1 /* Common capabilities, needed by capability.o and root_plug.o
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
28 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
30 * Because of the reduced scope of CAP_SETPCAP when filesystem
31 * capabilities are in effect, it is safe to allow this capability to
32 * be available in the default configuration.
34 # define CAP_INIT_BSET CAP_FULL_SET
35 #else /* ie. ndef CONFIG_SECURITY_FILE_CAPABILITIES */
36 # define CAP_INIT_BSET CAP_INIT_EFF_SET
37 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
39 kernel_cap_t cap_bset
= CAP_INIT_BSET
; /* systemwide capability bound */
40 EXPORT_SYMBOL(cap_bset
);
42 /* Global security state */
44 unsigned securebits
= SECUREBITS_DEFAULT
; /* systemwide security settings */
45 EXPORT_SYMBOL(securebits
);
47 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
49 NETLINK_CB(skb
).eff_cap
= current
->cap_effective
;
53 int cap_netlink_recv(struct sk_buff
*skb
, int cap
)
55 if (!cap_raised(NETLINK_CB(skb
).eff_cap
, cap
))
60 EXPORT_SYMBOL(cap_netlink_recv
);
63 * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
64 * function. That is, it has the reverse semantics: cap_capable()
65 * returns 0 when a task has a capability, but the kernel's capable()
66 * returns 1 for this case.
68 int cap_capable (struct task_struct
*tsk
, int cap
)
70 /* Derived from include/linux/sched.h:capable. */
71 if (cap_raised(tsk
->cap_effective
, cap
))
76 int cap_settime(struct timespec
*ts
, struct timezone
*tz
)
78 if (!capable(CAP_SYS_TIME
))
83 int cap_ptrace (struct task_struct
*parent
, struct task_struct
*child
)
85 /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
86 if (!cap_issubset(child
->cap_permitted
, parent
->cap_permitted
) &&
87 !__capable(parent
, CAP_SYS_PTRACE
))
92 int cap_capget (struct task_struct
*target
, kernel_cap_t
*effective
,
93 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
95 /* Derived from kernel/capability.c:sys_capget. */
96 *effective
= cap_t (target
->cap_effective
);
97 *inheritable
= cap_t (target
->cap_inheritable
);
98 *permitted
= cap_t (target
->cap_permitted
);
102 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
104 static inline int cap_block_setpcap(struct task_struct
*target
)
107 * No support for remote process capability manipulation with
108 * filesystem capability support.
110 return (target
!= current
);
113 static inline int cap_inh_is_capped(void)
116 * Return 1 if changes to the inheritable set are limited
117 * to the old permitted set. That is, if the current task
118 * does *not* possess the CAP_SETPCAP capability.
120 return (cap_capable(current
, CAP_SETPCAP
) != 0);
123 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
125 static inline int cap_block_setpcap(struct task_struct
*t
) { return 0; }
126 static inline int cap_inh_is_capped(void) { return 1; }
128 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
130 int cap_capset_check (struct task_struct
*target
, kernel_cap_t
*effective
,
131 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
133 if (cap_block_setpcap(target
)) {
136 if (cap_inh_is_capped()
137 && !cap_issubset(*inheritable
,
138 cap_combine(target
->cap_inheritable
,
139 current
->cap_permitted
))) {
140 /* incapable of using this inheritable set */
144 /* verify restrictions on target's new Permitted set */
145 if (!cap_issubset (*permitted
,
146 cap_combine (target
->cap_permitted
,
147 current
->cap_permitted
))) {
151 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
152 if (!cap_issubset (*effective
, *permitted
)) {
159 void cap_capset_set (struct task_struct
*target
, kernel_cap_t
*effective
,
160 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
162 target
->cap_effective
= *effective
;
163 target
->cap_inheritable
= *inheritable
;
164 target
->cap_permitted
= *permitted
;
167 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
169 cap_clear(bprm
->cap_inheritable
);
170 cap_clear(bprm
->cap_permitted
);
171 bprm
->cap_effective
= false;
174 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
176 int cap_inode_need_killpriv(struct dentry
*dentry
)
178 struct inode
*inode
= dentry
->d_inode
;
181 if (!inode
->i_op
|| !inode
->i_op
->getxattr
)
184 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
190 int cap_inode_killpriv(struct dentry
*dentry
)
192 struct inode
*inode
= dentry
->d_inode
;
194 if (!inode
->i_op
|| !inode
->i_op
->removexattr
)
197 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
200 static inline int cap_from_disk(struct vfs_cap_data
*caps
,
201 struct linux_binprm
*bprm
,
206 if (size
!= XATTR_CAPS_SZ
)
209 magic_etc
= le32_to_cpu(caps
->magic_etc
);
211 switch ((magic_etc
& VFS_CAP_REVISION_MASK
)) {
212 case VFS_CAP_REVISION
:
