2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
7 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
8 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
10 * Released under the GPL
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/ptrace.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/interrupt.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/skbuff.h>
27 #include <linux/spinlock.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/dma-mapping.h>
33 #include <asm/8xx_immap.h>
34 #include <asm/pgtable.h>
35 #include <asm/mpc8xx.h>
37 #include <asm/uaccess.h>
42 /*************************************************/
44 #define FEC_MAX_MULTICAST_ADDRS 64
46 /*************************************************/
48 static char version
[] __devinitdata
=
49 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")" "\n";
51 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
52 MODULE_DESCRIPTION("Motorola 8xx FEC ethernet driver");
53 MODULE_LICENSE("GPL");
55 int fec_8xx_debug
= -1; /* -1 == use FEC_8XX_DEF_MSG_ENABLE as value */
56 module_param(fec_8xx_debug
, int, 0);
57 MODULE_PARM_DESC(fec_8xx_debug
,
58 "FEC 8xx bitmapped debugging message enable value");
61 /*************************************************/
64 * Delay to wait for FEC reset command to complete (in us)
66 #define FEC_RESET_DELAY 50
68 /*****************************************************************************************/
70 static void fec_whack_reset(fec_t
* fecp
)
75 * Whack a reset. We should wait for this.
77 FW(fecp
, ecntrl
, FEC_ECNTRL_PINMUX
| FEC_ECNTRL_RESET
);
79 (FR(fecp
, ecntrl
) & FEC_ECNTRL_RESET
) != 0 && i
< FEC_RESET_DELAY
;
83 if (i
== FEC_RESET_DELAY
)
84 printk(KERN_WARNING
"FEC Reset timeout!\n");
88 /****************************************************************************/
91 * Transmitter timeout.
93 #define TX_TIMEOUT (2*HZ)
95 /****************************************************************************/
98 * Returns the CRC needed when filling in the hash table for
99 * multicast group filtering
100 * pAddr must point to a MAC address (6 bytes)
102 static __u32
fec_mulicast_calc_crc(char *pAddr
)
107 __u32 crc
= 0xffffffff;
110 for (byte_count
= 0; byte_count
< 6; byte_count
++) {
111 byte
= pAddr
[byte_count
];
112 for (bit_count
= 0; bit_count
< 8; bit_count
++) {
115 if (msb
^ (byte
& 0x1)) {
125 * Set or clear the multicast filter for this adaptor.
126 * Skeleton taken from sunlance driver.
127 * The CPM Ethernet implementation allows Multicast as well as individual
128 * MAC address filtering. Some of the drivers check to make sure it is
129 * a group multicast address, and discard those that are not. I guess I
130 * will do the same for now, but just remove the test if you want
131 * individual filtering as well (do the upper net layers want or support
132 * this kind of feature?).
134 static void fec_set_multicast_list(struct net_device
*dev
)
136 struct fec_enet_private
*fep
= netdev_priv(dev
);
137 fec_t
*fecp
= fep
->fecp
;
138 struct dev_mc_list
*pmc
;
147 if ((dev
->flags
& IFF_PROMISC
) != 0) {
149 spin_lock_irqsave(&fep
->lock
, flags
);
150 FS(fecp
, r_cntrl
, FEC_RCNTRL_PROM
);
151 spin_unlock_irqrestore(&fep
->lock
, flags
);
156 printk(KERN_WARNING DRV_MODULE_NAME
157 ": %s: Promiscuous mode enabled.\n", dev
->name
);
162 if ((dev
->flags
& IFF_ALLMULTI
) != 0 ||
163 dev
->mc_count
> FEC_MAX_MULTICAST_ADDRS
) {
165 * Catch all multicast addresses, set the filter to all 1's.
174 * Now populate the hash table
176 for (pmc
= dev
->mc_list
; pmc
!= NULL
; pmc
= pmc
->next
) {
177 crc
= fec_mulicast_calc_crc(pmc
->dmi_addr
);
178 temp
= (crc
& 0x3f) >> 1;
179 hash_index
= ((temp
& 0x01) << 4) |
180 ((temp
& 0x02) << 2) |
182 ((temp
& 0x08) >> 2) |
183 ((temp
& 0x10) >> 4);
184 csrVal
= (1 << hash_index
);
192 spin_lock_irqsave(&fep
->lock
, flags
);
193 FC(fecp
, r_cntrl
, FEC_RCNTRL_PROM
);
194 FW(fecp
, hash_table_high
, hthi
);
195 FW(fecp
, hash_table_low
, htlo
);
196 spin_unlock_irqrestore(&fep
->lock
, flags
);
199 static int fec_set_mac_address(struct net_device
*dev
, void *addr
)
201 struct sockaddr
*mac
= addr
;
202 struct fec_enet_private
*fep
= netdev_priv(dev
);
203 struct fec
*fecp
= fep
->fecp
;
205 __u32 addrhi
, addrlo
;
208 /* Get pointer to SCC area in parameter RAM. */
209 for (i
= 0; i
< 6; i
++)
210 dev
->dev_addr
[i
] = mac
->sa_data
[i
];
213 * Set station address.
