o kernel/ksyms.c: move remaining EXPORT_SYMBOLs, remove this file from the tree
[linux-2.6/history.git] / mm / slab.c
blobf9a4359316808fc578009ab5fe66cdf537fcc7a7
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
80 #include <linux/config.h>
81 #include <linux/slab.h>
82 #include <linux/mm.h>
83 #include <linux/swap.h>
84 #include <linux/cache.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compiler.h>
88 #include <linux/seq_file.h>
89 #include <linux/notifier.h>
90 #include <linux/kallsyms.h>
91 #include <linux/cpu.h>
92 #include <linux/sysctl.h>
93 #include <linux/module.h>
95 #include <asm/uaccess.h>
96 #include <asm/cacheflush.h>
97 #include <asm/tlbflush.h>
100 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
101 * SLAB_RED_ZONE & SLAB_POISON.
102 * 0 for faster, smaller code (especially in the critical paths).
104 * STATS - 1 to collect stats for /proc/slabinfo.
105 * 0 for faster, smaller code (especially in the critical paths).
107 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
110 #ifdef CONFIG_DEBUG_SLAB
111 #define DEBUG 1
112 #define STATS 1
113 #define FORCED_DEBUG 1
114 #else
115 #define DEBUG 0
116 #define STATS 0
117 #define FORCED_DEBUG 0
118 #endif
121 /* Shouldn't this be in a header file somewhere? */
122 #define BYTES_PER_WORD sizeof(void *)
124 /* Legal flag mask for kmem_cache_create(). */
125 #if DEBUG
126 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
127 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
128 SLAB_NO_REAP | SLAB_CACHE_DMA | \
129 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
130 SLAB_RECLAIM_ACCOUNT )
131 #else
132 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
133 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
134 SLAB_RECLAIM_ACCOUNT)
135 #endif
138 * kmem_bufctl_t:
140 * Bufctl's are used for linking objs within a slab
141 * linked offsets.
143 * This implementation relies on "struct page" for locating the cache &
144 * slab an object belongs to.
145 * This allows the bufctl structure to be small (one int), but limits
146 * the number of objects a slab (not a cache) can contain when off-slab
147 * bufctls are used. The limit is the size of the largest general cache
148 * that does not use off-slab slabs.
149 * For 32bit archs with 4 kB pages, is this 56.
150 * This is not serious, as it is only for large objects, when it is unwise
151 * to have too many per slab.
152 * Note: This limit can be raised by introducing a general cache whose size
153 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
156 #define BUFCTL_END 0xffffFFFF
157 #define BUFCTL_FREE 0xffffFFFE
158 #define SLAB_LIMIT 0xffffFFFD
159 typedef unsigned int kmem_bufctl_t;
161 /* Max number of objs-per-slab for caches which use off-slab slabs.
162 * Needed to avoid a possible looping condition in cache_grow().
164 static unsigned long offslab_limit;
167 * struct slab
169 * Manages the objs in a slab. Placed either at the beginning of mem allocated
170 * for a slab, or allocated from an general cache.
171 * Slabs are chained into three list: fully used, partial, fully free slabs.
173 struct slab {
174 struct list_head list;
175 unsigned long colouroff;
176 void *s_mem; /* including colour offset */
177 unsigned int inuse; /* num of objs active in slab */
178 kmem_bufctl_t free;
182 * struct array_cache
184 * Per cpu structures
185 * Purpose:
186 * - LIFO ordering, to hand out cache-warm objects from _alloc
187 * - reduce the number of linked list operations
188 * - reduce spinlock operations
190 * The limit is stored in the per-cpu structure to reduce the data cache
191 * footprint.
194 struct array_cache {
195 unsigned int avail;
196 unsigned int limit;
197 unsigned int batchcount;
198 unsigned int touched;
201 /* bootstrap: The caches do not work without cpuarrays anymore,
202 * but the cpuarrays are allocated from the generic caches...
204 #define BOOT_CPUCACHE_ENTRIES 1
205 struct arraycache_init {
206 struct array_cache cache;
207 void * entries[BOOT_CPUCACHE_ENTRIES];
211 * The slab lists of all objects.
212 * Hopefully reduce the internal fragmentation
213 * NUMA: The spinlock could be moved from the kmem_cache_t
214 * into this structure, too. Figure out what causes
215 * fewer cross-node spinlock operations.
217 struct kmem_list3 {
218 struct list_head slabs_partial; /* partial list first, better asm code */
219 struct list_head slabs_full;
220 struct list_head slabs_free;
221 unsigned long free_objects;
222 int free_touched;
223 unsigned long next_reap;
224 struct array_cache *shared;
227 #define LIST3_INIT(parent) \
229 .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \
230 .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \
231 .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \
233 #define list3_data(cachep) \
234 (&(cachep)->lists)
236 /* NUMA: per-node */
237 #define list3_data_ptr(cachep, ptr) \
238 list3_data(cachep)
241 * kmem_cache_t
243 * manages a cache.
