sched: better min_vruntime tracking
[linux-2.6/kmemtrace.git] / kernel / sched_fair.c
blobec445cadbb011ee977072d384e98a48a6ccc0cd5
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
49 unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
52 * sys_sched_yield() compat mode
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
57 unsigned int __read_mostly sysctl_sched_compat_yield;
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
79 unsigned int sysctl_sched_runtime_limit __read_mostly;
81 extern struct sched_class fair_sched_class;
83 /**************************************************************
84 * CFS operations on generic schedulable entities:
87 #ifdef CONFIG_FAIR_GROUP_SCHED
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
92 return cfs_rq->rq;
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
98 #else /* CONFIG_FAIR_GROUP_SCHED */
100 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 return container_of(cfs_rq, struct rq, cfs);
105 #define entity_is_task(se) 1
107 #endif /* CONFIG_FAIR_GROUP_SCHED */
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 return container_of(se, struct task_struct, se);
115 /**************************************************************
116 * Scheduling class tree data structure manipulation methods:
119 static inline u64
120 max_vruntime(u64 min_vruntime, u64 vruntime)
122 if ((vruntime > min_vruntime) ||
123 (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
124 min_vruntime = vruntime;
126 return min_vruntime;
129 static inline void
130 set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
132 struct sched_entity *se;
134 cfs_rq->rb_leftmost = leftmost;
135 if (leftmost)
136 se = rb_entry(leftmost, struct sched_entity, run_node);
139 static inline s64
140 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
142 return se->fair_key - cfs_rq->min_vruntime;
146 * Enqueue an entity into the rb-tree:
148 static void
149 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
151 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
152 struct rb_node *parent = NULL;
153 struct sched_entity *entry;
154 s64 key = entity_key(cfs_rq, se);
155 int leftmost = 1;
158 * Find the right place in the rbtree:
160 while (*link) {
161 parent = *link;
162 entry = rb_entry(parent, struct sched_entity, run_node);
164 * We dont care about collisions. Nodes with
165 * the same key stay together.
167 if (key < entity_key(cfs_rq, entry)) {
168 link = &parent->rb_left;
169 } else {
170 link = &parent->rb_right;
171 leftmost = 0;
176 * Maintain a cache of leftmost tree entries (it is frequently
177 * used):
179 if (leftmost)
180 set_leftmost(cfs_rq, &se->run_node);
182 rb_link_node(&se->run_node, parent, link);
183 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
184 update_load_add(&cfs_rq->load, se->load.weight);
185 cfs_rq->nr_running++;
186 se->on_rq = 1;
189 static void
190 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
192 if (cfs_rq->rb_leftmost == &se->run_node)
193 set_leftmost(cfs_rq, rb_next(&se->run_node));
195 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
196 update_load_sub(&cfs_rq->load, se->load.weight);
197 cfs_rq->nr_running--;
198 se->on_rq = 0;
201 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
203 return cfs_rq->rb_leftmost;
206 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
208 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
211 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
213 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
214 struct sched_entity *se = NULL;
215 struct rb_node *parent;
217 while (*link) {
218 parent = *link;
219 se = rb_entry(parent, struct sched_entity, run_node);
220 link = &parent->rb_right;
223 return se;
226 /**************************************************************
227 * Scheduling class statistics methods:
230 static u64 __sched_period(unsigned long nr_running)
232 u64 period = sysctl_sched_latency;
233 unsigned long nr_latency =
234 sysctl_sched_latency / sysctl_sched_min_granularity;
236 if (unlikely(nr_running > nr_latency)) {
237 period *= nr_running;
238 do_div(period, nr_latency);
241 return period;
244 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
246 u64 period = __sched_period(cfs_rq->nr_running);
248 period *= se->load.weight;
249 do_div(period, cfs_rq->load.weight);
251 return period;
255 * Update the current task's runtime statistics. Skip current tasks that
256 * are not in our scheduling class.
258 static inline void
259 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
260 unsigned long delta_exec)
262 unsigned long delta_exec_weighted;
263 u64 next_vruntime, min_vruntime;
265 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
267 curr->sum_exec_runtime += delta_exec;
268 schedstat_add(cfs_rq, exec_clock, delta_exec);
269 delta_exec_weighted = delta_exec;
270 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
271 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
272 &curr->load);
274 curr->vruntime += delta_exec_weighted;
277 * maintain cfs_rq->min_vruntime to be a monotonic increasing
278 * value tracking the leftmost vruntime in the tree.