215 addrhi
= ((__u32
) dev
->dev_addr
[0] << 24) |
216 ((__u32
) dev
->dev_addr
[1] << 16) |
217 ((__u32
) dev
->dev_addr
[2] << 8) |
218 (__u32
) dev
->dev_addr
[3];
219 addrlo
= ((__u32
) dev
->dev_addr
[4] << 24) |
220 ((__u32
) dev
->dev_addr
[5] << 16);
222 spin_lock_irqsave(&fep
->lock
, flags
);
223 FW(fecp
, addr_low
, addrhi
);
224 FW(fecp
, addr_high
, addrlo
);
225 spin_unlock_irqrestore(&fep
->lock
, flags
);
231 * This function is called to start or restart the FEC during a link
232 * change. This only happens when switching between half and full
235 void fec_restart(struct net_device
*dev
, int duplex
, int speed
)
238 immap_t
*immap
= (immap_t
*) IMAP_ADDR
;
241 struct fec_enet_private
*fep
= netdev_priv(dev
);
242 struct fec
*fecp
= fep
->fecp
;
243 const struct fec_platform_info
*fpi
= fep
->fpi
;
247 __u32 addrhi
, addrlo
;
249 fec_whack_reset(fep
->fecp
);
252 * Set station address.
254 addrhi
= ((__u32
) dev
->dev_addr
[0] << 24) |
255 ((__u32
) dev
->dev_addr
[1] << 16) |
256 ((__u32
) dev
->dev_addr
[2] << 8) |
257 (__u32
) dev
->dev_addr
[3];
258 addrlo
= ((__u32
) dev
->dev_addr
[4] << 24) |
259 ((__u32
) dev
->dev_addr
[5] << 16);
260 FW(fecp
, addr_low
, addrhi
);
261 FW(fecp
, addr_high
, addrlo
);
264 * Reset all multicast.
266 FW(fecp
, hash_table_high
, 0);
267 FW(fecp
, hash_table_low
, 0);
270 * Set maximum receive buffer size.
272 FW(fecp
, r_buff_size
, PKT_MAXBLR_SIZE
);
273 FW(fecp
, r_hash
, PKT_MAXBUF_SIZE
);
276 * Set receive and transmit descriptor base.
278 FW(fecp
, r_des_start
, iopa((__u32
) (fep
->rx_bd_base
)));
279 FW(fecp
, x_des_start
, iopa((__u32
) (fep
->tx_bd_base
)));
281 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
282 fep
->tx_free
= fep
->tx_ring
;
283 fep
->cur_rx
= fep
->rx_bd_base
;
286 * Reset SKB receive buffers
288 for (i
= 0; i
< fep
->rx_ring
; i
++) {
289 if ((skb
= fep
->rx_skbuff
[i
]) == NULL
)
291 fep
->rx_skbuff
[i
] = NULL
;
296 * Initialize the receive buffer descriptors.
298 for (i
= 0, bdp
= fep
->rx_bd_base
; i
< fep
->rx_ring
; i
++, bdp
++) {
299 skb
= dev_alloc_skb(ENET_RX_FRSIZE
);
301 printk(KERN_WARNING DRV_MODULE_NAME
302 ": %s Memory squeeze, unable to allocate skb\n",
304 fep
->stats
.rx_dropped
++;
307 fep
->rx_skbuff
[i
] = skb
;
309 CBDW_BUFADDR(bdp
, dma_map_single(NULL
, skb
->data
,
310 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE
),
312 CBDW_DATLEN(bdp
, 0); /* zero */
313 CBDW_SC(bdp
, BD_ENET_RX_EMPTY
|
314 ((i
< fep
->rx_ring
- 1) ? 0 : BD_SC_WRAP
));
317 * if we failed, fillup remainder
319 for (; i
< fep
->rx_ring
; i
++, bdp
++) {
320 fep
->rx_skbuff
[i
] = NULL
;
321 CBDW_SC(bdp
, (i
< fep
->rx_ring
- 1) ? 0 : BD_SC_WRAP
);
325 * Reset SKB transmit buffers.
