2 * index.c - NTFS kernel index handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2004-2005 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * ntfs_index_ctx_get - allocate and initialize a new index context
30 * @idx_ni: ntfs index inode with which to initialize the context
32 * Allocate a new index context, initialize it with @idx_ni and return it.
33 * Return NULL if allocation failed.
35 * Locking: Caller must hold i_mutex on the index inode.
37 ntfs_index_context
*ntfs_index_ctx_get(ntfs_inode
*idx_ni
)
39 ntfs_index_context
*ictx
;
41 ictx
= kmem_cache_alloc(ntfs_index_ctx_cache
, GFP_NOFS
);
43 *ictx
= (ntfs_index_context
){ .idx_ni
= idx_ni
};
48 * ntfs_index_ctx_put - release an index context
49 * @ictx: index context to free
51 * Release the index context @ictx, releasing all associated resources.
53 * Locking: Caller must hold i_mutex on the index inode.
55 void ntfs_index_ctx_put(ntfs_index_context
*ictx
)
58 if (ictx
->is_in_root
) {
60 ntfs_attr_put_search_ctx(ictx
->actx
);
62 unmap_mft_record(ictx
->base_ni
);
64 struct page
*page
= ictx
->page
;
66 BUG_ON(!PageLocked(page
));
68 ntfs_unmap_page(page
);
72 kmem_cache_free(ntfs_index_ctx_cache
, ictx
);
77 * ntfs_index_lookup - find a key in an index and return its index entry
78 * @key: [IN] key for which to search in the index
79 * @key_len: [IN] length of @key in bytes
80 * @ictx: [IN/OUT] context describing the index and the returned entry
82 * Before calling ntfs_index_lookup(), @ictx must have been obtained from a
83 * call to ntfs_index_ctx_get().
85 * Look for the @key in the index specified by the index lookup context @ictx.
86 * ntfs_index_lookup() walks the contents of the index looking for the @key.
88 * If the @key is found in the index, 0 is returned and @ictx is setup to
89 * describe the index entry containing the matching @key. @ictx->entry is the
90 * index entry and @ictx->data and @ictx->data_len are the index entry data and
91 * its length in bytes, respectively.
93 * If the @key is not found in the index, -ENOENT is returned and @ictx is
94 * setup to describe the index entry whose key collates immediately after the
95 * search @key, i.e. this is the position in the index at which an index entry
96 * with a key of @key would need to be inserted.
98 * If an error occurs return the negative error code and @ictx is left
101 * When finished with the entry and its data, call ntfs_index_ctx_put() to free
102 * the context and other associated resources.
104 * If the index entry was modified, call flush_dcache_index_entry_page()
105 * immediately after the modification and either ntfs_index_entry_mark_dirty()
106 * or ntfs_index_entry_write() before the call to ntfs_index_ctx_put() to
107 * ensure that the changes are written to disk.
109 * Locking: - Caller must hold i_mutex on the index inode.