280 if (first_fair(cfs_rq)) {
281 next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
283 /* min_vruntime() := !max_vruntime() */
284 min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
285 if (min_vruntime == next_vruntime)
286 min_vruntime = curr->vruntime;
287 else
288 min_vruntime = next_vruntime;
289 } else
290 min_vruntime = curr->vruntime;
292 cfs_rq->min_vruntime =
293 max_vruntime(cfs_rq->min_vruntime, min_vruntime);
296 static void update_curr(struct cfs_rq *cfs_rq)
298 struct sched_entity *curr = cfs_rq->curr;
299 u64 now = rq_of(cfs_rq)->clock;
300 unsigned long delta_exec;
302 if (unlikely(!curr))
303 return;
306 * Get the amount of time the current task was running
307 * since the last time we changed load (this cannot
308 * overflow on 32 bits):
310 delta_exec = (unsigned long)(now - curr->exec_start);
312 __update_curr(cfs_rq, curr, delta_exec);
313 curr->exec_start = now;
316 static inline void
317 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
319 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
322 static inline unsigned long
323 calc_weighted(unsigned long delta, struct sched_entity *se)
325 unsigned long weight = se->load.weight;
327 if (unlikely(weight != NICE_0_LOAD))
328 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
329 else
330 return delta;
334 * Task is being enqueued - update stats:
336 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
339 * Are we enqueueing a waiting task? (for current tasks
340 * a dequeue/enqueue event is a NOP)
342 if (se != cfs_rq->curr)
343 update_stats_wait_start(cfs_rq, se);
345 * Update the key:
347 se->fair_key = se->vruntime;
350 static void
351 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
353 schedstat_set(se->wait_max, max(se->wait_max,
354 rq_of(cfs_rq)->clock - se->wait_start));
355 schedstat_set(se->wait_start, 0);
358 static inline void
359 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
361 update_curr(cfs_rq);
363 * Mark the end of the wait period if dequeueing a
364 * waiting task:
366 if (se != cfs_rq->curr)
367 update_stats_wait_end(cfs_rq, se);
371 * We are picking a new current task - update its stats:
373 static inline void
374 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
377 * We are starting a new run period:
379 se->exec_start = rq_of(cfs_rq)->clock;
383 * We are descheduling a task - update its stats:
385 static inline void
386 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
388 se->exec_start = 0;
391 /**************************************************
392 * Scheduling class queueing methods:
395 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
397 #ifdef CONFIG_SCHEDSTATS
398 if (se->sleep_start) {
399 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
401 if ((s64)delta < 0)
402 delta = 0;
404 if (unlikely(delta > se->sleep_max))
405 se->sleep_max = delta;
407 se->sleep_start = 0;
408 se->sum_sleep_runtime += delta;
410 if (se->block_start) {
411 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
413 if ((s64)delta < 0)
414 delta = 0;
416 if (unlikely(delta > se->block_max))
417 se->block_max = delta;
419 se->block_start = 0;
420 se->sum_sleep_runtime += delta;
423 * Blocking time is in units of nanosecs, so shift by 20 to
424 * get a milliseconds-range estimation of the amount of
425 * time that the task spent sleeping:
427 if (unlikely(prof_on == SLEEP_PROFILING)) {
428 struct task_struct *tsk = task_of(se);
430 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
431 delta >> 20);
434 #endif
437 static void
438 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
440 u64 min_runtime, latency;
442 min_runtime = cfs_rq->min_vruntime;
444 if (sched_feat(USE_TREE_AVG)) {
445 struct sched_entity *last = __pick_last_entity(cfs_rq);
446 if (last) {
447 min_runtime = __pick_next_entity(cfs_rq)->vruntime;
448 min_runtime += last->vruntime;
449 min_runtime >>= 1;
451 } else if (sched_feat(APPROX_AVG))
452 min_runtime += sysctl_sched_latency/2;
454 if (initial && sched_feat(START_DEBIT))
455 min_runtime += sched_slice(cfs_rq, se);
457 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
458 latency = sysctl_sched_latency;
459 if (min_runtime > latency)
460 min_runtime -= latency;
461 else
462 min_runtime = 0;
465 se->vruntime = max(se->vruntime, min_runtime);
468 static void
469 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
472 * Update the fair clock.