327 for (i
= 0; i
< fep
->tx_ring
; i
++) {
328 if ((skb
= fep
->tx_skbuff
[i
]) == NULL
)
330 fep
->tx_skbuff
[i
] = NULL
;
335 * ...and the same for transmit.
337 for (i
= 0, bdp
= fep
->tx_bd_base
; i
< fep
->tx_ring
; i
++, bdp
++) {
338 fep
->tx_skbuff
[i
] = NULL
;
339 CBDW_BUFADDR(bdp
, virt_to_bus(NULL
));
341 CBDW_SC(bdp
, (i
< fep
->tx_ring
- 1) ? 0 : BD_SC_WRAP
);
345 * Enable big endian and don't care about SDMA FC.
347 FW(fecp
, fun_code
, 0x78000000);
352 FW(fecp
, mii_speed
, fep
->fec_phy_speed
);
355 * Clear any outstanding interrupt.
357 FW(fecp
, ievent
, 0xffc0);
358 FW(fecp
, ivec
, (fpi
->fec_irq
/ 2) << 29);
361 * adjust to speed (only for DUET & RMII)
364 cptr
= in_be32(&immap
->im_cpm
.cp_cptr
);
365 switch (fpi
->fec_no
) {
368 * check if in RMII mode
370 if ((cptr
& 0x100) == 0)
375 else if (speed
== 100)
380 * check if in RMII mode
382 if ((cptr
& 0x80) == 0)
387 else if (speed
== 100)
393 out_be32(&immap
->im_cpm
.cp_cptr
, cptr
);
396 FW(fecp
, r_cntrl
, FEC_RCNTRL_MII_MODE
); /* MII enable */
398 * adjust to duplex mode
401 FC(fecp
, r_cntrl
, FEC_RCNTRL_DRT
);
402 FS(fecp
, x_cntrl
, FEC_TCNTRL_FDEN
); /* FD enable */
404 FS(fecp
, r_cntrl
, FEC_RCNTRL_DRT
);
405 FC(fecp
, x_cntrl
, FEC_TCNTRL_FDEN
); /* FD disable */
409 * Enable interrupts we wish to service.
411 FW(fecp
, imask
, FEC_ENET_TXF
| FEC_ENET_TXB
|
412 FEC_ENET_RXF
| FEC_ENET_RXB
);
415 * And last, enable the transmit and receive processing.
417 FW(fecp
, ecntrl
, FEC_ECNTRL_PINMUX
| FEC_ECNTRL_ETHER_EN
);
418 FW(fecp
, r_des_active
, 0x01000000);
421 void fec_stop(struct net_device
*dev
)
423 struct fec_enet_private
*fep
= netdev_priv(dev
);
424 fec_t
*fecp
= fep
->fecp
;
428 if ((FR(fecp
, ecntrl
) & FEC_ECNTRL_ETHER_EN
) == 0)
429 return; /* already down */
431 FW(fecp
, x_cntrl
, 0x01); /* Graceful transmit stop */
432 for (i
= 0; ((FR(fecp
, ievent
) & 0x10000000) == 0) &&
433 i
< FEC_RESET_DELAY
; i
++)
436 if (i
== FEC_RESET_DELAY
)
437 printk(KERN_WARNING DRV_MODULE_NAME
438 ": %s FEC timeout on graceful transmit stop\n",
441 * Disable FEC. Let only MII interrupts.
444 FW(fecp
, ecntrl
, ~FEC_ECNTRL_ETHER_EN
);
447 * Reset SKB transmit buffers.
449 for (i
= 0; i
< fep
->tx_ring
; i
++) {
450 if ((skb
= fep
->tx_skbuff
[i
]) == NULL
)
452 fep
->tx_skbuff
[i
] = NULL
;
457 * Reset SKB receive buffers
459 for (i
= 0; i
< fep
->rx_ring
; i
++) {
460 if ((skb
= fep
->rx_skbuff
[i
]) == NULL
)
462 fep
->rx_skbuff
[i
] = NULL
;
467 /* common receive function */
468 static int fec_enet_rx_common(struct fec_enet_private
*ep
,
469 struct net_device
*dev
, int budget
)
471 fec_t
*fecp
= fep
->fecp
;
472 const struct fec_platform_info
*fpi
= fep
->fpi
;
474 struct sk_buff
*skb
, *skbn
, *skbt
;
480 * First, grab all of the stats for the incoming packet.
481 * These get messed up if we get called due to a busy condition.