246 struct kmem_cache_s {
247 /* 1) per-cpu data, touched during every alloc/free */
248 struct array_cache *array[NR_CPUS];
249 unsigned int batchcount;
250 unsigned int limit;
251 /* 2) touched by every alloc & free from the backend */
252 struct kmem_list3 lists;
253 /* NUMA: kmem_3list_t *nodelists[MAX_NUMNODES] */
254 unsigned int objsize;
255 unsigned int flags; /* constant flags */
256 unsigned int num; /* # of objs per slab */
257 unsigned int free_limit; /* upper limit of objects in the lists */
258 spinlock_t spinlock;
260 /* 3) cache_grow/shrink */
261 /* order of pgs per slab (2^n) */
262 unsigned int gfporder;
264 /* force GFP flags, e.g. GFP_DMA */
265 unsigned int gfpflags;
267 size_t colour; /* cache colouring range */
268 unsigned int colour_off; /* colour offset */
269 unsigned int colour_next; /* cache colouring */
270 kmem_cache_t *slabp_cache;
271 unsigned int dflags; /* dynamic flags */
273 /* constructor func */
274 void (*ctor)(void *, kmem_cache_t *, unsigned long);
276 /* de-constructor func */
277 void (*dtor)(void *, kmem_cache_t *, unsigned long);
279 /* 4) cache creation/removal */
280 const char *name;
281 struct list_head next;
283 /* 5) statistics */
284 #if STATS
285 unsigned long num_active;
286 unsigned long num_allocations;
287 unsigned long high_mark;
288 unsigned long grown;
289 unsigned long reaped;
290 unsigned long errors;
291 unsigned long max_freeable;
292 atomic_t allochit;
293 atomic_t allocmiss;
294 atomic_t freehit;
295 atomic_t freemiss;
296 #endif
297 #if DEBUG
298 int dbghead;
299 int reallen;
300 #endif
303 #define CFLGS_OFF_SLAB (0x80000000UL)
304 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
306 #define BATCHREFILL_LIMIT 16
307 /* Optimization question: fewer reaps means less
308 * probability for unnessary cpucache drain/refill cycles.
310 * OTHO the cpuarrays can contain lots of objects,
311 * which could lock up otherwise freeable slabs.
313 #define REAPTIMEOUT_CPUC (2*HZ)
314 #define REAPTIMEOUT_LIST3 (4*HZ)
316 #if STATS
317 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
318 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
319 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
320 #define STATS_INC_GROWN(x) ((x)->grown++)
321 #define STATS_INC_REAPED(x) ((x)->reaped++)
322 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
323 (x)->high_mark = (x)->num_active; \
324 } while (0)
325 #define STATS_INC_ERR(x) ((x)->errors++)
326 #define STATS_SET_FREEABLE(x, i) \
327 do { if ((x)->max_freeable < i) \
328 (x)->max_freeable = i; \
329 } while (0)
331 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
332 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
333 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
334 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
335 #else
336 #define STATS_INC_ACTIVE(x) do { } while (0)
337 #define STATS_DEC_ACTIVE(x) do { } while (0)
338 #define STATS_INC_ALLOCED(x) do { } while (0)
339 #define STATS_INC_GROWN(x) do { } while (0)
340 #define STATS_INC_REAPED(x) do { } while (0)
341 #define STATS_SET_HIGH(x) do { } while (0)
342 #define STATS_INC_ERR(x) do { } while (0)
343 #define STATS_SET_FREEABLE(x, i) \
344 do { } while (0)
346 #define STATS_INC_ALLOCHIT(x) do { } while (0)
347 #define STATS_INC_ALLOCMISS(x) do { } while (0)
348 #define STATS_INC_FREEHIT(x) do { } while (0)
349 #define STATS_INC_FREEMISS(x) do { } while (0)
350 #endif
352 #if DEBUG
353 /* Magic nums for obj red zoning.
354 * Placed in the first word before and the first word after an obj.
356 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
357 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
359 /* ...and for poisoning */
360 #define POISON_BEFORE 0x5a /* for use-uninitialised poisoning */
361 #define POISON_AFTER 0x6b /* for use-after-free poisoning */
362 #define POISON_END 0xa5 /* end-byte of poisoning */
364 /* memory layout of objects:
365 * 0 : objp
366 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
367 * the end of an object is aligned with the end of the real
368 * allocation. Catches writes behind the end of the allocation.
369 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
370 * redzone word.
371 * cachep->dbghead: The real object.