110 * - Each page cache page in the index allocation mapping must be
111 * locked whilst being accessed otherwise we may find a corrupt
112 * page due to it being under ->writepage at the moment which
113 * applies the mst protection fixups before writing out and then
114 * removes them again after the write is complete after which it
117 int ntfs_index_lookup(const void *key
, const int key_len
,
118 ntfs_index_context
*ictx
)
121 ntfs_inode
*idx_ni
= ictx
->idx_ni
;
122 ntfs_volume
*vol
= idx_ni
->vol
;
123 struct super_block
*sb
= vol
->sb
;
124 ntfs_inode
*base_ni
= idx_ni
->ext
.base_ntfs_ino
;
128 INDEX_ALLOCATION
*ia
;
129 u8
*index_end
, *kaddr
;
130 ntfs_attr_search_ctx
*actx
;
131 struct address_space
*ia_mapping
;
135 ntfs_debug("Entering.");
136 BUG_ON(!NInoAttr(idx_ni
));
137 BUG_ON(idx_ni
->type
!= AT_INDEX_ALLOCATION
);
138 BUG_ON(idx_ni
->nr_extents
!= -1);
141 BUG_ON(key_len
<= 0);
142 if (!ntfs_is_collation_rule_supported(
143 idx_ni
->itype
.index
.collation_rule
)) {
144 ntfs_error(sb
, "Index uses unsupported collation rule 0x%x. "
145 "Aborting lookup.", le32_to_cpu(
146 idx_ni
->itype
.index
.collation_rule
));
149 /* Get hold of the mft record for the index inode. */
150 m
= map_mft_record(base_ni
);
152 ntfs_error(sb
, "map_mft_record() failed with error code %ld.",
156 actx
= ntfs_attr_get_search_ctx(base_ni
, m
);
157 if (unlikely(!actx
)) {
161 /* Find the index root attribute in the mft record. */
162 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, idx_ni
->name
, idx_ni
->name_len
,
163 CASE_SENSITIVE
, 0, NULL
, 0, actx
);
165 if (err
== -ENOENT
) {
166 ntfs_error(sb
, "Index root attribute missing in inode "
167 "0x%lx.", idx_ni
->mft_no
);
172 /* Get to the index root value (it has been verified in read_inode). */
173 ir
= (INDEX_ROOT
*)((u8
*)actx
->attr
+
174 le16_to_cpu(actx
->attr
->data
.resident
.value_offset
));
175 index_end
= (u8
*)&ir
->index
+ le32_to_cpu(ir
->index
.index_length
);
176 /* The first index entry. */
177 ie
= (INDEX_ENTRY
*)((u8
*)&ir
->index
+
178 le32_to_cpu(ir
->index
.entries_offset
));
180 * Loop until we exceed valid memory (corruption case) or until we
181 * reach the last entry.
183 for (;; ie
= (INDEX_ENTRY
*)((u8
*)ie
+ le16_to_cpu(ie
->length
))) {
185 if ((u8
*)ie
< (u8
*)actx
->mrec
|| (u8
*)ie
+
186 sizeof(INDEX_ENTRY_HEADER
) > index_end
||
187 (u8
*)ie
+ le16_to_cpu(ie
->length
) > index_end
)
190 * The last entry cannot contain a key. It can however contain
191 * a pointer to a child node in the B+tree so we just break out.
193 if (ie
->flags
& INDEX_ENTRY_END
)
195 /* Further bounds checks. */
196 if ((u32
)sizeof(INDEX_ENTRY_HEADER
) +
197 le16_to_cpu(ie
->key_length
) >
198 le16_to_cpu(ie
->data
.vi
.data_offset
) ||
199 (u32
)le16_to_cpu(ie
->data
.vi
.data_offset
) +
200 le16_to_cpu(ie
->data
.vi
.data_length
) >
201 le16_to_cpu(ie
->length
))
203 /* If the keys match perfectly, we setup @ictx and return 0. */
204 if ((key_len
== le16_to_cpu(ie
->key_length
)) && !memcmp(key
,
205 &ie
->key
, key_len
)) {
207 ictx
->is_in_root
= true;
210 ictx
->base_ni
= base_ni
;
215 ictx
->data
= (u8
*)ie
+
216 le16_to_cpu(ie
->data
.vi
.data_offset
);
217 ictx
->data_len
= le16_to_cpu(ie
->data
.vi
.data_length
);
222 * Not a perfect match, need to do full blown collation so we
223 * know which way in the B+tree we have to go.
225 rc
= ntfs_collate(vol
, idx_ni
->itype
.index
.collation_rule
, key
,
226 key_len
, &ie
->key
, le16_to_cpu(ie
->key_length
));
228 * If @key collates before the key of the current entry, there
229 * is definitely no such key in this index but we might need to
230 * descend into the B+tree so we just break out of the loop.
235 * A match should never happen as the memcmp() call should have
236 * cought it, but we still treat it correctly.
