cgroup memory controller: document huge memory/cache overhead in Kconfig
[linux-2.6/kmemtrace.git] / mm / slub.c
blob74c65af0a54f4c112e6f2bc223018deb74771d25
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
111 static inline int SlabFrozen(struct page *page)
113 return page->flags & FROZEN;
116 static inline void SetSlabFrozen(struct page *page)
118 page->flags |= FROZEN;
121 static inline void ClearSlabFrozen(struct page *page)
123 page->flags &= ~FROZEN;
126 static inline int SlabDebug(struct page *page)
128 return page->flags & SLABDEBUG;
131 static inline void SetSlabDebug(struct page *page)
133 page->flags |= SLABDEBUG;
136 static inline void ClearSlabDebug(struct page *page)
138 page->flags &= ~SLABDEBUG;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
152 #if PAGE_SHIFT <= 12
155 * Small page size. Make sure that we do not fragment memory
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
160 #else
163 * Large page machines are customarily able to handle larger
164 * page orders.
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
169 #endif
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
175 #define MIN_PARTIAL 5
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
182 #define MAX_PARTIAL 10
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
188 * Set of flags that will prevent slab merging
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198 #endif
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202 #endif
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
210 /* Not all arches define cache_line_size */
211 #ifndef cache_line_size
212 #define cache_line_size() L1_CACHE_BYTES
213 #endif
215 static int kmem_size = sizeof(struct kmem_cache);
217 #ifdef CONFIG_SMP
218 static struct notifier_block slab_notifier;
219 #endif
221 static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
224 UP, /* Everything works but does not show up in sysfs */
225 SYSFS /* Sysfs up */
226 } slab_state = DOWN;
228 /* A list of all slab caches on the system */
229 static DECLARE_RWSEM(slub_lock);
230 static LIST_HEAD(slab_caches);
233 * Tracking user of a slab.
235 struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
242 enum track_item { TRACK_ALLOC, TRACK_FREE };
244 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
245 static int sysfs_slab_add(struct kmem_cache *);
246 static int sysfs_slab_alias(struct kmem_cache *, const char *);
247 static void sysfs_slab_remove(struct kmem_cache *);
249 #else
250 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
253 static inline void sysfs_slab_remove(struct kmem_cache *s)
255 kfree(s);
258 #endif
260 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
262 #ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264 #endif
267 /********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
271 int slab_is_available(void)
273 return slab_state >= UP;
276 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
278 #ifdef CONFIG_NUMA
279 return s->node[node];
280 #else
281 return &s->local_node;
282 #endif
285 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
287 #ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289 #else
290 return &s->cpu_slab;
291 #endif
295 * The end pointer in a slab is special. It points to the first object in the
296 * slab but has bit 0 set to mark it.
298 * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
299 * in the mapping set.
301 static inline int is_end(void *addr)
303 return (unsigned long)addr & PAGE_MAPPING_ANON;
306 static void *slab_address(struct page *page)
308 return page->end - PAGE_MAPPING_ANON;
311 static inline int check_valid_pointer(struct kmem_cache *s,
312 struct page *page, const void *object)
314 void *base;
316 if (object == page->end)
317 return 1;
319 base = slab_address(page);
320 if (object < base || object >= base + s->objects * s->size ||
321 (object - base) % s->size) {
322 return 0;
325 return 1;
329 * Slow version of get and set free pointer.
331 * This version requires touching the cache lines of kmem_cache which
332 * we avoid to do in the fast alloc free paths. There we obtain the offset
333 * from the page struct.
335 static inline void *get_freepointer(struct kmem_cache *s, void *object)
337 return *(void **)(object + s->offset);
340 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
342 *(void **)(object + s->offset) = fp;
345 /* Loop over all objects in a slab */
346 #define for_each_object(__p, __s, __addr) \
347 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
348 __p += (__s)->size)
350 /* Scan freelist */
351 #define for_each_free_object(__p, __s, __free) \
352 for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
353 __p))
355 /* Determine object index from a given position */
356 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
358 return (p - addr) / s->size;
361 #ifdef CONFIG_SLUB_DEBUG
363 * Debug settings:
365 #ifdef CONFIG_SLUB_DEBUG_ON
366 static int slub_debug = DEBUG_DEFAULT_FLAGS;
367 #else
368 static int slub_debug;
369 #endif
371 static char *slub_debug_slabs;
374 * Object debugging
376 static void print_section(char *text, u8 *addr, unsigned int length)
378 int i, offset;
379 int newline = 1;
380 char ascii[17];
382 ascii[16] = 0;
384 for (i = 0; i < length; i++) {
385 if (newline) {
386 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
387 newline = 0;
389 printk(KERN_CONT " %02x", addr[i]);
390 offset = i % 16;
391 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
392 if (offset == 15) {
393 printk(KERN_CONT " %s\n", ascii);
394 newline = 1;
397 if (!newline) {
398 i %= 16;
399 while (i < 16) {
400 printk(KERN_CONT " ");
401 ascii[i] = ' ';
402 i++;
404 printk(KERN_CONT " %s\n", ascii);
408 static struct track *get_track(struct kmem_cache *s, void *object,
409 enum track_item alloc)
411 struct track *p;
413 if (s->offset)
414 p = object + s->offset + sizeof(void *);
415 else
416 p = object + s->inuse;
418 return p + alloc;
421 static void set_track(struct kmem_cache *s, void *object,
422 enum track_item alloc, void *addr)
424 struct track *p;
426 if (s->offset)
427 p = object + s->offset + sizeof(void *);
428 else
429 p = object + s->inuse;
431 p += alloc;
432 if (addr) {
433 p->addr = addr;
434 p->cpu = smp_processor_id();
435 p->pid = current ? current->pid : -1;
436 p->when = jiffies;
437 } else
438 memset(p, 0, sizeof(struct track));
441 static void init_tracking(struct kmem_cache *s, void *object)
443 if (!(s->flags & SLAB_STORE_USER))
444 return;
446 set_track(s, object, TRACK_FREE, NULL);
447 set_track(s, object, TRACK_ALLOC, NULL);
450 static void print_track(const char *s, struct track *t)
452 if (!t->addr)
453 return;
455 printk(KERN_ERR "INFO: %s in ", s);
456 __print_symbol("%s", (unsigned long)t->addr);
457 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
460 static void print_tracking(struct kmem_cache *s, void *object)
462 if (!(s->flags & SLAB_STORE_USER))
463 return;
465 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
466 print_track("Freed", get_track(s, object, TRACK_FREE));
469 static void print_page_info(struct page *page)
471 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
472 page, page->inuse, page->freelist, page->flags);
476 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
478 va_list args;
479 char buf[100];
481 va_start(args, fmt);
482 vsnprintf(buf, sizeof(buf), fmt, args);
483 va_end(args);
484 printk(KERN_ERR "========================================"
485 "=====================================\n");
486 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
487 printk(KERN_ERR "----------------------------------------"
488 "-------------------------------------\n\n");
491 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
493 va_list args;
494 char buf[100];
496 va_start(args, fmt);
497 vsnprintf(buf, sizeof(buf), fmt, args);
498 va_end(args);
499 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
502 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
504 unsigned int off; /* Offset of last byte */
505 u8 *addr = slab_address(page);
507 print_tracking(s, p);
509 print_page_info(page);
511 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
512 p, p - addr, get_freepointer(s, p));
514 if (p > addr + 16)
515 print_section("Bytes b4", p - 16, 16);
517 print_section("Object", p, min(s->objsize, 128));
519 if (s->flags & SLAB_RED_ZONE)
520 print_section("Redzone", p + s->objsize,
521 s->inuse - s->objsize);
523 if (s->offset)
524 off = s->offset + sizeof(void *);
525 else
526 off = s->inuse;
528 if (s->flags & SLAB_STORE_USER)
529 off += 2 * sizeof(struct track);
531 if (off != s->size)
532 /* Beginning of the filler is the free pointer */
533 print_section("Padding", p + off, s->size - off);
535 dump_stack();
538 static void object_err(struct kmem_cache *s, struct page *page,
539 u8 *object, char *reason)
541 slab_bug(s, reason);
542 print_trailer(s, page, object);
545 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
547 va_list args;
548 char buf[100];
550 va_start(args, fmt);
551 vsnprintf(buf, sizeof(buf), fmt, args);
552 va_end(args);
553 slab_bug(s, fmt);
554 print_page_info(page);
555 dump_stack();
558 static void init_object(struct kmem_cache *s, void *object, int active)
560 u8 *p = object;
562 if (s->flags & __OBJECT_POISON) {
563 memset(p, POISON_FREE, s->objsize - 1);
564 p[s->objsize - 1] = POISON_END;
567 if (s->flags & SLAB_RED_ZONE)
568 memset(p + s->objsize,
569 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
570 s->inuse - s->objsize);
573 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
575 while (bytes) {
576 if (*start != (u8)value)
577 return start;
578 start++;
579 bytes--;
581 return NULL;
584 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
585 void *from, void *to)
587 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
588 memset(from, data, to - from);
591 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
592 u8 *object, char *what,
593 u8 *start, unsigned int value, unsigned int bytes)
595 u8 *fault;
596 u8 *end;
598 fault = check_bytes(start, value, bytes);
599 if (!fault)
600 return 1;
602 end = start + bytes;
603 while (end > fault && end[-1] == value)
604 end--;
606 slab_bug(s, "%s overwritten", what);
607 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
608 fault, end - 1, fault[0], value);
609 print_trailer(s, page, object);
611 restore_bytes(s, what, value, fault, end);
612 return 0;
616 * Object layout:
618 * object address
619 * Bytes of the object to be managed.
620 * If the freepointer may overlay the object then the free
621 * pointer is the first word of the object.
623 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
624 * 0xa5 (POISON_END)
626 * object + s->objsize
627 * Padding to reach word boundary. This is also used for Redzoning.
628 * Padding is extended by another word if Redzoning is enabled and
629 * objsize == inuse.
631 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
632 * 0xcc (RED_ACTIVE) for objects in use.
634 * object + s->inuse
635 * Meta data starts here.
637 * A. Free pointer (if we cannot overwrite object on free)
638 * B. Tracking data for SLAB_STORE_USER
639 * C. Padding to reach required alignment boundary or at mininum
640 * one word if debuggin is on to be able to detect writes
641 * before the word boundary.
643 * Padding is done using 0x5a (POISON_INUSE)
645 * object + s->size
646 * Nothing is used beyond s->size.
648 * If slabcaches are merged then the objsize and inuse boundaries are mostly
649 * ignored. And therefore no slab options that rely on these boundaries
650 * may be used with merged slabcaches.
653 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
655 unsigned long off = s->inuse; /* The end of info */
657 if (s->offset)
658 /* Freepointer is placed after the object. */
659 off += sizeof(void *);
661 if (s->flags & SLAB_STORE_USER)
662 /* We also have user information there */
663 off += 2 * sizeof(struct track);
665 if (s->size == off)
666 return 1;
668 return check_bytes_and_report(s, page, p, "Object padding",
669 p + off, POISON_INUSE, s->size - off);
672 static int slab_pad_check(struct kmem_cache *s, struct page *page)
674 u8 *start;
675 u8 *fault;
676 u8 *end;
677 int length;
678 int remainder;
680 if (!(s->flags & SLAB_POISON))
681 return 1;
683 start = slab_address(page);
684 end = start + (PAGE_SIZE << s->order);
685 length = s->objects * s->size;
686 remainder = end - (start + length);
687 if (!remainder)
688 return 1;
690 fault = check_bytes(start + length, POISON_INUSE, remainder);
691 if (!fault)
692 return 1;
693 while (end > fault && end[-1] == POISON_INUSE)
694 end--;
696 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
697 print_section("Padding", start, length);
699 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
700 return 0;
703 static int check_object(struct kmem_cache *s, struct page *page,
704 void *object, int active)
706 u8 *p = object;
707 u8 *endobject = object + s->objsize;
709 if (s->flags & SLAB_RED_ZONE) {
710 unsigned int red =
711 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
713 if (!check_bytes_and_report(s, page, object, "Redzone",
714 endobject, red, s->inuse - s->objsize))
715 return 0;
716 } else {
717 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
718 check_bytes_and_report(s, page, p, "Alignment padding",
719 endobject, POISON_INUSE, s->inuse - s->objsize);
723 if (s->flags & SLAB_POISON) {
724 if (!active && (s->flags & __OBJECT_POISON) &&
725 (!check_bytes_and_report(s, page, p, "Poison", p,
726 POISON_FREE, s->objsize - 1) ||
727 !check_bytes_and_report(s, page, p, "Poison",
728 p + s->objsize - 1, POISON_END, 1)))
729 return 0;
731 * check_pad_bytes cleans up on its own.
733 check_pad_bytes(s, page, p);
736 if (!s->offset && active)
738 * Object and freepointer overlap. Cannot check
739 * freepointer while object is allocated.
741 return 1;
743 /* Check free pointer validity */
744 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
745 object_err(s, page, p, "Freepointer corrupt");
747 * No choice but to zap it and thus loose the remainder
748 * of the free objects in this slab. May cause
749 * another error because the object count is now wrong.