372 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
373 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
375 static inline int obj_dbghead(kmem_cache_t *cachep)
377 return cachep->dbghead;
380 static inline int obj_reallen(kmem_cache_t *cachep)
382 return cachep->reallen;
385 static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
387 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
388 return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
391 static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
393 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
394 if (cachep->flags & SLAB_STORE_USER)
395 return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
396 return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
399 static void **dbg_userword(kmem_cache_t *cachep, void *objp)
401 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
402 return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
404 #else
405 static inline int obj_dbghead(kmem_cache_t *cachep)
407 return 0;
409 static inline int obj_reallen(kmem_cache_t *cachep)
411 return cachep->objsize;
413 static inline unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
415 BUG();
416 return 0;
418 static inline unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
420 BUG();
421 return 0;
423 static inline void **dbg_userword(kmem_cache_t *cachep, void *objp)
425 BUG();
426 return 0;
428 #endif
431 * Maximum size of an obj (in 2^order pages)
432 * and absolute limit for the gfp order.
434 #if defined(CONFIG_LARGE_ALLOCS)
435 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
436 #define MAX_GFP_ORDER 13 /* up to 32Mb */
437 #elif defined(CONFIG_MMU)
438 #define MAX_OBJ_ORDER 5 /* 32 pages */
439 #define MAX_GFP_ORDER 5 /* 32 pages */
440 #else
441 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
442 #define MAX_GFP_ORDER 8 /* up to 1Mb */
443 #endif
446 * Do not go above this order unless 0 objects fit into the slab.
448 #define BREAK_GFP_ORDER_HI 2
449 #define BREAK_GFP_ORDER_LO 1
450 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
452 /* Macros for storing/retrieving the cachep and or slab from the
453 * global 'mem_map'. These are used to find the slab an obj belongs to.
454 * With kfree(), these are used to find the cache which an obj belongs to.
456 #define SET_PAGE_CACHE(pg,x) ((pg)->list.next = (struct list_head *)(x))
457 #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->list.next)
458 #define SET_PAGE_SLAB(pg,x) ((pg)->list.prev = (struct list_head *)(x))
459 #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->list.prev)
461 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
462 struct cache_sizes malloc_sizes[] = {
463 #define CACHE(x) { .cs_size = (x) },
464 #include <linux/kmalloc_sizes.h>
465 { 0, }
466 #undef CACHE
469 EXPORT_SYMBOL(malloc_sizes);
471 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
472 static struct cache_names {
473 char *name;
474 char *name_dma;
475 } cache_names[] = {
476 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
477 #include <linux/kmalloc_sizes.h>
478 { 0, }
479 #undef CACHE
482 struct arraycache_init initarray_cache __initdata = { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
483 struct arraycache_init initarray_generic __initdata = { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
485 /* internal cache of cache description objs */
486 static kmem_cache_t cache_cache = {
487 .lists = LIST3_INIT(cache_cache.lists),
488 .batchcount = 1,
489 .limit = BOOT_CPUCACHE_ENTRIES,
490 .objsize = sizeof(kmem_cache_t),
491 .flags = SLAB_NO_REAP,
492 .spinlock = SPIN_LOCK_UNLOCKED,
493 .colour_off = L1_CACHE_BYTES,
494 .name = "kmem_cache",
497 /* Guard access to the cache-chain. */
498 static struct semaphore cache_chain_sem;
500 struct list_head cache_chain;
503 * vm_enough_memory() looks at this to determine how many
504 * slab-allocated pages are possibly freeable under pressure
506 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
508 atomic_t slab_reclaim_pages;
509 EXPORT_SYMBOL(slab_reclaim_pages);
512 * chicken and egg problem: delay the per-cpu array allocation
513 * until the general caches are up.
515 enum {
516 NONE,
517 PARTIAL,
518 FULL
519 } g_cpucache_up;
521 static DEFINE_PER_CPU(struct timer_list, reap_timers);
523 static void reap_timer_fnc(unsigned long data);
525 static void enable_cpucache (kmem_cache_t *cachep);
527 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
528 static void cache_estimate (unsigned long gfporder, size_t size,
529 int flags, size_t *left_over, unsigned int *num)
531 int i;
532 size_t wastage = PAGE_SIZE<<gfporder;
533 size_t extra = 0;
534 size_t base = 0;
536 if (!(flags & CFLGS_OFF_SLAB)) {
537 base = sizeof(struct slab);
538 extra = sizeof(kmem_bufctl_t);
540 i = 0;
541 while (i*size + L1_CACHE_ALIGN(base+i*extra) <= wastage)
542 i++;
543 if (i > 0)
544 i--;
546 if (i > SLAB_LIMIT)
547 i = SLAB_LIMIT;
549 *num = i;
550 wastage -= i*size;
551 wastage -= L1_CACHE_ALIGN(base+i*extra);
552 *left_over = wastage;
555 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
557 static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
559 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
560 function, cachep->name, msg);
561 dump_stack();
565 * Start the reap timer running on the target CPU. We run at around 1 to 2Hz.