485 /* clear RX status bits for napi*/
487 FW(fecp
, ievent
, FEC_ENET_RXF
| FEC_ENET_RXB
);
489 while (((sc
= CBDR_SC(bdp
)) & BD_ENET_RX_EMPTY
) == 0) {
491 curidx
= bdp
- fep
->rx_bd_base
;
494 * Since we have allocated space to hold a complete frame,
495 * the last indicator should be set.
497 if ((sc
& BD_ENET_RX_LAST
) == 0)
498 printk(KERN_WARNING DRV_MODULE_NAME
499 ": %s rcv is not +last\n",
505 if (sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_CL
|
506 BD_ENET_RX_NO
| BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
507 fep
->stats
.rx_errors
++;
508 /* Frame too long or too short. */
509 if (sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
))
510 fep
->stats
.rx_length_errors
++;
511 /* Frame alignment */
512 if (sc
& (BD_ENET_RX_NO
| BD_ENET_RX_CL
))
513 fep
->stats
.rx_frame_errors
++;
515 if (sc
& BD_ENET_RX_CR
)
516 fep
->stats
.rx_crc_errors
++;
518 if (sc
& BD_ENET_RX_OV
)
519 fep
->stats
.rx_crc_errors
++;
521 skbn
= fep
->rx_skbuff
[curidx
];
522 BUG_ON(skbn
== NULL
);
525 skb
= fep
->rx_skbuff
[curidx
];
529 * Process the incoming frame.
531 fep
->stats
.rx_packets
++;
532 pkt_len
= CBDR_DATLEN(bdp
) - 4; /* remove CRC */
533 fep
->stats
.rx_bytes
+= pkt_len
+ 4;
535 if (pkt_len
<= fpi
->rx_copybreak
) {
536 /* +2 to make IP header L1 cache aligned */
537 skbn
= dev_alloc_skb(pkt_len
+ 2);
539 skb_reserve(skbn
, 2); /* align IP header */
540 skb_copy_from_linear_data(skb
,
549 skbn
= dev_alloc_skb(ENET_RX_FRSIZE
);
552 skb_put(skb
, pkt_len
); /* Make room */
553 skb
->protocol
= eth_type_trans(skb
, dev
);
558 netif_receive_skb(skb
);
560 printk(KERN_WARNING DRV_MODULE_NAME
561 ": %s Memory squeeze, dropping packet.\n",
563 fep
->stats
.rx_dropped
++;
568 fep
->rx_skbuff
[curidx
] = skbn
;
569 CBDW_BUFADDR(bdp
, dma_map_single(NULL
, skbn
->data
,
570 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE
),
573 CBDW_SC(bdp
, (sc
& ~BD_ENET_RX_STATS
) | BD_ENET_RX_EMPTY
);
576 * Update BD pointer to next entry.
578 if ((sc
& BD_ENET_RX_WRAP
) == 0)
581 bdp
= fep
->rx_bd_base
;
584 * Doing this here will keep the FEC running while we process
585 * incoming frames. On a heavily loaded network, we should be
586 * able to keep up at the expense of system resources.
588 FW(fecp
, r_des_active
, 0x01000000);
590 if (received
>= budget
)
598 if (received
< budget
) {
599 netif_rx_complete(dev
, &fep
->napi
);
601 /* enable RX interrupt bits */
602 FS(fecp
, imask
, FEC_ENET_RXF
| FEC_ENET_RXB
);
609 static void fec_enet_tx(struct net_device
*dev
)
611 struct fec_enet_private
*fep
= netdev_priv(dev
);
614 int dirtyidx
, do_wake
;
617 spin_lock(&fep
->lock
);
621 while (((sc
= CBDR_SC(bdp
)) & BD_ENET_TX_READY
) == 0) {
623 dirtyidx
= bdp
- fep
->tx_bd_base
;
625 if (fep
->tx_free
== fep
->tx_ring
)
628 skb
= fep
->tx_skbuff
[dirtyidx
];
633 if (sc
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
634 BD_ENET_TX_RL
| BD_ENET_TX_UN
| BD_ENET_TX_CSL
)) {
635 fep
->stats
.tx_errors
++;
636 if (sc
& BD_ENET_TX_HB
) /* No heartbeat */
637 fep
->stats
.tx_heartbeat_errors
++;
638 if (sc
& BD_ENET_TX_LC
) /* Late collision */
639 fep
->stats
.tx_window_errors
++;
640 if (sc
& BD_ENET_TX_RL
) /* Retrans limit */
641 fep
->stats
.tx_aborted_errors
++;
642 if (sc
& BD_ENET_TX_UN
) /* Underrun */
643 fep
->stats
.tx_fifo_errors
++;
644 if (sc
& BD_ENET_TX_CSL
) /* Carrier lost */
645 fep
->stats
.tx_carrier_errors
++;
647 fep
->stats
.tx_packets
++;
649 if (sc
& BD_ENET_TX_READY
)
650 printk(KERN_WARNING DRV_MODULE_NAME
651 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
655 * Deferred means some collisions occurred during transmit,
656 * but we eventually sent the packet OK.
