that value before reenabling interrupts and
6893 * re-starting the system.
6895 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6897 void set_curr_task(int cpu
, struct task_struct
*p
)
6904 #ifdef CONFIG_FAIR_GROUP_SCHED
6906 /* allocate runqueue etc for a new task group */
6907 struct task_group
*sched_create_group(void)
6909 struct task_group
*tg
;
6910 struct cfs_rq
*cfs_rq
;
6911 struct sched_entity
*se
;
6915 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
6917 return ERR_PTR(-ENOMEM
);
6919 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * NR_CPUS
, GFP_KERNEL
);
6922 tg
->se
= kzalloc(sizeof(se
) * NR_CPUS
, GFP_KERNEL
);
6926 for_each_possible_cpu(i
) {
6929 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
), GFP_KERNEL
,
6934 se
= kmalloc_node(sizeof(struct sched_entity
), GFP_KERNEL
,
6939 memset(cfs_rq
, 0, sizeof(struct cfs_rq
));
6940 memset(se
, 0, sizeof(struct sched_entity
));
6942 tg
->cfs_rq
[i
] = cfs_rq
;
6943 init_cfs_rq(cfs_rq
, rq
);
6947 se
->cfs_rq
= &rq
->cfs
;
6949 se
->load
.weight
= NICE_0_LOAD
;
6950 se
->load
.inv_weight
= div64_64(1ULL<<32, NICE_0_LOAD
);
6954 for_each_possible_cpu(i
) {
6956 cfs_rq
= tg
->cfs_rq
[i
];
6957 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6960 tg
->shares
= NICE_0_LOAD
;
6961 spin_lock_init(&tg
->lock
);
6966 for_each_possible_cpu(i
) {
6968 kfree(tg
->cfs_rq
[i
]);
6976 return ERR_PTR(-ENOMEM
);
6979 /* rcu callback to free various structures associated with a task group */
6980 static void free_sched_group(struct rcu_head
*rhp
)
6982 struct cfs_rq
*cfs_rq
= container_of(rhp
, struct cfs_rq
, rcu
);
6983 struct task_group
*tg
= cfs_rq
->tg
;
6984 struct sched_entity
*se
;
6987 /* now it should be safe to free those cfs_rqs */
6988 for_each_possible_cpu(i
) {
6989 cfs_rq
= tg
->cfs_rq
[i
];
7001 /* Destroy runqueue etc associated with a task group */
7002 void sched_destroy_group(struct task_group
*tg
)
7004 struct cfs_rq
*cfs_rq
;
7007 for_each_possible_cpu(i
) {
7008 cfs_rq
= tg
->cfs_rq
[i
];
7009 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
7012 cfs_rq
= tg
->cfs_rq
[0];
7014 /* wait for possible concurrent references to cfs_rqs complete */
7015 call_rcu(&cfs_rq
->rcu
, free_sched_group
);
7018 /* change task's runqueue when it moves between groups.
7019 * The caller of this function should have put the task in its new group
7020 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7021 * reflect its new group.
