2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
34 #include <linux/time.h>
35 #include <linux/ext4_jbd2.h>
36 #include <linux/jbd2.h>
37 #include <linux/highuid.h>
38 #include <linux/pagemap.h>
39 #include <linux/quotaops.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/falloc.h>
43 #include <linux/ext4_fs_extents.h>
44 #include <asm/uaccess.h>
49 * combine low and high parts of physical block number into ext4_fsblk_t
51 static ext4_fsblk_t
ext_pblock(struct ext4_extent
*ex
)
55 block
= le32_to_cpu(ex
->ee_start_lo
);
56 block
|= ((ext4_fsblk_t
) le16_to_cpu(ex
->ee_start_hi
) << 31) << 1;
62 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64 ext4_fsblk_t
idx_pblock(struct ext4_extent_idx
*ix
)
68 block
= le32_to_cpu(ix
->ei_leaf_lo
);
69 block
|= ((ext4_fsblk_t
) le16_to_cpu(ix
->ei_leaf_hi
) << 31) << 1;
74 * ext4_ext_store_pblock:
75 * stores a large physical block number into an extent struct,
76 * breaking it into parts
78 void ext4_ext_store_pblock(struct ext4_extent
*ex
, ext4_fsblk_t pb
)
80 ex
->ee_start_lo
= cpu_to_le32((unsigned long) (pb
& 0xffffffff));
81 ex
->ee_start_hi
= cpu_to_le16((unsigned long) ((pb
>> 31) >> 1) & 0xffff);
85 * ext4_idx_store_pblock:
86 * stores a large physical block number into an index struct,
87 * breaking it into parts
89 static void ext4_idx_store_pblock(struct ext4_extent_idx
*ix
, ext4_fsblk_t pb
)
91 ix
->ei_leaf_lo
= cpu_to_le32((unsigned long) (pb
& 0xffffffff));
92 ix
->ei_leaf_hi
= cpu_to_le16((unsigned long) ((pb
>> 31) >> 1) & 0xffff);
95 static handle_t
*ext4_ext_journal_restart(handle_t
*handle
, int needed
)
99 if (handle
->h_buffer_credits
> needed
)
101 if (!ext4_journal_extend(handle
, needed
))
103 err
= ext4_journal_restart(handle
, needed
);
113 static int ext4_ext_get_access(handle_t
*handle
, struct inode
*inode
,
114 struct ext4_ext_path
*path
)
117 /* path points to block */
118 return ext4_journal_get_write_access(handle
, path
->p_bh
);
120 /* path points to leaf/index in inode body */
121 /* we use in-core data, no need to protect them */
131 static int ext4_ext_dirty(handle_t
*handle
, struct inode
*inode
,
132 struct ext4_ext_path
*path
)
136 /* path points to block */
137 err
= ext4_journal_dirty_metadata(handle
, path
->p_bh
);
139 /* path points to leaf/index in inode body */
140 err
= ext4_mark_inode_dirty(handle
, inode
);
145 static ext4_fsblk_t
ext4_ext_find_goal(struct inode
*inode
,
146 struct ext4_ext_path
*path
,
149 struct ext4_inode_info
*ei
= EXT4_I(inode
);
150 ext4_fsblk_t bg_start
;
151 ext4_fsblk_t last_block
;
152 ext4_grpblk_t colour
;
156 struct ext4_extent
*ex
;
157 depth
= path
->p_depth
;
159 /* try to predict block placement */
160 ex
= path
[depth
].p_ext
;
162 return ext_pblock(ex
)+(block
-le32_to_cpu(ex
->ee_block
));
164 /* it looks like index is empty;
165 * try to find starting block from index itself */
166 if (path
[depth
].p_bh
)
167 return path
[depth
].p_bh
->b_blocknr
;
170 /* OK. use inode's group */
171 bg_start
= (ei
->i_block_group
* EXT4_BLOCKS_PER_GROUP(inode
->i_sb
)) +
172 le32_to_cpu(EXT4_SB(inode
->i_sb
)->s_es
->s_first_data_block
);
173 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
175 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
176 colour
= (current
->pid
% 16) *
177 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
179 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
180 return bg_start
+ colour
+ block
;
184 ext4_ext_new_block(handle_t
*handle
, struct inode
*inode
,
185 struct ext4_ext_path
*path
,
186 struct ext4_extent
*ex
, int *err
)
188 ext4_fsblk_t goal
, newblock
;
190 goal
= ext4_ext_find_goal(inode
, path
, le32_to_cpu(ex
->ee_block
));
191 newblock
= ext4_new_block(handle
, inode
, goal
, err
);
195 static int ext4_ext_space_block(struct inode
*inode
)
199 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
200 / sizeof(struct ext4_extent
);
201 #ifdef AGGRESSIVE_TEST
208 static int ext4_ext_space_block_idx(struct inode
*inode
)
212 size
= (inode
->i_sb
->s_blocksize
- sizeof(struct ext4_extent_header
))
213 / sizeof(struct ext4_extent_idx
);
214 #ifdef AGGRESSIVE_TEST
221 static int ext4_ext_space_root(struct inode
*inode
)
225 size
= sizeof(EXT4_I(inode
)->i_data
);
226 size
-= sizeof(struct ext4_extent_header
);
227 size
/= sizeof(struct ext4_extent
);
228 #ifdef AGGRESSIVE_TEST
235 static int ext4_ext_space_root_idx(struct inode
*inode
)
239 size
= sizeof(EXT4_I(inode
)->i_data
);
240 size
-= sizeof(struct ext4_extent_header
);
241 size
/= sizeof(struct ext4_extent_idx
);
242 #ifdef AGGRESSIVE_TEST
250 ext4_ext_max_entries(struct inode
*inode
, int depth
)
254 if (depth
== ext_depth(inode
)) {
256 max
= ext4_ext_space_root(inode
);
258 max
= ext4_ext_space_root_idx(inode
);
261 max
= ext4_ext_space_block(inode
);
263 max
= ext4_ext_space_block_idx(inode
);
269 static int __ext4_ext_check_header(const char *function
, struct inode
*inode
,
270 struct ext4_extent_header
*eh
,
273 const char *error_msg
;
276 if (unlikely(eh
->eh_magic
!= EXT4_EXT_MAGIC
)) {
277 error_msg
= "invalid magic";
280 if (unlikely(le16_to_cpu(eh
->eh_depth
) != depth
)) {
281 error_msg
= "unexpected eh_depth";
284 if (unlikely(eh
->eh_max
== 0)) {
285 error_msg
= "invalid eh_max";
288 max
= ext4_ext_max_entries(inode
, depth
);
289 if (unlikely(le16_to_cpu(eh
->eh_max
) > max
)) {
290 error_msg
= "too large eh_max";
293 if (unlikely(le16_to_cpu(eh
->eh_entries
) > le16_to_cpu(eh
->eh_max
))) {
294 error_msg
= "invalid eh_entries";
300 ext4_error(inode
->i_sb
, function
,
301 "bad header in inode #%lu: %s - magic %x, "
302 "entries %u, max %u(%u), depth %u(%u)",
303 inode
->i_ino
, error_msg
, le16_to_cpu(eh
->eh_magic
),
304 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
),
305 max
, le16_to_cpu(eh
->eh_depth
), depth
);
310 #define ext4_ext_check_header(inode, eh, depth) \
311 __ext4_ext_check_header(__FUNCTION__, inode, eh, depth)
314 static void ext4_ext_show_path(struct inode
*inode
, struct ext4_ext_path
*path
)
316 int k
, l
= path
->p_depth
;
319 for (k
= 0; k
<= l
; k
++, path
++) {
321 ext_debug(" %d->%llu", le32_to_cpu(path
->p_idx
->ei_block
),
322 idx_pblock(path
->p_idx
));
323 } else if (path
->p_ext
) {
324 ext_debug(" %d:%d:%llu ",
325 le32_to_cpu(path
->p_ext
->ee_block
),
326 ext4_ext_get_actual_len(path
->p_ext
),
327 ext_pblock(path
->p_ext
));
334 static void ext4_ext_show_leaf(struct inode
*inode
, struct ext4_ext_path
*path
)
336 int depth
= ext_depth(inode
);
337 struct ext4_extent_header
*eh
;
338 struct ext4_extent
*ex
;
344 eh
= path
[depth
].p_hdr
;
345 ex
= EXT_FIRST_EXTENT(eh
);
347 for (i
= 0; i
< le16_to_cpu(eh
->eh_entries
); i
++, ex
++) {
348 ext_debug("%d:%d:%llu ", le32_to_cpu(ex
->ee_block
),
349 ext4_ext_get_actual_len(ex
), ext_pblock(ex
));
354 #define ext4_ext_show_path(inode,path)
355 #define ext4_ext_show_leaf(inode,path)
358 void ext4_ext_drop_refs(struct ext4_ext_path
*path
)
360 int depth
= path
->p_depth
;
363 for (i
= 0; i
<= depth
; i
++, path
++)
371 * ext4_ext_binsearch_idx:
372 * binary search for the closest index of the given block
373 * the header must be checked before calling this
376 ext4_ext_binsearch_idx(struct inode