658 if (sc
& BD_ENET_TX_DEF
)
659 fep
->stats
.collisions
++;
662 * Free the sk buffer associated with this last transmit.
664 dev_kfree_skb_irq(skb
);
665 fep
->tx_skbuff
[dirtyidx
] = NULL
;
668 * Update pointer to next buffer descriptor to be transmitted.
670 if ((sc
& BD_ENET_TX_WRAP
) == 0)
673 bdp
= fep
->tx_bd_base
;
676 * Since we have freed up a buffer, the ring is no longer
685 spin_unlock(&fep
->lock
);
687 if (do_wake
&& netif_queue_stopped(dev
))
688 netif_wake_queue(dev
);
692 * The interrupt handler.
693 * This is called from the MPC core interrupt.
696 fec_enet_interrupt(int irq
, void *dev_id
)
698 struct net_device
*dev
= dev_id
;
699 struct fec_enet_private
*fep
;
700 const struct fec_platform_info
*fpi
;
703 __u32 int_events_napi
;
705 if (unlikely(dev
== NULL
))
708 fep
= netdev_priv(dev
);
713 * Get the interrupt events that caused us to be here.
715 while ((int_events
= FR(fecp
, ievent
) & FR(fecp
, imask
)) != 0) {
718 FW(fecp
, ievent
, int_events
);
720 int_events_napi
= int_events
& ~(FEC_ENET_RXF
| FEC_ENET_RXB
);
721 FW(fecp
, ievent
, int_events_napi
);
724 if ((int_events
& (FEC_ENET_HBERR
| FEC_ENET_BABR
|
725 FEC_ENET_BABT
| FEC_ENET_EBERR
)) != 0)
726 printk(KERN_WARNING DRV_MODULE_NAME
727 ": %s FEC ERROR(s) 0x%x\n",
728 dev
->name
, int_events
);
730 if ((int_events
& FEC_ENET_RXF
) != 0) {
732 fec_enet_rx_common(fep
, dev
, ~0);
734 if (netif_rx_schedule_prep(dev
, &fep
->napi
)) {
735 /* disable rx interrupts */
736 FC(fecp
, imask
, FEC_ENET_RXF
| FEC_ENET_RXB
);
737 __netif_rx_schedule(dev
, &fep
->napi
);
739 printk(KERN_ERR DRV_MODULE_NAME
740 ": %s driver bug! interrupt while in poll!\n",
742 FC(fecp
, imask
, FEC_ENET_RXF
| FEC_ENET_RXB
);
747 if ((int_events
& FEC_ENET_TXF
) != 0)
754 /* This interrupt occurs when the PHY detects a link change. */
756 fec_mii_link_interrupt(int irq
, void *dev_id
)
758 struct net_device
*dev
= dev_id
;
759 struct fec_enet_private
*fep
;
760 const struct fec_platform_info
*fpi
;
762 if (unlikely(dev
== NULL
))
765 fep
= netdev_priv(dev
);
772 * Acknowledge the interrupt if possible. If we have not
773 * found the PHY yet we can't process or acknowledge the
774 * interrupt now. Instead we ignore this interrupt for now,
775 * which we can do since it is edge triggered. It will be
776 * acknowledged later by fec_enet_open().
781 fec_mii_ack_int(dev
);
782 fec_mii_link_status_change_check(dev
, 0);
788 /**********************************************************************************/
790 static int fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
792 struct fec_enet_private
*fep
= netdev_priv(dev
);
793 fec_t
*fecp
= fep
->fecp
;
798 spin_lock_irqsave(&fep
->tx_lock
, flags
);
801 * Fill in a Tx ring entry
805 if (!fep
->tx_free
|| (CBDR_SC(bdp
) & BD_ENET_TX_READY
)) {
806 netif_stop_queue(dev
);
807 spin_unlock_irqrestore(&fep
->tx_lock
, flags
);
810 * Ooops. All transmit buffers are full. Bail out.
811 * This should not happen, since the tx queue should be stopped.
813 printk(KERN_WARNING DRV_MODULE_NAME
814 ": %s tx queue full!.\n", dev
->name
);
818 curidx
= bdp
- fep
->tx_bd_base
;
820 * Clear all of the status flags.