751 set_freepointer(s, p, page->end);
752 return 0;
754 return 1;
757 static int check_slab(struct kmem_cache *s, struct page *page)
759 VM_BUG_ON(!irqs_disabled());
761 if (!PageSlab(page)) {
762 slab_err(s, page, "Not a valid slab page");
763 return 0;
765 if (page->inuse > s->objects) {
766 slab_err(s, page, "inuse %u > max %u",
767 s->name, page->inuse, s->objects);
768 return 0;
770 /* Slab_pad_check fixes things up after itself */
771 slab_pad_check(s, page);
772 return 1;
776 * Determine if a certain object on a page is on the freelist. Must hold the
777 * slab lock to guarantee that the chains are in a consistent state.
779 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
781 int nr = 0;
782 void *fp = page->freelist;
783 void *object = NULL;
785 while (fp != page->end && nr <= s->objects) {
786 if (fp == search)
787 return 1;
788 if (!check_valid_pointer(s, page, fp)) {
789 if (object) {
790 object_err(s, page, object,
791 "Freechain corrupt");
792 set_freepointer(s, object, page->end);
793 break;
794 } else {
795 slab_err(s, page, "Freepointer corrupt");
796 page->freelist = page->end;
797 page->inuse = s->objects;
798 slab_fix(s, "Freelist cleared");
799 return 0;
801 break;
803 object = fp;
804 fp = get_freepointer(s, object);
805 nr++;
808 if (page->inuse != s->objects - nr) {
809 slab_err(s, page, "Wrong object count. Counter is %d but "
810 "counted were %d", page->inuse, s->objects - nr);
811 page->inuse = s->objects - nr;
812 slab_fix(s, "Object count adjusted.");
814 return search == NULL;
817 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
819 if (s->flags & SLAB_TRACE) {
820 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
821 s->name,
822 alloc ? "alloc" : "free",
823 object, page->inuse,
824 page->freelist);
826 if (!alloc)
827 print_section("Object", (void *)object, s->objsize);
829 dump_stack();
834 * Tracking of fully allocated slabs for debugging purposes.
836 static void add_full(struct kmem_cache_node *n, struct page *page)
838 spin_lock(&n->list_lock);
839 list_add(&page->lru, &n->full);
840 spin_unlock(&n->list_lock);
843 static void remove_full(struct kmem_cache *s, struct page *page)
845 struct kmem_cache_node *n;
847 if (!(s->flags & SLAB_STORE_USER))
848 return;
850 n = get_node(s, page_to_nid(page));
852 spin_lock(&n->list_lock);
853 list_del(&page->lru);
854 spin_unlock(&n->list_lock);
857 static void setup_object_debug(struct kmem_cache *s, struct page *page,
858 void *object)
860 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861 return;
863 init_object(s, object, 0);
864 init_tracking(s, object);
867 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
868 void *object, void *addr)
870 if (!check_slab(s, page))
871 goto bad;
873 if (object && !on_freelist(s, page, object)) {
874 object_err(s, page, object, "Object already allocated");
875 goto bad;
878 if (!check_valid_pointer(s, page, object)) {
879 object_err(s, page, object, "Freelist Pointer check fails");
880 goto bad;
883 if (object && !check_object(s, page, object, 0))
884 goto bad;
886 /* Success perform special debug activities for allocs */
887 if (s->flags & SLAB_STORE_USER)
888 set_track(s, object, TRACK_ALLOC, addr);
889 trace(s, page, object, 1);
890 init_object(s, object, 1);
891 return 1;
893 bad:
894 if (PageSlab(page)) {
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
898 * as used avoids touching the remaining objects.
900 slab_fix(s, "Marking all objects used");
901 page->inuse = s->objects;
902 page->freelist = page->end;
904 return 0;
907 static int free_debug_processing(struct kmem_cache *s, struct page *page,
908 void *object, void *addr)
910 if (!check_slab(s, page))
911 goto fail;
913 if (!check_valid_pointer(s, page, object)) {
914 slab_err(s, page, "Invalid object pointer 0x%p", object);
915 goto fail;
918 if (on_freelist(s, page, object)) {
919 object_err(s, page, object, "Object already free");
920 goto fail;
923 if (!check_object(s, page, object, 1))
924 return 0;
926 if (unlikely(s != page->slab)) {
927 if (!PageSlab(page)) {
928 slab_err(s, page, "Attempt to free object(0x%p) "
929 "outside of slab", object);
930 } else if (!page->slab) {
931 printk(KERN_ERR
932 "SLUB <none>: no slab for object 0x%p.\n",
933 object);
934 dump_stack();
935 } else
936 object_err(s, page, object,
937 "page slab pointer corrupt.");
938 goto fail;
941 /* Special debug activities for freeing objects */
942 if (!SlabFrozen(page) && page->freelist == page->end)
943 remove_full(s, page);
944 if (s->flags & SLAB_STORE_USER)
945 set_track(s, object, TRACK_FREE, addr);
946 trace(s, page, object, 0);
947 init_object(s, object, 0);
948 return 1;
950 fail:
951 slab_fix(s, "Object at 0x%p not freed", object);
952 return 0;
955 static int __init setup_slub_debug(char *str)
957 slub_debug = DEBUG_DEFAULT_FLAGS;
958 if (*str++ != '=' || !*str)
960 * No options specified. Switch on full debugging.
962 goto out;
964 if (*str == ',')
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
969 goto check_slabs;
971 slub_debug = 0;
972 if (*str == '-')
974 * Switch off all debugging measures.
976 goto out;
979 * Determine which debug features should be switched on
981 for (; *str && *str != ','; str++) {
982 switch (tolower(*str)) {
983 case 'f':
984 slub_debug |= SLAB_DEBUG_FREE;
985 break;
986 case 'z':
987 slub_debug |= SLAB_RED_ZONE;
988 break;
989 case 'p':
990 slub_debug |= SLAB_POISON;
991 break;
992 case 'u':
993 slub_debug |= SLAB_STORE_USER;
994 break;
995 case 't':
996 slub_debug |= SLAB_TRACE;
997 break;
998 default:
999 printk(KERN_ERR "slub_debug option '%c' "
1000 "unknown. skipped\n", *str);
1004 check_slabs:
1005 if (*str == ',')
1006 slub_debug_slabs = str + 1;
1007 out:
1008 return 1;
1011 __setup("slub_debug", setup_slub_debug);
1013 static unsigned long kmem_cache_flags(unsigned long objsize,
1014 unsigned long flags, const char *name,
1015 void (*ctor)(struct kmem_cache *, void *))
1018 * The page->offset field is only 16 bit wide. This is an offset
1019 * in units of words from the beginning of an object. If the slab
1020 * size is bigger then we cannot move the free pointer behind the
1021 * object anymore.
1023 * On 32 bit platforms the limit is 256k. On 64bit platforms
1024 * the limit is 512k.
1026 * Debugging or ctor may create a need to move the free
1027 * pointer. Fail if this happens.
1029 if (objsize >= 65535 * sizeof(void *)) {
1030 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1031 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1032 BUG_ON(ctor);
1033 } else {
1035 * Enable debugging if selected on the kernel commandline.
1037 if (slub_debug && (!slub_debug_slabs ||
1038 strncmp(slub_debug_slabs, name,
1039 strlen(slub_debug_slabs)) == 0))
1040 flags |= slub_debug;
1043 return flags;
1045 #else
1046 static inline void setup_object_debug(struct kmem_cache *s,
1047 struct page *page, void *object) {}
1049 static inline int alloc_debug_processing(struct kmem_cache *s,
1050 struct page *page, void *object, void *addr) { return 0; }
1052 static inline int free_debug_processing(struct kmem_cache *s,
1053 struct page *page, void *object, void *addr) { return 0; }
1055 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1056 { return 1; }
1057 static inline int check_object(struct kmem_cache *s, struct page *page,
1058 void *object, int active) { return 1; }
1059 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1060 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1061 unsigned long flags, const char *name,
1062 void (*ctor)(struct kmem_cache *, void *))
1064 return flags;
1066 #define slub_debug 0
1067 #endif
1069 * Slab allocation and freeing
1071 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1073 struct page *page;
1074 int pages = 1 << s->order;
1076 flags |= s->allocflags;
1078 if (node == -1)
1079 page = alloc_pages(flags, s->order);
1080 else
1081 page = alloc_pages_node(node, flags, s->order);
1083 if (!page)
1084 return NULL;
1086 mod_zone_page_state(page_zone(page),
1087 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1088 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1089 pages);
1091 return page;
1094 static void setup_object(struct kmem_cache *s, struct page *page,
1095 void *object)
1097 setup_object_debug(s, page, object);
1098 if (unlikely(s->ctor))
1099 s->ctor(s, object);
1102 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1104 struct page *page;
1105 struct kmem_cache_node *n;
1106 void *start;
1107 void *last;
1108 void *p;
1110 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1112 page = allocate_slab(s,
1113 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1114 if (!page)
1115 goto out;
1117 n = get_node(s, page_to_nid(page));
1118 if (n)
1119 atomic_long_inc(&n->nr_slabs);
1120 page->slab = s;
1121 page->flags |= 1 << PG_slab;
1122 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1123 SLAB_STORE_USER | SLAB_TRACE))
1124 SetSlabDebug(page);
1126 start = page_address(page);
1127 page->end = start + 1;
1129 if (unlikely(s->flags & SLAB_POISON))
1130 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1132 last = start;
1133 for_each_object(p, s, start) {
1134 setup_object(s, page, last);
1135 set_freepointer(s, last, p);
1136 last = p;
1138 setup_object(s, page, last);
1139 set_freepointer(s, last, page->end);
1141 page->freelist = start;
1142 page->inuse = 0;
1143 out:
1144 return page;
1147 static void __free_slab(struct kmem_cache *s, struct page *page)
1149 int pages = 1 << s->order;
1151 if (unlikely(SlabDebug(page))) {
1152 void *p;
1154 slab_pad_check(s, page);
1155 for_each_object(p, s, slab_address(page))
1156 check_object(s, page, p, 0);
1157 ClearSlabDebug(page);
1160 mod_zone_page_state(page_zone(page),
1161 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1162 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1163 -pages);
1165 page->mapping = NULL;
1166 __free_pages(page, s->order);
1169 static void rcu_free_slab(struct rcu_head *h)
1171 struct page *page;
1173 page = container_of((struct list_head *)h, struct page, lru);
1174 __free_slab(page->slab, page);
1177 static void free_slab(struct kmem_cache *s, struct page *page)
1179 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1181 * RCU free overloads the RCU head over the LRU
1183 struct rcu_head *head = (void *)&page->lru;
1185 call_rcu(head, rcu_free_slab);
1186 } else
1187 __free_slab(s, page);
1190 static void discard_slab(struct kmem_cache *s, struct page *page)
1192 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1194 atomic_long_dec(&n->nr_slabs);
1195 reset_page_mapcount(page);
1196 __ClearPageSlab(page);
1197 free_slab(s, page);
1201 * Per slab locking using the pagelock
1203 static __always_inline void slab_lock(struct page *page)
1205 bit_spin_lock(PG_locked, &page->flags);
1208 static __always_inline void slab_unlock(struct page *page)
1210 __bit_spin_unlock(PG_locked, &page->flags);
1213 static __always_inline int slab_trylock(struct page *page)
1215 int rc = 1;
1217 rc = bit_spin_trylock(PG_locked, &page->flags);
1218 return rc;
1222 * Management of partially allocated slabs
1224 static void add_partial(struct kmem_cache_node *n,
1225 struct page *page, int tail)
1227 spin_lock(&n->list_lock);
1228 n->nr_partial++;
1229 if (tail)
1230 list_add_tail(&page->lru, &n->partial);
1231 else
1232 list_add(&page->lru, &n->partial);
1233 spin_unlock(&n->list_lock);
1236 static void remove_partial(struct kmem_cache *s,
1237 struct page *page)
1239 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1241 spin_lock(&n->list_lock);
1242 list_del(&page->lru);
1243 n->nr_partial--;
1244 spin_unlock(&n->list_lock);
1248 * Lock slab and remove from the partial list.
1250 * Must hold list_lock.
1252 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1254 if (slab_trylock(page)) {
1255 list_del(&page->lru);
1256 n->nr_partial--;
1257 SetSlabFrozen(page);
1258 return 1;
1260 return 0;
1264 * Try to allocate a partial slab from a specific node.
1266 static struct page *get_partial_node(struct kmem_cache_node *n)
1268 struct page *page;
1271 * Racy check. If we mistakenly see no partial slabs then we
1272 * just allocate an empty slab. If we mistakenly try to get a
1273 * partial slab and there is none available then get_partials()
1274 * will return NULL.
1276 if (!n || !n->nr_partial)
1277 return NULL;
1279 spin_lock(&n->list_lock);
1280 list_for_each_entry(page, &n->partial, lru)
1281 if (lock_and_freeze_slab(n, page))
1282 goto out;
1283 page = NULL;
1284 out:
1285 spin_unlock(&n->list_lock);
1286 return page;
1290 * Get a page from somewhere. Search in increasing NUMA distances.
1292 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1294 #ifdef CONFIG_NUMA
1295 struct zonelist *zonelist;
1296 struct zone **z;
1297 struct page *page;
1300 * The defrag ratio allows a configuration of the tradeoffs between
1301 * inter node defragmentation and node local allocations. A lower
1302 * defrag_ratio increases the tendency to do local allocations
1303 * instead of attempting to obtain partial slabs from other nodes.