*inode
,
377 struct ext4_ext_path
*path
, ext4_lblk_t block
)
379 struct ext4_extent_header
*eh
= path
->p_hdr
;
380 struct ext4_extent_idx
*r
, *l
, *m
;
383 ext_debug("binsearch for %u(idx): ", block
);
385 l
= EXT_FIRST_INDEX(eh
) + 1;
386 r
= EXT_LAST_INDEX(eh
);
389 if (block
< le32_to_cpu(m
->ei_block
))
393 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ei_block
),
394 m
, le32_to_cpu(m
->ei_block
),
395 r
, le32_to_cpu(r
->ei_block
));
399 ext_debug(" -> %d->%lld ", le32_to_cpu(path
->p_idx
->ei_block
),
400 idx_pblock(path
->p_idx
));
402 #ifdef CHECK_BINSEARCH
404 struct ext4_extent_idx
*chix
, *ix
;
407 chix
= ix
= EXT_FIRST_INDEX(eh
);
408 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ix
++) {
410 le32_to_cpu(ix
->ei_block
) <= le32_to_cpu(ix
[-1].ei_block
)) {
411 printk("k=%d, ix=0x%p, first=0x%p\n", k
,
412 ix
, EXT_FIRST_INDEX(eh
));
414 le32_to_cpu(ix
->ei_block
),
415 le32_to_cpu(ix
[-1].ei_block
));
417 BUG_ON(k
&& le32_to_cpu(ix
->ei_block
)
418 <= le32_to_cpu(ix
[-1].ei_block
));
419 if (block
< le32_to_cpu(ix
->ei_block
))
423 BUG_ON(chix
!= path
->p_idx
);
430 * ext4_ext_binsearch:
431 * binary search for closest extent of the given block
432 * the header must be checked before calling this
435 ext4_ext_binsearch(struct inode
*inode
,
436 struct ext4_ext_path
*path
, ext4_lblk_t block
)
438 struct ext4_extent_header
*eh
= path
->p_hdr
;
439 struct ext4_extent
*r
, *l
, *m
;
441 if (eh
->eh_entries
== 0) {
443 * this leaf is empty:
444 * we get such a leaf in split/add case
449 ext_debug("binsearch for %u: ", block
);
451 l
= EXT_FIRST_EXTENT(eh
) + 1;
452 r
= EXT_LAST_EXTENT(eh
);
456 if (block
< le32_to_cpu(m
->ee_block
))
460 ext_debug("%p(%u):%p(%u):%p(%u) ", l
, le32_to_cpu(l
->ee_block
),
461 m
, le32_to_cpu(m
->ee_block
),
462 r
, le32_to_cpu(r
->ee_block
));
466 ext_debug(" -> %d:%llu:%d ",
467 le32_to_cpu(path
->p_ext
->ee_block
),
468 ext_pblock(path
->p_ext
),
469 ext4_ext_get_actual_len(path
->p_ext
));
471 #ifdef CHECK_BINSEARCH
473 struct ext4_extent
*chex
, *ex
;
476 chex
= ex
= EXT_FIRST_EXTENT(eh
);
477 for (k
= 0; k
< le16_to_cpu(eh
->eh_entries
); k
++, ex
++) {
478 BUG_ON(k
&& le32_to_cpu(ex
->ee_block
)
479 <= le32_to_cpu(ex
[-1].ee_block
));
480 if (block
< le32_to_cpu(ex
->ee_block
))
484 BUG_ON(chex
!= path
->p_ext
);
490 int ext4_ext_tree_init(handle_t
*handle
, struct inode
*inode
)
492 struct ext4_extent_header
*eh
;
494 eh
= ext_inode_hdr(inode
);
497 eh
->eh_magic
= EXT4_EXT_MAGIC
;
498 eh
->eh_max
= cpu_to_le16(ext4_ext_space_root(inode
));
499 ext4_mark_inode_dirty(handle
, inode
);
500 ext4_ext_invalidate_cache(inode
);
504 struct ext4_ext_path
*
505 ext4_ext_find_extent(struct inode
*inode
, ext4_lblk_t block
,
506 struct ext4_ext_path
*path
)
508 struct ext4_extent_header
*eh
;
509 struct buffer_head
*bh
;
510 short int depth
, i
, ppos
= 0, alloc
= 0;
512 eh
= ext_inode_hdr(inode
);
513 depth
= ext_depth(inode
);
514 if (ext4_ext_check_header(inode
, eh
, depth
))
515 return ERR_PTR(-EIO
);
518 /* account possible depth increase */
520 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 2),
523 return ERR_PTR(-ENOMEM
);
529 /* walk through the tree */
531 ext_debug("depth %d: num %d, max %d\n",
532 ppos
, le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
534 ext4_ext_binsearch_idx(inode
, path
+ ppos
, block
);
535 path
[ppos
].p_block
= idx_pblock(path
[ppos
].p_idx
);
536 path
[ppos
].p_depth
= i
;
537 path
[ppos
].p_ext
= NULL
;
539 bh
= sb_bread(inode
->i_sb
, path
[ppos
].p_block
);
543 eh
= ext_block_hdr(bh
);
545 BUG_ON(ppos
> depth
);
546 path
[ppos
].p_bh
= bh
;
547 path
[ppos
].p_hdr
= eh
;
550 if (ext4_ext_check_header(inode
, eh
, i
))
554 path
[ppos
].p_depth
= i
;
555 path
[ppos
].p_hdr
= eh
;
556 path
[ppos
].p_ext
= NULL
;
557 path
[ppos
].p_idx
= NULL
;
560 ext4_ext_binsearch(inode
, path
+ ppos
, block
);
562 ext4_ext_show_path(inode
, path
);
567 ext4_ext_drop_refs(path
);
570 return ERR_PTR(-EIO
);
574 * ext4_ext_insert_index:
575 * insert new index [@logical;@ptr] into the block at @curp;
576 * check where to insert: before @curp or after @curp
578 static int ext4_ext_insert_index(handle_t
*handle
, struct inode
*inode
,
579 struct ext4_ext_path
*curp
,
580 int logical
, ext4_fsblk_t ptr
)
582 struct ext4_extent_idx
*ix
;
585 err
= ext4_ext_get_access(handle
, inode
, curp
);
589 BUG_ON(logical
== le32_to_cpu(curp
->p_idx
->ei_block
));
590 len
= EXT_MAX_INDEX(curp
->p_hdr
) - curp
->p_idx
;
591 if (logical
> le32_to_cpu(curp
->p_idx
->ei_block
)) {
593 if (curp
->p_idx
!= EXT_LAST_INDEX(curp
->p_hdr
)) {
594 len
= (len
- 1) * sizeof(struct ext4_extent_idx
);
595 len
= len
< 0 ? 0 : len
;
596 ext_debug("insert new index %d after: %llu. "
597 "move %d from 0x%p to 0x%p\n",
599 (curp
->p_idx
+ 1), (curp
->p_idx
+ 2));
600 memmove(curp
->p_idx
+ 2, curp
->p_idx
+ 1, len
);
602 ix
= curp
->p_idx
+ 1;
605 len
= len
* sizeof(struct ext4_extent_idx
);
606 len
= len
< 0 ? 0 : len
;
607 ext_debug("insert new index %d before: %llu. "
608 "move %d from 0x%p to 0x%p\n",
610 curp
->p_idx
, (curp
->p_idx
+ 1));
611 memmove(curp
->p_idx
+ 1, curp
->p_idx
, len
);
615 ix
->ei_block
= cpu_to_le32(logical
);
616 ext4_idx_store_pblock(ix
, ptr
);
617 curp
->p_hdr
->eh_entries
= cpu_to_le16(le16_to_cpu(curp
->p_hdr
->eh_entries
)+1);
619 BUG_ON(le16_to_cpu(curp
->p_hdr
->eh_entries
)
620 > le16_to_cpu(curp
->p_hdr
->eh_max
));
621 BUG_ON(ix
> EXT_LAST_INDEX(curp
->p_hdr
));
623 err
= ext4_ext_dirty(handle
, inode
, curp
);
624 ext4_std_error(inode
->i_sb
, err
);
631 * inserts new subtree into the path, using free index entry
633 * - allocates all needed blocks (new leaf and all intermediate index blocks)
634 * - makes decision where to split
635 * - moves remaining extents and index entries (right to the split point)
636 * into the newly allocated blocks
637 * - initializes subtree
639 static int ext4_ext_split(handle_t
*handle
, struct inode
*inode
,
640 struct ext4_ext_path
*path
,
641 struct ext4_extent
*newext
, int at
)
643 struct buffer_head
*bh
= NULL
;
644 int depth
= ext_depth(inode
);
645 struct ext4_extent_header
*neh
;
646 struct ext4_extent_idx
*fidx
;
647 struct ext4_extent
*ex
;
649 ext4_fsblk_t newblock
, oldblock
;
651 ext4_fsblk_t
*ablocks
= NULL
; /* array of allocated blocks */
654 /* make decision: where to split? */
655 /* FIXME: now decision is simplest: at current extent */
657 /* if current leaf will be split, then we should use
658 * border from split point */
659 BUG_ON(path
[depth
].p_ext
> EXT_MAX_EXTENT(path
[depth
].p_hdr
));
660 if (path
[depth
].p_ext
!= EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
661 border
= path
[depth
].p_ext
[1].ee_block
;
662 ext_debug("leaf will be split."
663 " next leaf starts at %d\n",
664 le32_to_cpu(border
));
666 border
= newext
->ee_block
;
667 ext_debug("leaf will be added."
668 " next leaf starts at %d\n",
669 le32_to_cpu(border
));
673 * If error occurs, then we break processing
674 * and mark filesystem read-only. index won't
675 * be inserted and tree will be in consistent
676 * state. Next mount will repair buffers too.
680 * Get array to track all allocated blocks.