822 CBDC_SC(bdp
, BD_ENET_TX_STATS
);
827 fep
->tx_skbuff
[curidx
] = skb
;
829 fep
->stats
.tx_bytes
+= skb
->len
;
832 * Push the data cache so the CPM does not get stale memory data.
834 CBDW_BUFADDR(bdp
, dma_map_single(NULL
, skb
->data
,
835 skb
->len
, DMA_TO_DEVICE
));
836 CBDW_DATLEN(bdp
, skb
->len
);
838 dev
->trans_start
= jiffies
;
841 * If this was the last BD in the ring, start at the beginning again.
843 if ((CBDR_SC(bdp
) & BD_ENET_TX_WRAP
) == 0)
846 fep
->cur_tx
= fep
->tx_bd_base
;
849 netif_stop_queue(dev
);
852 * Trigger transmission start
854 CBDS_SC(bdp
, BD_ENET_TX_READY
| BD_ENET_TX_INTR
|
855 BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
856 FW(fecp
, x_des_active
, 0x01000000);
858 spin_unlock_irqrestore(&fep
->tx_lock
, flags
);
863 static void fec_timeout(struct net_device
*dev
)
865 struct fec_enet_private
*fep
= netdev_priv(dev
);
867 fep
->stats
.tx_errors
++;
870 netif_wake_queue(dev
);
872 /* check link status again */
873 fec_mii_link_status_change_check(dev
, 0);
876 static int fec_enet_open(struct net_device
*dev
)
878 struct fec_enet_private
*fep
= netdev_priv(dev
);
879 const struct fec_platform_info
*fpi
= fep
->fpi
;
882 napi_enable(&fep
->napi
);
884 /* Install our interrupt handler. */
885 if (request_irq(fpi
->fec_irq
, fec_enet_interrupt
, 0, "fec", dev
) != 0) {
886 printk(KERN_ERR DRV_MODULE_NAME
887 ": %s Could not allocate FEC IRQ!", dev
->name
);
888 napi_disable(&fep
->napi
);
892 /* Install our phy interrupt handler */
893 if (fpi
->phy_irq
!= -1 &&
894 request_irq(fpi
->phy_irq
, fec_mii_link_interrupt
, 0, "fec-phy",
896 printk(KERN_ERR DRV_MODULE_NAME
897 ": %s Could not allocate PHY IRQ!", dev
->name
);
898 free_irq(fpi
->fec_irq
, dev
);
899 napi_disable(&fep
->napi
);
904 fec_mii_startup(dev
);
905 netif_carrier_off(dev
);
906 fec_mii_link_status_change_check(dev
, 1);
908 spin_lock_irqsave(&fep
->lock
, flags
);
909 fec_restart(dev
, 1, 100); /* XXX this sucks */
910 spin_unlock_irqrestore(&fep
->lock
, flags
);
912 netif_carrier_on(dev
);
913 netif_start_queue(dev
);
918 static int fec_enet_close(struct net_device
*dev
)
920 struct fec_enet_private
*fep
= netdev_priv(dev
);
921 const struct fec_platform_info
*fpi
= fep
->fpi
;
924 netif_stop_queue(dev
);
925 napi_disable(&fep
->napi
);
926 netif_carrier_off(dev
);
929 fec_mii_shutdown(dev
);
931 spin_lock_irqsave(&fep
->lock
, flags
);
933 spin_unlock_irqrestore(&fep
->lock
, flags
);
935 /* release any irqs */
936 if (fpi
->phy_irq
!= -1)
937 free_irq(fpi
->phy_irq
, dev
);
938 free_irq(fpi
->fec_irq
, dev
);
943 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
)
945 struct fec_enet_private
*fep
= netdev_priv(dev
);
949 static int fec_enet_poll(struct napi_struct
*napi
, int budget
)
951 struct fec_enet_private
*fep
= container_of(napi
, struct fec_enet_private
, napi
);
952 struct net_device
*dev
= fep
->dev
;
954 return fec_enet_rx_common(fep
, dev
, budget
);
957 /*************************************************************************/
959 static void fec_get_drvinfo(struct net_device
*dev
,
960 struct ethtool_drvinfo
*info
)
962 strcpy(info
->driver
, DRV_MODULE_NAME
);
963 strcpy(info
->version
, DRV_MODULE_VERSION
);
966 static int fec_get_regs_len(struct net_device
*dev
)
968 return sizeof(fec_t
);
971 static void fec_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
974 struct fec_enet_private
*fep
= netdev_priv(dev
);
977 if (regs
->len
< sizeof(fec_t