474 update_curr(cfs_rq);
476 if (wakeup) {
477 place_entity(cfs_rq, se, 0);
478 enqueue_sleeper(cfs_rq, se);
481 update_stats_enqueue(cfs_rq, se);
482 __enqueue_entity(cfs_rq, se);
485 static void
486 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
488 update_stats_dequeue(cfs_rq, se);
489 #ifdef CONFIG_SCHEDSTATS
490 if (sleep) {
491 if (entity_is_task(se)) {
492 struct task_struct *tsk = task_of(se);
494 if (tsk->state & TASK_INTERRUPTIBLE)
495 se->sleep_start = rq_of(cfs_rq)->clock;
496 if (tsk->state & TASK_UNINTERRUPTIBLE)
497 se->block_start = rq_of(cfs_rq)->clock;
500 #endif
501 __dequeue_entity(cfs_rq, se);
505 * Preempt the current task with a newly woken task if needed:
507 static void
508 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
510 unsigned long ideal_runtime, delta_exec;
512 ideal_runtime = sched_slice(cfs_rq, curr);
513 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
514 if (delta_exec > ideal_runtime)
515 resched_task(rq_of(cfs_rq)->curr);
518 static inline void
519 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
522 * Any task has to be enqueued before it get to execute on
523 * a CPU. So account for the time it spent waiting on the
524 * runqueue.
526 update_stats_wait_end(cfs_rq, se);
527 update_stats_curr_start(cfs_rq, se);
528 cfs_rq->curr = se;
529 #ifdef CONFIG_SCHEDSTATS
531 * Track our maximum slice length, if the CPU's load is at
532 * least twice that of our own weight (i.e. dont track it
533 * when there are only lesser-weight tasks around):
535 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
536 se->slice_max = max(se->slice_max,
537 se->sum_exec_runtime - se->prev_sum_exec_runtime);
539 #endif
540 se->prev_sum_exec_runtime = se->sum_exec_runtime;
543 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
545 struct sched_entity *se = __pick_next_entity(cfs_rq);
547 set_next_entity(cfs_rq, se);
549 return se;
552 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
555 * If still on the runqueue then deactivate_task()
556 * was not called and update_curr() has to be done:
558 if (prev->on_rq)
559 update_curr(cfs_rq);
561 update_stats_curr_end(cfs_rq, prev);
563 if (prev->on_rq)
564 update_stats_wait_start(cfs_rq, prev);
565 cfs_rq->curr = NULL;
568 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
571 * Dequeue and enqueue the task to update its
572 * position within the tree:
574 dequeue_entity(cfs_rq, curr, 0);
575 enqueue_entity(cfs_rq, curr, 0);
577 if (cfs_rq->nr_running > 1)
578 check_preempt_tick(cfs_rq, curr);
581 /**************************************************
582 * CFS operations on tasks:
585 #ifdef CONFIG_FAIR_GROUP_SCHED
587 /* Walk up scheduling entities hierarchy */
588 #define for_each_sched_entity(se) \
589 for (; se; se = se->parent)
591 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
593 return p->se.cfs_rq;
596 /* runqueue on which this entity is (to be) queued */
597 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
599 return se->cfs_rq;
602 /* runqueue "owned" by this group */
603 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
605 return grp->my_q;
608 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
609 * another cpu ('this_cpu')
611 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
613 /* A later patch will take group into account */
614 return &cpu_rq(this_cpu)->cfs;
617 /* Iterate thr' all leaf cfs_rq's on a runqueue */
618 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
619 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
621 /* Do the two (enqueued) tasks belong to the same group ? */
622 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
624 if (curr->se.cfs_rq == p->se.cfs_rq)
625 return 1;
627 return 0;
630 #else /* CONFIG_FAIR_GROUP_SCHED */
632 #define for_each_sched_entity(se) \
633 for (; se; se = NULL)
635 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
637 return &task_rq(p)->cfs;
640 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
642 struct task_struct *p = task_of(se);
643 struct rq *rq = task_rq(p);
645 return &rq->cfs;
648 /* runqueue "owned" by this group */
649 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
651 return NULL;
654 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
656 return &cpu_rq(this_cpu)->cfs;
659 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
660 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
662 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
664 return 1;
667 #endif /* CONFIG_FAIR_GROUP_SCHED */
670 * The enqueue_task method is called before nr_running is
671 * increased. Here we update the fair scheduling stats and
672 * then put the task into the rbtree:
674 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
676 struct cfs_rq *cfs_rq;
677 struct sched_entity *se = &p->se;
679 for_each_sched_entity(se) {
680 if (se->on_rq)
681 break;
682 cfs_rq = cfs_rq_of(se);
683 enqueue_entity(cfs_rq, se, wakeup);
688 * The dequeue_task method is called before nr_running is
689 * decreased. We remove the task from the rbtree and
690 * update the fair scheduling stats:
692 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
694 struct cfs_rq *cfs_rq;
695 struct sched_entity *se = &p->se;
697 for_each_sched_entity(se) {
698 cfs_rq = cfs_rq_of(se);
699 dequeue_entity(cfs_rq, se, sleep);
700 /* Don't dequeue parent if it has other entities besides us */
701 if (cfs_rq->load.weight)
702 break;
707 * sched_yield() support is very simple - we dequeue and enqueue.