566 * Add the CPU number into the expiry time to minimize the possibility of the
567 * CPUs getting into lockstep and contending for the global cache chain lock.
569 static void start_cpu_timer(int cpu)
571 struct timer_list *rt = &per_cpu(reap_timers, cpu);
573 if (rt->function == NULL) {
574 init_timer(rt);
575 rt->expires = jiffies + HZ + 3*cpu;
576 rt->function = reap_timer_fnc;
577 add_timer_on(rt, cpu);
582 * Note: if someone calls kmem_cache_alloc() on the new
583 * cpu before the cpuup callback had a chance to allocate
584 * the head arrays, it will oops.
585 * Is CPU_ONLINE early enough?
587 static int __devinit cpuup_callback(struct notifier_block *nfb,
588 unsigned long action,
589 void *hcpu)
591 long cpu = (long)hcpu;
592 struct list_head *p;
594 switch (action) {
595 case CPU_UP_PREPARE:
596 down(&cache_chain_sem);
597 list_for_each(p, &cache_chain) {
598 int memsize;
599 struct array_cache *nc;
601 kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
602 memsize = sizeof(void*)*cachep->limit+sizeof(struct array_cache);
603 nc = kmalloc(memsize, GFP_KERNEL);
604 if (!nc)
605 goto bad;
606 nc->avail = 0;
607 nc->limit = cachep->limit;
608 nc->batchcount = cachep->batchcount;
609 nc->touched = 0;
611 spin_lock_irq(&cachep->spinlock);
612 cachep->array[cpu] = nc;
613 cachep->free_limit = (1+num_online_cpus())*cachep->batchcount
614 + cachep->num;
615 spin_unlock_irq(&cachep->spinlock);
618 up(&cache_chain_sem);
619 break;
620 case CPU_ONLINE:
621 if (g_cpucache_up == FULL)
622 start_cpu_timer(cpu);
623 break;
624 case CPU_UP_CANCELED:
625 down(&cache_chain_sem);
627 list_for_each(p, &cache_chain) {
628 struct array_cache *nc;
629 kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
631 nc = cachep->array[cpu];
632 cachep->array[cpu] = NULL;
633 kfree(nc);
635 up(&cache_chain_sem);
636 break;
638 return NOTIFY_OK;
639 bad:
640 up(&cache_chain_sem);
641 return NOTIFY_BAD;
644 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
646 static inline void ** ac_entry(struct array_cache *ac)
648 return (void**)(ac+1);
651 static inline struct array_cache *ac_data(kmem_cache_t *cachep)
653 return cachep->array[smp_processor_id()];
656 /* Initialisation.
657 * Called after the gfp() functions have been enabled, and before smp_init().
659 void __init kmem_cache_init(void)
661 size_t left_over;
662 struct cache_sizes *sizes;
663 struct cache_names *names;
666 * Fragmentation resistance on low memory - only use bigger
667 * page orders on machines with more than 32MB of memory.
669 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
670 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
673 /* Bootstrap is tricky, because several objects are allocated
674 * from caches that do not exist yet:
675 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
676 * structures of all caches, except cache_cache itself: cache_cache
677 * is statically allocated.
678 * Initially an __init data area is used for the head array, it's
679 * replaced with a kmalloc allocated array at the end of the bootstrap.
680 * 2) Create the first kmalloc cache.
681 * The kmem_cache_t for the new cache is allocated normally. An __init
682 * data area is used for the head array.
683 * 3) Create the remaining kmalloc caches, with minimally sized head arrays.
684 * 4) Replace the __init data head arrays for cache_cache and the first
685 * kmalloc cache with kmalloc allocated arrays.
686 * 5) Resize the head arrays of the kmalloc caches to their final sizes.
689 /* 1) create the cache_cache */
690 init_MUTEX(&cache_chain_sem);
691 INIT_LIST_HEAD(&cache_chain);
692 list_add(&cache_cache.next, &cache_chain);
693 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
695 cache_estimate(0, cache_cache.objsize, 0,
696 &left_over, &cache_cache.num);
697 if (!cache_cache.num)
698 BUG();
700 cache_cache.colour = left_over/cache_cache.colour_off;
701 cache_cache.colour_next = 0;
704 /* 2+3) create the kmalloc caches */
705 sizes = malloc_sizes;
706 names = cache_names;
708 while (sizes->cs_size) {
709 /* For performance, all the general caches are L1 aligned.
710 * This should be particularly beneficial on SMP boxes, as it
711 * eliminates "false sharing".