))
981 spin_lock_irqsave(&fep
->lock
, flags
);
982 memcpy_fromio(p
, fep
->fecp
, sizeof(fec_t
));
983 spin_unlock_irqrestore(&fep
->lock
, flags
);
986 static int fec_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
988 struct fec_enet_private
*fep
= netdev_priv(dev
);
992 spin_lock_irqsave(&fep
->lock
, flags
);
993 rc
= mii_ethtool_gset(&fep
->mii_if
, cmd
);
994 spin_unlock_irqrestore(&fep
->lock
, flags
);
999 static int fec_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1001 struct fec_enet_private
*fep
= netdev_priv(dev
);
1002 unsigned long flags
;
1005 spin_lock_irqsave(&fep
->lock
, flags
);
1006 rc
= mii_ethtool_sset(&fep
->mii_if
, cmd
);
1007 spin_unlock_irqrestore(&fep
->lock
, flags
);
1012 static int fec_nway_reset(struct net_device
*dev
)
1014 struct fec_enet_private
*fep
= netdev_priv(dev
);
1015 return mii_nway_restart(&fep
->mii_if
);
1018 static __u32
fec_get_msglevel(struct net_device
*dev
)
1020 struct fec_enet_private
*fep
= netdev_priv(dev
);
1021 return fep
->msg_enable
;
1024 static void fec_set_msglevel(struct net_device
*dev
, __u32 value
)
1026 struct fec_enet_private
*fep
= netdev_priv(dev
);
1027 fep
->msg_enable
= value
;
1030 static const struct ethtool_ops fec_ethtool_ops
= {
1031 .get_drvinfo
= fec_get_drvinfo
,
1032 .get_regs_len
= fec_get_regs_len
,
1033 .get_settings
= fec_get_settings
,
1034 .set_settings
= fec_set_settings
,
1035 .nway_reset
= fec_nway_reset
,
1036 .get_link
= ethtool_op_get_link
,
1037 .get_msglevel
= fec_get_msglevel
,
1038 .set_msglevel
= fec_set_msglevel
,
1039 .set_tx_csum
= ethtool_op_set_tx_csum
, /* local! */
1040 .set_sg
= ethtool_op_set_sg
,
1041 .get_regs
= fec_get_regs
,
1044 static int fec_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1046 struct fec_enet_private
*fep
= netdev_priv(dev
);
1047 struct mii_ioctl_data
*mii
= (struct mii_ioctl_data
*)&rq
->ifr_data
;
1048 unsigned long flags
;
1051 if (!netif_running(dev
))
1054 spin_lock_irqsave(&fep
->lock
, flags
);
1055 rc
= generic_mii_ioctl(&fep
->mii_if
, mii
, cmd
, NULL
);
1056 spin_unlock_irqrestore(&fep
->lock
, flags
);
1060 int fec_8xx_init_one(const struct fec_platform_info
*fpi
,
1061 struct net_device
**devp
)
1063 immap_t
*immap
= (immap_t
*) IMAP_ADDR
;
1064 static int fec_8xx_version_printed
= 0;
1065 struct net_device
*dev
= NULL
;
1066 struct fec_enet_private
*fep
= NULL
;
1075 switch (fpi
->fec_no
) {
1077 fecp
= &((immap_t
*) IMAP_ADDR
)->im_cpm
.cp_fec
;
1081 fecp
= &((immap_t
*) IMAP_ADDR
)->im_cpm
.cp_fec2
;
1088 if (fec_8xx_version_printed
++ == 0)
1089 printk(KERN_INFO
"%s", version
);
1091 i
= sizeof(*fep
) + (sizeof(struct sk_buff
**) *
1092 (fpi
->rx_ring
+ fpi
->tx_ring
));
1094 dev
= alloc_etherdev(i
);
1100 fep
= netdev_priv(dev
);
1103 /* partial reset of FEC */
1104 fec_whack_reset(fecp
);
1106 /* point rx_skbuff, tx_skbuff */
1107 fep
->rx_skbuff
= (struct sk_buff
**)&fep
[1];
1108 fep
->tx_skbuff
= fep
->rx_skbuff
+ fpi
->rx_ring
;
1114 spin_lock_init(&fep
->lock
);
1115 spin_lock_init(&fep
->tx_lock
);
1118 * Set the Ethernet address.
1120 for (i
= 0; i
< 6; i
++)
1121 dev
->dev_addr
[i
] = fpi
->macaddr
[i
];
1123 fep
->ring_base
= dma_alloc_coherent(NULL
,
1124 (fpi
->tx_ring
+ fpi
->rx_ring
) *
1125 sizeof(cbd_t
), &fep
->ring_mem_addr
,
1127 if (fep
->ring_base
== NULL
) {
1128 printk(KERN_ERR DRV_MODULE_NAME
1129 ": %s dma alloc failed.\n", dev
->name
);
1135 * Set receive and transmit descriptor base.