681 * We need this to handle errors and free blocks
684 ablocks
= kzalloc(sizeof(ext4_fsblk_t
) * depth
, GFP_NOFS
);
688 /* allocate all needed blocks */
689 ext_debug("allocate %d blocks for indexes/leaf\n", depth
- at
);
690 for (a
= 0; a
< depth
- at
; a
++) {
691 newblock
= ext4_ext_new_block(handle
, inode
, path
, newext
, &err
);
694 ablocks
[a
] = newblock
;
697 /* initialize new leaf */
698 newblock
= ablocks
[--a
];
699 BUG_ON(newblock
== 0);
700 bh
= sb_getblk(inode
->i_sb
, newblock
);
707 err
= ext4_journal_get_create_access(handle
, bh
);
711 neh
= ext_block_hdr(bh
);
713 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
));
714 neh
->eh_magic
= EXT4_EXT_MAGIC
;
716 ex
= EXT_FIRST_EXTENT(neh
);
718 /* move remainder of path[depth] to the new leaf */
719 BUG_ON(path
[depth
].p_hdr
->eh_entries
!= path
[depth
].p_hdr
->eh_max
);
720 /* start copy from next extent */
721 /* TODO: we could do it by single memmove */
724 while (path
[depth
].p_ext
<=
725 EXT_MAX_EXTENT(path
[depth
].p_hdr
)) {
726 ext_debug("move %d:%llu:%d in new leaf %llu\n",
727 le32_to_cpu(path
[depth
].p_ext
->ee_block
),
728 ext_pblock(path
[depth
].p_ext
),
729 ext4_ext_get_actual_len(path
[depth
].p_ext
),
731 /*memmove(ex++, path[depth].p_ext++,
732 sizeof(struct ext4_extent));
738 memmove(ex
, path
[depth
].p_ext
-m
, sizeof(struct ext4_extent
)*m
);
739 neh
->eh_entries
= cpu_to_le16(le16_to_cpu(neh
->eh_entries
)+m
);
742 set_buffer_uptodate(bh
);
745 err
= ext4_journal_dirty_metadata(handle
, bh
);
751 /* correct old leaf */
753 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
756 path
[depth
].p_hdr
->eh_entries
=
757 cpu_to_le16(le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)-m
);
758 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
764 /* create intermediate indexes */
768 ext_debug("create %d intermediate indices\n", k
);
769 /* insert new index into current index block */
770 /* current depth stored in i var */
774 newblock
= ablocks
[--a
];
775 bh
= sb_getblk(inode
->i_sb
, newblock
);
782 err
= ext4_journal_get_create_access(handle
, bh
);
786 neh
= ext_block_hdr(bh
);
787 neh
->eh_entries
= cpu_to_le16(1);
788 neh
->eh_magic
= EXT4_EXT_MAGIC
;
789 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
));
790 neh
->eh_depth
= cpu_to_le16(depth
- i
);
791 fidx
= EXT_FIRST_INDEX(neh
);
792 fidx
->ei_block
= border
;
793 ext4_idx_store_pblock(fidx
, oldblock
);
795 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
796 i
, newblock
, le32_to_cpu(border
), oldblock
);
801 ext_debug("cur 0x%p, last 0x%p\n", path
[i
].p_idx
,
802 EXT_MAX_INDEX(path
[i
].p_hdr
));
803 BUG_ON(EXT_MAX_INDEX(path
[i
].p_hdr
) !=
804 EXT_LAST_INDEX(path
[i
].p_hdr
));
805 while (path
[i
].p_idx
<= EXT_MAX_INDEX(path
[i
].p_hdr
)) {
806 ext_debug("%d: move %d:%llu in new index %llu\n", i
,
807 le32_to_cpu(path
[i
].p_idx
->ei_block
),
808 idx_pblock(path
[i
].p_idx
),
810 /*memmove(++fidx, path[i].p_idx++,
811 sizeof(struct ext4_extent_idx));
813 BUG_ON(neh->eh_entries > neh->eh_max);*/
818 memmove(++fidx
, path
[i
].p_idx
- m
,
819 sizeof(struct ext4_extent_idx
) * m
);
821 cpu_to_le16(le16_to_cpu(neh
->eh_entries
) + m
);
823 set_buffer_uptodate(bh
);
826 err
= ext4_journal_dirty_metadata(handle
, bh
);
832 /* correct old index */
834 err
= ext4_ext_get_access(handle
, inode
, path
+ i
);
837 path
[i
].p_hdr
->eh_entries
= cpu_to_le16(le16_to_cpu(path
[i
].p_hdr
->eh_entries
)-m
);
838 err
= ext4_ext_dirty(handle
, inode
, path
+ i
);
846 /* insert new index */
847 err
= ext4_ext_insert_index(handle
, inode
, path
+ at
,
848 le32_to_cpu(border
), newblock
);
852 if (buffer_locked(bh
))
858 /* free all allocated blocks in error case */
859 for (i
= 0; i
< depth
; i
++) {
862 ext4_free_blocks(handle
, inode
, ablocks
[i
], 1, 1);
871 * ext4_ext_grow_indepth:
872 * implements tree growing procedure:
873 * - allocates new block
874 * - moves top-level data (index block or leaf) into the new block
875 * - initializes new top-level, creating index that points to the
878 static int ext4_ext_grow_indepth(handle_t
*handle
, struct inode
*inode
,
879 struct ext4_ext_path
*path
,
880 struct ext4_extent
*newext
)
882 struct ext4_ext_path
*curp
= path
;
883 struct ext4_extent_header
*neh
;
884 struct ext4_extent_idx
*fidx
;
885 struct buffer_head
*bh
;
886 ext4_fsblk_t newblock
;
889 newblock
= ext4_ext_new_block(handle
, inode
, path
, newext
, &err
);
893 bh
= sb_getblk(inode
->i_sb
, newblock
);
896 ext4_std_error(inode
->i_sb
, err
);
901 err
= ext4_journal_get_create_access(handle
, bh
);
907 /* move top-level index/leaf into new block */
908 memmove(bh
->b_data
, curp
->p_hdr
, sizeof(EXT4_I(inode
)->i_data
));
910 /* set size of new block */
911 neh
= ext_block_hdr(bh
);
912 /* old root could have indexes or leaves
913 * so calculate e_max right way */
914 if (ext_depth(inode
))
915 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block_idx(inode
));
917 neh
->eh_max
= cpu_to_le16(ext4_ext_space_block(inode
));
918 neh
->eh_magic
= EXT4_EXT_MAGIC
;
919 set_buffer_uptodate(bh
);
922 err
= ext4_journal_dirty_metadata(handle
, bh
);
926 /* create index in new top-level index: num,max,pointer */
927 err
= ext4_ext_get_access(handle
, inode
, curp
);
931 curp
->p_hdr
->eh_magic
= EXT4_EXT_MAGIC
;
932 curp
->p_hdr
->eh_max
= cpu_to_le16(ext4_ext_space_root_idx(inode
));
933 curp
->p_hdr
->eh_entries
= cpu_to_le16(1);
934 curp
->p_idx
= EXT_FIRST_INDEX(curp
->p_hdr
);
936 if (path
[0].p_hdr
->eh_depth
)
937 curp
->p_idx
->ei_block
=
938 EXT_FIRST_INDEX(path
[0].p_hdr
)->ei_block
;
940 curp
->p_idx
->ei_block
=
941 EXT_FIRST_EXTENT(path
[0].p_hdr
)->ee_block
;
942 ext4_idx_store_pblock(curp
->p_idx
, newblock
);
944 neh
= ext_inode_hdr(inode
);
945 fidx
= EXT_FIRST_INDEX(neh
);
946 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
947 le16_to_cpu(neh
->eh_entries
), le16_to_cpu(neh
->eh_max
),
948 le32_to_cpu(fidx
->ei_block
), idx_pblock(fidx
));
950 neh
->eh_depth
= cpu_to_le16(path
->p_depth
+ 1);
951 err
= ext4_ext_dirty(handle
, inode
, curp
);
959 * ext4_ext_create_new_leaf:
960 * finds empty index and adds new leaf.
961 * if no free index is found, then it requests in-depth growing.
963 static int ext4_ext_create_new_leaf(handle_t
*handle
, struct inode
*inode
,
964 struct ext4_ext_path
*path
,
965 struct ext4_extent
*newext
)
967 struct ext4_ext_path
*curp
;
968 int depth
, i
, err
= 0;
971 i
= depth
= ext_depth(inode
);
973 /* walk up to the tree and look for free index entry */
975 while (i
> 0 && !EXT_HAS_FREE_INDEX(curp
)) {
980 /* we use already allocated block for index block,
981 * so subsequent data blocks should be contiguous */
982 if (EXT_HAS_FREE_INDEX(curp
)) {
983 /* if we found index with free entry, then use that
984 * entry: create all needed subtree and add new leaf */
985 err
= ext4_ext_split(handle
, inode
, path
, newext
, i
);
988 ext4_ext_drop_refs(path
);
989 path
= ext4_ext_find_extent(inode
,
990 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
995 /* tree is full, time to grow in depth */
996 err
= ext4_ext_grow_indepth(handle
, inode
, path
, newext
);
1001 ext4_ext_drop_refs(path
);
1002 path
= ext4_ext_find_extent(inode
,
1003 (ext4_lblk_t
)le32_to_cpu(newext
->ee_block
),
1006 err
= PTR_ERR(path
);
1011 * only first (depth 0 -> 1) produces free space;
1012 * in all other cases we have to split the grown tree
1014 depth
= ext_depth(inode
);
1015 if (path
[depth
].p_hdr
->eh_entries
== path
[depth
].p_hdr
->eh_max
) {
1016 /* now we need to split */
1026 * search the closest allocated block to the left for *logical
1027 * and returns it at @logical + it's physical address at @phys
1028 * if *logical is the smallest allocated block, the function
1029 * returns 0 at @phys
1030 * return value contains 0 (success) or error code
1033 ext4_ext_search_left(struct inode
*inode
, struct ext4_ext_path
*path
,
1034 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
)
1036 struct ext4_extent_idx
*ix
;
1037 struct ext4_extent
*ex
;
1040 BUG_ON(path
== NULL
);
1041 depth
= path
->p_depth
;
1044 if (depth
== 0 && path
->p_ext
== NULL
)
1047 /* usually extent in the path covers blocks smaller
1048 * then *logical, but it can be that extent is the
1049 * first one in the file */
1051 ex
= path
[depth
].p_ext
;
1052 ee_len
= ext4_ext_get_actual_len(ex
);
1053 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1054 BUG_ON(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
);
1055 while (--depth
>= 0) {
1056 ix
= path
[depth
].p_idx
;
1057 BUG_ON(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
));
1062 BUG_ON(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
));
1064 *logical
= le32_to_cpu(ex
->ee_block
) + ee_len
- 1;
1065 *phys
= ext_pblock(ex
) + ee_len
- 1;
1070 * search the closest allocated block to the right for *logical
1071 * and returns it at @logical + it's physical address at @phys
1072 * if *logical is the smallest allocated block, the function
1073 * returns 0 at @phys
1074 * return value contains 0 (success) or error code
1077 ext4_ext_search_right(struct inode
*inode
, struct ext4_ext_path
*path
,
1078 ext4_lblk_t
*logical
