x86: CPA fix pagetable split
[linux-2.6/kmemtrace.git] / arch / x86 / mm / pageattr.c
blob72880993af89bb9b23656e68e4e61f326d6cb5ac
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
12 #include <asm/e820.h>
13 #include <asm/processor.h>
14 #include <asm/tlbflush.h>
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17 #include <asm/pgalloc.h>
19 struct cpa_data {
20 unsigned long vaddr;
21 pgprot_t mask_set;
22 pgprot_t mask_clr;
23 int numpages;
24 int flushtlb;
27 enum {
28 CPA_NO_SPLIT = 0,
29 CPA_SPLIT,
32 static inline int
33 within(unsigned long addr, unsigned long start, unsigned long end)
35 return addr >= start && addr < end;
39 * Flushing functions
42 /**
43 * clflush_cache_range - flush a cache range with clflush
44 * @addr: virtual start address
45 * @size: number of bytes to flush
47 * clflush is an unordered instruction which needs fencing with mfence
48 * to avoid ordering issues.
50 void clflush_cache_range(void *vaddr, unsigned int size)
52 void *vend = vaddr + size - 1;
54 mb();
56 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
57 clflush(vaddr);
59 * Flush any possible final partial cacheline:
61 clflush(vend);
63 mb();
66 static void __cpa_flush_all(void *arg)
68 unsigned long cache = (unsigned long)arg;
71 * Flush all to work around Errata in early athlons regarding
72 * large page flushing.
74 __flush_tlb_all();
76 if (cache && boot_cpu_data.x86_model >= 4)
77 wbinvd();
80 static void cpa_flush_all(unsigned long cache)
82 BUG_ON(irqs_disabled());
84 on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
87 static void __cpa_flush_range(void *arg)
90 * We could optimize that further and do individual per page
91 * tlb invalidates for a low number of pages. Caveat: we must
92 * flush the high aliases on 64bit as well.
94 __flush_tlb_all();
97 static void cpa_flush_range(unsigned long start, int numpages, int cache)
99 unsigned int i, level;
100 unsigned long addr;
102 BUG_ON(irqs_disabled());
103 WARN_ON(PAGE_ALIGN(start) != start);
105 on_each_cpu(__cpa_flush_range, NULL, 1, 1);
107 if (!cache)
108 return;
111 * We only need to flush on one CPU,
112 * clflush is a MESI-coherent instruction that
113 * will cause all other CPUs to flush the same
114 * cachelines:
116 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
117 pte_t *pte = lookup_address(addr, &level);
120 * Only flush present addresses:
122 if (pte && pte_present(*pte))
123 clflush_cache_range((void *) addr, PAGE_SIZE);
127 #define HIGH_MAP_START __START_KERNEL_map
128 #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE)
132 * Converts a virtual address to a X86-64 highmap address
134 static unsigned long virt_to_highmap(void *address)
136 #ifdef CONFIG_X86_64
137 return __pa((unsigned long)address) + HIGH_MAP_START - phys_base;
138 #else
139 return (unsigned long)address;
140 #endif
144 * Certain areas of memory on x86 require very specific protection flags,
145 * for example the BIOS area or kernel text. Callers don't always get this
146 * right (again, ioremap() on BIOS memory is not uncommon) so this function
147 * checks and fixes these known static required protection bits.
149 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
151 pgprot_t forbidden = __pgprot(0);
154 * The BIOS area between 640k and 1Mb needs to be executable for
155 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
157 if (within(__pa(address), BIOS_BEGIN, BIOS_END))
158 pgprot_val(forbidden) |= _PAGE_NX;
161 * The kernel text needs to be executable for obvious reasons
162 * Does not cover __inittext since that is gone later on
164 if (within(address, (unsigned long)_text, (unsigned long)_etext))
165 pgprot_val(forbidden) |= _PAGE_NX;
167 * Do the same for the x86-64 high kernel mapping
169 if (within(address, virt_to_highmap(_text), virt_to_highmap(_etext)))
170 pgprot_val(forbidden) |= _PAGE_NX;
173 #ifdef CONFIG_DEBUG_RODATA
174 /* The .rodata section needs to be read-only */
175 if (within(address, (unsigned long)__start_rodata,
176 (unsigned long)__end_rodata))
177 pgprot_val(forbidden) |= _PAGE_RW;
179 * Do the same for the x86-64 high kernel mapping
181 if (within(address, virt_to_highmap(__start_rodata),
182 virt_to_highmap(__end_rodata)))
183 pgprot_val(forbidden) |= _PAGE_RW;
184 #endif
186 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
188 return prot;
192 * Lookup the page table entry for a virtual address. Return a pointer
193 * to the entry and the level of the mapping.