712 * Note for systems short on memory removing the alignment will
713 * allow tighter packing of the smaller caches. */
714 sizes->cs_cachep = kmem_cache_create(
715 names->name, sizes->cs_size,
716 0, SLAB_HWCACHE_ALIGN, NULL, NULL);
717 if (!sizes->cs_cachep)
718 BUG();
720 /* Inc off-slab bufctl limit until the ceiling is hit. */
721 if (!(OFF_SLAB(sizes->cs_cachep))) {
722 offslab_limit = sizes->cs_size-sizeof(struct slab);
723 offslab_limit /= sizeof(kmem_bufctl_t);
726 sizes->cs_dmacachep = kmem_cache_create(
727 names->name_dma, sizes->cs_size,
728 0, SLAB_CACHE_DMA|SLAB_HWCACHE_ALIGN, NULL, NULL);
729 if (!sizes->cs_dmacachep)
730 BUG();
732 sizes++;
733 names++;
735 /* 4) Replace the bootstrap head arrays */
737 void * ptr;
739 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
740 local_irq_disable();
741 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
742 memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init));
743 cache_cache.array[smp_processor_id()] = ptr;
744 local_irq_enable();
746 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
747 local_irq_disable();
748 BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache);
749 memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep),
750 sizeof(struct arraycache_init));
751 malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr;
752 local_irq_enable();
755 /* 5) resize the head arrays to their final sizes */
757 kmem_cache_t *cachep;
758 down(&cache_chain_sem);
759 list_for_each_entry(cachep, &cache_chain, next)
760 enable_cpucache(cachep);
761 up(&cache_chain_sem);
764 /* Done! */
765 g_cpucache_up = FULL;
767 /* Register a cpu startup notifier callback
768 * that initializes ac_data for all new cpus
770 register_cpu_notifier(&cpucache_notifier);
773 /* The reap timers are started later, with a module init call:
774 * That part of the kernel is not yet operational.
778 int __init cpucache_init(void)
780 int cpu;
783 * Register the timers that return unneeded
784 * pages to gfp.
786 for (cpu = 0; cpu < NR_CPUS; cpu++) {
787 if (cpu_online(cpu))
788 start_cpu_timer(cpu);
791 return 0;
794 __initcall(cpucache_init);
796 /* Interface to system's page allocator. No need to hold the cache-lock.
798 static inline void * kmem_getpages (kmem_cache_t *cachep, unsigned long flags)
800 void *addr;
803 * If we requested dmaable memory, we will get it. Even if we
804 * did not request dmaable memory, we might get it, but that
805 * would be relatively rare and ignorable.
807 flags |= cachep->gfpflags;
808 if ( cachep->flags & SLAB_RECLAIM_ACCOUNT)
809 atomic_add(1<<cachep->gfporder, &slab_reclaim_pages);
810 addr = (void*) __get_free_pages(flags, cachep->gfporder);
811 /* Assume that now we have the pages no one else can legally
812 * messes with the 'struct page's.
813 * However vm_scan() might try to test the structure to see if
814 * it is a named-page or buffer-page. The members it tests are
815 * of no interest here.....
817 return addr;
820 /* Interface to system's page release. */
821 static inline void kmem_freepages (kmem_cache_t *cachep, void *addr)
823 unsigned long i = (1<<cachep->gfporder);
824 struct page *page = virt_to_page(addr);
825 const unsigned long nr_freed = i;
827 /* free_pages() does not clear the type bit - we do that.
828 * The pages have been unlinked from their cache-slab,
829 * but their 'struct page's might be accessed in
830 * vm_scan(). Shouldn't be a worry.