, ext4_fsblk_t
*phys
)
1080 struct buffer_head
*bh
= NULL
;
1081 struct ext4_extent_header
*eh
;
1082 struct ext4_extent_idx
*ix
;
1083 struct ext4_extent
*ex
;
1087 BUG_ON(path
== NULL
);
1088 depth
= path
->p_depth
;
1091 if (depth
== 0 && path
->p_ext
== NULL
)
1094 /* usually extent in the path covers blocks smaller
1095 * then *logical, but it can be that extent is the
1096 * first one in the file */
1098 ex
= path
[depth
].p_ext
;
1099 ee_len
= ext4_ext_get_actual_len(ex
);
1100 if (*logical
< le32_to_cpu(ex
->ee_block
)) {
1101 BUG_ON(EXT_FIRST_EXTENT(path
[depth
].p_hdr
) != ex
);
1102 while (--depth
>= 0) {
1103 ix
= path
[depth
].p_idx
;
1104 BUG_ON(ix
!= EXT_FIRST_INDEX(path
[depth
].p_hdr
));
1106 *logical
= le32_to_cpu(ex
->ee_block
);
1107 *phys
= ext_pblock(ex
);
1111 BUG_ON(*logical
< (le32_to_cpu(ex
->ee_block
) + ee_len
));
1113 if (ex
!= EXT_LAST_EXTENT(path
[depth
].p_hdr
)) {
1114 /* next allocated block in this leaf */
1116 *logical
= le32_to_cpu(ex
->ee_block
);
1117 *phys
= ext_pblock(ex
);
1121 /* go up and search for index to the right */
1122 while (--depth
>= 0) {
1123 ix
= path
[depth
].p_idx
;
1124 if (ix
!= EXT_LAST_INDEX(path
[depth
].p_hdr
))
1129 /* we've gone up to the root and
1130 * found no index to the right */
1134 /* we've found index to the right, let's
1135 * follow it and find the closest allocated
1136 * block to the right */
1138 block
= idx_pblock(ix
);
1139 while (++depth
< path
->p_depth
) {
1140 bh
= sb_bread(inode
->i_sb
, block
);
1143 eh
= ext_block_hdr(bh
);
1144 if (ext4_ext_check_header(inode
, eh
, depth
)) {
1148 ix
= EXT_FIRST_INDEX(eh
);
1149 block
= idx_pblock(ix
);
1153 bh
= sb_bread(inode
->i_sb
, block
);
1156 eh
= ext_block_hdr(bh
);
1157 if (ext4_ext_check_header(inode
, eh
, path
->p_depth
- depth
)) {
1161 ex
= EXT_FIRST_EXTENT(eh
);
1162 *logical
= le32_to_cpu(ex
->ee_block
);
1163 *phys
= ext_pblock(ex
);
1170 * ext4_ext_next_allocated_block:
1171 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1172 * NOTE: it considers block number from index entry as
1173 * allocated block. Thus, index entries have to be consistent
1177 ext4_ext_next_allocated_block(struct ext4_ext_path
*path
)
1181 BUG_ON(path
== NULL
);
1182 depth
= path
->p_depth
;
1184 if (depth
== 0 && path
->p_ext
== NULL
)
1185 return EXT_MAX_BLOCK
;
1187 while (depth
>= 0) {
1188 if (depth
== path
->p_depth
) {
1190 if (path
[depth
].p_ext
!=
1191 EXT_LAST_EXTENT(path
[depth
].p_hdr
))
1192 return le32_to_cpu(path
[depth
].p_ext
[1].ee_block
);
1195 if (path
[depth
].p_idx
!=
1196 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1197 return le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1202 return EXT_MAX_BLOCK
;
1206 * ext4_ext_next_leaf_block:
1207 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1209 static ext4_lblk_t
ext4_ext_next_leaf_block(struct inode
*inode
,
1210 struct ext4_ext_path
*path
)
1214 BUG_ON(path
== NULL
);
1215 depth
= path
->p_depth
;
1217 /* zero-tree has no leaf blocks at all */
1219 return EXT_MAX_BLOCK
;
1221 /* go to index block */
1224 while (depth
>= 0) {
1225 if (path
[depth
].p_idx
!=
1226 EXT_LAST_INDEX(path
[depth
].p_hdr
))
1227 return (ext4_lblk_t
)
1228 le32_to_cpu(path
[depth
].p_idx
[1].ei_block
);
1232 return EXT_MAX_BLOCK
;
1236 * ext4_ext_correct_indexes:
1237 * if leaf gets modified and modified extent is first in the leaf,
1238 * then we have to correct all indexes above.
1239 * TODO: do we need to correct tree in all cases?
1241 static int ext4_ext_correct_indexes(handle_t
*handle
, struct inode
*inode
,
1242 struct ext4_ext_path
*path
)
1244 struct ext4_extent_header
*eh
;
1245 int depth
= ext_depth(inode
);
1246 struct ext4_extent
*ex
;
1250 eh
= path
[depth
].p_hdr
;
1251 ex
= path
[depth
].p_ext
;
1256 /* there is no tree at all */
1260 if (ex
!= EXT_FIRST_EXTENT(eh
)) {
1261 /* we correct tree if first leaf got modified only */
1266 * TODO: we need correction if border is smaller than current one
1269 border
= path
[depth
].p_ext
->ee_block
;
1270 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1273 path
[k
].p_idx
->ei_block
= border
;
1274 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1279 /* change all left-side indexes */
1280 if (path
[k
+1].p_idx
!= EXT_FIRST_INDEX(path
[k
+1].p_hdr
))
1282 err
= ext4_ext_get_access(handle
, inode
, path
+ k
);
1285 path
[k
].p_idx
->ei_block
= border
;
1286 err
= ext4_ext_dirty(handle
, inode
, path
+ k
);
1295 ext4_can_extents_be_merged(struct inode
*inode
, struct ext4_extent
*ex1
,
1296 struct ext4_extent
*ex2
)
1298 unsigned short ext1_ee_len
, ext2_ee_len
, max_len
;
1301 * Make sure that either both extents are uninitialized, or
1304 if (ext4_ext_is_uninitialized(ex1
) ^ ext4_ext_is_uninitialized(ex2
))
1307 if (ext4_ext_is_uninitialized(ex1
))
1308 max_len
= EXT_UNINIT_MAX_LEN
;
1310 max_len
= EXT_INIT_MAX_LEN
;
1312 ext1_ee_len
= ext4_ext_get_actual_len(ex1
);
1313 ext2_ee_len
= ext4_ext_get_actual_len(ex2
);
1315 if (le32_to_cpu(ex1
->ee_block
) + ext1_ee_len
!=
1316 le32_to_cpu(ex2
->ee_block
))
1320 * To allow future support for preallocated extents to be added
1321 * as an RO_COMPAT feature, refuse to merge to extents if
1322 * this can result in the top bit of ee_len being set.
1324 if (ext1_ee_len
+ ext2_ee_len
> max_len
)
1326 #ifdef AGGRESSIVE_TEST
1327 if (ext1_ee_len
>= 4)
1331 if (ext_pblock(ex1
) + ext1_ee_len
== ext_pblock(ex2
))
1337 * This function tries to merge the "ex" extent to the next extent in the tree.
1338 * It always tries to merge towards right. If you want to merge towards
1339 * left, pass "ex - 1" as argument instead of "ex".
1340 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1341 * 1 if they got merged.
1343 int ext4_ext_try_to_merge(struct inode
*inode
,
1344 struct ext4_ext_path
*path
,
1345 struct ext4_extent
*ex
)
1347 struct ext4_extent_header
*eh
;
1348 unsigned int depth
, len
;
1350 int uninitialized
= 0;
1352 depth
= ext_depth(inode
);
1353 BUG_ON(path
[depth
].p_hdr
== NULL
);
1354 eh
= path
[depth
].p_hdr
;
1356 while (ex
< EXT_LAST_EXTENT(eh
)) {
1357 if (!ext4_can_extents_be_merged(inode
, ex
, ex
+ 1))
1359 /* merge with next extent! */
1360 if (ext4_ext_is_uninitialized(ex
))
1362 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1363 + ext4_ext_get_actual_len(ex
+ 1));
1365 ext4_ext_mark_uninitialized(ex
);
1367 if (ex
+ 1 < EXT_LAST_EXTENT(eh
)) {
1368 len
= (EXT_LAST_EXTENT(eh
) - ex
- 1)
1369 * sizeof(struct ext4_extent
);
1370 memmove(ex
+ 1, ex
+ 2, len
);
1372 eh
->eh_entries
= cpu_to_le16(le16_to_cpu(eh
->eh_entries
) - 1);
1374 WARN_ON(eh
->eh_entries
== 0);
1375 if (!eh
->eh_entries
)
1376 ext4_error(inode
->i_sb
, "ext4_ext_try_to_merge",
1377 "inode#%lu, eh->eh_entries = 0!", inode
->i_ino
);
1384 * check if a portion of the "newext" extent overlaps with an
1387 * If there is an overlap discovered, it updates the length of the newext
1388 * such that there will be no overlap, and then returns 1.
1389 * If there is no overlap found, it returns 0.
1391 unsigned int ext4_ext_check_overlap(struct inode
*inode
,
1392 struct ext4_extent
*newext
,
1393 struct ext4_ext_path
*path
)
1396 unsigned int depth
, len1
;
1397 unsigned int ret
= 0;
1399 b1
= le32_to_cpu(newext
->ee_block
);
1400 len1
= ext4_ext_get_actual_len(newext
);
1401 depth
= ext_depth(inode
);
1402 if (!path
[depth
].p_ext
)
1404 b2
= le32_to_cpu(path
[depth
].p_ext
->ee_block
);
1407 * get the next allocated block if the extent in the path
1408 * is before the requested block(s)
1411 b2
= ext4_ext_next_allocated_block(path
);
1412 if (b2
== EXT_MAX_BLOCK
)
1416 /* check for wrap through zero on extent logical start block*/
1417 if (b1
+ len1
< b1
) {
1418 len1
= EXT_MAX_BLOCK
- b1
;
1419 newext
->ee_len
= cpu_to_le16(len1
);
1423 /* check for overlap */
1424 if (b1
+ len1
> b2
) {
1425 newext
->ee_len
= cpu_to_le16(b2
- b1
);
1433 * ext4_ext_insert_extent:
1434 * tries to merge requsted extent into the existing extent or
1435 * inserts requested extent as new one into the tree,
1436 * creating new leaf in the no-space case.
1438 int ext4_ext_insert_extent(handle_t
*handle
, struct inode
*inode
,
1439 struct ext4_ext_path
*path
,
1440 struct ext4_extent
*newext
)
1442 struct ext4_extent_header
* eh
;
1443 struct ext4_extent
*ex
, *fex
;
1444 struct ext4_extent
*nearex
; /* nearest extent */
1445 struct ext4_ext_path
*npath
= NULL
;
1446 int depth
, len
, err
;
1448 unsigned uninitialized
= 0;
1450 BUG_ON(ext4_ext_get_actual_len(newext
) == 0);
1451 depth
= ext_depth(inode
);
1452 ex
= path
[depth
].p_ext
;
1453 BUG_ON(path
[depth
].p_hdr
== NULL
);
1455 /* try to insert block into found extent and return */
1456 if (ex
&& ext4_can_extents_be_merged(inode
, ex
, newext
)) {
1457 ext_debug("append %d block to %d:%d (from %llu)\n",
1458 ext4_ext_get_actual_len(newext
),
1459 le32_to_cpu(ex
->ee_block
),
1460 ext4_ext_get_actual_len(ex
), ext_pblock(ex
));
1461 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1466 * ext4_can_extents_be_merged should have checked that either
1467 * both extents are uninitialized, or both aren't. Thus we
1468 * need to check only one of them here.