1305 * If the defrag_ratio is set to 0 then kmalloc() always
1306 * returns node local objects. If the ratio is higher then kmalloc()
1307 * may return off node objects because partial slabs are obtained
1308 * from other nodes and filled up.
1310 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1311 * defrag_ratio = 1000) then every (well almost) allocation will
1312 * first attempt to defrag slab caches on other nodes. This means
1313 * scanning over all nodes to look for partial slabs which may be
1314 * expensive if we do it every time we are trying to find a slab
1315 * with available objects.
1317 if (!s->remote_node_defrag_ratio ||
1318 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1319 return NULL;
1321 zonelist = &NODE_DATA(
1322 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1323 for (z = zonelist->zones; *z; z++) {
1324 struct kmem_cache_node *n;
1326 n = get_node(s, zone_to_nid(*z));
1328 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1329 n->nr_partial > MIN_PARTIAL) {
1330 page = get_partial_node(n);
1331 if (page)
1332 return page;
1335 #endif
1336 return NULL;
1340 * Get a partial page, lock it and return it.
1342 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1344 struct page *page;
1345 int searchnode = (node == -1) ? numa_node_id() : node;
1347 page = get_partial_node(get_node(s, searchnode));
1348 if (page || (flags & __GFP_THISNODE))
1349 return page;
1351 return get_any_partial(s, flags);
1355 * Move a page back to the lists.
1357 * Must be called with the slab lock held.
1359 * On exit the slab lock will have been dropped.
1361 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1363 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1364 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1366 ClearSlabFrozen(page);
1367 if (page->inuse) {
1369 if (page->freelist != page->end) {
1370 add_partial(n, page, tail);
1371 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1372 } else {
1373 stat(c, DEACTIVATE_FULL);
1374 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1375 add_full(n, page);
1377 slab_unlock(page);
1378 } else {
1379 stat(c, DEACTIVATE_EMPTY);
1380 if (n->nr_partial < MIN_PARTIAL) {
1382 * Adding an empty slab to the partial slabs in order
1383 * to avoid page allocator overhead. This slab needs
1384 * to come after the other slabs with objects in
1385 * order to fill them up. That way the size of the
1386 * partial list stays small. kmem_cache_shrink can
1387 * reclaim empty slabs from the partial list.
1389 add_partial(n, page, 1);
1390 slab_unlock(page);
1391 } else {
1392 slab_unlock(page);
1393 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1394 discard_slab(s, page);
1400 * Remove the cpu slab
1402 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1404 struct page *page = c->page;
1405 int tail = 1;
1407 if (c->freelist)
1408 stat(c, DEACTIVATE_REMOTE_FREES);
1410 * Merge cpu freelist into freelist. Typically we get here
1411 * because both freelists are empty. So this is unlikely
1412 * to occur.
1414 * We need to use _is_end here because deactivate slab may
1415 * be called for a debug slab. Then c->freelist may contain
1416 * a dummy pointer.
1418 while (unlikely(!is_end(c->freelist))) {
1419 void **object;
1421 tail = 0; /* Hot objects. Put the slab first */
1423 /* Retrieve object from cpu_freelist */
1424 object = c->freelist;
1425 c->freelist = c->freelist[c->offset];
1427 /* And put onto the regular freelist */
1428 object[c->offset] = page->freelist;
1429 page->freelist = object;
1430 page->inuse--;
1432 c->page = NULL;
1433 unfreeze_slab(s, page, tail);
1436 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1438 stat(c, CPUSLAB_FLUSH);
1439 slab_lock(c->page);
1440 deactivate_slab(s, c);
1444 * Flush cpu slab.
1445 * Called from IPI handler with interrupts disabled.
1447 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1449 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1451 if (likely(c && c->page))
1452 flush_slab(s, c);
1455 static void flush_cpu_slab(void *d)
1457 struct kmem_cache *s = d;
1459 __flush_cpu_slab(s, smp_processor_id());
1462 static void flush_all(struct kmem_cache *s)
1464 #ifdef CONFIG_SMP
1465 on_each_cpu(flush_cpu_slab, s, 1, 1);
1466 #else
1467 unsigned long flags;
1469 local_irq_save(flags);
1470 flush_cpu_slab(s);
1471 local_irq_restore(flags);
1472 #endif
1476 * Check if the objects in a per cpu structure fit numa
1477 * locality expectations.
1479 static inline int node_match(struct kmem_cache_cpu *c, int node)
1481 #ifdef CONFIG_NUMA
1482 if (node != -1 && c->node != node)
1483 return 0;
1484 #endif
1485 return 1;
1489 * Slow path. The lockless freelist is empty or we need to perform
1490 * debugging duties.
1492 * Interrupts are disabled.
1494 * Processing is still very fast if new objects have been freed to the
1495 * regular freelist. In that case we simply take over the regular freelist
1496 * as the lockless freelist and zap the regular freelist.
1498 * If that is not working then we fall back to the partial lists. We take the
1499 * first element of the freelist as the object to allocate now and move the
1500 * rest of the freelist to the lockless freelist.
1502 * And if we were unable to get a new slab from the partial slab lists then
1503 * we need to allocate a new slab. This is slowest path since we may sleep.
1505 static void *__slab_alloc(struct kmem_cache *s,
1506 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1508 void **object;
1509 struct page *new;
1511 if (!c->page)
1512 goto new_slab;
1514 slab_lock(c->page);
1515 if (unlikely(!node_match(c, node)))
1516 goto another_slab;
1517 stat(c, ALLOC_REFILL);
1518 load_freelist:
1519 object = c->page->freelist;
1520 if (unlikely(object == c->page->end))
1521 goto another_slab;
1522 if (unlikely(SlabDebug(c->page)))
1523 goto debug;
1525 object = c->page->freelist;
1526 c->freelist = object[c->offset];
1527 c->page->inuse = s->objects;
1528 c->page->freelist = c->page->end;
1529 c->node = page_to_nid(c->page);
1530 unlock_out:
1531 slab_unlock(c->page);
1532 stat(c, ALLOC_SLOWPATH);
1533 return object;
1535 another_slab:
1536 deactivate_slab(s, c);
1538 new_slab:
1539 new = get_partial(s, gfpflags, node);
1540 if (new) {
1541 c->page = new;
1542 stat(c, ALLOC_FROM_PARTIAL);
1543 goto load_freelist;
1546 if (gfpflags & __GFP_WAIT)
1547 local_irq_enable();
1549 new = new_slab(s, gfpflags, node);
1551 if (gfpflags & __GFP_WAIT)
1552 local_irq_disable();
1554 if (new) {
1555 c = get_cpu_slab(s, smp_processor_id());
1556 stat(c, ALLOC_SLAB);
1557 if (c->page)
1558 flush_slab(s, c);
1559 slab_lock(new);
1560 SetSlabFrozen(new);
1561 c->page = new;
1562 goto load_freelist;
1566 * No memory available.
1568 * If the slab uses higher order allocs but the object is
1569 * smaller than a page size then we can fallback in emergencies
1570 * to the page allocator via kmalloc_large. The page allocator may
1571 * have failed to obtain a higher order page and we can try to
1572 * allocate a single page if the object fits into a single page.
1573 * That is only possible if certain conditions are met that are being
1574 * checked when a slab is created.
1576 if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
1577 return kmalloc_large(s->objsize, gfpflags);
1579 return NULL;
1580 debug:
1581 object = c->page->freelist;
1582 if (!alloc_debug_processing(s, c->page, object, addr))
1583 goto another_slab;
1585 c->page->inuse++;
1586 c->page->freelist = object[c->offset];
1587 c->node = -1;
1588 goto unlock_out;
1592 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1593 * have the fastpath folded into their functions. So no function call
1594 * overhead for requests that can be satisfied on the fastpath.
1596 * The fastpath works by first checking if the lockless freelist can be used.
1597 * If not then __slab_alloc is called for slow processing.
1599 * Otherwise we can simply pick the next object from the lockless free list.
1601 static __always_inline void *slab_alloc(struct kmem_cache *s,
1602 gfp_t gfpflags, int node, void *addr)
1604 void **object;
1605 struct kmem_cache_cpu *c;
1606 unsigned long flags;
1608 local_irq_save(flags);
1609 c = get_cpu_slab(s, smp_processor_id());
1610 if (unlikely(is_end(c->freelist) || !node_match(c, node)))
1612 object = __slab_alloc(s, gfpflags, node, addr, c);
1614 else {
1615 object = c->freelist;
1616 c->freelist = object[c->offset];
1617 stat(c, ALLOC_FASTPATH);
1619 local_irq_restore(flags);
1621 if (unlikely((gfpflags & __GFP_ZERO) && object))
1622 memset(object, 0, c->objsize);
1624 return object;
1627 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1629 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1631 EXPORT_SYMBOL(kmem_cache_alloc);
1633 #ifdef CONFIG_NUMA
1634 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1636 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1638 EXPORT_SYMBOL(kmem_cache_alloc_node);
1639 #endif
1642 * Slow patch handling. This may still be called frequently since objects
1643 * have a longer lifetime than the cpu slabs in most processing loads.
1645 * So we still attempt to reduce cache line usage. Just take the slab
1646 * lock and free the item. If there is no additional partial page
1647 * handling required then we can return immediately.
1649 static void __slab_free(struct kmem_cache *s, struct page *page,
1650 void *x, void *addr, unsigned int offset)
1652 void *prior;
1653 void **object = (void *)x;
1654 struct kmem_cache_cpu *c;
1656 c = get_cpu_slab(s, raw_smp_processor_id());
1657 stat(c, FREE_SLOWPATH);
1658 slab_lock(page);
1660 if (unlikely(SlabDebug(page)))
1661 goto debug;
1662 checks_ok:
1663 prior = object[offset] = page->freelist;
1664 page->freelist = object;
1665 page->inuse--;
1667 if (unlikely(SlabFrozen(page))) {
1668 stat(c, FREE_FROZEN);
1669 goto out_unlock;
1672 if (unlikely(!page->inuse))
1673 goto slab_empty;
1676 * Objects left in the slab. If it
1677 * was not on the partial list before
1678 * then add it.
1680 if (unlikely(prior == page->end)) {
1681 add_partial(get_node(s, page_to_nid(page)), page, 1);
1682 stat(c, FREE_ADD_PARTIAL);
1685 out_unlock:
1686 slab_unlock(page);
1687 return;
1689 slab_empty:
1690 if (prior != page->end) {
1692 * Slab still on the partial list.
1694 remove_partial(s, page);
1695 stat(c, FREE_REMOVE_PARTIAL);
1697 slab_unlock(page);
1698 stat(c, FREE_SLAB);
1699 discard_slab(s, page);
1700 return;
1702 debug:
1703 if (!free_debug_processing(s, page, x, addr))
1704 goto out_unlock;
1705 goto checks_ok;
1709 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1710 * can perform fastpath freeing without additional function calls.
1712 * The fastpath is only possible if we are freeing to the current cpu slab
1713 * of this processor. This typically the case if we have just allocated
1714 * the item before.
1716 * If fastpath is not possible then fall back to __slab_free where we deal
1717 * with all sorts of special processing.
1719 static __always_inline void slab_free(struct kmem_cache *s,
1720 struct page *page, void *x, void *addr)
1722 void **object = (void *)x;
1723 struct kmem_cache_cpu *c;
1724 unsigned long flags;
1726 local_irq_save(flags);
1727 debug_check_no_locks_freed(object, s->objsize);
1728 c = get_cpu_slab(s, smp_processor_id());
1729 if (likely(page == c->page && c->node >= 0)) {
1730 object[c->offset] = c->freelist;
1731 c->freelist = object;
1732 stat(c, FREE_FASTPATH);
1733 } else
1734 __slab_free(s, page, x, addr, c->offset);
1736 local_irq_restore(flags);
1739 void kmem_cache_free(struct kmem_cache *s, void *x)
1741 struct page *page;
1743 page = virt_to_head_page(x);
1745 slab_free(s, page, x, __builtin_return_address(0));
1747 EXPORT_SYMBOL(kmem_cache_free);
1749 /* Figure out on which slab object the object resides */
1750 static struct page *get_object_page(const void *x)
1752 struct page *page = virt_to_head_page(x);
1754 if (!PageSlab(page))
1755 return NULL;
1757 return page;
1761 * Object placement in a slab is made very easy because we always start at
1762 * offset 0. If we tune the size of the object to the alignment then we can
1763 * get the required alignment by putting one properly sized object after
1764 * another.
1766 * Notice that the allocation order determines the sizes of the per cpu
1767 * caches. Each processor has always one slab available for allocations.
1768 * Increasing the allocation order reduces the number of times that slabs
1769 * must be moved on and off the partial lists and is therefore a factor in
1770 * locking overhead.
1774 * Mininum / Maximum order of slab pages. This influences locking overhead
1775 * and slab fragmentation. A higher order reduces the number of partial slabs
1776 * and increases the number of allocations possible without having to
1777 * take the list_lock.
1779 static int slub_min_order;
1780 static int slub_max_order = DEFAULT_MAX_ORDER;
1781 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1784 * Merge control. If this is set then no merging of slab caches will occur.
1785 * (Could be removed. This was introduced to pacify the merge skeptics.)
1787 static int slub_nomerge;
1790 * Calculate the order of allocation given an slab object size.