213 if (magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
214 bprm
->cap_effective
= true;
216 bprm
->cap_effective
= false;
217 bprm
->cap_permitted
= to_cap_t(le32_to_cpu(caps
->permitted
));
218 bprm
->cap_inheritable
= to_cap_t(le32_to_cpu(caps
->inheritable
));
225 /* Locate any VFS capabilities: */
226 static int get_file_caps(struct linux_binprm
*bprm
)
228 struct dentry
*dentry
;
230 struct vfs_cap_data incaps
;
233 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
) {
234 bprm_clear_caps(bprm
);
238 dentry
= dget(bprm
->file
->f_dentry
);
239 inode
= dentry
->d_inode
;
240 if (!inode
->i_op
|| !inode
->i_op
->getxattr
)
243 rc
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
245 if (rc
== XATTR_CAPS_SZ
)
246 rc
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
,
247 &incaps
, XATTR_CAPS_SZ
);
251 if (rc
== -ENODATA
|| rc
== -EOPNOTSUPP
) {
252 /* no data, that's ok */
259 rc
= cap_from_disk(&incaps
, bprm
, rc
);
261 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
262 __FUNCTION__
, rc
, bprm
->filename
);
267 bprm_clear_caps(bprm
);
273 int cap_inode_need_killpriv(struct dentry
*dentry
)
278 int cap_inode_killpriv(struct dentry
*dentry
)
283 static inline int get_file_caps(struct linux_binprm
*bprm
)
285 bprm_clear_caps(bprm
);
290 int cap_bprm_set_security (struct linux_binprm
*bprm
)
294 ret
= get_file_caps(bprm
);
296 printk(KERN_NOTICE
"%s: get_file_caps returned %d for %s\n",
297 __FUNCTION__
, ret
, bprm
->filename
);
299 /* To support inheritance of root-permissions and suid-root
300 * executables under compatibility mode, we raise all three
301 * capability sets for the file.
303 * If only the real uid is 0, we only raise the inheritable
304 * and permitted sets of the executable file.
307 if (!issecure (SECURE_NOROOT
)) {
308 if (bprm
->e_uid
== 0 || current
->uid
== 0) {
309 cap_set_full (bprm
->cap_inheritable
);
310 cap_set_full (bprm
->cap_permitted
);
312 if (bprm
->e_uid
== 0)
313 bprm
->cap_effective
= true;
319 void cap_bprm_apply_creds (struct linux_binprm
*bprm
, int unsafe
)
321 /* Derived from fs/exec.c:compute_creds. */
322 kernel_cap_t new_permitted
, working
;
324 new_permitted
= cap_intersect (bprm
->cap_permitted
, cap_bset
);
325 working
= cap_intersect (bprm
->cap_inheritable
,
326 current
->cap_inheritable
);
327 new_permitted
= cap_combine (new_permitted
, working
);
329 if (bprm
->e_uid
!= current
->uid
|| bprm
->e_gid
!= current
->gid
||
330 !cap_issubset (new_permitted
, current
->cap_permitted
)) {
331 set_dumpable(current
->mm
, suid_dumpable
);
332 current
->pdeath_signal
= 0;
334 if (unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
335 if (!capable(CAP_SETUID
)) {
336 bprm
->e_uid
= current
->uid
;
337 bprm
->e_gid
= current
->gid
;
339 if (!capable (CAP_SETPCAP
)) {
340 new_permitted
= cap_intersect (new_permitted
,
341 current
->cap_permitted
);
346 current
->suid
= current
->euid
= current
->fsuid
= bprm
->e_uid
;
347 current
->sgid
= current
->egid
= current
->fsgid
= bprm
->e_gid
;
349 /* For init, we want to retain the capabilities set
350 * in the init_task struct. Thus we skip the usual
351 * capability rules */
352 if (!is_global_init(current
)) {
353 current
->cap_permitted
= new_permitted
;
354 current
->cap_effective
= bprm
->cap_effective
?
358 /* AUD: Audit candidate if current->cap_effective is set */
360 current
->keep_capabilities
= 0;
363 int cap_bprm_secureexec (struct linux_binprm
*bprm
)
365 if (current
->uid
!= 0) {
366 if (bprm
->cap_effective
)
368 if (!cap_isclear(bprm
->cap_permitted
))
370 if (!cap_isclear(bprm
->cap_inheritable
))
374 return (current
->euid
!= current
->uid
||
375 current
->egid
!= current
->gid
);
378 int cap_inode_setxattr(struct dentry
*dentry
, char *name
, void *value
,
379 size_t size
, int flags
)
381 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
382 if (!capable(CAP_SETFCAP
))
385 } else if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
386 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
387 !capable(CAP_SYS_ADMIN
))
392 int cap_inode_removexattr(struct dentry
*dentry
, char *name
)
394 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
395 if (!capable(CAP_SETFCAP
))
398 } else if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
399 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
400 !capable(CAP_SYS_ADMIN
))
405 /* moved from kernel/sys.c. */
407 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
408 * a process after a call to setuid, setreuid, or setresuid.
410 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
411 * {r,e,s}uid != 0, the permitted and effective capabilities are
414 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
415 * capabilities of the process are cleared.