1470 if (ext4_ext_is_uninitialized(ex
))
1472 ex
->ee_len
= cpu_to_le16(ext4_ext_get_actual_len(ex
)
1473 + ext4_ext_get_actual_len(newext
));
1475 ext4_ext_mark_uninitialized(ex
);
1476 eh
= path
[depth
].p_hdr
;
1482 depth
= ext_depth(inode
);
1483 eh
= path
[depth
].p_hdr
;
1484 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
))
1487 /* probably next leaf has space for us? */
1488 fex
= EXT_LAST_EXTENT(eh
);
1489 next
= ext4_ext_next_leaf_block(inode
, path
);
1490 if (le32_to_cpu(newext
->ee_block
) > le32_to_cpu(fex
->ee_block
)
1491 && next
!= EXT_MAX_BLOCK
) {
1492 ext_debug("next leaf block - %d\n", next
);
1493 BUG_ON(npath
!= NULL
);
1494 npath
= ext4_ext_find_extent(inode
, next
, NULL
);
1496 return PTR_ERR(npath
);
1497 BUG_ON(npath
->p_depth
!= path
->p_depth
);
1498 eh
= npath
[depth
].p_hdr
;
1499 if (le16_to_cpu(eh
->eh_entries
) < le16_to_cpu(eh
->eh_max
)) {
1500 ext_debug("next leaf isnt full(%d)\n",
1501 le16_to_cpu(eh
->eh_entries
));
1505 ext_debug("next leaf has no free space(%d,%d)\n",
1506 le16_to_cpu(eh
->eh_entries
), le16_to_cpu(eh
->eh_max
));
1510 * There is no free space in the found leaf.
1511 * We're gonna add a new leaf in the tree.
1513 err
= ext4_ext_create_new_leaf(handle
, inode
, path
, newext
);
1516 depth
= ext_depth(inode
);
1517 eh
= path
[depth
].p_hdr
;
1520 nearex
= path
[depth
].p_ext
;
1522 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1527 /* there is no extent in this leaf, create first one */
1528 ext_debug("first extent in the leaf: %d:%llu:%d\n",
1529 le32_to_cpu(newext
->ee_block
),
1531 ext4_ext_get_actual_len(newext
));
1532 path
[depth
].p_ext
= EXT_FIRST_EXTENT(eh
);
1533 } else if (le32_to_cpu(newext
->ee_block
)
1534 > le32_to_cpu(nearex
->ee_block
)) {
1535 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1536 if (nearex
!= EXT_LAST_EXTENT(eh
)) {
1537 len
= EXT_MAX_EXTENT(eh
) - nearex
;
1538 len
= (len
- 1) * sizeof(struct ext4_extent
);
1539 len
= len
< 0 ? 0 : len
;
1540 ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1541 "move %d from 0x%p to 0x%p\n",
1542 le32_to_cpu(newext
->ee_block
),
1544 ext4_ext_get_actual_len(newext
),
1545 nearex
, len
, nearex
+ 1, nearex
+ 2);
1546 memmove(nearex
+ 2, nearex
+ 1, len
);
1548 path
[depth
].p_ext
= nearex
+ 1;
1550 BUG_ON(newext
->ee_block
== nearex
->ee_block
);
1551 len
= (EXT_MAX_EXTENT(eh
) - nearex
) * sizeof(struct ext4_extent
);
1552 len
= len
< 0 ? 0 : len
;
1553 ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1554 "move %d from 0x%p to 0x%p\n",
1555 le32_to_cpu(newext
->ee_block
),
1557 ext4_ext_get_actual_len(newext
),
1558 nearex
, len
, nearex
+ 1, nearex
+ 2);
1559 memmove(nearex
+ 1, nearex
, len
);
1560 path
[depth
].p_ext
= nearex
;
1563 eh
->eh_entries
= cpu_to_le16(le16_to_cpu(eh
->eh_entries
)+1);
1564 nearex
= path
[depth
].p_ext
;
1565 nearex
->ee_block
= newext
->ee_block
;
1566 ext4_ext_store_pblock(nearex
, ext_pblock(newext
));
1567 nearex
->ee_len
= newext
->ee_len
;
1570 /* try to merge extents to the right */
1571 ext4_ext_try_to_merge(inode
, path
, nearex
);
1573 /* try to merge extents to the left */
1575 /* time to correct all indexes above */
1576 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1580 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1584 ext4_ext_drop_refs(npath
);
1587 ext4_ext_tree_changed(inode
);
1588 ext4_ext_invalidate_cache(inode
);
1593 ext4_ext_put_in_cache(struct inode
*inode
, ext4_lblk_t block
,
1594 __u32 len
, ext4_fsblk_t start
, int type
)
1596 struct ext4_ext_cache
*cex
;
1598 cex
= &EXT4_I(inode
)->i_cached_extent
;
1599 cex
->ec_type
= type
;
1600 cex
->ec_block
= block
;
1602 cex
->ec_start
= start
;
1606 * ext4_ext_put_gap_in_cache:
1607 * calculate boundaries of the gap that the requested block fits into
1608 * and cache this gap
1611 ext4_ext_put_gap_in_cache(struct inode
*inode
, struct ext4_ext_path
*path
,
1614 int depth
= ext_depth(inode
);
1617 struct ext4_extent
*ex
;
1619 ex
= path
[depth
].p_ext
;
1621 /* there is no extent yet, so gap is [0;-] */
1623 len
= EXT_MAX_BLOCK
;
1624 ext_debug("cache gap(whole file):");
1625 } else if (block
< le32_to_cpu(ex
->ee_block
)) {
1627 len
= le32_to_cpu(ex
->ee_block
) - block
;
1628 ext_debug("cache gap(before): %u [%u:%u]",
1630 le32_to_cpu(ex
->ee_block
),
1631 ext4_ext_get_actual_len(ex
));
1632 } else if (block
>= le32_to_cpu(ex
->ee_block
)
1633 + ext4_ext_get_actual_len(ex
)) {
1635 lblock
= le32_to_cpu(ex
->ee_block
)
1636 + ext4_ext_get_actual_len(ex
);
1638 next
= ext4_ext_next_allocated_block(path
);
1639 ext_debug("cache gap(after): [%u:%u] %u",
1640 le32_to_cpu(ex
->ee_block
),
1641 ext4_ext_get_actual_len(ex
),
1643 BUG_ON(next
== lblock
);
1644 len
= next
- lblock
;
1650 ext_debug(" -> %u:%lu\n", lblock
, len
);
1651 ext4_ext_put_in_cache(inode
, lblock
, len
, 0, EXT4_EXT_CACHE_GAP
);
1655 ext4_ext_in_cache(struct inode
*inode
, ext4_lblk_t block
,
1656 struct ext4_extent
*ex
)
1658 struct ext4_ext_cache
*cex
;
1660 cex
= &EXT4_I(inode
)->i_cached_extent
;
1662 /* has cache valid data? */
1663 if (cex
->ec_type
== EXT4_EXT_CACHE_NO
)
1664 return EXT4_EXT_CACHE_NO
;
1666 BUG_ON(cex
->ec_type
!= EXT4_EXT_CACHE_GAP
&&
1667 cex
->ec_type
!= EXT4_EXT_CACHE_EXTENT
);
1668 if (block
>= cex
->ec_block
&& block
< cex
->ec_block
+ cex
->ec_len
) {
1669 ex
->ee_block
= cpu_to_le32(cex
->ec_block
);
1670 ext4_ext_store_pblock(ex
, cex
->ec_start
);
1671 ex
->ee_len
= cpu_to_le16(cex
->ec_len
);
1672 ext_debug("%u cached by %u:%u:%llu\n",
1674 cex
->ec_block
, cex
->ec_len
, cex
->ec_start
);
1675 return cex
->ec_type
;
1679 return EXT4_EXT_CACHE_NO
;
1684 * removes index from the index block.
1685 * It's used in truncate case only, thus all requests are for
1686 * last index in the block only.
1688 static int ext4_ext_rm_idx(handle_t
*handle
, struct inode
*inode
,
1689 struct ext4_ext_path
*path
)
1691 struct buffer_head
*bh
;
1695 /* free index block */
1697 leaf
= idx_pblock(path
->p_idx
);
1698 BUG_ON(path
->p_hdr
->eh_entries
== 0);
1699 err
= ext4_ext_get_access(handle
, inode
, path
);
1702 path
->p_hdr
->eh_entries
= cpu_to_le16(le16_to_cpu(path
->p_hdr
->eh_entries
)-1);
1703 err
= ext4_ext_dirty(handle
, inode
, path
);
1706 ext_debug("index is empty, remove it, free block %llu\n", leaf
);
1707 bh
= sb_find_get_block(inode
->i_sb
, leaf
);
1708 ext4_forget(handle
, 1, inode
, bh
, leaf
);
1709 ext4_free_blocks(handle
, inode
, leaf
, 1, 1);
1714 * ext4_ext_calc_credits_for_insert:
1715 * This routine returns max. credits that the extent tree can consume.
1716 * It should be OK for low-performance paths like ->writepage()
1717 * To allow many writing processes to fit into a single transaction,
1718 * the caller should calculate credits under i_data_sem and
1719 * pass the actual path.
1721 int ext4_ext_calc_credits_for_insert(struct inode
*inode
,
1722 struct ext4_ext_path
*path
)
1727 /* probably there is space in leaf? */
1728 depth
= ext_depth(inode
);
1729 if (le16_to_cpu(path
[depth
].p_hdr
->eh_entries
)
1730 < le16_to_cpu(path
[depth
].p_hdr
->eh_max
))
1735 * given 32-bit logical block (4294967296 blocks), max. tree
1736 * can be 4 levels in depth -- 4 * 340^4 == 53453440000.
1737 * Let's also add one more level for imbalance.