1792 * The order of allocation has significant impact on performance and other
1793 * system components. Generally order 0 allocations should be preferred since
1794 * order 0 does not cause fragmentation in the page allocator. Larger objects
1795 * be problematic to put into order 0 slabs because there may be too much
1796 * unused space left. We go to a higher order if more than 1/8th of the slab
1797 * would be wasted.
1799 * In order to reach satisfactory performance we must ensure that a minimum
1800 * number of objects is in one slab. Otherwise we may generate too much
1801 * activity on the partial lists which requires taking the list_lock. This is
1802 * less a concern for large slabs though which are rarely used.
1804 * slub_max_order specifies the order where we begin to stop considering the
1805 * number of objects in a slab as critical. If we reach slub_max_order then
1806 * we try to keep the page order as low as possible. So we accept more waste
1807 * of space in favor of a small page order.
1809 * Higher order allocations also allow the placement of more objects in a
1810 * slab and thereby reduce object handling overhead. If the user has
1811 * requested a higher mininum order then we start with that one instead of
1812 * the smallest order which will fit the object.
1814 static inline int slab_order(int size, int min_objects,
1815 int max_order, int fract_leftover)
1817 int order;
1818 int rem;
1819 int min_order = slub_min_order;
1821 for (order = max(min_order,
1822 fls(min_objects * size - 1) - PAGE_SHIFT);
1823 order <= max_order; order++) {
1825 unsigned long slab_size = PAGE_SIZE << order;
1827 if (slab_size < min_objects * size)
1828 continue;
1830 rem = slab_size % size;
1832 if (rem <= slab_size / fract_leftover)
1833 break;
1837 return order;
1840 static inline int calculate_order(int size)
1842 int order;
1843 int min_objects;
1844 int fraction;
1847 * Attempt to find best configuration for a slab. This
1848 * works by first attempting to generate a layout with
1849 * the best configuration and backing off gradually.
1851 * First we reduce the acceptable waste in a slab. Then
1852 * we reduce the minimum objects required in a slab.
1854 min_objects = slub_min_objects;
1855 while (min_objects > 1) {
1856 fraction = 8;
1857 while (fraction >= 4) {
1858 order = slab_order(size, min_objects,
1859 slub_max_order, fraction);
1860 if (order <= slub_max_order)
1861 return order;
1862 fraction /= 2;
1864 min_objects /= 2;
1868 * We were unable to place multiple objects in a slab. Now
1869 * lets see if we can place a single object there.
1871 order = slab_order(size, 1, slub_max_order, 1);
1872 if (order <= slub_max_order)
1873 return order;
1876 * Doh this slab cannot be placed using slub_max_order.
1878 order = slab_order(size, 1, MAX_ORDER, 1);
1879 if (order <= MAX_ORDER)
1880 return order;
1881 return -ENOSYS;
1885 * Figure out what the alignment of the objects will be.
1887 static unsigned long calculate_alignment(unsigned long flags,
1888 unsigned long align, unsigned long size)
1891 * If the user wants hardware cache aligned objects then
1892 * follow that suggestion if the object is sufficiently
1893 * large.
1895 * The hardware cache alignment cannot override the
1896 * specified alignment though. If that is greater
1897 * then use it.
1899 if ((flags & SLAB_HWCACHE_ALIGN) &&
1900 size > cache_line_size() / 2)
1901 return max_t(unsigned long, align, cache_line_size());
1903 if (align < ARCH_SLAB_MINALIGN)
1904 return ARCH_SLAB_MINALIGN;
1906 return ALIGN(align, sizeof(void *));
1909 static void init_kmem_cache_cpu(struct kmem_cache *s,
1910 struct kmem_cache_cpu *c)
1912 c->page = NULL;
1913 c->freelist = (void *)PAGE_MAPPING_ANON;
1914 c->node = 0;
1915 c->offset = s->offset / sizeof(void *);
1916 c->objsize = s->objsize;
1919 static void init_kmem_cache_node(struct kmem_cache_node *n)
1921 n->nr_partial = 0;
1922 atomic_long_set(&n->nr_slabs, 0);
1923 spin_lock_init(&n->list_lock);
1924 INIT_LIST_HEAD(&n->partial);
1925 #ifdef CONFIG_SLUB_DEBUG
1926 INIT_LIST_HEAD(&n->full);
1927 #endif
1930 #ifdef CONFIG_SMP
1932 * Per cpu array for per cpu structures.
1934 * The per cpu array places all kmem_cache_cpu structures from one processor
1935 * close together meaning that it becomes possible that multiple per cpu
1936 * structures are contained in one cacheline. This may be particularly
1937 * beneficial for the kmalloc caches.
1939 * A desktop system typically has around 60-80 slabs. With 100 here we are
1940 * likely able to get per cpu structures for all caches from the array defined
1941 * here. We must be able to cover all kmalloc caches during bootstrap.
1943 * If the per cpu array is exhausted then fall back to kmalloc
1944 * of individual cachelines. No sharing is possible then.
1946 #define NR_KMEM_CACHE_CPU 100
1948 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1949 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1951 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1952 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1954 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1955 int cpu, gfp_t flags)
1957 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1959 if (c)
1960 per_cpu(kmem_cache_cpu_free, cpu) =
1961 (void *)c->freelist;
1962 else {
1963 /* Table overflow: So allocate ourselves */
1964 c = kmalloc_node(
1965 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1966 flags, cpu_to_node(cpu));
1967 if (!c)
1968 return NULL;
1971 init_kmem_cache_cpu(s, c);
1972 return c;
1975 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1977 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1978 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1979 kfree(c);
1980 return;
1982 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1983 per_cpu(kmem_cache_cpu_free, cpu) = c;
1986 static void free_kmem_cache_cpus(struct kmem_cache *s)
1988 int cpu;
1990 for_each_online_cpu(cpu) {
1991 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1993 if (c) {
1994 s->cpu_slab[cpu] = NULL;
1995 free_kmem_cache_cpu(c, cpu);
2000 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2002 int cpu;
2004 for_each_online_cpu(cpu) {
2005 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2007 if (c)
2008 continue;
2010 c = alloc_kmem_cache_cpu(s, cpu, flags);
2011 if (!c) {
2012 free_kmem_cache_cpus(s);
2013 return 0;
2015 s->cpu_slab[cpu] = c;
2017 return 1;
2021 * Initialize the per cpu array.
2023 static void init_alloc_cpu_cpu(int cpu)
2025 int i;
2027 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2028 return;
2030 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2031 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2033 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2036 static void __init init_alloc_cpu(void)
2038 int cpu;
2040 for_each_online_cpu(cpu)
2041 init_alloc_cpu_cpu(cpu);
2044 #else
2045 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2046 static inline void init_alloc_cpu(void) {}
2048 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2050 init_kmem_cache_cpu(s, &s->cpu_slab);
2051 return 1;
2053 #endif
2055 #ifdef CONFIG_NUMA
2057 * No kmalloc_node yet so do it by hand. We know that this is the first
2058 * slab on the node for this slabcache. There are no concurrent accesses
2059 * possible.
2061 * Note that this function only works on the kmalloc_node_cache
2062 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2063 * memory on a fresh node that has no slab structures yet.
2065 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2066 int node)
2068 struct page *page;
2069 struct kmem_cache_node *n;
2070 unsigned long flags;
2072 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2074 page = new_slab(kmalloc_caches, gfpflags, node);
2076 BUG_ON(!page);
2077 if (page_to_nid(page) != node) {
2078 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2079 "node %d\n", node);
2080 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2081 "in order to be able to continue\n");
2084 n = page->freelist;
2085 BUG_ON(!n);
2086 page->freelist = get_freepointer(kmalloc_caches, n);
2087 page->inuse++;
2088 kmalloc_caches->node[node] = n;
2089 #ifdef CONFIG_SLUB_DEBUG
2090 init_object(kmalloc_caches, n, 1);
2091 init_tracking(kmalloc_caches, n);
2092 #endif
2093 init_kmem_cache_node(n);
2094 atomic_long_inc(&n->nr_slabs);
2096 * lockdep requires consistent irq usage for each lock
2097 * so even though there cannot be a race this early in
2098 * the boot sequence, we still disable irqs.
2100 local_irq_save(flags);
2101 add_partial(n, page, 0);
2102 local_irq_restore(flags);
2103 return n;
2106 static void free_kmem_cache_nodes(struct kmem_cache *s)
2108 int node;
2110 for_each_node_state(node, N_NORMAL_MEMORY) {
2111 struct kmem_cache_node *n = s->node[node];
2112 if (n && n != &s->local_node)
2113 kmem_cache_free(kmalloc_caches, n);
2114 s->node[node] = NULL;
2118 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2120 int node;
2121 int local_node;
2123 if (slab_state >= UP)
2124 local_node = page_to_nid(virt_to_page(s));
2125 else
2126 local_node = 0;
2128 for_each_node_state(node, N_NORMAL_MEMORY) {
2129 struct kmem_cache_node *n;
2131 if (local_node == node)
2132 n = &s->local_node;
2133 else {
2134 if (slab_state == DOWN) {
2135 n = early_kmem_cache_node_alloc(gfpflags,
2136 node);
2137 continue;
2139 n = kmem_cache_alloc_node(kmalloc_caches,
2140 gfpflags, node);
2142 if (!n) {
2143 free_kmem_cache_nodes(s);
2144 return 0;
2148 s->node[node] = n;
2149 init_kmem_cache_node(n);
2151 return 1;
2153 #else
2154 static void free_kmem_cache_nodes(struct kmem_cache *s)
2158 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2160 init_kmem_cache_node(&s->local_node);
2161 return 1;
2163 #endif
2166 * calculate_sizes() determines the order and the distribution of data within
2167 * a slab object.
2169 static int calculate_sizes(struct kmem_cache *s)
2171 unsigned long flags = s->flags;
2172 unsigned long size = s->objsize;
2173 unsigned long align = s->align;
2176 * Determine if we can poison the object itself. If the user of
2177 * the slab may touch the object after free or before allocation
2178 * then we should never poison the object itself.
2180 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2181 !s->ctor)
2182 s->flags |= __OBJECT_POISON;
2183 else
2184 s->flags &= ~__OBJECT_POISON;
2187 * Round up object size to the next word boundary. We can only
2188 * place the free pointer at word boundaries and this determines
2189 * the possible location of the free pointer.
2191 size = ALIGN(size, sizeof(void *));
2193 #ifdef CONFIG_SLUB_DEBUG
2195 * If we are Redzoning then check if there is some space between the
2196 * end of the object and the free pointer. If not then add an
2197 * additional word to have some bytes to store Redzone information.
2199 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2200 size += sizeof(void *);
2201 #endif
2204 * With that we have determined the number of bytes in actual use
2205 * by the object. This is the potential offset to the free pointer.
2207 s->inuse = size;
2209 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2210 s->ctor)) {
2212 * Relocate free pointer after the object if it is not
2213 * permitted to overwrite the first word of the object on
2214 * kmem_cache_free.
2216 * This is the case if we do RCU, have a constructor or
2217 * destructor or are poisoning the objects.
2219 s->offset = size;
2220 size += sizeof(void *);
2223 #ifdef CONFIG_SLUB_DEBUG
2224 if (flags & SLAB_STORE_USER)
2226 * Need to store information about allocs and frees after
2227 * the object.
2229 size += 2 * sizeof(struct track);
2231 if (flags & SLAB_RED_ZONE)
2233 * Add some empty padding so that we can catch
2234 * overwrites from earlier objects rather than let
2235 * tracking information or the free pointer be
2236 * corrupted if an user writes before the start
2237 * of the object.
2239 size += sizeof(void *);
2240 #endif
2243 * Determine the alignment based on various parameters that the
2244 * user specified and the dynamic determination of cache line size
2245 * on bootup.
2247 align = calculate_alignment(flags, align, s->objsize);
2250 * SLUB stores one object immediately after another beginning from
2251 * offset 0. In order to align the objects we have to simply size
2252 * each object to conform to the alignment.
2254 size = ALIGN(size, align);
2255 s->size = size;
2257 if ((flags & __KMALLOC_CACHE) &&
2258 PAGE_SIZE / size < slub_min_objects) {
2260 * Kmalloc cache that would not have enough objects in
2261 * an order 0 page. Kmalloc slabs can fallback to
2262 * page allocator order 0 allocs so take a reasonably large
2263 * order that will allows us a good number of objects.