240 /* The keys are not equal, continue the search. */
243 * We have finished with this index without success. Check for the
244 * presence of a child node and if not present setup @ictx and return
247 if (!(ie
->flags
& INDEX_ENTRY_NODE
)) {
248 ntfs_debug("Entry not found.");
251 } /* Child node present, descend into it. */
252 /* Consistency check: Verify that an index allocation exists. */
253 if (!NInoIndexAllocPresent(idx_ni
)) {
254 ntfs_error(sb
, "No index allocation attribute but index entry "
255 "requires one. Inode 0x%lx is corrupt or "
256 "driver bug.", idx_ni
->mft_no
);
259 /* Get the starting vcn of the index_block holding the child node. */
260 vcn
= sle64_to_cpup((sle64
*)((u8
*)ie
+ le16_to_cpu(ie
->length
) - 8));
261 ia_mapping
= VFS_I(idx_ni
)->i_mapping
;
263 * We are done with the index root and the mft record. Release them,
264 * otherwise we deadlock with ntfs_map_page().
266 ntfs_attr_put_search_ctx(actx
);
267 unmap_mft_record(base_ni
);
270 descend_into_child_node
:
272 * Convert vcn to index into the index allocation attribute in units
273 * of PAGE_CACHE_SIZE and map the page cache page, reading it from
276 page
= ntfs_map_page(ia_mapping
, vcn
<<
277 idx_ni
->itype
.index
.vcn_size_bits
>> PAGE_CACHE_SHIFT
);
279 ntfs_error(sb
, "Failed to map index page, error %ld.",
285 kaddr
= (u8
*)page_address(page
);
286 fast_descend_into_child_node
:
287 /* Get to the index allocation block. */
288 ia
= (INDEX_ALLOCATION
*)(kaddr
+ ((vcn
<<
289 idx_ni
->itype
.index
.vcn_size_bits
) & ~PAGE_CACHE_MASK
));
291 if ((u8
*)ia
< kaddr
|| (u8
*)ia
> kaddr
+ PAGE_CACHE_SIZE
) {
292 ntfs_error(sb
, "Out of bounds check failed. Corrupt inode "
293 "0x%lx or driver bug.", idx_ni
->mft_no
);
296 /* Catch multi sector transfer fixup errors. */
297 if (unlikely(!ntfs_is_indx_record(ia
->magic
))) {
298 ntfs_error(sb
, "Index record with vcn 0x%llx is corrupt. "
299 "Corrupt inode 0x%lx. Run chkdsk.",
300 (long long)vcn
, idx_ni
->mft_no
);
303 if (sle64_to_cpu(ia
->index_block_vcn
) != vcn
) {
304 ntfs_error(sb
, "Actual VCN (0x%llx) of index buffer is "
305 "different from expected VCN (0x%llx). Inode "
306 "0x%lx is corrupt or driver bug.",
308 sle64_to_cpu(ia
->index_block_vcn
),
309 (unsigned long long)vcn
, idx_ni
->mft_no
);
312 if (le32_to_cpu(ia
->index
.allocated_size
) + 0x18 !=
313 idx_ni
->itype
.index
.block_size
) {
314 ntfs_error(sb
, "Index buffer (VCN 0x%llx) of inode 0x%lx has "
315 "a size (%u) differing from the index "
316 "specified size (%u). Inode is corrupt or "
317 "driver bug.", (unsigned long long)vcn
,
319 le32_to_cpu(ia
->index
.allocated_size
) + 0x18,
320 idx_ni
->itype
.index
.block_size
);
323 index_end
= (u8
*)ia
+ idx_ni
->itype
.index
.block_size
;
324 if (index_end
> kaddr
+ PAGE_CACHE_SIZE
) {
325 ntfs_error(sb
, "Index buffer (VCN 0x%llx) of inode 0x%lx "
326 "crosses page boundary. Impossible! Cannot "
327 "access! This is probably a bug in the "
328 "driver.", (unsigned long long)vcn
,
332 index_end
= (u8
*)&ia
->index
+ le32_to_cpu(ia
->index
.index_length
);
333 if (index_end
> (u8
*)ia
+ idx_ni
->itype
.index
.block_size
) {
334 ntfs_error(sb
, "Size of index buffer (VCN 0x%llx) of inode "
335 "0x%lx exceeds maximum size.",
336 (unsigned long long)vcn
, idx_ni
->mft_no
);
339 /* The first index entry. */
340 ie
= (INDEX_ENTRY
*)((u8
*)&ia
->index
+
341 le32_to_cpu(ia
->index
.entries_offset
));
343 * Iterate similar to above big loop but applied to index buffer, thus
344 * loop until we exceed valid memory (corruption case) or until we
345 * reach the last entry.