417 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
418 * capabilities are set to the permitted capabilities.
420 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
425 * cevans - New behaviour, Oct '99
426 * A process may, via prctl(), elect to keep its capabilities when it
427 * calls setuid() and switches away from uid==0. Both permitted and
428 * effective sets will be retained.
429 * Without this change, it was impossible for a daemon to drop only some
430 * of its privilege. The call to setuid(!=0) would drop all privileges!
431 * Keeping uid 0 is not an option because uid 0 owns too many vital
433 * Thanks to Olaf Kirch and Peter Benie for spotting this.
435 static inline void cap_emulate_setxuid (int old_ruid
, int old_euid
,
438 if ((old_ruid
== 0 || old_euid
== 0 || old_suid
== 0) &&
439 (current
->uid
!= 0 && current
->euid
!= 0 && current
->suid
!= 0) &&
440 !current
->keep_capabilities
) {
441 cap_clear (current
->cap_permitted
);
442 cap_clear (current
->cap_effective
);
444 if (old_euid
== 0 && current
->euid
!= 0) {
445 cap_clear (current
->cap_effective
);
447 if (old_euid
!= 0 && current
->euid
== 0) {
448 current
->cap_effective
= current
->cap_permitted
;
452 int cap_task_post_setuid (uid_t old_ruid
, uid_t old_euid
, uid_t old_suid
,
459 /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
460 if (!issecure (SECURE_NO_SETUID_FIXUP
)) {
461 cap_emulate_setxuid (old_ruid
, old_euid
, old_suid
);
466 uid_t old_fsuid
= old_ruid
;
468 /* Copied from kernel/sys.c:setfsuid. */
471 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
472 * if not, we might be a bit too harsh here.
475 if (!issecure (SECURE_NO_SETUID_FIXUP
)) {
476 if (old_fsuid
== 0 && current
->fsuid
!= 0) {
477 cap_t (current
->cap_effective
) &=
480 if (old_fsuid
!= 0 && current
->fsuid
== 0) {
481 cap_t (current
->cap_effective
) |=
482 (cap_t (current
->cap_permitted
) &
495 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
497 * Rationale: code calling task_setscheduler, task_setioprio, and
498 * task_setnice, assumes that
499 * . if capable(cap_sys_nice), then those actions should be allowed
500 * . if not capable(cap_sys_nice), but acting on your own processes,
501 * then those actions should be allowed
502 * This is insufficient now since you can call code without suid, but
503 * yet with increased caps.
504 * So we check for increased caps on the target process.
506 static inline int cap_safe_nice(struct task_struct
*p
)
508 if (!cap_issubset(p
->cap_permitted
, current
->cap_permitted
) &&
509 !__capable(current
, CAP_SYS_NICE
))
514 int cap_task_setscheduler (struct task_struct
*p
, int policy
,
515 struct sched_param
*lp
)
517 return cap_safe_nice(p
);
520 int cap_task_setioprio (struct task_struct
*p
, int ioprio
)
522 return cap_safe_nice(p
);
525 int cap_task_setnice (struct task_struct
*p
, int nice
)
527 return cap_safe_nice(p
);
530 int cap_task_kill(struct task_struct
*p
, struct siginfo
*info
,
533 if (info
!= SEND_SIG_NOINFO
&& (is_si_special(info
) || SI_FROMKERNEL(info
)))
537 * Running a setuid root program raises your capabilities.
538 * Killing your own setuid root processes was previously
540 * We must preserve legacy signal behavior in this case.
542 if (p
->euid
== 0 && p
->uid
== current
->uid
)
545 /* sigcont is permitted within same session */
546 if (sig
== SIGCONT
&& (task_session_nr(current
) == task_session_nr(p
)))
551 * Signal sent as a particular user.
552 * Capabilities are ignored. May be wrong, but it's the
553 * only thing we can do at the moment.
554 * Used only by usb drivers?
557 if (cap_issubset(p
->cap_permitted
, current
->cap_permitted
))
559 if (capable(CAP_KILL
))
565 int cap_task_setscheduler (struct task_struct
*p
, int policy
,
566 struct sched_param
*lp
)
570 int cap_task_setioprio (struct task_struct
*p
, int ioprio
)
574 int cap_task_setnice (struct task_struct
*p
, int nice
)
578 int cap_task_kill(struct task_struct
*p
, struct siginfo
*info
,
585 void cap_task_reparent_to_init (struct task_struct
*p
)
587 p
->cap_effective
= CAP_INIT_EFF_SET
;
588 p
->cap_inheritable
= CAP_INIT_INH_SET
;
589 p
->cap_permitted
= CAP_FULL_SET
;
590 p
->keep_capabilities
= 0;
594 int cap_syslog (int type
)
596 if ((type
!= 3 && type
!= 10) && !capable(CAP_SYS_ADMIN
))
601 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
603 int cap_sys_admin
= 0;
605 if (cap_capable(current
, CAP_SYS_ADMIN
) == 0)
607 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);