2265 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2266 s->flags |= __PAGE_ALLOC_FALLBACK;
2267 s->allocflags |= __GFP_NOWARN;
2268 } else
2269 s->order = calculate_order(size);
2271 if (s->order < 0)
2272 return 0;
2274 s->allocflags = 0;
2275 if (s->order)
2276 s->allocflags |= __GFP_COMP;
2278 if (s->flags & SLAB_CACHE_DMA)
2279 s->allocflags |= SLUB_DMA;
2281 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2282 s->allocflags |= __GFP_RECLAIMABLE;
2285 * Determine the number of objects per slab
2287 s->objects = (PAGE_SIZE << s->order) / size;
2289 return !!s->objects;
2293 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2294 const char *name, size_t size,
2295 size_t align, unsigned long flags,
2296 void (*ctor)(struct kmem_cache *, void *))
2298 memset(s, 0, kmem_size);
2299 s->name = name;
2300 s->ctor = ctor;
2301 s->objsize = size;
2302 s->align = align;
2303 s->flags = kmem_cache_flags(size, flags, name, ctor);
2305 if (!calculate_sizes(s))
2306 goto error;
2308 s->refcount = 1;
2309 #ifdef CONFIG_NUMA
2310 s->remote_node_defrag_ratio = 100;
2311 #endif
2312 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2313 goto error;
2315 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2316 return 1;
2317 free_kmem_cache_nodes(s);
2318 error:
2319 if (flags & SLAB_PANIC)
2320 panic("Cannot create slab %s size=%lu realsize=%u "
2321 "order=%u offset=%u flags=%lx\n",
2322 s->name, (unsigned long)size, s->size, s->order,
2323 s->offset, flags);
2324 return 0;
2328 * Check if a given pointer is valid
2330 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2332 struct page *page;
2334 page = get_object_page(object);
2336 if (!page || s != page->slab)
2337 /* No slab or wrong slab */
2338 return 0;
2340 if (!check_valid_pointer(s, page, object))
2341 return 0;
2344 * We could also check if the object is on the slabs freelist.
2345 * But this would be too expensive and it seems that the main
2346 * purpose of kmem_ptr_valid is to check if the object belongs
2347 * to a certain slab.
2349 return 1;
2351 EXPORT_SYMBOL(kmem_ptr_validate);
2354 * Determine the size of a slab object
2356 unsigned int kmem_cache_size(struct kmem_cache *s)
2358 return s->objsize;
2360 EXPORT_SYMBOL(kmem_cache_size);
2362 const char *kmem_cache_name(struct kmem_cache *s)
2364 return s->name;
2366 EXPORT_SYMBOL(kmem_cache_name);
2369 * Attempt to free all slabs on a node. Return the number of slabs we
2370 * were unable to free.
2372 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2373 struct list_head *list)
2375 int slabs_inuse = 0;
2376 unsigned long flags;
2377 struct page *page, *h;
2379 spin_lock_irqsave(&n->list_lock, flags);
2380 list_for_each_entry_safe(page, h, list, lru)
2381 if (!page->inuse) {
2382 list_del(&page->lru);
2383 discard_slab(s, page);
2384 } else
2385 slabs_inuse++;
2386 spin_unlock_irqrestore(&n->list_lock, flags);
2387 return slabs_inuse;
2391 * Release all resources used by a slab cache.
2393 static inline int kmem_cache_close(struct kmem_cache *s)
2395 int node;
2397 flush_all(s);
2399 /* Attempt to free all objects */
2400 free_kmem_cache_cpus(s);
2401 for_each_node_state(node, N_NORMAL_MEMORY) {
2402 struct kmem_cache_node *n = get_node(s, node);
2404 n->nr_partial -= free_list(s, n, &n->partial);
2405 if (atomic_long_read(&n->nr_slabs))
2406 return 1;
2408 free_kmem_cache_nodes(s);
2409 return 0;
2413 * Close a cache and release the kmem_cache structure
2414 * (must be used for caches created using kmem_cache_create)
2416 void kmem_cache_destroy(struct kmem_cache *s)
2418 down_write(&slub_lock);
2419 s->refcount--;
2420 if (!s->refcount) {
2421 list_del(&s->list);
2422 up_write(&slub_lock);
2423 if (kmem_cache_close(s))
2424 WARN_ON(1);
2425 sysfs_slab_remove(s);
2426 } else
2427 up_write(&slub_lock);
2429 EXPORT_SYMBOL(kmem_cache_destroy);
2431 /********************************************************************
2432 * Kmalloc subsystem
2433 *******************************************************************/
2435 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2436 EXPORT_SYMBOL(kmalloc_caches);
2438 #ifdef CONFIG_ZONE_DMA
2439 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2440 #endif
2442 static int __init setup_slub_min_order(char *str)
2444 get_option(&str, &slub_min_order);
2446 return 1;
2449 __setup("slub_min_order=", setup_slub_min_order);
2451 static int __init setup_slub_max_order(char *str)
2453 get_option(&str, &slub_max_order);
2455 return 1;
2458 __setup("slub_max_order=", setup_slub_max_order);
2460 static int __init setup_slub_min_objects(char *str)
2462 get_option(&str, &slub_min_objects);
2464 return 1;
2467 __setup("slub_min_objects=", setup_slub_min_objects);
2469 static int __init setup_slub_nomerge(char *str)
2471 slub_nomerge = 1;
2472 return 1;
2475 __setup("slub_nomerge", setup_slub_nomerge);
2477 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2478 const char *name, int size, gfp_t gfp_flags)
2480 unsigned int flags = 0;
2482 if (gfp_flags & SLUB_DMA)
2483 flags = SLAB_CACHE_DMA;
2485 down_write(&slub_lock);
2486 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2487 flags | __KMALLOC_CACHE, NULL))
2488 goto panic;
2490 list_add(&s->list, &slab_caches);
2491 up_write(&slub_lock);
2492 if (sysfs_slab_add(s))
2493 goto panic;
2494 return s;
2496 panic:
2497 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2500 #ifdef CONFIG_ZONE_DMA
2502 static void sysfs_add_func(struct work_struct *w)
2504 struct kmem_cache *s;
2506 down_write(&slub_lock);
2507 list_for_each_entry(s, &slab_caches, list) {
2508 if (s->flags & __SYSFS_ADD_DEFERRED) {
2509 s->flags &= ~__SYSFS_ADD_DEFERRED;
2510 sysfs_slab_add(s);
2513 up_write(&slub_lock);
2516 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2518 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2520 struct kmem_cache *s;
2521 char *text;
2522 size_t realsize;
2524 s = kmalloc_caches_dma[index];
2525 if (s)
2526 return s;
2528 /* Dynamically create dma cache */
2529 if (flags & __GFP_WAIT)
2530 down_write(&slub_lock);
2531 else {
2532 if (!down_write_trylock(&slub_lock))
2533 goto out;
2536 if (kmalloc_caches_dma[index])
2537 goto unlock_out;
2539 realsize = kmalloc_caches[index].objsize;
2540 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2541 (unsigned int)realsize);
2542 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2544 if (!s || !text || !kmem_cache_open(s, flags, text,
2545 realsize, ARCH_KMALLOC_MINALIGN,
2546 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2547 kfree(s);
2548 kfree(text);
2549 goto unlock_out;
2552 list_add(&s->list, &slab_caches);
2553 kmalloc_caches_dma[index] = s;
2555 schedule_work(&sysfs_add_work);
2557 unlock_out:
2558 up_write(&slub_lock);
2559 out:
2560 return kmalloc_caches_dma[index];
2562 #endif
2565 * Conversion table for small slabs sizes / 8 to the index in the
2566 * kmalloc array. This is necessary for slabs < 192 since we have non power
2567 * of two cache sizes there. The size of larger slabs can be determined using
2568 * fls.
2570 static s8 size_index[24] = {
2571 3, /* 8 */
2572 4, /* 16 */
2573 5, /* 24 */
2574 5, /* 32 */
2575 6, /* 40 */
2576 6, /* 48 */
2577 6, /* 56 */
2578 6, /* 64 */
2579 1, /* 72 */
2580 1, /* 80 */
2581 1, /* 88 */
2582 1, /* 96 */
2583 7, /* 104 */
2584 7, /* 112 */
2585 7, /* 120 */
2586 7, /* 128 */
2587 2, /* 136 */
2588 2, /* 144 */
2589 2, /* 152 */
2590 2, /* 160 */
2591 2, /* 168 */
2592 2, /* 176 */
2593 2, /* 184 */
2594 2 /* 192 */
2597 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2599 int index;
2601 if (size <= 192) {
2602 if (!size)
2603 return ZERO_SIZE_PTR;
2605 index = size_index[(size - 1) / 8];
2606 } else
2607 index = fls(size - 1);
2609 #ifdef CONFIG_ZONE_DMA
2610 if (unlikely((flags & SLUB_DMA)))
2611 return dma_kmalloc_cache(index, flags);
2613 #endif
2614 return &kmalloc_caches[index];
2617 void *__kmalloc(size_t size, gfp_t flags)
2619 struct kmem_cache *s;
2621 if (unlikely(size > PAGE_SIZE))
2622 return kmalloc_large(size, flags);
2624 s = get_slab(size, flags);
2626 if (unlikely(ZERO_OR_NULL_PTR(s)))
2627 return s;
2629 return slab_alloc(s, flags, -1, __builtin_return_address(0));
2631 EXPORT_SYMBOL(__kmalloc);
2633 #ifdef CONFIG_NUMA
2634 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2636 struct kmem_cache *s;
2638 if (unlikely(size > PAGE_SIZE))
2639 return kmalloc_large(size, flags);
2641 s = get_slab(size, flags);
2643 if (unlikely(ZERO_OR_NULL_PTR(s)))
2644 return s;
2646 return slab_alloc(s, flags, node, __builtin_return_address(0));
2648 EXPORT_SYMBOL(__kmalloc_node);
2649 #endif
2651 size_t ksize(const void *object)
2653 struct page *page;
2654 struct kmem_cache *s;
2656 BUG_ON(!object);
2657 if (unlikely(object == ZERO_SIZE_PTR))
2658 return 0;
2660 page = virt_to_head_page(object);
2661 BUG_ON(!page);
2663 if (unlikely(!PageSlab(page)))
2664 return PAGE_SIZE << compound_order(page);
2666 s = page->slab;
2667 BUG_ON(!s);
2670 * Debugging requires use of the padding between object
2671 * and whatever may come after it.
2673 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2674 return s->objsize;
2677 * If we have the need to store the freelist pointer
2678 * back there or track user information then we can
2679 * only use the space before that information.
2681 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2682 return s->inuse;
2685 * Else we can use all the padding etc for the allocation
2687 return s->size;
2689 EXPORT_SYMBOL(ksize);
2691 void kfree(const void *x)
2693 struct page *page;
2694 void *object = (void *)x;
2696 if (unlikely(ZERO_OR_NULL_PTR(x)))
2697 return;
2699 page = virt_to_head_page(x);
2700 if (unlikely(!PageSlab(page))) {
2701 put_page(page);
2702 return;
2704 slab_free(page->slab, page, object, __builtin_return_address(0));
2706 EXPORT_SYMBOL(kfree);
2708 static unsigned long count_partial(struct kmem_cache_node *n)
2710 unsigned long flags;
2711 unsigned long x = 0;
2712 struct page *page;
2714 spin_lock_irqsave(&n->list_lock, flags);
2715 list_for_each_entry(page, &n->partial, lru)
2716 x += page->inuse;
2717 spin_unlock_irqrestore(&n->list_lock, flags);
2718 return x;
2722 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2723 * the remaining slabs by the number of items in use. The slabs with the
2724 * most items in use come first. New allocations will then fill those up
2725 * and thus they can be removed from the partial lists.
2727 * The slabs with the least items are placed last. This results in them
2728 * being allocated from last increasing the chance that the last objects
2729 * are freed in them.
2731 int kmem_cache_shrink(struct kmem_cache *s)
2733 int node;
2734 int i;
2735 struct kmem_cache_node *n;
2736 struct page *page;
2737 struct page *t;
2738 struct list_head *slabs_by_inuse =
2739 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2740 unsigned long flags;
2742 if (!slabs_by_inuse)
2743 return -ENOMEM;
2745 flush_all(s);
2746 for_each_node_state(node, N_NORMAL_MEMORY) {
2747 n = get_node(s, node);
2749 if (!n->nr_partial)
2750 continue;
2752 for (i = 0; i < s->objects; i++)
2753 INIT_LIST_HEAD(slabs_by_inuse + i);
2755 spin_lock_irqsave(&n->list_lock, flags);
2758 * Build lists indexed by the items in use in each slab.
2760 * Note that concurrent frees may occur while we hold the
2761 * list_lock. page->inuse here is the upper limit.
2763 list_for_each_entry_safe(page, t, &n->partial, lru) {
2764 if (!page->inuse && slab_trylock(page)) {
2766 * Must hold slab lock here because slab_free
2767 * may have freed the last object and be
2768 * waiting to release the slab.
2770 list_del(&page->lru);
2771 n->nr_partial--;
2772 slab_unlock(page);
2773 discard_slab(s, page);
2774 } else {
2775 list_move(&page->lru,
2776 slabs_by_inuse + page->inuse);
2781 * Rebuild the partial list with the slabs filled up most
2782 * first and the least used slabs at the end.
2784 for (i = s->objects - 1; i >= 0; i--)
2785 list_splice(slabs_by_inuse + i, n->partial.prev);
2787 spin_unlock_irqrestore(&n->list_lock, flags);
2790 kfree(slabs_by_inuse);
2791 return 0;
2793 EXPORT_SYMBOL(kmem_cache_shrink);
2795 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2796 static int slab_mem_going_offline_callback(void *arg)
2798 struct kmem_cache *s;
2800 down_read(&slub_lock);
2801 list_for_each_entry(s, &slab_caches, list)
2802 kmem_cache_shrink(s);
2803 up_read(&slub_lock);
2805 return 0;
2808 static void slab_mem_offline_callback(void *arg)
2810 struct kmem_cache_node *n;
2811 struct kmem_cache *s;
2812 struct memory_notify *marg = arg;
2813 int offline_node;
2815 offline_node = marg->status_change_nid;
2818 * If the node still has available memory. we need kmem_cache_node
2819 * for it yet.