195 * Note: We return pud and pmd either when the entry is marked large
196 * or when the present bit is not set. Otherwise we would return a
197 * pointer to a nonexisting mapping.
199 pte_t *lookup_address(unsigned long address, int *level)
201 pgd_t *pgd = pgd_offset_k(address);
202 pud_t *pud;
203 pmd_t *pmd;
205 *level = PG_LEVEL_NONE;
207 if (pgd_none(*pgd))
208 return NULL;
209 pud = pud_offset(pgd, address);
210 if (pud_none(*pud))
211 return NULL;
212 pmd = pmd_offset(pud, address);
213 if (pmd_none(*pmd))
214 return NULL;
216 *level = PG_LEVEL_2M;
217 if (pmd_large(*pmd) || !pmd_present(*pmd))
218 return (pte_t *)pmd;
220 *level = PG_LEVEL_4K;
221 return pte_offset_kernel(pmd, address);
224 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
226 /* change init_mm */
227 set_pte_atomic(kpte, pte);
228 #ifdef CONFIG_X86_32
229 if (!SHARED_KERNEL_PMD) {
230 struct page *page;
232 list_for_each_entry(page, &pgd_list, lru) {
233 pgd_t *pgd;
234 pud_t *pud;
235 pmd_t *pmd;
237 pgd = (pgd_t *)page_address(page) + pgd_index(address);
238 pud = pud_offset(pgd, address);
239 pmd = pmd_offset(pud, address);
240 set_pte_atomic((pte_t *)pmd, pte);
243 #endif
246 static int try_preserve_large_page(pte_t *kpte, unsigned long address,
247 struct cpa_data *cpa)
249 unsigned long nextpage_addr, numpages, pmask, psize, flags;
250 pte_t new_pte, old_pte, *tmp;
251 pgprot_t old_prot, new_prot;
252 int level, res = CPA_SPLIT;
255 * An Athlon 64 X2 showed hard hangs if we tried to preserve
256 * largepages and changed the PSE entry from RW to RO.
258 * As AMD CPUs have a long series of erratas in this area,
259 * (and none of the known ones seem to explain this hang),
260 * disable this code until the hang can be debugged:
262 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
263 return res;
265 spin_lock_irqsave(&pgd_lock, flags);
267 * Check for races, another CPU might have split this page
268 * up already:
270 tmp = lookup_address(address, &level);
271 if (tmp != kpte)
272 goto out_unlock;
274 switch (level) {
275 case PG_LEVEL_2M:
276 psize = PMD_PAGE_SIZE;
277 pmask = PMD_PAGE_MASK;
278 break;
279 case PG_LEVEL_1G:
280 default:
281 res = -EINVAL;
282 goto out_unlock;
286 * Calculate the number of pages, which fit into this large
287 * page starting at address:
289 nextpage_addr = (address + psize) & pmask;
290 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
291 if (numpages < cpa->numpages)
292 cpa->numpages = numpages;
295 * We are safe now. Check whether the new pgprot is the same:
297 old_pte = *kpte;
298 old_prot = new_prot = pte_pgprot(old_pte);
300 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
301 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
302 new_prot = static_protections(new_prot, address);
305 * If there are no changes, return. maxpages has been updated
306 * above:
308 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
309 res = CPA_NO_SPLIT;
310 goto out_unlock;
314 * We need to change the attributes. Check, whether we can
315 * change the large page in one go. We request a split, when
316 * the address is not aligned and the number of pages is
317 * smaller than the number of pages in the large page. Note
318 * that we limited the number of possible pages already to
319 * the number of pages in the large page.