709 * If compat_yield is turned on then we requeue to the end of the tree.
711 static void yield_task_fair(struct rq *rq, struct task_struct *p)
713 struct cfs_rq *cfs_rq = task_cfs_rq(p);
714 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
715 struct sched_entity *rightmost, *se = &p->se;
716 struct rb_node *parent;
719 * Are we the only task in the tree?
721 if (unlikely(cfs_rq->nr_running == 1))
722 return;
724 if (likely(!sysctl_sched_compat_yield)) {
725 __update_rq_clock(rq);
727 * Dequeue and enqueue the task to update its
728 * position within the tree:
730 dequeue_entity(cfs_rq, &p->se, 0);
731 enqueue_entity(cfs_rq, &p->se, 0);
733 return;
736 * Find the rightmost entry in the rbtree:
738 do {
739 parent = *link;
740 link = &parent->rb_right;
741 } while (*link);
743 rightmost = rb_entry(parent, struct sched_entity, run_node);
745 * Already in the rightmost position?
747 if (unlikely(rightmost == se))
748 return;
751 * Minimally necessary key value to be last in the tree:
753 se->fair_key = rightmost->fair_key + 1;
755 if (cfs_rq->rb_leftmost == &se->run_node)
756 cfs_rq->rb_leftmost = rb_next(&se->run_node);
758 * Relink the task to the rightmost position:
760 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
761 rb_link_node(&se->run_node, parent, link);
762 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
766 * Preempt the current task with a newly woken task if needed:
768 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
770 struct task_struct *curr = rq->curr;
771 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
773 if (unlikely(rt_prio(p->prio))) {
774 update_rq_clock(rq);
775 update_curr(cfs_rq);
776 resched_task(curr);
777 return;
779 if (is_same_group(curr, p)) {
780 s64 delta = curr->se.vruntime - p->se.vruntime;
782 if (delta > (s64)sysctl_sched_wakeup_granularity)
783 resched_task(curr);
787 static struct task_struct *pick_next_task_fair(struct rq *rq)
789 struct cfs_rq *cfs_rq = &rq->cfs;
790 struct sched_entity *se;
792 if (unlikely(!cfs_rq->nr_running))
793 return NULL;
795 do {
796 se = pick_next_entity(cfs_rq);
797 cfs_rq = group_cfs_rq(se);
798 } while (cfs_rq);
800 return task_of(se);
804 * Account for a descheduled task:
806 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
808 struct sched_entity *se = &prev->se;
809 struct cfs_rq *cfs_rq;
811 for_each_sched_entity(se) {
812 cfs_rq = cfs_rq_of(se);
813 put_prev_entity(cfs_rq, se);
817 /**************************************************
818 * Fair scheduling class load-balancing methods:
822 * Load-balancing iterator. Note: while the runqueue stays locked
823 * during the whole iteration, the current task might be
824 * dequeued so the iterator has to be dequeue-safe. Here we
825 * achieve that by always pre-iterating before returning
826 * the current task:
828 static inline struct task_struct *
829 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
831 struct task_struct *p;
833 if (!curr)
834 return NULL;
836 p = rb_entry(curr, struct task_struct, se.run_node);
837 cfs_rq->rb_load_balance_curr = rb_next(curr);
839 return p;
842 static struct task_struct *load_balance_start_fair(void *arg)
844 struct cfs_rq *cfs_rq = arg;
846 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
849 static struct task_struct *load_balance_next_fair(void *arg)
851 struct cfs_rq *cfs_rq = arg;
853 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
856 #ifdef CONFIG_FAIR_GROUP_SCHED
857 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
859 struct sched_entity *curr;
860 struct task_struct *p;
862 if (!cfs_rq->nr_running)
863 return MAX_PRIO;
865 curr = __pick_next_entity(cfs_rq);
866 p = task_of(curr);
868 return p->prio;
870 #endif
872 static unsigned long
873 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
874 unsigned long max_nr_move, unsigned long max_load_move,