2821 if (offline_node < 0)
2822 return;
2824 down_read(&slub_lock);
2825 list_for_each_entry(s, &slab_caches, list) {
2826 n = get_node(s, offline_node);
2827 if (n) {
2829 * if n->nr_slabs > 0, slabs still exist on the node
2830 * that is going down. We were unable to free them,
2831 * and offline_pages() function shoudn't call this
2832 * callback. So, we must fail.
2834 BUG_ON(atomic_long_read(&n->nr_slabs));
2836 s->node[offline_node] = NULL;
2837 kmem_cache_free(kmalloc_caches, n);
2840 up_read(&slub_lock);
2843 static int slab_mem_going_online_callback(void *arg)
2845 struct kmem_cache_node *n;
2846 struct kmem_cache *s;
2847 struct memory_notify *marg = arg;
2848 int nid = marg->status_change_nid;
2849 int ret = 0;
2852 * If the node's memory is already available, then kmem_cache_node is
2853 * already created. Nothing to do.
2855 if (nid < 0)
2856 return 0;
2859 * We are bringing a node online. No memory is availabe yet. We must
2860 * allocate a kmem_cache_node structure in order to bring the node
2861 * online.
2863 down_read(&slub_lock);
2864 list_for_each_entry(s, &slab_caches, list) {
2866 * XXX: kmem_cache_alloc_node will fallback to other nodes
2867 * since memory is not yet available from the node that
2868 * is brought up.
2870 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2871 if (!n) {
2872 ret = -ENOMEM;
2873 goto out;
2875 init_kmem_cache_node(n);
2876 s->node[nid] = n;
2878 out:
2879 up_read(&slub_lock);
2880 return ret;
2883 static int slab_memory_callback(struct notifier_block *self,
2884 unsigned long action, void *arg)
2886 int ret = 0;
2888 switch (action) {
2889 case MEM_GOING_ONLINE:
2890 ret = slab_mem_going_online_callback(arg);
2891 break;
2892 case MEM_GOING_OFFLINE:
2893 ret = slab_mem_going_offline_callback(arg);
2894 break;
2895 case MEM_OFFLINE:
2896 case MEM_CANCEL_ONLINE:
2897 slab_mem_offline_callback(arg);
2898 break;
2899 case MEM_ONLINE:
2900 case MEM_CANCEL_OFFLINE:
2901 break;
2904 ret = notifier_from_errno(ret);
2905 return ret;
2908 #endif /* CONFIG_MEMORY_HOTPLUG */
2910 /********************************************************************
2911 * Basic setup of slabs
2912 *******************************************************************/
2914 void __init kmem_cache_init(void)
2916 int i;
2917 int caches = 0;
2919 init_alloc_cpu();
2921 #ifdef CONFIG_NUMA
2923 * Must first have the slab cache available for the allocations of the
2924 * struct kmem_cache_node's. There is special bootstrap code in
2925 * kmem_cache_open for slab_state == DOWN.
2927 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2928 sizeof(struct kmem_cache_node), GFP_KERNEL);
2929 kmalloc_caches[0].refcount = -1;
2930 caches++;
2932 hotplug_memory_notifier(slab_memory_callback, 1);
2933 #endif
2935 /* Able to allocate the per node structures */
2936 slab_state = PARTIAL;
2938 /* Caches that are not of the two-to-the-power-of size */
2939 if (KMALLOC_MIN_SIZE <= 64) {
2940 create_kmalloc_cache(&kmalloc_caches[1],
2941 "kmalloc-96", 96, GFP_KERNEL);
2942 caches++;
2944 if (KMALLOC_MIN_SIZE <= 128) {
2945 create_kmalloc_cache(&kmalloc_caches[2],
2946 "kmalloc-192", 192, GFP_KERNEL);
2947 caches++;
2950 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2951 create_kmalloc_cache(&kmalloc_caches[i],
2952 "kmalloc", 1 << i, GFP_KERNEL);
2953 caches++;
2958 * Patch up the size_index table if we have strange large alignment
2959 * requirements for the kmalloc array. This is only the case for
2960 * mips it seems. The standard arches will not generate any code here.
2962 * Largest permitted alignment is 256 bytes due to the way we
2963 * handle the index determination for the smaller caches.
2965 * Make sure that nothing crazy happens if someone starts tinkering
2966 * around with ARCH_KMALLOC_MINALIGN
2968 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2969 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2971 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2972 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2974 slab_state = UP;
2976 /* Provide the correct kmalloc names now that the caches are up */
2977 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
2978 kmalloc_caches[i]. name =
2979 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2981 #ifdef CONFIG_SMP
2982 register_cpu_notifier(&slab_notifier);
2983 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2984 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2985 #else
2986 kmem_size = sizeof(struct kmem_cache);
2987 #endif
2990 printk(KERN_INFO
2991 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2992 " CPUs=%d, Nodes=%d\n",
2993 caches, cache_line_size(),
2994 slub_min_order, slub_max_order, slub_min_objects,
2995 nr_cpu_ids, nr_node_ids);
2999 * Find a mergeable slab cache
3001 static int slab_unmergeable(struct kmem_cache *s)
3003 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3004 return 1;
3006 if ((s->flags & __PAGE_ALLOC_FALLBACK))
3007 return 1;
3009 if (s->ctor)
3010 return 1;
3013 * We may have set a slab to be unmergeable during bootstrap.
3015 if (s->refcount < 0)
3016 return 1;
3018 return 0;
3021 static struct kmem_cache *find_mergeable(size_t size,
3022 size_t align, unsigned long flags, const char *name,
3023 void (*ctor)(struct kmem_cache *, void *))
3025 struct kmem_cache *s;
3027 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3028 return NULL;
3030 if (ctor)
3031 return NULL;
3033 size = ALIGN(size, sizeof(void *));
3034 align = calculate_alignment(flags, align, size);
3035 size = ALIGN(size, align);
3036 flags = kmem_cache_flags(size, flags, name, NULL);
3038 list_for_each_entry(s, &slab_caches, list) {
3039 if (slab_unmergeable(s))
3040 continue;
3042 if (size > s->size)
3043 continue;
3045 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3046 continue;
3048 * Check if alignment is compatible.
3049 * Courtesy of Adrian Drzewiecki
3051 if ((s->size & ~(align - 1)) != s->size)
3052 continue;
3054 if (s->size - size >= sizeof(void *))
3055 continue;
3057 return s;
3059 return NULL;
3062 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3063 size_t align, unsigned long flags,
3064 void (*ctor)(struct kmem_cache *, void *))
3066 struct kmem_cache *s;
3068 down_write(&slub_lock);
3069 s = find_mergeable(size, align, flags, name, ctor);
3070 if (s) {
3071 int cpu;
3073 s->refcount++;
3075 * Adjust the object sizes so that we clear
3076 * the complete object on kzalloc.
3078 s->objsize = max(s->objsize, (int)size);
3081 * And then we need to update the object size in the
3082 * per cpu structures
3084 for_each_online_cpu(cpu)
3085 get_cpu_slab(s, cpu)->objsize = s->objsize;
3086 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3087 up_write(&slub_lock);
3088 if (sysfs_slab_alias(s, name))
3089 goto err;
3090 return s;
3092 s = kmalloc(kmem_size, GFP_KERNEL);
3093 if (s) {
3094 if (kmem_cache_open(s, GFP_KERNEL, name,
3095 size, align, flags, ctor)) {
3096 list_add(&s->list, &slab_caches);
3097 up_write(&slub_lock);
3098 if (sysfs_slab_add(s))
3099 goto err;
3100 return s;
3102 kfree(s);
3104 up_write(&slub_lock);
3106 err:
3107 if (flags & SLAB_PANIC)
3108 panic("Cannot create slabcache %s\n", name);
3109 else
3110 s = NULL;
3111 return s;
3113 EXPORT_SYMBOL(kmem_cache_create);
3115 #ifdef CONFIG_SMP
3117 * Use the cpu notifier to insure that the cpu slabs are flushed when
3118 * necessary.
3120 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3121 unsigned long action, void *hcpu)
3123 long cpu = (long)hcpu;
3124 struct kmem_cache *s;
3125 unsigned long flags;
3127 switch (action) {
3128 case CPU_UP_PREPARE:
3129 case CPU_UP_PREPARE_FROZEN:
3130 init_alloc_cpu_cpu(cpu);
3131 down_read(&slub_lock);
3132 list_for_each_entry(s, &slab_caches, list)
3133 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3134 GFP_KERNEL);
3135 up_read(&slub_lock);
3136 break;
3138 case CPU_UP_CANCELED:
3139 case CPU_UP_CANCELED_FROZEN:
3140 case CPU_DEAD:
3141 case CPU_DEAD_FROZEN:
3142 down_read(&slub_lock);
3143 list_for_each_entry(s, &slab_caches, list) {
3144 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3146 local_irq_save(flags);
3147 __flush_cpu_slab(s, cpu);
3148 local_irq_restore(flags);
3149 free_kmem_cache_cpu(c, cpu);
3150 s->cpu_slab[cpu] = NULL;
3152 up_read(&slub_lock);
3153 break;
3154 default:
3155 break;
3157 return NOTIFY_OK;
3160 static struct notifier_block __cpuinitdata slab_notifier = {
3161 .notifier_call = slab_cpuup_callback
3164 #endif
3166 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3168 struct kmem_cache *s;
3170 if (unlikely(size > PAGE_SIZE))
3171 return kmalloc_large(size, gfpflags);
3173 s = get_slab(size, gfpflags);
3175 if (unlikely(ZERO_OR_NULL_PTR(s)))
3176 return s;
3178 return slab_alloc(s, gfpflags, -1, caller);
3181 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3182 int node, void *caller)
3184 struct kmem_cache *s;
3186 if (unlikely(size > PAGE_SIZE))
3187 return kmalloc_large(size, gfpflags);
3189 s = get_slab(size, gfpflags);
3191 if (unlikely(ZERO_OR_NULL_PTR(s)))
3192 return s;
3194 return slab_alloc(s, gfpflags, node, caller);
3197 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3198 static int validate_slab(struct kmem_cache *s, struct page *page,
3199 unsigned long *map)
3201 void *p;
3202 void *addr = slab_address(page);
3204 if (!check_slab(s, page) ||
3205 !on_freelist(s, page, NULL))
3206 return 0;
3208 /* Now we know that a valid freelist exists */
3209 bitmap_zero(map, s->objects);
3211 for_each_free_object(p, s, page->freelist) {
3212 set_bit(slab_index(p, s, addr), map);
3213 if (!check_object(s, page, p, 0))
3214 return 0;
3217 for_each_object(p, s, addr)
3218 if (!test_bit(slab_index(p, s, addr), map))
3219 if (!check_object(s, page, p, 1))
3220 return 0;
3221 return 1;
3224 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3225 unsigned long *map)
3227 if (slab_trylock(page)) {
3228 validate_slab(s, page, map);
3229 slab_unlock(page);
3230 } else
3231 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3232 s->name, page);
3234 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3235 if (!SlabDebug(page))
3236 printk(KERN_ERR "SLUB %s: SlabDebug not set "
3237 "on slab 0x%p\n", s->name, page);
3238 } else {
3239 if (SlabDebug(page))
3240 printk(KERN_ERR "SLUB %s: SlabDebug set on "
3241 "slab 0x%p\n", s->name, page);
3245 static int validate_slab_node(struct kmem_cache *s,
3246 struct kmem_cache_node *n, unsigned long *map)
3248 unsigned long count = 0;
3249 struct page *page;
3250 unsigned long flags;
3252 spin_lock_irqsave(&n->list_lock, flags);
3254 list_for_each_entry(page, &n->partial, lru) {
3255 validate_slab_slab(s, page, map);
3256 count++;
3258 if (count != n->nr_partial)
3259 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3260 "counter=%ld\n", s->name, count, n->nr_partial);
3262 if (!(s->flags & SLAB_STORE_USER))
3263 goto out;
3265 list_for_each_entry(page, &n->full, lru) {
3266 validate_slab_slab(s, page, map);
3267 count++;
3269 if (count != atomic_long_read(&n->nr_slabs))
3270 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3271 "counter=%ld\n", s->name, count,
3272 atomic_long_read(&n->nr_slabs));
3274 out:
3275 spin_unlock_irqrestore(&n->list_lock, flags);
3276 return count;
3279 static long validate_slab_cache(struct kmem_cache *s)
3281 int node;
3282 unsigned long count = 0;
3283 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3284 sizeof(unsigned long), GFP_KERNEL);
3286 if (!map)
3287 return -ENOMEM;
3289 flush_all(s);
3290 for_each_node_state(node, N_NORMAL_MEMORY) {
3291 struct kmem_cache_node *n = get_node(s, node);
3293 count += validate_slab_node(s, n, map);
3295 kfree(map);
3296 return count;
3299 #ifdef SLUB_RESILIENCY_TEST
3300 static void resiliency_test(void)
3302 u8 *p;
3304 printk(KERN_ERR "SLUB resiliency testing\n");
3305 printk(KERN_ERR "-----------------------\n");
3306 printk(KERN_ERR "A. Corruption after allocation\n");
3308 p = kzalloc(16, GFP_KERNEL);
3309 p[16] = 0x12;
3310 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3311 " 0x12->0x%p\n\n", p + 16);
3313 validate_slab_cache(kmalloc_caches + 4);
3315 /* Hmmm... The next two are dangerous */
3316 p = kzalloc(32, GFP_KERNEL);
3317 p[32 + sizeof(void *)] = 0x34;
3318 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3319 " 0x34 -> -0x%p\n", p);
3320 printk(KERN_ERR
3321 "If allocated object is overwritten then not detectable\n\n");
3323 validate_slab_cache(kmalloc_caches + 5);
3324 p = kzalloc(64, GFP_KERNEL);
3325 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3326 *p = 0x56;
3327 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3329 printk(KERN_ERR
3330 "If allocated object is overwritten then not detectable\n\n");
3331 validate_slab_cache(kmalloc_caches + 6);
3333 printk(KERN_ERR "\nB. Corruption after free\n");
3334 p = kzalloc(128, GFP_KERNEL);
3335 kfree(p);
3336 *p = 0x78;
3337 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3338 validate_slab_cache(kmalloc_caches + 7);
3340 p = kzalloc(256, GFP_KERNEL);
3341 kfree(p);
3342 p[50] = 0x9a;
3343 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3345 validate_slab_cache(kmalloc_caches + 8);
3347 p = kzalloc(512, GFP_KERNEL);
3348 kfree(p);
3349 p[512] = 0xab;
3350 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3351 validate_slab_cache(kmalloc_caches + 9);
3353 #else
3354 static void resiliency_test(void) {};
3355 #endif
3358 * Generate lists of code addresses where slabcache objects are allocated
3359 * and freed.