1741 /* allocation of new data block(s) */
1745 * tree can be full, so it would need to grow in depth:
1746 * we need one credit to modify old root, credits for
1747 * new root will be added in split accounting
1752 * Index split can happen, we would need:
1753 * allocate intermediate indexes (bitmap + group)
1754 * + change two blocks at each level, but root (already included)
1756 needed
+= (depth
* 2) + (depth
* 2);
1758 /* any allocation modifies superblock */
1764 static int ext4_remove_blocks(handle_t
*handle
, struct inode
*inode
,
1765 struct ext4_extent
*ex
,
1766 ext4_lblk_t from
, ext4_lblk_t to
)
1768 struct buffer_head
*bh
;
1769 unsigned short ee_len
= ext4_ext_get_actual_len(ex
);
1770 int i
, metadata
= 0;
1772 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
1774 #ifdef EXTENTS_STATS
1776 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1777 spin_lock(&sbi
->s_ext_stats_lock
);
1778 sbi
->s_ext_blocks
+= ee_len
;
1779 sbi
->s_ext_extents
++;
1780 if (ee_len
< sbi
->s_ext_min
)
1781 sbi
->s_ext_min
= ee_len
;
1782 if (ee_len
> sbi
->s_ext_max
)
1783 sbi
->s_ext_max
= ee_len
;
1784 if (ext_depth(inode
) > sbi
->s_depth_max
)
1785 sbi
->s_depth_max
= ext_depth(inode
);
1786 spin_unlock(&sbi
->s_ext_stats_lock
);
1789 if (from
>= le32_to_cpu(ex
->ee_block
)
1790 && to
== le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
1795 num
= le32_to_cpu(ex
->ee_block
) + ee_len
- from
;
1796 start
= ext_pblock(ex
) + ee_len
- num
;
1797 ext_debug("free last %u blocks starting %llu\n", num
, start
);
1798 for (i
= 0; i
< num
; i
++) {
1799 bh
= sb_find_get_block(inode
->i_sb
, start
+ i
);
1800 ext4_forget(handle
, 0, inode
, bh
, start
+ i
);
1802 ext4_free_blocks(handle
, inode
, start
, num
, metadata
);
1803 } else if (from
== le32_to_cpu(ex
->ee_block
)
1804 && to
<= le32_to_cpu(ex
->ee_block
) + ee_len
- 1) {
1805 printk(KERN_INFO
"strange request: removal %u-%u from %u:%u\n",
1806 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
1808 printk(KERN_INFO
"strange request: removal(2) "
1809 "%u-%u from %u:%u\n",
1810 from
, to
, le32_to_cpu(ex
->ee_block
), ee_len
);
1816 ext4_ext_rm_leaf(handle_t
*handle
, struct inode
*inode
,
1817 struct ext4_ext_path
*path
, ext4_lblk_t start
)
1819 int err
= 0, correct_index
= 0;
1820 int depth
= ext_depth(inode
), credits
;
1821 struct ext4_extent_header
*eh
;
1822 ext4_lblk_t a
, b
, block
;
1824 ext4_lblk_t ex_ee_block
;
1825 unsigned short ex_ee_len
;
1826 unsigned uninitialized
= 0;
1827 struct ext4_extent
*ex
;
1829 /* the header must be checked already in ext4_ext_remove_space() */
1830 ext_debug("truncate since %u in leaf\n", start
);
1831 if (!path
[depth
].p_hdr
)
1832 path
[depth
].p_hdr
= ext_block_hdr(path
[depth
].p_bh
);
1833 eh
= path
[depth
].p_hdr
;
1836 /* find where to start removing */
1837 ex
= EXT_LAST_EXTENT(eh
);
1839 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
1840 if (ext4_ext_is_uninitialized(ex
))
1842 ex_ee_len
= ext4_ext_get_actual_len(ex
);
1844 while (ex
>= EXT_FIRST_EXTENT(eh
) &&
1845 ex_ee_block
+ ex_ee_len
> start
) {
1846 ext_debug("remove ext %lu:%u\n", ex_ee_block
, ex_ee_len
);
1847 path
[depth
].p_ext
= ex
;
1849 a
= ex_ee_block
> start
? ex_ee_block
: start
;
1850 b
= ex_ee_block
+ ex_ee_len
- 1 < EXT_MAX_BLOCK
?
1851 ex_ee_block
+ ex_ee_len
- 1 : EXT_MAX_BLOCK
;
1853 ext_debug(" border %u:%u\n", a
, b
);
1855 if (a
!= ex_ee_block
&& b
!= ex_ee_block
+ ex_ee_len
- 1) {
1859 } else if (a
!= ex_ee_block
) {
1860 /* remove tail of the extent */
1861 block
= ex_ee_block
;
1863 } else if (b
!= ex_ee_block
+ ex_ee_len
- 1) {
1864 /* remove head of the extent */
1867 /* there is no "make a hole" API yet */
1870 /* remove whole extent: excellent! */
1871 block
= ex_ee_block
;
1873 BUG_ON(a
!= ex_ee_block
);
1874 BUG_ON(b
!= ex_ee_block
+ ex_ee_len
- 1);
1877 /* at present, extent can't cross block group: */
1878 /* leaf + bitmap + group desc + sb + inode */
1880 if (ex
== EXT_FIRST_EXTENT(eh
)) {
1882 credits
+= (ext_depth(inode
)) + 1;
1885 credits
+= 2 * EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
1888 handle
= ext4_ext_journal_restart(handle
, credits
);
1889 if (IS_ERR(handle
)) {
1890 err
= PTR_ERR(handle
);
1894 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
1898 err
= ext4_remove_blocks(handle
, inode
, ex
, a
, b
);
1903 /* this extent is removed; mark slot entirely unused */
1904 ext4_ext_store_pblock(ex
, 0);
1905 eh
->eh_entries
= cpu_to_le16(le16_to_cpu(eh
->eh_entries
)-1);
1908 ex
->ee_block
= cpu_to_le32(block
);
1909 ex
->ee_len
= cpu_to_le16(num
);
1911 * Do not mark uninitialized if all the blocks in the
1912 * extent have been removed.
1914 if (uninitialized
&& num
)
1915 ext4_ext_mark_uninitialized(ex
);
1917 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
1921 ext_debug("new extent: %u:%u:%llu\n", block
, num
,
1924 ex_ee_block
= le32_to_cpu(ex
->ee_block
);
1925 ex_ee_len
= ext4_ext_get_actual_len(ex
);
1928 if (correct_index
&& eh
->eh_entries
)
1929 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
1931 /* if this leaf is free, then we should
1932 * remove it from index block above */
1933 if (err
== 0 && eh
->eh_entries
== 0 && path
[depth
].p_bh
!= NULL
)
1934 err
= ext4_ext_rm_idx(handle
, inode
, path
+ depth
);
1941 * ext4_ext_more_to_rm:
1942 * returns 1 if current index has to be freed (even partial)
1945 ext4_ext_more_to_rm(struct ext4_ext_path
*path
)
1947 BUG_ON(path
->p_idx
== NULL
);
1949 if (path
->p_idx
< EXT_FIRST_INDEX(path
->p_hdr
))
1953 * if truncate on deeper level happened, it wasn't partial,
1954 * so we have to consider current index for truncation
1956 if (le16_to_cpu(path
->p_hdr
->eh_entries
) == path
->p_block
)
1961 static int ext4_ext_remove_space(struct inode
*inode
, ext4_lblk_t start
)
1963 struct super_block
*sb
= inode
->i_sb
;
1964 int depth
= ext_depth(inode
);
1965 struct ext4_ext_path
*path
;
1969 ext_debug("truncate since %u\n", start
);
1971 /* probably first extent we're gonna free will be last in block */
1972 handle
= ext4_journal_start(inode
, depth
+ 1);
1974 return PTR_ERR(handle
);
1976 ext4_ext_invalidate_cache(inode
);
1979 * We start scanning from right side, freeing all the blocks
1980 * after i_size and walking into the tree depth-wise.