321 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
323 * The address is aligned and the number of pages
324 * covers the full page.
326 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
327 __set_pmd_pte(kpte, address, new_pte);
328 cpa->flushtlb = 1;
329 res = CPA_NO_SPLIT;
332 out_unlock:
333 spin_unlock_irqrestore(&pgd_lock, flags);
334 return res;
337 static int split_large_page(pte_t *kpte, unsigned long address)
339 pgprot_t ref_prot;
340 gfp_t gfp_flags = GFP_KERNEL;
341 unsigned long flags, addr, pfn;
342 pte_t *pbase, *tmp;
343 struct page *base;
344 unsigned int i, level;
346 #ifdef CONFIG_DEBUG_PAGEALLOC
347 gfp_flags = GFP_ATOMIC | __GFP_NOWARN;
348 #endif
349 base = alloc_pages(gfp_flags, 0);
350 if (!base)
351 return -ENOMEM;
353 spin_lock_irqsave(&pgd_lock, flags);
355 * Check for races, another CPU might have split this page
356 * up for us already:
358 tmp = lookup_address(address, &level);
359 if (tmp != kpte) {
360 WARN_ON_ONCE(1);
361 goto out_unlock;
364 address = __pa(address);
365 addr = address & PMD_PAGE_MASK;
366 pbase = (pte_t *)page_address(base);
367 #ifdef CONFIG_X86_32
368 paravirt_alloc_pt(&init_mm, page_to_pfn(base));
369 #endif
370 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
373 * Get the target pfn from the original entry:
375 pfn = pte_pfn(*kpte);
376 for (i = 0; i < PTRS_PER_PTE; i++, pfn++)
377 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
380 * Install the new, split up pagetable. Important details here:
382 * On Intel the NX bit of all levels must be cleared to make a
383 * page executable. See section 4.13.2 of Intel 64 and IA-32
384 * Architectures Software Developer's Manual).
386 * Mark the entry present. The current mapping might be
387 * set to not present, which we preserved above.
389 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
390 pgprot_val(ref_prot) |= _PAGE_PRESENT;
391 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
392 base = NULL;
394 out_unlock:
395 spin_unlock_irqrestore(&pgd_lock, flags);
397 if (base)
398 __free_pages(base, 0);
400 return 0;
403 static int __change_page_attr(unsigned long address, struct cpa_data *cpa)
405 struct page *kpte_page;
406 int level, res;
407 pte_t *kpte;
409 repeat:
410 kpte = lookup_address(address, &level);
411 if (!kpte)
412 return -EINVAL;
414 kpte_page = virt_to_page(kpte);
415 BUG_ON(PageLRU(kpte_page));
416 BUG_ON(PageCompound(kpte_page));
418 if (level == PG_LEVEL_4K) {
419 pte_t new_pte, old_pte = *kpte;
420 pgprot_t new_prot = pte_pgprot(old_pte);
422 if(!pte_val(old_pte)) {
423 printk(KERN_WARNING "CPA: called for zero pte. "
424 "vaddr = %lx cpa->vaddr = %lx\n", address,
425 cpa->vaddr);
426 WARN_ON(1);
427 return -EINVAL;
430 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
431 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
433 new_prot = static_protections(new_prot, address);
436 * We need to keep the pfn from the existing PTE,
437 * after all we're only going to change it's attributes
438 * not the memory it points to
440 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
443 * Do we really change anything ?