3362 struct location {
3363 unsigned long count;
3364 void *addr;
3365 long long sum_time;
3366 long min_time;
3367 long max_time;
3368 long min_pid;
3369 long max_pid;
3370 cpumask_t cpus;
3371 nodemask_t nodes;
3374 struct loc_track {
3375 unsigned long max;
3376 unsigned long count;
3377 struct location *loc;
3380 static void free_loc_track(struct loc_track *t)
3382 if (t->max)
3383 free_pages((unsigned long)t->loc,
3384 get_order(sizeof(struct location) * t->max));
3387 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3389 struct location *l;
3390 int order;
3392 order = get_order(sizeof(struct location) * max);
3394 l = (void *)__get_free_pages(flags, order);
3395 if (!l)
3396 return 0;
3398 if (t->count) {
3399 memcpy(l, t->loc, sizeof(struct location) * t->count);
3400 free_loc_track(t);
3402 t->max = max;
3403 t->loc = l;
3404 return 1;
3407 static int add_location(struct loc_track *t, struct kmem_cache *s,
3408 const struct track *track)
3410 long start, end, pos;
3411 struct location *l;
3412 void *caddr;
3413 unsigned long age = jiffies - track->when;
3415 start = -1;
3416 end = t->count;
3418 for ( ; ; ) {
3419 pos = start + (end - start + 1) / 2;
3422 * There is nothing at "end". If we end up there
3423 * we need to add something to before end.
3425 if (pos == end)
3426 break;
3428 caddr = t->loc[pos].addr;
3429 if (track->addr == caddr) {
3431 l = &t->loc[pos];
3432 l->count++;
3433 if (track->when) {
3434 l->sum_time += age;
3435 if (age < l->min_time)
3436 l->min_time = age;
3437 if (age > l->max_time)
3438 l->max_time = age;
3440 if (track->pid < l->min_pid)
3441 l->min_pid = track->pid;
3442 if (track->pid > l->max_pid)
3443 l->max_pid = track->pid;
3445 cpu_set(track->cpu, l->cpus);
3447 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3448 return 1;
3451 if (track->addr < caddr)
3452 end = pos;
3453 else
3454 start = pos;
3458 * Not found. Insert new tracking element.
3460 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3461 return 0;
3463 l = t->loc + pos;
3464 if (pos < t->count)
3465 memmove(l + 1, l,
3466 (t->count - pos) * sizeof(struct location));
3467 t->count++;
3468 l->count = 1;
3469 l->addr = track->addr;
3470 l->sum_time = age;
3471 l->min_time = age;
3472 l->max_time = age;
3473 l->min_pid = track->pid;
3474 l->max_pid = track->pid;
3475 cpus_clear(l->cpus);
3476 cpu_set(track->cpu, l->cpus);
3477 nodes_clear(l->nodes);
3478 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3479 return 1;
3482 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3483 struct page *page, enum track_item alloc)
3485 void *addr = slab_address(page);
3486 DECLARE_BITMAP(map, s->objects);
3487 void *p;
3489 bitmap_zero(map, s->objects);
3490 for_each_free_object(p, s, page->freelist)
3491 set_bit(slab_index(p, s, addr), map);
3493 for_each_object(p, s, addr)
3494 if (!test_bit(slab_index(p, s, addr), map))
3495 add_location(t, s, get_track(s, p, alloc));
3498 static int list_locations(struct kmem_cache *s, char *buf,
3499 enum track_item alloc)
3501 int len = 0;
3502 unsigned long i;
3503 struct loc_track t = { 0, 0, NULL };
3504 int node;
3506 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3507 GFP_TEMPORARY))
3508 return sprintf(buf, "Out of memory\n");
3510 /* Push back cpu slabs */
3511 flush_all(s);
3513 for_each_node_state(node, N_NORMAL_MEMORY) {
3514 struct kmem_cache_node *n = get_node(s, node);
3515 unsigned long flags;
3516 struct page *page;
3518 if (!atomic_long_read(&n->nr_slabs))
3519 continue;
3521 spin_lock_irqsave(&n->list_lock, flags);
3522 list_for_each_entry(page, &n->partial, lru)
3523 process_slab(&t, s, page, alloc);
3524 list_for_each_entry(page, &n->full, lru)
3525 process_slab(&t, s, page, alloc);
3526 spin_unlock_irqrestore(&n->list_lock, flags);
3529 for (i = 0; i < t.count; i++) {
3530 struct location *l = &t.loc[i];
3532 if (len > PAGE_SIZE - 100)
3533 break;
3534 len += sprintf(buf + len, "%7ld ", l->count);
3536 if (l->addr)
3537 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3538 else
3539 len += sprintf(buf + len, "<not-available>");
3541 if (l->sum_time != l->min_time) {
3542 unsigned long remainder;
3544 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3545 l->min_time,
3546 div_long_long_rem(l->sum_time, l->count, &remainder),
3547 l->max_time);
3548 } else
3549 len += sprintf(buf + len, " age=%ld",
3550 l->min_time);
3552 if (l->min_pid != l->max_pid)
3553 len += sprintf(buf + len, " pid=%ld-%ld",
3554 l->min_pid, l->max_pid);
3555 else
3556 len += sprintf(buf + len, " pid=%ld",
3557 l->min_pid);
3559 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3560 len < PAGE_SIZE - 60) {
3561 len += sprintf(buf + len, " cpus=");
3562 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3563 l->cpus);
3566 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3567 len < PAGE_SIZE - 60) {
3568 len += sprintf(buf + len, " nodes=");
3569 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3570 l->nodes);
3573 len += sprintf(buf + len, "\n");
3576 free_loc_track(&t);
3577 if (!t.count)
3578 len += sprintf(buf, "No data\n");
3579 return len;
3582 enum slab_stat_type {
3583 SL_FULL,
3584 SL_PARTIAL,
3585 SL_CPU,
3586 SL_OBJECTS
3589 #define SO_FULL (1 << SL_FULL)
3590 #define SO_PARTIAL (1 << SL_PARTIAL)
3591 #define SO_CPU (1 << SL_CPU)
3592 #define SO_OBJECTS (1 << SL_OBJECTS)
3594 static unsigned long slab_objects(struct kmem_cache *s,
3595 char *buf, unsigned long flags)
3597 unsigned long total = 0;
3598 int cpu;
3599 int node;
3600 int x;
3601 unsigned long *nodes;
3602 unsigned long *per_cpu;
3604 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3605 per_cpu = nodes + nr_node_ids;
3607 for_each_possible_cpu(cpu) {
3608 struct page *page;
3609 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3611 if (!c)
3612 continue;
3614 page = c->page;
3615 node = c->node;
3616 if (node < 0)
3617 continue;
3618 if (page) {
3619 if (flags & SO_CPU) {
3620 if (flags & SO_OBJECTS)
3621 x = page->inuse;
3622 else
3623 x = 1;
3624 total += x;
3625 nodes[node] += x;
3627 per_cpu[node]++;
3631 for_each_node_state(node, N_NORMAL_MEMORY) {
3632 struct kmem_cache_node *n = get_node(s, node);
3634 if (flags & SO_PARTIAL) {
3635 if (flags & SO_OBJECTS)
3636 x = count_partial(n);
3637 else
3638 x = n->nr_partial;
3639 total += x;
3640 nodes[node] += x;
3643 if (flags & SO_FULL) {
3644 int full_slabs = atomic_long_read(&n->nr_slabs)
3645 - per_cpu[node]
3646 - n->nr_partial;
3648 if (flags & SO_OBJECTS)
3649 x = full_slabs * s->objects;
3650 else
3651 x = full_slabs;
3652 total += x;
3653 nodes[node] += x;
3657 x = sprintf(buf, "%lu", total);
3658 #ifdef CONFIG_NUMA
3659 for_each_node_state(node, N_NORMAL_MEMORY)
3660 if (nodes[node])
3661 x += sprintf(buf + x, " N%d=%lu",
3662 node, nodes[node]);
3663 #endif
3664 kfree(nodes);
3665 return x + sprintf(buf + x, "\n");
3668 static int any_slab_objects(struct kmem_cache *s)
3670 int node;
3671 int cpu;
3673 for_each_possible_cpu(cpu) {
3674 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3676 if (c && c->page)
3677 return 1;
3680 for_each_online_node(node) {
3681 struct kmem_cache_node *n = get_node(s, node);
3683 if (!n)
3684 continue;
3686 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3687 return 1;
3689 return 0;
3692 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3693 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3695 struct slab_attribute {
3696 struct attribute attr;
3697 ssize_t (*show)(struct kmem_cache *s, char *buf);
3698 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3701 #define SLAB_ATTR_RO(_name) \
3702 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3704 #define SLAB_ATTR(_name) \
3705 static struct slab_attribute _name##_attr = \
3706 __ATTR(_name, 0644, _name##_show, _name##_store)
3708 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3710 return sprintf(buf, "%d\n", s->size);
3712 SLAB_ATTR_RO(slab_size);
3714 static ssize_t align_show(struct kmem_cache *s, char *buf)
3716 return sprintf(buf, "%d\n", s->align);
3718 SLAB_ATTR_RO(align);
3720 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3722 return sprintf(buf, "%d\n", s->objsize);
3724 SLAB_ATTR_RO(object_size);
3726 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3728 return sprintf(buf, "%d\n", s->objects);
3730 SLAB_ATTR_RO(objs_per_slab);
3732 static ssize_t order_show(struct kmem_cache *s, char *buf)
3734 return sprintf(buf, "%d\n", s->order);
3736 SLAB_ATTR_RO(order);
3738 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3740 if (s->ctor) {
3741 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3743 return n + sprintf(buf + n, "\n");
3745 return 0;
3747 SLAB_ATTR_RO(ctor);
3749 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3751 return sprintf(buf, "%d\n", s->refcount - 1);
3753 SLAB_ATTR_RO(aliases);
3755 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3757 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3759 SLAB_ATTR_RO(slabs);
3761 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3763 return slab_objects(s, buf, SO_PARTIAL);
3765 SLAB_ATTR_RO(partial);
3767 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3769 return slab_objects(s, buf, SO_CPU);
3771 SLAB_ATTR_RO(cpu_slabs);
3773 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3775 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3777 SLAB_ATTR_RO(objects);
3779 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3781 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3784 static ssize_t sanity_checks_store(struct kmem_cache *s,
3785 const char *buf, size_t length)
3787 s->flags &= ~SLAB_DEBUG_FREE;
3788 if (buf[0] == '1')
3789 s->flags |= SLAB_DEBUG_FREE;
3790 return length;
3792 SLAB_ATTR(sanity_checks);
3794 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3796 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3799 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3800 size_t length)
3802 s->flags &= ~SLAB_TRACE;
3803 if (buf[0] == '1')
3804 s->flags |= SLAB_TRACE;
3805 return length;
3807 SLAB_ATTR(trace);
3809 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3811 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3814 static ssize_t reclaim_account_store(struct kmem_cache *s,
3815 const char *buf, size_t length)
3817 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3818 if (buf[0] == '1')
3819 s->flags |= SLAB_RECLAIM_ACCOUNT;
3820 return length;
3822 SLAB_ATTR(reclaim_account);
3824 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3826 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3828 SLAB_ATTR_RO(hwcache_align);
3830 #ifdef CONFIG_ZONE_DMA
3831 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3833 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3835 SLAB_ATTR_RO(cache_dma);
3836 #endif
3838 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3840 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3842 SLAB_ATTR_RO(destroy_by_rcu);
3844 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3846 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3849 static ssize_t red_zone_store(struct kmem_cache *s,
3850 const char *buf, size_t length)
3852 if (any_slab_objects(s))
3853 return -EBUSY;
3855 s->flags &= ~SLAB_RED_ZONE;
3856 if (buf[0] == '1')
3857 s->flags |= SLAB_RED_ZONE;
3858 calculate_sizes(s);
3859 return length;
3861 SLAB_ATTR(red_zone);
3863 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3865 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3868 static ssize_t poison_store(struct kmem_cache *s,
3869 const char *buf, size_t length)
3871 if (any_slab_objects(s))
3872 return -EBUSY;
3874 s->flags &= ~SLAB_POISON;
3875 if (buf[0] == '1')
3876 s->flags |= SLAB_POISON;
3877 calculate_sizes(s);
3878 return length;
3880 SLAB_ATTR(poison);
3882 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3884 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3887 static ssize_t store_user_store(struct kmem_cache *s,