832 while (i--) {
833 if (!TestClearPageSlab(page))
834 BUG();
835 page++;
837 sub_page_state(nr_slab, nr_freed);
838 if (current->reclaim_state)
839 current->reclaim_state->reclaimed_slab += nr_freed;
840 free_pages((unsigned long)addr, cachep->gfporder);
841 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
842 atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
845 #if DEBUG
847 #ifdef CONFIG_DEBUG_PAGEALLOC
848 static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, unsigned long caller)
850 int size = obj_reallen(cachep);
852 addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
854 if (size < 5*sizeof(unsigned long))
855 return;
857 *addr++=0x12345678;
858 *addr++=caller;
859 *addr++=smp_processor_id();
860 size -= 3*sizeof(unsigned long);
862 unsigned long *sptr = &caller;
863 unsigned long svalue;
865 while (((long) sptr & (THREAD_SIZE-1)) != 0) {
866 svalue = *sptr++;
867 if (kernel_text_address(svalue)) {
868 *addr++=svalue;
869 size -= sizeof(unsigned long);
870 if (size <= sizeof(unsigned long))
871 break;
876 *addr++=0x87654321;
878 #endif
880 static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
882 int size = obj_reallen(cachep);
883 addr = &((char*)addr)[obj_dbghead(cachep)];
885 memset(addr, val, size);
886 *(unsigned char *)(addr+size-1) = POISON_END;
889 static void *scan_poisoned_obj(unsigned char* addr, unsigned int size)
891 unsigned char *end;
893 end = addr + size - 1;
895 for (; addr < end; addr++) {
896 if (*addr != POISON_BEFORE && *addr != POISON_AFTER)
897 return addr;
899 if (*addr != POISON_END)
900 return addr;
901 return NULL;
904 static void check_poison_obj(kmem_cache_t *cachep, void *objp)
906 void *end;
907 void *realobj;
908 int size = obj_reallen(cachep);
910 realobj = objp+obj_dbghead(cachep);
912 end = scan_poisoned_obj(realobj, size);
913 if (end) {
914 int s;
915 printk(KERN_ERR "Slab corruption: start=%p, expend=%p, "
916 "problemat=%p\n", realobj, realobj+size-1, end);
917 if (cachep->flags & SLAB_STORE_USER) {
918 printk(KERN_ERR "Last user: [<%p>]", *dbg_userword(cachep, objp));
919 print_symbol("(%s)", (unsigned long)*dbg_userword(cachep, objp));
920 printk("\n");
922 printk(KERN_ERR "Data: ");
923 for (s = 0; s < size; s++) {
924 if (((char*)realobj)[s] == POISON_BEFORE)
925 printk(".");
926 else if (((char*)realobj)[s] == POISON_AFTER)
927 printk("*");
928 else
929 printk("%02X ", ((unsigned char*)realobj)[s]);
931 printk("\n");
932 printk(KERN_ERR "Next: ");
933 for (; s < size + 32; s++) {
934 if (((char*)realobj)[s] == POISON_BEFORE)
935 printk(".");
936 else if (((char*)realobj)[s] == POISON_AFTER)
937 printk("*");
938 else
939 printk("%02X ", ((unsigned char*)realobj)[s]);
941 printk("\n");
942 slab_error(cachep, "object was modified after freeing");
945 #endif
947 /* Destroy all the objs in a slab, and release the mem back to the system.
948 * Before calling the slab must have been unlinked from the cache.
949 * The cache-lock is not held/needed.
951 static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
953 #if DEBUG
954 int i;
955 for (i = 0; i < cachep->num; i++) {
956 void *objp = slabp->s_mem + cachep->objsize * i;
958 if (cachep->flags & SLAB_POISON) {
959 #ifdef CONFIG_DEBUG_PAGEALLOC
960 if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
961 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
962 else
963 check_poison_obj(cachep, objp);
964 #else
965 check_poison_obj(cachep, objp);
966 #endif
968 if (cachep->flags & SLAB_RED_ZONE) {
969 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
970 slab_error(cachep, "start of a freed object "
971 "was overwritten");
972 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
973 slab_error(cachep, "end of a freed object "
974 "was overwritten");
976 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
977 (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
979 #else
980 if (cachep->dtor) {
981 int i;
982 for (i = 0; i < cachep->num; i++) {
983 void* objp = slabp->s_mem+cachep->objsize*i;
984 (cachep->dtor)(objp, cachep, 0);
987 #endif
989 kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);
990 if (OFF_SLAB(cachep))
991 kmem_cache_free(cachep->slabp_cache, slabp);
995 * kmem_cache_create - Create a cache.
996 * @name: A string which is used in /proc/slabinfo to identify this cache.
997 * @size: The size of objects to be created in this cache.
998 * @offset: The offset to use within the page.
999 * @flags: SLAB flags
1000 * @ctor: A constructor for the objects.
1001 * @dtor: A destructor for the objects.
1003 * Returns a ptr to the cache on success, NULL on failure.
1004 * Cannot be called within a int, but can be interrupted.
1005 * The @ctor is run when new pages are allocated by the cache
1006 * and the @dtor is run before the pages are handed back.
1008 * @name must be valid until the cache is destroyed. This implies that
1009 * the module calling this has to destroy the cache before getting
1010 * unloaded.
1012 * The flags are
1014 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1015 * to catch references to uninitialised memory.
1017 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1018 * for buffer overruns.
1020 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1021 * memory pressure.
1023 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1024 * cacheline. This can be beneficial if you're counting cycles as closely
1025 * as davem.
1027 kmem_cache_t *
1028 kmem_cache_create (const char *name, size_t size, size_t offset,
1029 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1030 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1032 const char *func_nm = KERN_ERR "kmem_create: ";
1033 size_t left_over, align, slab_size;
1034 kmem_cache_t *cachep = NULL;
1037 * Sanity checks... these are all serious usage bugs.