445 if (pte_val(old_pte) != pte_val(new_pte)) {
446 set_pte_atomic(kpte, new_pte);
447 cpa->flushtlb = 1;
449 cpa->numpages = 1;
450 return 0;
454 * Check, whether we can keep the large page intact
455 * and just change the pte:
457 res = try_preserve_large_page(kpte, address, cpa);
458 if (res < 0)
459 return res;
462 * When the range fits into the existing large page,
463 * return. cp->numpages and cpa->tlbflush have been updated in
464 * try_large_page:
466 if (res == CPA_NO_SPLIT)
467 return 0;
470 * We have to split the large page:
472 res = split_large_page(kpte, address);
473 if (res)
474 return res;
475 cpa->flushtlb = 1;
476 goto repeat;
480 * change_page_attr_addr - Change page table attributes in linear mapping
481 * @address: Virtual address in linear mapping.
482 * @prot: New page table attribute (PAGE_*)
484 * Change page attributes of a page in the direct mapping. This is a variant
485 * of change_page_attr() that also works on memory holes that do not have
486 * mem_map entry (pfn_valid() is false).
488 * See change_page_attr() documentation for more details.
490 * Modules and drivers should use the set_memory_* APIs instead.
493 static int change_page_attr_addr(struct cpa_data *cpa)
495 int err;
496 unsigned long address = cpa->vaddr;
498 #ifdef CONFIG_X86_64
499 unsigned long phys_addr = __pa(address);
502 * If we are inside the high mapped kernel range, then we
503 * fixup the low mapping first. __va() returns the virtual
504 * address in the linear mapping:
506 if (within(address, HIGH_MAP_START, HIGH_MAP_END))
507 address = (unsigned long) __va(phys_addr);
508 #endif
510 err = __change_page_attr(address, cpa);
511 if (err)
512 return err;
514 #ifdef CONFIG_X86_64
516 * If the physical address is inside the kernel map, we need
517 * to touch the high mapped kernel as well:
519 if (within(phys_addr, 0, KERNEL_TEXT_SIZE)) {
521 * Calc the high mapping address. See __phys_addr()
522 * for the non obvious details.
524 * Note that NX and other required permissions are
525 * checked in static_protections().
527 address = phys_addr + HIGH_MAP_START - phys_base;
530 * Our high aliases are imprecise, because we check
531 * everything between 0 and KERNEL_TEXT_SIZE, so do
532 * not propagate lookup failures back to users:
534 __change_page_attr(address, cpa);
536 #endif
537 return err;
540 static int __change_page_attr_set_clr(struct cpa_data *cpa)
542 int ret, numpages = cpa->numpages;
544 while (numpages) {
546 * Store the remaining nr of pages for the large page
547 * preservation check.
549 cpa->numpages = numpages;
550 ret = change_page_attr_addr(cpa);
551 if (ret)
552 return ret;
555 * Adjust the number of pages with the result of the
556 * CPA operation. Either a large page has been
557 * preserved or a single page update happened.
559 BUG_ON(cpa->numpages > numpages);
560 numpages -= cpa->numpages;
561 cpa->vaddr += cpa->numpages * PAGE_SIZE;
563 return 0;
566 static inline int cache_attr(pgprot_t attr)
568 return pgprot_val(attr) &
569 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
572 static int change_page_attr_set_clr(unsigned long addr, int numpages,
573 pgprot_t mask_set, pgprot_t mask_clr)
575 struct cpa_data cpa;
576 int ret, cache;
579 * Check, if we are requested to change a not supported
580 * feature:
582 mask_set = canon_pgprot(mask_set);
583 mask_clr = canon_pgprot(mask_clr);
584 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
585 return 0;
587 cpa.vaddr = addr;
588 cpa.numpages = numpages;
589 cpa.mask_set = mask_set;
590 cpa.mask_clr = mask_clr;
591 cpa.flushtlb = 0;
593 ret = __change_page_attr_set_clr(&cpa);
596 * Check whether we really changed something:
598 if (!cpa.flushtlb)
599 return ret;
602 * No need to flush, when we did not set any of the caching
603 * attributes:
605 cache = cache_attr(mask_set);
608 * On success we use clflush, when the CPU supports it to
609 * avoid the wbindv. If the CPU does not support it and in the
610 * error case we fall back to cpa_flush_all (which uses