1137 fep
->rx_bd_base
= fep
->ring_base
;
1138 fep
->tx_bd_base
= fep
->rx_bd_base
+ fpi
->rx_ring
;
1140 /* initialize ring size variables */
1141 fep
->tx_ring
= fpi
->tx_ring
;
1142 fep
->rx_ring
= fpi
->rx_ring
;
1145 if (fpi
->phy_irq
!= -1 &&
1146 (fpi
->phy_irq
>= SIU_IRQ0
&& fpi
->phy_irq
< SIU_LEVEL7
)) {
1148 siel
= in_be32(&immap
->im_siu_conf
.sc_siel
);
1149 if ((fpi
->phy_irq
& 1) == 0)
1150 siel
|= (0x80000000 >> fpi
->phy_irq
);
1152 siel
&= ~(0x80000000 >> (fpi
->phy_irq
& ~1));
1153 out_be32(&immap
->im_siu_conf
.sc_siel
, siel
);
1157 * The FEC Ethernet specific entries in the device structure.
1159 dev
->open
= fec_enet_open
;
1160 dev
->hard_start_xmit
= fec_enet_start_xmit
;
1161 dev
->tx_timeout
= fec_timeout
;
1162 dev
->watchdog_timeo
= TX_TIMEOUT
;
1163 dev
->stop
= fec_enet_close
;
1164 dev
->get_stats
= fec_enet_get_stats
;
1165 dev
->set_multicast_list
= fec_set_multicast_list
;
1166 dev
->set_mac_address
= fec_set_mac_address
;
1167 netif_napi_add(dev
, &fec
->napi
,
1168 fec_enet_poll
, fpi
->napi_weight
);
1170 dev
->ethtool_ops
= &fec_ethtool_ops
;
1171 dev
->do_ioctl
= fec_ioctl
;
1173 fep
->fec_phy_speed
=
1174 ((((fpi
->sys_clk
+ 4999999) / 2500000) / 2) & 0x3F) << 1;
1176 init_timer(&fep
->phy_timer_list
);
1178 /* partial reset of FEC so that only MII works */
1179 FW(fecp
, mii_speed
, fep
->fec_phy_speed
);
1180 FW(fecp
, ievent
, 0xffc0);
1181 FW(fecp
, ivec
, (fpi
->fec_irq
/ 2) << 29);
1183 FW(fecp
, r_cntrl
, FEC_RCNTRL_MII_MODE
); /* MII enable */
1184 FW(fecp
, ecntrl
, FEC_ECNTRL_PINMUX
| FEC_ECNTRL_ETHER_EN
);
1186 netif_carrier_off(dev
);
1188 err
= register_netdev(dev
);
1193 if (fpi
->use_mdio
) {
1194 fep
->mii_if
.dev
= dev
;
1195 fep
->mii_if
.mdio_read
= fec_mii_read
;
1196 fep
->mii_if
.mdio_write
= fec_mii_write
;
1197 fep
->mii_if
.phy_id_mask
= 0x1f;
1198 fep
->mii_if
.reg_num_mask
= 0x1f;
1199 fep
->mii_if
.phy_id
= fec_mii_phy_id_detect(dev
);
1209 fec_whack_reset(fecp
);
1212 unregister_netdev(dev
);
1216 dma_free_coherent(NULL
,
1219 sizeof(cbd_t
), fep
->ring_base
,
1220 fep
->ring_mem_addr
);
1227 int fec_8xx_cleanup_one(struct net_device
*dev
)
1229 struct fec_enet_private
*fep
= netdev_priv(dev
);
1230 fec_t
*fecp
= fep
->fecp
;
1231 const struct fec_platform_info
*fpi
= fep
->fpi
;
1233 fec_whack_reset(fecp
);
1235 unregister_netdev(dev
);
1237 dma_free_coherent(NULL
, (fpi
->tx_ring
+ fpi
->rx_ring
) * sizeof(cbd_t
),
1238 fep
->ring_base
, fep
->ring_mem_addr
);
1245 /**************************************************************************************/
1246 /**************************************************************************************/
1247 /**************************************************************************************/
1249 static int __init
fec_8xx_init(void)
1251 return fec_8xx_platform_init();
1254 static void __exit
fec_8xx_cleanup(void)
1256 fec_8xx_platform_cleanup();
1259 /**************************************************************************************/
1260 /**************************************************************************************/
1261 /**************************************************************************************/
1263 module_init(fec_8xx_init
);
1264 module_exit(fec_8xx_cleanup
);