875 struct sched_domain *sd, enum cpu_idle_type idle,
876 int *all_pinned, int *this_best_prio)
878 struct cfs_rq *busy_cfs_rq;
879 unsigned long load_moved, total_nr_moved = 0, nr_moved;
880 long rem_load_move = max_load_move;
881 struct rq_iterator cfs_rq_iterator;
883 cfs_rq_iterator.start = load_balance_start_fair;
884 cfs_rq_iterator.next = load_balance_next_fair;
886 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
887 #ifdef CONFIG_FAIR_GROUP_SCHED
888 struct cfs_rq *this_cfs_rq;
889 long imbalance;
890 unsigned long maxload;
892 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
894 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
895 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
896 if (imbalance <= 0)
897 continue;
899 /* Don't pull more than imbalance/2 */
900 imbalance /= 2;
901 maxload = min(rem_load_move, imbalance);
903 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
904 #else
905 # define maxload rem_load_move
906 #endif
907 /* pass busy_cfs_rq argument into
908 * load_balance_[start|next]_fair iterators
910 cfs_rq_iterator.arg = busy_cfs_rq;
911 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
912 max_nr_move, maxload, sd, idle, all_pinned,
913 &load_moved, this_best_prio, &cfs_rq_iterator);
915 total_nr_moved += nr_moved;
916 max_nr_move -= nr_moved;
917 rem_load_move -= load_moved;
919 if (max_nr_move <= 0 || rem_load_move <= 0)
920 break;
923 return max_load_move - rem_load_move;
927 * scheduler tick hitting a task of our scheduling class:
929 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
931 struct cfs_rq *cfs_rq;
932 struct sched_entity *se = &curr->se;
934 for_each_sched_entity(se) {
935 cfs_rq = cfs_rq_of(se);
936 entity_tick(cfs_rq, se);
940 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
943 * Share the fairness runtime between parent and child, thus the
944 * total amount of pressure for CPU stays equal - new tasks
945 * get a chance to run but frequent forkers are not allowed to
946 * monopolize the CPU. Note: the parent runqueue is locked,
947 * the child is not running yet.
949 static void task_new_fair(struct rq *rq, struct task_struct *p)
951 struct cfs_rq *cfs_rq = task_cfs_rq(p);
952 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
954 sched_info_queued(p);
956 update_curr(cfs_rq);
957 place_entity(cfs_rq, se, 1);
959 if (sysctl_sched_child_runs_first &&
960 curr->vruntime < se->vruntime) {
962 dequeue_entity(cfs_rq, curr, 0);
963 swap(curr->vruntime, se->vruntime);
964 enqueue_entity(cfs_rq, curr, 0);
967 update_stats_enqueue(cfs_rq, se);
968 __enqueue_entity(cfs_rq, se);
969 resched_task(rq->curr);
972 #ifdef CONFIG_FAIR_GROUP_SCHED
973 /* Account for a task changing its policy or group.
975 * This routine is mostly called to set cfs_rq->curr field when a task
976 * migrates between groups/classes.
978 static void set_curr_task_fair(struct rq *rq)
980 struct sched_entity *se = &rq->curr->se;
982 for_each_sched_entity(se)
983 set_next_entity(cfs_rq_of(se), se);
985 #else
986 static void set_curr_task_fair(struct rq *rq)
989 #endif
992 * All the scheduling class methods:
994 struct sched_class fair_sched_class __read_mostly = {
995 .enqueue_task = enqueue_task_fair,
996 .dequeue_task = dequeue_task_fair,
997 .yield_task = yield_task_fair,
999 .check_preempt_curr = check_preempt_wakeup,
1001 .pick_next_task = pick_next_task_fair,
1002 .put_prev_task = put_prev_task_fair,
1004 .load_balance = load_balance_fair,
1006 .set_curr_task = set_curr_task_fair,
1007 .task_tick = task_tick_fair,
1008 .task_new = task_new_fair,
1011 #ifdef CONFIG_SCHED_DEBUG
1012 static void print_cfs_stats(struct seq_file *m, int cpu)
1014 struct cfs_rq *cfs_rq;
1016 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1017 print_cfs_rq(m, cpu, cfs_rq);
1019 #endif