7023 void sched_move_task(struct task_struct
*tsk
)
7026 unsigned long flags
;
7029 rq
= task_rq_lock(tsk
, &flags
);
7031 if (tsk
->sched_class
!= &fair_sched_class
)
7034 update_rq_clock(rq
);
7036 running
= task_running(rq
, tsk
);
7037 on_rq
= tsk
->se
.on_rq
;
7040 dequeue_task(rq
, tsk
, 0);
7041 if (unlikely(running
))
7042 tsk
->sched_class
->put_prev_task(rq
, tsk
);
7045 set_task_cfs_rq(tsk
);
7048 if (unlikely(running
))
7049 tsk
->sched_class
->set_curr_task(rq
);
7050 enqueue_task(rq
, tsk
, 0);
7054 task_rq_unlock(rq
, &flags
);
7057 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
7059 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
7060 struct rq
*rq
= cfs_rq
->rq
;
7063 spin_lock_irq(&rq
->lock
);
7067 dequeue_entity(cfs_rq
, se
, 0);
7069 se
->load
.weight
= shares
;
7070 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
7073 enqueue_entity(cfs_rq
, se
, 0);
7075 spin_unlock_irq(&rq
->lock
);
7078 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
7082 spin_lock(&tg
->lock
);
7083 if (tg
->shares
== shares
)
7086 tg
->shares
= shares
;
7087 for_each_possible_cpu(i
)
7088 set_se_shares(tg
->se
[i
], shares
);
7091 spin_unlock(&tg
->lock
);
7095 unsigned long sched_group_shares(struct task_group
*tg
)
7100 #endif /* CONFIG_FAIR_GROUP_SCHED */
7102 #ifdef CONFIG_FAIR_CGROUP_SCHED
7104 /* return corresponding task_group object of a cgroup */
7105 static inline struct task_group
*cgroup_tg(struct cgroup
*cont
)
7107 return container_of(cgroup_subsys_state(cont
, cpu_cgroup_subsys_id
),
7108 struct task_group
, css
);
7111 static struct cgroup_subsys_state
*
7112 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7114 struct task_group
*tg
;
7116 if (!cont
->parent
) {
7117 /* This is early initialization for the top cgroup */
7118 init_task_group
.css
.cgroup
= cont
;
7119 return &init_task_group
.css
;
7122 /* we support only 1-level deep hierarchical scheduler atm */
7123 if (cont
->parent
->parent
)
7124 return ERR_PTR(-EINVAL
);
7126 tg
= sched_create_group();
7128 return ERR_PTR(-ENOMEM
);
7130 /* Bind the cgroup to task_group object we just created */
7131 tg
->css
.cgroup
= cont
;
7136 static void cpu_cgroup_destroy(struct cgroup_subsys
*ss
,
7137 struct cgroup
*cont
)
7139 struct task_group
*tg
= cgroup_tg(cont
);
7141 sched_destroy_group(tg
);
7144 static int cpu_cgroup_can_attach(struct cgroup_subsys
*ss
,
7145 struct cgroup
*cont
, struct task_struct
*tsk
)
7147 /* We don't support RT-tasks being in separate groups */
7148 if (tsk
->sched_class
!= &fair_sched_class
)
7155 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cont
,
7156 struct cgroup
*old_cont
, struct task_struct
*tsk
)
7158 sched_move_task(tsk
);
7161 static ssize_t
cpu_shares_write(struct cgroup
*cont
, struct cftype
*cftype
,
7162 struct file
*file
, const char __user
*userbuf
,
7163 size_t nbytes
, loff_t
*ppos
)
7165 unsigned long shareval
;
7166 struct task_group
*tg
= cgroup_tg(cont
);
7167 char buffer
[2*sizeof(unsigned long) + 1];
7170 if (nbytes
> 2*sizeof(unsigned long)) /* safety check */
7173 if (copy_from_user(buffer
, userbuf
, nbytes
))
7176 buffer
[nbytes
] = 0; /* nul-terminate */
7177 shareval
= simple_strtoul(buffer
, NULL
, 10);
7179 rc
= sched_group_set_shares(tg
, shareval
);
7181 return (rc
< 0 ? rc
: nbytes
);
7184 static u64
cpu_shares_read_uint(struct cgroup
*cont
, struct cftype
*cft
)
7186 struct task_group
*tg
= cgroup_tg(cont
);
7188 return (u64
) tg
->shares
;
7191 static struct cftype cpu_shares
= {
7193 .read_uint
= cpu_shares_read_uint
,
7194 .write
= cpu_shares_write
,
7197 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7199 return cgroup_add_file(cont
, ss
, &cpu_shares
);
7202 struct cgroup_subsys cpu_cgroup_subsys
= {
7204 .create
= cpu_cgroup_create
,
7205 .destroy
= cpu_cgroup_destroy
,
7206 .can_attach
= cpu_cgroup_can_attach
,
7207 .attach
= cpu_cgroup_attach
,
7208 .populate
= cpu_cgroup_populate
,
7209 .subsys_id
= cpu_cgroup_subsys_id
,
7213 #endif /* CONFIG_FAIR_CGROUP_SCHED */