1982 path
= kzalloc(sizeof(struct ext4_ext_path
) * (depth
+ 1), GFP_KERNEL
);
1984 ext4_journal_stop(handle
);
1987 path
[0].p_hdr
= ext_inode_hdr(inode
);
1988 if (ext4_ext_check_header(inode
, path
[0].p_hdr
, depth
)) {
1992 path
[0].p_depth
= depth
;
1994 while (i
>= 0 && err
== 0) {
1996 /* this is leaf block */
1997 err
= ext4_ext_rm_leaf(handle
, inode
, path
, start
);
1998 /* root level has p_bh == NULL, brelse() eats this */
1999 brelse(path
[i
].p_bh
);
2000 path
[i
].p_bh
= NULL
;
2005 /* this is index block */
2006 if (!path
[i
].p_hdr
) {
2007 ext_debug("initialize header\n");
2008 path
[i
].p_hdr
= ext_block_hdr(path
[i
].p_bh
);
2011 if (!path
[i
].p_idx
) {
2012 /* this level hasn't been touched yet */
2013 path
[i
].p_idx
= EXT_LAST_INDEX(path
[i
].p_hdr
);
2014 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
)+1;
2015 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2017 le16_to_cpu(path
[i
].p_hdr
->eh_entries
));
2019 /* we were already here, see at next index */
2023 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2024 i
, EXT_FIRST_INDEX(path
[i
].p_hdr
),
2026 if (ext4_ext_more_to_rm(path
+ i
)) {
2027 struct buffer_head
*bh
;
2028 /* go to the next level */
2029 ext_debug("move to level %d (block %llu)\n",
2030 i
+ 1, idx_pblock(path
[i
].p_idx
));
2031 memset(path
+ i
+ 1, 0, sizeof(*path
));
2032 bh
= sb_bread(sb
, idx_pblock(path
[i
].p_idx
));
2034 /* should we reset i_size? */
2038 if (WARN_ON(i
+ 1 > depth
)) {
2042 if (ext4_ext_check_header(inode
, ext_block_hdr(bh
),
2047 path
[i
+ 1].p_bh
= bh
;
2049 /* save actual number of indexes since this
2050 * number is changed at the next iteration */
2051 path
[i
].p_block
= le16_to_cpu(path
[i
].p_hdr
->eh_entries
);
2054 /* we finished processing this index, go up */
2055 if (path
[i
].p_hdr
->eh_entries
== 0 && i
> 0) {
2056 /* index is empty, remove it;
2057 * handle must be already prepared by the
2058 * truncatei_leaf() */
2059 err
= ext4_ext_rm_idx(handle
, inode
, path
+ i
);
2061 /* root level has p_bh == NULL, brelse() eats this */
2062 brelse(path
[i
].p_bh
);
2063 path
[i
].p_bh
= NULL
;
2065 ext_debug("return to level %d\n", i
);
2069 /* TODO: flexible tree reduction should be here */
2070 if (path
->p_hdr
->eh_entries
== 0) {
2072 * truncate to zero freed all the tree,
2073 * so we need to correct eh_depth
2075 err
= ext4_ext_get_access(handle
, inode
, path
);
2077 ext_inode_hdr(inode
)->eh_depth
= 0;
2078 ext_inode_hdr(inode
)->eh_max
=
2079 cpu_to_le16(ext4_ext_space_root(inode
));
2080 err
= ext4_ext_dirty(handle
, inode
, path
);
2084 ext4_ext_tree_changed(inode
);
2085 ext4_ext_drop_refs(path
);
2087 ext4_journal_stop(handle
);
2093 * called at mount time
2095 void ext4_ext_init(struct super_block
*sb
)
2098 * possible initialization would be here
2101 if (test_opt(sb
, EXTENTS
)) {
2102 printk("EXT4-fs: file extents enabled");
2103 #ifdef AGGRESSIVE_TEST
2104 printk(", aggressive tests");
2106 #ifdef CHECK_BINSEARCH
2107 printk(", check binsearch");
2109 #ifdef EXTENTS_STATS
2113 #ifdef EXTENTS_STATS
2114 spin_lock_init(&EXT4_SB(sb
)->s_ext_stats_lock
);
2115 EXT4_SB(sb
)->s_ext_min
= 1 << 30;
2116 EXT4_SB(sb
)->s_ext_max
= 0;
2122 * called at umount time
2124 void ext4_ext_release(struct super_block
*sb
)
2126 if (!test_opt(sb
, EXTENTS
))
2129 #ifdef EXTENTS_STATS
2130 if (EXT4_SB(sb
)->s_ext_blocks
&& EXT4_SB(sb
)->s_ext_extents
) {
2131 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2132 printk(KERN_ERR
"EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2133 sbi
->s_ext_blocks
, sbi
->s_ext_extents
,
2134 sbi
->s_ext_blocks
/ sbi
->s_ext_extents
);
2135 printk(KERN_ERR
"EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2136 sbi
->s_ext_min
, sbi
->s_ext_max
, sbi
->s_depth_max
);
2142 * This function is called by ext4_ext_get_blocks() if someone tries to write
2143 * to an uninitialized extent. It may result in splitting the uninitialized
2144 * extent into multiple extents (upto three - one initialized and two
2146 * There are three possibilities:
2147 * a> There is no split required: Entire extent should be initialized
2148 * b> Splits in two extents: Write is happening at either end of the extent
2149 * c> Splits in three extents: Somone is writing in middle of the extent
2151 static int ext4_ext_convert_to_initialized(handle_t
*handle
,
2152 struct inode
*inode
,
2153 struct ext4_ext_path
*path
,
2155 unsigned long max_blocks
)
2157 struct ext4_extent
*ex
, newex
;
2158 struct ext4_extent
*ex1
= NULL
;
2159 struct ext4_extent
*ex2
= NULL
;
2160 struct ext4_extent
*ex3
= NULL
;
2161 struct ext4_extent_header
*eh
;
2162 ext4_lblk_t ee_block
;
2163 unsigned int allocated
, ee_len
, depth
;
2164 ext4_fsblk_t newblock
;
2168 depth
= ext_depth(inode
);
2169 eh
= path
[depth
].p_hdr
;
2170 ex
= path
[depth
].p_ext
;
2171 ee_block
= le32_to_cpu(ex
->ee_block
);
2172 ee_len
= ext4_ext_get_actual_len(ex
);
2173 allocated
= ee_len
- (iblock
- ee_block
);
2174 newblock
= iblock
- ee_block
+ ext_pblock(ex
);
2177 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2181 /* ex1: ee_block to iblock - 1 : uninitialized */
2182 if (iblock
> ee_block
) {
2184 ex1
->ee_len
= cpu_to_le16(iblock
- ee_block
);
2185 ext4_ext_mark_uninitialized(ex1
);
2189 * for sanity, update the length of the ex2 extent before
2190 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2191 * overlap of blocks.
2193 if (!ex1
&& allocated
> max_blocks
)
2194 ex2
->ee_len
= cpu_to_le16(max_blocks
);
2195 /* ex3: to ee_block + ee_len : uninitialised */
2196 if (allocated
> max_blocks
) {
2197 unsigned int newdepth
;
2199 ex3
->ee_block
= cpu_to_le32(iblock
+ max_blocks
);
2200 ext4_ext_store_pblock(ex3
, newblock
+ max_blocks
);
2201 ex3
->ee_len
= cpu_to_le16(allocated
- max_blocks
);
2202 ext4_ext_mark_uninitialized(ex3
);
2203 err
= ext4_ext_insert_extent(handle
, inode
, path
, ex3
);
2207 * The depth, and hence eh & ex might change
2208 * as part of the insert above.
2210 newdepth
= ext_depth(inode
);
2211 if (newdepth
!= depth
) {
2213 ext4_ext_drop_refs(path
);
2214 path
= ext4_ext_find_extent(inode
, iblock
, path
);
2216 err
= PTR_ERR(path
);
2219 eh
= path
[depth
].p_hdr
;
2220 ex
= path
[depth
].p_ext
;
2224 err
= ext4_ext_get_access(handle
, inode
, path
+ depth
);
2228 allocated
= max_blocks
;
2231 * If there was a change of depth as part of the
2232 * insertion of ex3 above, we need to update the length
2233 * of the ex1 extent again here
2235 if (ex1
&& ex1
!= ex
) {
2237 ex1
->ee_len
= cpu_to_le16(iblock
- ee_block
);
2238 ext4_ext_mark_uninitialized(ex1
);
2241 /* ex2: iblock to iblock + maxblocks-1 : initialised */
2242 ex2
->ee_block
= cpu_to_le32(iblock
);
2243 ext4_ext_store_pblock(ex2
, newblock
);
2244 ex2
->ee_len
= cpu_to_le16(allocated
);
2248 * New (initialized) extent starts from the first block
2249 * in the current extent. i.e., ex2 == ex
2250 * We have to see if it can be merged with the extent
2253 if (ex2
> EXT_FIRST_EXTENT(eh
)) {
2255 * To merge left, pass "ex2 - 1" to try_to_merge(),
2256 * since it merges towards right _only_.
2258 ret
= ext4_ext_try_to_merge(inode
, path
, ex2
- 1);
2260 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2263 depth
= ext_depth(inode
);
2268 * Try to Merge towards right. This might be required
2269 * only when the whole extent is being written to.
2270 * i.e. ex2 == ex and ex3 == NULL.
2273 ret
= ext4_ext_try_to_merge(inode
, path
, ex2
);
2275 err
= ext4_ext_correct_indexes(handle
, inode
, path
);
2280 /* Mark modified extent as dirty */
2281 err
= ext4_ext_dirty(handle
, inode
, path
+ depth
);
2284 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
);
2286 return err
? err
: allocated
;
2290 * Block allocation/map/preallocation routine for extents based files
2293 * Need to be called with
2294 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2295 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2297 * return > 0, number of of blocks already mapped/allocated
2298 * if create == 0 and these are pre-allocated blocks
2299 * buffer head is unmapped
2300 * otherwise blocks are mapped
2302 * return = 0, if plain look up failed (blocks have not been allocated)
2303 * buffer head is unmapped
2305 * return < 0, error case.
2307 int ext4_ext_get_blocks(handle_t
*handle
, struct inode
*inode
,
2309 unsigned long max_blocks
, struct buffer_head
*bh_result
,
2310 int create
, int extend_disksize
)
2312 struct ext4_ext_path
*path
= NULL
;
2313 struct ext4_extent_header
*eh
;
2314 struct ext4_extent newex
, *ex
;
2315 ext4_fsblk_t goal
, newblock
;
2316 int err
= 0, depth
, ret
;
2317 unsigned long allocated
= 0;
2318 struct ext4_allocation_request ar
;
2320 __clear_bit(BH_New
, &bh_result
->b_state
);
2321 ext_debug("blocks %u/%lu requested for inode %u\n",
2322 iblock
, max_blocks
, inode
->i_ino
);
2324 /* check in cache */
2325 goal
= ext4_ext_in_cache(inode
, iblock
, &newex
);
2327 if (goal
== EXT4_EXT_CACHE_GAP
) {
2330 * block isn't allocated yet and
2331 * user doesn't want to allocate it
2335 /* we should allocate requested block */
2336 } else if (goal
== EXT4_EXT_CACHE_EXTENT
) {
2337 /* block is already allocated */
2339 - le32_to_cpu(newex
.ee_block
)
2340 + ext_pblock(&newex
);
2341 /* number of remaining blocks in the extent */
2342 allocated
= ext4_ext_get_actual_len(&newex
) -
2343 (iblock
- le32_to_cpu(newex
.ee_block
));
2350 /* find extent for this block */
2351 path
= ext4_ext_find_extent(inode
, iblock
, NULL
);
2353 err
= PTR_ERR(path
);
2358 depth
= ext_depth(inode
);
2361 * consistent leaf must not be empty;
2362 * this situation is possible, though, _during_ tree modification;
2363 * this is why assert can't be put in ext4_ext_find_extent()
2365 BUG_ON(path
[depth
].p_ext
== NULL
&& depth
!= 0);
2366 eh
= path
[depth
].p_hdr
;
2368 ex
= path
[depth
].p_ext
;
2370 ext4_lblk_t ee_block
= le32_to_cpu(ex
->ee_block
);
2371 ext4_fsblk_t ee_start
= ext_pblock(ex
);
2372 unsigned short ee_len
;
2375 * Uninitialized extents are treated as holes, except that
2376 * we split out initialized portions during a write.
2378 ee_len
= ext4_ext_get_actual_len(ex
);
2379 /* if found extent covers block, simply return it */
2380 if (iblock
>= ee_block
&& iblock
< ee_block
+ ee_len
) {
2381 newblock
= iblock
- ee_block
+ ee_start
;
2382 /* number of remaining blocks in the extent */
2383 allocated
= ee_len
- (iblock
- ee_block
);
2384 ext_debug("%u fit into %lu:%d -> %llu\n", iblock
,
2385 ee_block
, ee_len
, newblock
);
2387 /* Do not put uninitialized extent in the cache */
2388 if (!ext4_ext_is_uninitialized(ex
)) {
2389 ext4_ext_put_in_cache(inode
, ee_block
,
2391 EXT4_EXT_CACHE_EXTENT
);
2394 if (create
== EXT4_CREATE_UNINITIALIZED_EXT
)
2399 ret
= ext4_ext_convert_to_initialized(handle
, inode
,
2412 * requested block isn't allocated yet;
2413 * we couldn't try to create block if create flag is zero
2417 * put just found gap into cache to speed up
2418 * subsequent requests
2420 ext4_ext_put_gap_in_cache(inode
, path
, iblock
);
2424 * Okay, we need to do block allocation. Lazily initialize the block
2425 * allocation info here if necessary.