3888 const char *buf, size_t length)
3890 if (any_slab_objects(s))
3891 return -EBUSY;
3893 s->flags &= ~SLAB_STORE_USER;
3894 if (buf[0] == '1')
3895 s->flags |= SLAB_STORE_USER;
3896 calculate_sizes(s);
3897 return length;
3899 SLAB_ATTR(store_user);
3901 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3903 return 0;
3906 static ssize_t validate_store(struct kmem_cache *s,
3907 const char *buf, size_t length)
3909 int ret = -EINVAL;
3911 if (buf[0] == '1') {
3912 ret = validate_slab_cache(s);
3913 if (ret >= 0)
3914 ret = length;
3916 return ret;
3918 SLAB_ATTR(validate);
3920 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3922 return 0;
3925 static ssize_t shrink_store(struct kmem_cache *s,
3926 const char *buf, size_t length)
3928 if (buf[0] == '1') {
3929 int rc = kmem_cache_shrink(s);
3931 if (rc)
3932 return rc;
3933 } else
3934 return -EINVAL;
3935 return length;
3937 SLAB_ATTR(shrink);
3939 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3941 if (!(s->flags & SLAB_STORE_USER))
3942 return -ENOSYS;
3943 return list_locations(s, buf, TRACK_ALLOC);
3945 SLAB_ATTR_RO(alloc_calls);
3947 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3949 if (!(s->flags & SLAB_STORE_USER))
3950 return -ENOSYS;
3951 return list_locations(s, buf, TRACK_FREE);
3953 SLAB_ATTR_RO(free_calls);
3955 #ifdef CONFIG_NUMA
3956 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
3958 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
3961 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
3962 const char *buf, size_t length)
3964 int n = simple_strtoul(buf, NULL, 10);
3966 if (n < 100)
3967 s->remote_node_defrag_ratio = n * 10;
3968 return length;
3970 SLAB_ATTR(remote_node_defrag_ratio);
3971 #endif
3973 #ifdef CONFIG_SLUB_STATS
3975 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
3977 unsigned long sum = 0;
3978 int cpu;
3979 int len;
3980 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
3982 if (!data)
3983 return -ENOMEM;
3985 for_each_online_cpu(cpu) {
3986 unsigned x = get_cpu_slab(s, cpu)->stat[si];
3988 data[cpu] = x;
3989 sum += x;
3992 len = sprintf(buf, "%lu", sum);
3994 for_each_online_cpu(cpu) {
3995 if (data[cpu] && len < PAGE_SIZE - 20)
3996 len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
3998 kfree(data);
3999 return len + sprintf(buf + len, "\n");
4002 #define STAT_ATTR(si, text) \
4003 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4005 return show_stat(s, buf, si); \
4007 SLAB_ATTR_RO(text); \
4009 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4010 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4011 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4012 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4013 STAT_ATTR(FREE_FROZEN, free_frozen);
4014 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4015 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4016 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4017 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4018 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4019 STAT_ATTR(FREE_SLAB, free_slab);
4020 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4021 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4022 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4023 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4024 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4025 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4027 #endif
4029 static struct attribute *slab_attrs[] = {
4030 &slab_size_attr.attr,
4031 &object_size_attr.attr,
4032 &objs_per_slab_attr.attr,
4033 &order_attr.attr,
4034 &objects_attr.attr,
4035 &slabs_attr.attr,
4036 &partial_attr.attr,
4037 &cpu_slabs_attr.attr,
4038 &ctor_attr.attr,
4039 &aliases_attr.attr,
4040 &align_attr.attr,
4041 &sanity_checks_attr.attr,
4042 &trace_attr.attr,
4043 &hwcache_align_attr.attr,
4044 &reclaim_account_attr.attr,
4045 &destroy_by_rcu_attr.attr,
4046 &red_zone_attr.attr,
4047 &poison_attr.attr,
4048 &store_user_attr.attr,
4049 &validate_attr.attr,
4050 &shrink_attr.attr,
4051 &alloc_calls_attr.attr,
4052 &free_calls_attr.attr,
4053 #ifdef CONFIG_ZONE_DMA
4054 &cache_dma_attr.attr,
4055 #endif
4056 #ifdef CONFIG_NUMA
4057 &remote_node_defrag_ratio_attr.attr,
4058 #endif
4059 #ifdef CONFIG_SLUB_STATS
4060 &alloc_fastpath_attr.attr,
4061 &alloc_slowpath_attr.attr,
4062 &free_fastpath_attr.attr,
4063 &free_slowpath_attr.attr,
4064 &free_frozen_attr.attr,
4065 &free_add_partial_attr.attr,
4066 &free_remove_partial_attr.attr,
4067 &alloc_from_partial_attr.attr,
4068 &alloc_slab_attr.attr,
4069 &alloc_refill_attr.attr,
4070 &free_slab_attr.attr,
4071 &cpuslab_flush_attr.attr,
4072 &deactivate_full_attr.attr,
4073 &deactivate_empty_attr.attr,
4074 &deactivate_to_head_attr.attr,
4075 &deactivate_to_tail_attr.attr,
4076 &deactivate_remote_frees_attr.attr,
4077 #endif
4078 NULL
4081 static struct attribute_group slab_attr_group = {
4082 .attrs = slab_attrs,
4085 static ssize_t slab_attr_show(struct kobject *kobj,
4086 struct attribute *attr,
4087 char *buf)
4089 struct slab_attribute *attribute;
4090 struct kmem_cache *s;
4091 int err;
4093 attribute = to_slab_attr(attr);
4094 s = to_slab(kobj);
4096 if (!attribute->show)
4097 return -EIO;
4099 err = attribute->show(s, buf);
4101 return err;
4104 static ssize_t slab_attr_store(struct kobject *kobj,
4105 struct attribute *attr,
4106 const char *buf, size_t len)
4108 struct slab_attribute *attribute;
4109 struct kmem_cache *s;
4110 int err;
4112 attribute = to_slab_attr(attr);
4113 s = to_slab(kobj);
4115 if (!attribute->store)
4116 return -EIO;
4118 err = attribute->store(s, buf, len);
4120 return err;
4123 static void kmem_cache_release(struct kobject *kobj)
4125 struct kmem_cache *s = to_slab(kobj);
4127 kfree(s);
4130 static struct sysfs_ops slab_sysfs_ops = {
4131 .show = slab_attr_show,
4132 .store = slab_attr_store,
4135 static struct kobj_type slab_ktype = {
4136 .sysfs_ops = &slab_sysfs_ops,
4137 .release = kmem_cache_release
4140 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4142 struct kobj_type *ktype = get_ktype(kobj);
4144 if (ktype == &slab_ktype)
4145 return 1;
4146 return 0;
4149 static struct kset_uevent_ops slab_uevent_ops = {
4150 .filter = uevent_filter,
4153 static struct kset *slab_kset;
4155 #define ID_STR_LENGTH 64
4157 /* Create a unique string id for a slab cache:
4158 * format
4159 * :[flags-]size:[memory address of kmemcache]
4161 static char *create_unique_id(struct kmem_cache *s)
4163 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4164 char *p = name;
4166 BUG_ON(!name);
4168 *p++ = ':';
4170 * First flags affecting slabcache operations. We will only
4171 * get here for aliasable slabs so we do not need to support
4172 * too many flags. The flags here must cover all flags that
4173 * are matched during merging to guarantee that the id is
4174 * unique.
4176 if (s->flags & SLAB_CACHE_DMA)
4177 *p++ = 'd';
4178 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4179 *p++ = 'a';
4180 if (s->flags & SLAB_DEBUG_FREE)
4181 *p++ = 'F';
4182 if (p != name + 1)
4183 *p++ = '-';
4184 p += sprintf(p, "%07d", s->size);
4185 BUG_ON(p > name + ID_STR_LENGTH - 1);
4186 return name;
4189 static int sysfs_slab_add(struct kmem_cache *s)
4191 int err;
4192 const char *name;
4193 int unmergeable;
4195 if (slab_state < SYSFS)
4196 /* Defer until later */
4197 return 0;
4199 unmergeable = slab_unmergeable(s);
4200 if (unmergeable) {
4202 * Slabcache can never be merged so we can use the name proper.
4203 * This is typically the case for debug situations. In that
4204 * case we can catch duplicate names easily.
4206 sysfs_remove_link(&slab_kset->kobj, s->name);
4207 name = s->name;
4208 } else {
4210 * Create a unique name for the slab as a target
4211 * for the symlinks.
4213 name = create_unique_id(s);
4216 s->kobj.kset = slab_kset;
4217 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4218 if (err) {
4219 kobject_put(&s->kobj);
4220 return err;
4223 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4224 if (err)
4225 return err;
4226 kobject_uevent(&s->kobj, KOBJ_ADD);
4227 if (!unmergeable) {
4228 /* Setup first alias */
4229 sysfs_slab_alias(s, s->name);
4230 kfree(name);
4232 return 0;
4235 static void sysfs_slab_remove(struct kmem_cache *s)
4237 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4238 kobject_del(&s->kobj);
4239 kobject_put(&s->kobj);
4243 * Need to buffer aliases during bootup until sysfs becomes
4244 * available lest we loose that information.
4246 struct saved_alias {
4247 struct kmem_cache *s;
4248 const char *name;
4249 struct saved_alias *next;
4252 static struct saved_alias *alias_list;
4254 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4256 struct saved_alias *al;
4258 if (slab_state == SYSFS) {
4260 * If we have a leftover link then remove it.
4262 sysfs_remove_link(&slab_kset->kobj, name);
4263 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4266 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4267 if (!al)
4268 return -ENOMEM;
4270 al->s = s;
4271 al->name = name;
4272 al->next = alias_list;
4273 alias_list = al;
4274 return 0;
4277 static int __init slab_sysfs_init(void)
4279 struct kmem_cache *s;
4280 int err;
4282 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4283 if (!slab_kset) {
4284 printk(KERN_ERR "Cannot register slab subsystem.\n");
4285 return -ENOSYS;
4288 slab_state = SYSFS;
4290 list_for_each_entry(s, &slab_caches, list) {
4291 err = sysfs_slab_add(s);
4292 if (err)
4293 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4294 " to sysfs\n", s->name);
4297 while (alias_list) {
4298 struct saved_alias *al = alias_list;
4300 alias_list = alias_list->next;
4301 err = sysfs_slab_alias(al->s, al->name);
4302 if (err)
4303 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4304 " %s to sysfs\n", s->name);
4305 kfree(al);
4308 resiliency_test();
4309 return 0;
4312 __initcall(slab_sysfs_init);
4313 #endif
4316 * The /proc/slabinfo ABI
4318 #ifdef CONFIG_SLABINFO
4320 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4321 size_t count, loff_t *ppos)
4323 return -EINVAL;
4327 static void print_slabinfo_header(struct seq_file *m)
4329 seq_puts(m, "slabinfo - version: 2.1\n");
4330 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4331 "<objperslab> <pagesperslab>");
4332 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4333 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4334 seq_putc(m, '\n');
4337 static void *s_start(struct seq_file *m, loff_t *pos)
4339 loff_t n = *pos;
4341 down_read(&slub_lock);
4342 if (!n)
4343 print_slabinfo_header(m);
4345 return seq_list_start(&slab_caches, *pos);
4348 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4350 return seq_list_next(p, &slab_caches, pos);
4353 static void s_stop(struct seq_file *m, void *p)
4355 up_read(&slub_lock);
4358 static int s_show(struct seq_file *m, void *p)
4360 unsigned long nr_partials = 0;
4361 unsigned long nr_slabs = 0;
4362 unsigned long nr_inuse = 0;
4363 unsigned long nr_objs;
4364 struct kmem_cache *s;
4365 int node;
4367 s = list_entry(p, struct kmem_cache, list);
4369 for_each_online_node(node) {
4370 struct kmem_cache_node *n = get_node(s, node);
4372 if (!n)
4373 continue;
4375 nr_partials += n->nr_partial;
4376 nr_slabs += atomic_long_read(&n->nr_slabs);
4377 nr_inuse += count_partial(n);
4380 nr_objs = nr_slabs * s->objects;
4381 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4383 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4384 nr_objs, s->size, s->objects, (1 << s->order));
4385 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4386 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4387 0UL);
4388 seq_putc(m, '\n');
4389 return 0;
4392 const struct seq_operations slabinfo_op = {
4393 .start = s_start,
4394 .next = s_next,
4395 .stop = s_stop,
4396 .show = s_show,
4399 #endif /* CONFIG_SLABINFO */