611 * wbindv):
613 if (!ret && cpu_has_clflush)
614 cpa_flush_range(addr, numpages, cache);
615 else
616 cpa_flush_all(cache);
618 return ret;
621 static inline int change_page_attr_set(unsigned long addr, int numpages,
622 pgprot_t mask)
624 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
627 static inline int change_page_attr_clear(unsigned long addr, int numpages,
628 pgprot_t mask)
630 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
633 int set_memory_uc(unsigned long addr, int numpages)
635 return change_page_attr_set(addr, numpages,
636 __pgprot(_PAGE_PCD | _PAGE_PWT));
638 EXPORT_SYMBOL(set_memory_uc);
640 int set_memory_wb(unsigned long addr, int numpages)
642 return change_page_attr_clear(addr, numpages,
643 __pgprot(_PAGE_PCD | _PAGE_PWT));
645 EXPORT_SYMBOL(set_memory_wb);
647 int set_memory_x(unsigned long addr, int numpages)
649 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
651 EXPORT_SYMBOL(set_memory_x);
653 int set_memory_nx(unsigned long addr, int numpages)
655 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
657 EXPORT_SYMBOL(set_memory_nx);
659 int set_memory_ro(unsigned long addr, int numpages)
661 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
664 int set_memory_rw(unsigned long addr, int numpages)
666 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
669 int set_memory_np(unsigned long addr, int numpages)
671 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
674 int set_pages_uc(struct page *page, int numpages)
676 unsigned long addr = (unsigned long)page_address(page);
678 return set_memory_uc(addr, numpages);
680 EXPORT_SYMBOL(set_pages_uc);
682 int set_pages_wb(struct page *page, int numpages)
684 unsigned long addr = (unsigned long)page_address(page);
686 return set_memory_wb(addr, numpages);
688 EXPORT_SYMBOL(set_pages_wb);
690 int set_pages_x(struct page *page, int numpages)
692 unsigned long addr = (unsigned long)page_address(page);
694 return set_memory_x(addr, numpages);
696 EXPORT_SYMBOL(set_pages_x);
698 int set_pages_nx(struct page *page, int numpages)
700 unsigned long addr = (unsigned long)page_address(page);
702 return set_memory_nx(addr, numpages);
704 EXPORT_SYMBOL(set_pages_nx);
706 int set_pages_ro(struct page *page, int numpages)
708 unsigned long addr = (unsigned long)page_address(page);
710 return set_memory_ro(addr, numpages);
713 int set_pages_rw(struct page *page, int numpages)
715 unsigned long addr = (unsigned long)page_address(page);
717 return set_memory_rw(addr, numpages);
720 #ifdef CONFIG_DEBUG_PAGEALLOC
722 static int __set_pages_p(struct page *page, int numpages)
724 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
725 .numpages = numpages,
726 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
727 .mask_clr = __pgprot(0)};
729 return __change_page_attr_set_clr(&cpa);
732 static int __set_pages_np(struct page *page, int numpages)
734 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
735 .numpages = numpages,
736 .mask_set = __pgprot(0),
737 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
739 return __change_page_attr_set_clr(&cpa);
742 void kernel_map_pages(struct page *page, int numpages, int enable)
744 if (PageHighMem(page))
745 return;
746 if (!enable) {
747 debug_check_no_locks_freed(page_address(page),
748 numpages * PAGE_SIZE);
752 * If page allocator is not up yet then do not call c_p_a():
754 if (!debug_pagealloc_enabled)
755 return;
758 * The return value is ignored - the calls cannot fail,
759 * large pages are disabled at boot time:
761 if (enable)
762 __set_pages_p(page, numpages);
763 else
764 __set_pages_np(page, numpages);
767 * We should perform an IPI and flush all tlbs,
768 * but that can deadlock->flush only current cpu:
770 __flush_tlb_all();
772 #endif
775 * The testcases use internal knowledge of the implementation that shouldn't
776 * be exposed to the rest of the kernel. Include these directly here.
778 #ifdef CONFIG_CPA_DEBUG
779 #include "pageattr-test.c"
780 #endif