347 for (;; ie
= (INDEX_ENTRY
*)((u8
*)ie
+ le16_to_cpu(ie
->length
))) {
349 if ((u8
*)ie
< (u8
*)ia
|| (u8
*)ie
+
350 sizeof(INDEX_ENTRY_HEADER
) > index_end
||
351 (u8
*)ie
+ le16_to_cpu(ie
->length
) > index_end
) {
352 ntfs_error(sb
, "Index entry out of bounds in inode "
353 "0x%lx.", idx_ni
->mft_no
);
357 * The last entry cannot contain a key. It can however contain
358 * a pointer to a child node in the B+tree so we just break out.
360 if (ie
->flags
& INDEX_ENTRY_END
)
362 /* Further bounds checks. */
363 if ((u32
)sizeof(INDEX_ENTRY_HEADER
) +
364 le16_to_cpu(ie
->key_length
) >
365 le16_to_cpu(ie
->data
.vi
.data_offset
) ||
366 (u32
)le16_to_cpu(ie
->data
.vi
.data_offset
) +
367 le16_to_cpu(ie
->data
.vi
.data_length
) >
368 le16_to_cpu(ie
->length
)) {
369 ntfs_error(sb
, "Index entry out of bounds in inode "
370 "0x%lx.", idx_ni
->mft_no
);
373 /* If the keys match perfectly, we setup @ictx and return 0. */
374 if ((key_len
== le16_to_cpu(ie
->key_length
)) && !memcmp(key
,
375 &ie
->key
, key_len
)) {
377 ictx
->is_in_root
= false;
379 ictx
->base_ni
= NULL
;
385 * Not a perfect match, need to do full blown collation so we
386 * know which way in the B+tree we have to go.
388 rc
= ntfs_collate(vol
, idx_ni
->itype
.index
.collation_rule
, key
,
389 key_len
, &ie
->key
, le16_to_cpu(ie
->key_length
));
391 * If @key collates before the key of the current entry, there
392 * is definitely no such key in this index but we might need to
393 * descend into the B+tree so we just break out of the loop.
398 * A match should never happen as the memcmp() call should have
399 * cought it, but we still treat it correctly.
403 /* The keys are not equal, continue the search. */
406 * We have finished with this index buffer without success. Check for
407 * the presence of a child node and if not present return -ENOENT.
409 if (!(ie
->flags
& INDEX_ENTRY_NODE
)) {
410 ntfs_debug("Entry not found.");
414 if ((ia
->index
.flags
& NODE_MASK
) == LEAF_NODE
) {
415 ntfs_error(sb
, "Index entry with child node found in a leaf "
416 "node in inode 0x%lx.", idx_ni
->mft_no
);
419 /* Child node present, descend into it. */
421 vcn
= sle64_to_cpup((sle64
*)((u8
*)ie
+ le16_to_cpu(ie
->length
) - 8));
424 * If vcn is in the same page cache page as old_vcn we recycle
427 if (old_vcn
<< vol
->cluster_size_bits
>>
428 PAGE_CACHE_SHIFT
== vcn
<<
429 vol
->cluster_size_bits
>>
431 goto fast_descend_into_child_node
;
433 ntfs_unmap_page(page
);
434 goto descend_into_child_node
;
436 ntfs_error(sb
, "Negative child node vcn in inode 0x%lx.",
440 ntfs_unmap_page(page
);
445 ntfs_attr_put_search_ctx(actx
);
447 unmap_mft_record(base_ni
);
450 ntfs_error(sb
, "Corrupt index. Aborting lookup.");