2427 if (S_ISREG(inode
->i_mode
) && (!EXT4_I(inode
)->i_block_alloc_info
))
2428 ext4_init_block_alloc_info(inode
);
2430 /* find neighbour allocated blocks */
2432 err
= ext4_ext_search_left(inode
, path
, &ar
.lleft
, &ar
.pleft
);
2436 err
= ext4_ext_search_right(inode
, path
, &ar
.lright
, &ar
.pright
);
2441 * See if request is beyond maximum number of blocks we can have in
2442 * a single extent. For an initialized extent this limit is
2443 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2444 * EXT_UNINIT_MAX_LEN.
2446 if (max_blocks
> EXT_INIT_MAX_LEN
&&
2447 create
!= EXT4_CREATE_UNINITIALIZED_EXT
)
2448 max_blocks
= EXT_INIT_MAX_LEN
;
2449 else if (max_blocks
> EXT_UNINIT_MAX_LEN
&&
2450 create
== EXT4_CREATE_UNINITIALIZED_EXT
)
2451 max_blocks
= EXT_UNINIT_MAX_LEN
;
2453 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2454 newex
.ee_block
= cpu_to_le32(iblock
);
2455 newex
.ee_len
= cpu_to_le16(max_blocks
);
2456 err
= ext4_ext_check_overlap(inode
, &newex
, path
);
2458 allocated
= ext4_ext_get_actual_len(&newex
);
2460 allocated
= max_blocks
;
2462 /* allocate new block */
2464 ar
.goal
= ext4_ext_find_goal(inode
, path
, iblock
);
2465 ar
.logical
= iblock
;
2467 if (S_ISREG(inode
->i_mode
))
2468 ar
.flags
= EXT4_MB_HINT_DATA
;
2470 /* disable in-core preallocation for non-regular files */
2472 newblock
= ext4_mb_new_blocks(handle
, &ar
, &err
);
2475 ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2476 goal
, newblock
, allocated
);
2478 /* try to insert new extent into found leaf and return */
2479 ext4_ext_store_pblock(&newex
, newblock
);
2480 newex
.ee_len
= cpu_to_le16(ar
.len
);
2481 if (create
== EXT4_CREATE_UNINITIALIZED_EXT
) /* Mark uninitialized */
2482 ext4_ext_mark_uninitialized(&newex
);
2483 err
= ext4_ext_insert_extent(handle
, inode
, path
, &newex
);
2485 /* free data blocks we just allocated */
2486 /* not a good idea to call discard here directly,
2487 * but otherwise we'd need to call it every free() */
2488 ext4_mb_discard_inode_preallocations(inode
);
2489 ext4_free_blocks(handle
, inode
, ext_pblock(&newex
),
2490 ext4_ext_get_actual_len(&newex
), 0);
2494 if (extend_disksize
&& inode
->i_size
> EXT4_I(inode
)->i_disksize
)
2495 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
2497 /* previous routine could use block we allocated */
2498 newblock
= ext_pblock(&newex
);
2499 allocated
= ext4_ext_get_actual_len(&newex
);
2501 __set_bit(BH_New
, &bh_result
->b_state
);
2503 /* Cache only when it is _not_ an uninitialized extent */
2504 if (create
!= EXT4_CREATE_UNINITIALIZED_EXT
)
2505 ext4_ext_put_in_cache(inode
, iblock
, allocated
, newblock
,
2506 EXT4_EXT_CACHE_EXTENT
);
2508 if (allocated
> max_blocks
)
2509 allocated
= max_blocks
;
2510 ext4_ext_show_leaf(inode
, path
);
2511 __set_bit(BH_Mapped
, &bh_result
->b_state
);
2512 bh_result
->b_bdev
= inode
->i_sb
->s_bdev
;
2513 bh_result
->b_blocknr
= newblock
;
2516 ext4_ext_drop_refs(path
);
2519 return err
? err
: allocated
;
2522 void ext4_ext_truncate(struct inode
* inode
, struct page
*page
)
2524 struct address_space
*mapping
= inode
->i_mapping
;
2525 struct super_block
*sb
= inode
->i_sb
;
2526 ext4_lblk_t last_block
;
2531 * probably first extent we're gonna free will be last in block
2533 err
= ext4_writepage_trans_blocks(inode
) + 3;
2534 handle
= ext4_journal_start(inode
, err
);
2535 if (IS_ERR(handle
)) {
2537 clear_highpage(page
);
2538 flush_dcache_page(page
);
2540 page_cache_release(page
);
2546 ext4_block_truncate_page(handle
, page
, mapping
, inode
->i_size
);
2548 down_write(&EXT4_I(inode
)->i_data_sem
);
2549 ext4_ext_invalidate_cache(inode
);
2551 ext4_mb_discard_inode_preallocations(inode
);
2554 * TODO: optimization is possible here.
2555 * Probably we need not scan at all,
2556 * because page truncation is enough.
2558 if (ext4_orphan_add(handle
, inode
))
2561 /* we have to know where to truncate from in crash case */
2562 EXT4_I(inode
)->i_disksize
= inode
->i_size
;
2563 ext4_mark_inode_dirty(handle
, inode
);
2565 last_block
= (inode
->i_size
+ sb
->s_blocksize
- 1)
2566 >> EXT4_BLOCK_SIZE_BITS(sb
);
2567 err
= ext4_ext_remove_space(inode
, last_block
);
2569 /* In a multi-transaction truncate, we only make the final
2570 * transaction synchronous.
2577 * If this was a simple ftruncate() and the file will remain alive,
2578 * then we need to clear up the orphan record which we created above.
2579 * However, if this was a real unlink then we were called by
2580 * ext4_delete_inode(), and we allow that function to clean up the
2581 * orphan info for us.
2584 ext4_orphan_del(handle
, inode
);
2586 up_write(&EXT4_I(inode
)->i_data_sem
);
2587 ext4_journal_stop(handle
);
2591 * ext4_ext_writepage_trans_blocks:
2592 * calculate max number of blocks we could modify
2593 * in order to allocate new block for an inode
2595 int ext4_ext_writepage_trans_blocks(struct inode
*inode
, int num
)
2599 needed
= ext4_ext_calc_credits_for_insert(inode
, NULL
);
2601 /* caller wants to allocate num blocks, but note it includes sb */
2602 needed
= needed
* num
- (num
- 1);
2605 needed
+= 2 * EXT4_QUOTA_TRANS_BLOCKS(inode
->i_sb
);
2612 * preallocate space for a file. This implements ext4's fallocate inode
2613 * operation, which gets called from sys_fallocate system call.
2614 * For block-mapped files, posix_fallocate should fall back to the method
2615 * of writing zeroes to the required new blocks (the same behavior which is
2616 * expected for file systems which do not support fallocate() system call).
2618 long ext4_fallocate(struct inode
*inode
, int mode
, loff_t offset
, loff_t len
)
2622 unsigned long max_blocks
;
2623 ext4_fsblk_t nblocks
= 0;
2627 struct buffer_head map_bh
;
2628 unsigned int credits
, blkbits
= inode
->i_blkbits
;
2631 * currently supporting (pre)allocate mode for extent-based
2634 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
2637 /* preallocation to directories is currently not supported */
2638 if (S_ISDIR(inode
->i_mode
))
2641 block
= offset
>> blkbits
;
2642 max_blocks
= (EXT4_BLOCK_ALIGN(len
+ offset
, blkbits
) >> blkbits
)
2646 * credits to insert 1 extent into extent tree + buffers to be able to
2647 * modify 1 super block, 1 block bitmap and 1 group descriptor.
2649 credits
= EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + 3;
2650 mutex_lock(&inode
->i_mutex
);
2652 while (ret
>= 0 && ret
< max_blocks
) {
2653 block
= block
+ ret
;
2654 max_blocks
= max_blocks
- ret
;
2655 handle
= ext4_journal_start(inode
, credits
);
2656 if (IS_ERR(handle
)) {
2657 ret
= PTR_ERR(handle
);
2661 ret
= ext4_get_blocks_wrap(handle
, inode
, block
,
2662 max_blocks
, &map_bh
,
2663 EXT4_CREATE_UNINITIALIZED_EXT
, 0);
2667 printk(KERN_ERR
"%s: ext4_ext_get_blocks "
2668 "returned error inode#%lu, block=%u, "
2669 "max_blocks=%lu", __func__
,
2670 inode
->i_ino
, block
, max_blocks
);
2672 ext4_mark_inode_dirty(handle
, inode
);
2673 ret2
= ext4_journal_stop(handle
);
2677 /* check wrap through sign-bit/zero here */
2678 if ((block
+ ret
) < 0 || (block
+ ret
) < block
) {
2680 ext4_mark_inode_dirty(handle
, inode
);
2681 ret2
= ext4_journal_stop(handle
);
2684 if (buffer_new(&map_bh
) && ((block
+ ret
) >
2685 (EXT4_BLOCK_ALIGN(i_size_read(inode
), blkbits
)
2687 nblocks
= nblocks
+ ret
;
2690 /* Update ctime if new blocks get allocated */
2692 struct timespec now
;
2694 now
= current_fs_time(inode
->i_sb
);
2695 if (!timespec_equal(&inode
->i_ctime
, &now
))
2696 inode
->i_ctime
= now
;
2699 ext4_mark_inode_dirty(handle
, inode
);
2700 ret2
= ext4_journal_stop(handle
);
2705 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2709 * Time to update the file size.
2710 * Update only when preallocation was requested beyond the file size.
2712 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
2713 (offset
+ len
) > i_size_read(inode
)) {
2716 * if no error, we assume preallocation succeeded
2719 i_size_write(inode
, offset
+ len
);
2720 EXT4_I(inode
)->i_disksize
= i_size_read(inode
);
2721 } else if (ret
< 0 && nblocks
) {
2722 /* Handle partial allocation scenario */
2725 newsize
= (nblocks
<< blkbits
) + i_size_read(inode
);
2726 i_size_write(inode
, EXT4_BLOCK_ALIGN(newsize
, blkbits
));
2727 EXT4_I(inode
)->i_disksize
= i_size_read(inode
);
2731 mutex_unlock(&inode
->i_mutex
);
2732 return ret
> 0 ? ret2
: ret
;