1039 if ((!name) ||
1040 in_interrupt() ||
1041 (size < BYTES_PER_WORD) ||
1042 (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
1043 (dtor && !ctor) ||
1044 (offset < 0 || offset > size))
1045 BUG();
1047 #if DEBUG
1048 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1049 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1050 /* No constructor, but inital state check requested */
1051 printk("%sNo con, but init state check requested - %s\n", func_nm, name);
1052 flags &= ~SLAB_DEBUG_INITIAL;
1055 #if FORCED_DEBUG
1057 * Enable redzoning and last user accounting, except
1058 * - for caches with forced alignment: redzoning would violate the
1059 * alignment
1060 * - for caches with large objects, if the increased size would
1061 * increase the object size above the next power of two: caches
1062 * with object sizes just above a power of two have a significant
1063 * amount of internal fragmentation
1065 if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD))
1066 && !(flags & SLAB_MUST_HWCACHE_ALIGN)) {
1067 flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
1069 flags |= SLAB_POISON;
1070 #endif
1071 #endif
1074 * Always checks flags, a caller might be expecting debug
1075 * support which isn't available.
1077 if (flags & ~CREATE_MASK)
1078 BUG();
1080 /* Get cache's description obj. */
1081 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1082 if (!cachep)
1083 goto opps;
1084 memset(cachep, 0, sizeof(kmem_cache_t));
1086 #if DEBUG
1087 cachep->reallen = size;
1088 #endif
1089 /* Check that size is in terms of words. This is needed to avoid
1090 * unaligned accesses for some archs when redzoning is used, and makes
1091 * sure any on-slab bufctl's are also correctly aligned.
1093 if (size & (BYTES_PER_WORD-1)) {
1094 size += (BYTES_PER_WORD-1);
1095 size &= ~(BYTES_PER_WORD-1);
1096 printk("%sForcing size word alignment - %s\n", func_nm, name);
1099 #if DEBUG
1100 if (flags & SLAB_RED_ZONE) {
1102 * There is no point trying to honour cache alignment
1103 * when redzoning.
1105 flags &= ~SLAB_HWCACHE_ALIGN;
1106 /* add space for red zone words */
1107 cachep->dbghead += BYTES_PER_WORD;
1108 size += 2*BYTES_PER_WORD;
1110 if (flags & SLAB_STORE_USER) {
1111 flags &= ~SLAB_HWCACHE_ALIGN;
1112 size += BYTES_PER_WORD; /* add space */
1114 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1115 if (size > 128 && cachep->reallen > L1_CACHE_BYTES && size < PAGE_SIZE) {
1116 cachep->dbghead += PAGE_SIZE - size;
1117 size = PAGE_SIZE;
1119 #endif
1120 #endif
1121 align = BYTES_PER_WORD;
1122 if (flags & SLAB_HWCACHE_ALIGN)
1123 align = L1_CACHE_BYTES;
1125 /* Determine if the slab management is 'on' or 'off' slab. */
1126 if (size >= (PAGE_SIZE>>3))
1128 * Size is large, assume best to place the slab management obj
1129 * off-slab (should allow better packing of objs).
1131 flags |= CFLGS_OFF_SLAB;
1133 if (flags & SLAB_HWCACHE_ALIGN) {
1134 /* Need to adjust size so that objs are cache aligned. */
1135 /* Small obj size, can get at least two per cache line. */
1136 while (size <= align/2)
1137 align /= 2;
1138 size = (size+align-1)&(~(align-1));
1141 /* Cal size (in pages) of slabs, and the num of objs per slab.
1142 * This could be made much more intelligent. For now, try to avoid
1143 * using high page-orders for slabs. When the gfp() funcs are more
1144 * friendly towards high-order requests, this should be changed.
1146 do {
1147 unsigned int break_flag = 0;
1148 cal_wastage:
1149 cache_estimate(cachep->gfporder, size, flags,
1150 &left_over, &cachep->num);
1151 if (break_flag)
1152 break;
1153 if (cachep->gfporder >= MAX_GFP_ORDER)
1154 break;
1155 if (!cachep->num)
1156 goto next;
1157 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit) {
1158 /* Oops, this num of objs will cause problems. */
1159 cachep->gfporder--;
1160 break_flag++;
1161 goto cal_wastage;
1165 * Large num of objs is good, but v. large slabs are currently
1166 * bad for the gfp()s.
1168 if (cachep->gfporder >= slab_break_gfp_order)
1169 break;
1171 if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
1172 break; /* Acceptable internal fragmentation. */
1173 next:
1174 cachep->gfporder++;
1175 } while (1);
1177 if (!cachep->num) {
1178 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1179 kmem_cache_free(&cache_cache, cachep);
1180 cachep = NULL;
1181 goto opps;
1183 slab_size = L1_CACHE_ALIGN(cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab));
1186 * If the slab has been placed off-slab, and we have enough space then
1187 * move it on-slab. This is at the expense of any extra colouring.
1189 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1190 flags &= ~CFLGS_OFF_SLAB;
1191 left_over -= slab_size;
1194 /* Offset must be a multiple of the alignment. */
1195 offset += (align-1);
1196 offset &= ~(align-1);
1197 if (!offset)
1198 offset = L1_CACHE_BYTES;
1199 cachep->colour_off = offset;
1200 cachep->colour = left_over/offset;
1202 cachep->flags = flags;
1203 cachep->gfpflags = 0;
1204 if (flags & SLAB_CACHE_DMA)
1205 cachep->gfpflags |= GFP_DMA;
1206 spin_lock_init(&cachep->spinlock);
1207 cachep->objsize = size;
1208 /* NUMA */
1209 INIT_LIST_HEAD(&cachep->lists.slabs_full);
1210 INIT_LIST_HEAD(&cachep->lists.slabs_partial);
1211 INIT_LIST_HEAD(&cachep->lists.slabs_free);
1213 if (flags & CFLGS_OFF_SLAB)
1214 cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
1215 cachep->ctor = ctor;
1216 cachep->dtor = dtor;
1217 cachep->name = name;
1219 if (g_cpucache_up == FULL) {
1220 enable_cpucache(cachep);
1221 } else {
1222 if (g_cpucache_up == NONE) {
1223 /* Note: the first kmem_cache_create must create
1224 * the cache that's used by kmalloc(24), otherwise
1225 * the creation of further caches will BUG().
1227 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1228 g_cpucache_up = PARTIAL;
1229 } else {
1230 cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL);
1232 BUG_ON(!ac_data(cachep));
1233 ac_data(cachep)->avail = 0;
1234 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1235 ac_data(cachep)->batchcount = 1;
1236 ac_data(cachep)->touched = 0;
1237 cachep->batchcount = 1;
1238 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1239 cachep->free_limit = (1+num_online_cpus())*cachep->batchcount
1240 + cachep->num;
1243 cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 +
1244 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1246 /* Need the semaphore to access the chain. */
1247 down(&cache_chain_sem);
1249 struct list_head *p;
1250 mm_segment_t old_fs;
1252 old_fs = get_fs();
1253 set_fs(KERNEL_DS);
1254 list_for_each(p, &cache_chain) {
1255 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1256 char tmp;
1257 /* This happens when the module gets unloaded and doesn't
1258 destroy its slab cache and noone else reuses the vmalloc
1259 area of the module. Print a warning. */
1260 if (__get_user(tmp,pc->name)) {
1261 printk("SLAB: cache with size %d has lost its name\n",
1262 pc->objsize);
1263 continue;
1265 if (!strcmp(pc->name,name)) {
1266 printk("kmem_cache_create: duplicate cache %s\n",name);
1267 up(&cache_chain_sem);
1268 BUG();
1271 set_fs(old_fs);
1274 /* cache setup completed, link it into the list */
1275 list_add(&cachep->next, &cache_chain);
1276 up(&cache_chain_sem);
1277 opps:
1278 return cachep;
1281 EXPORT_SYMBOL(kmem_cache_create);
1283 static inline void check_irq_off(void)
1285 #if DEBUG
1286 BUG_ON(!irqs_disabled());
1287 #endif
1290 static inline void check_irq_on(void)
1292 #if DEBUG
1293 BUG_ON(irqs_disabled());
1294 #endif
1297 static inline void check_spinlock_acquired(kmem_cache_t *cachep)
1299 #ifdef CONFIG_SMP
1300 check_irq_off();
1301 BUG_ON(spin_trylock(&cachep->spinlock));
1302 #endif
1306 * Waits for all CPUs to execute func().
1308 static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
1310 check_irq_on();
1311 preempt_disable();
1313 local_irq_disable();
1314 func(arg);
1315 local_irq_enable();
1317 if (smp_call_function(func, arg, 1, 1))
1318 BUG();
1320 preempt_enable();
1323 static void free_block (kmem_cache_t* cachep, void** objpp, int len);
1324 static void drain_array_locked(kmem_cache_t* cachep,
1325 struct array_cache *ac, int force);
1327 static void do_drain(void *arg)
1329 kmem_cache_t *cachep = (kmem_cache_t*)arg;
1330 struct array_cache *ac;
1332 check_irq_off();
1333 ac = ac_data(cachep);
1334 spin_lock(&cachep->spinlock);
1335 free_block(cachep, &ac_entry(ac)[0], ac->avail);
1336 spin_unlock(&cachep->spinlock);
1337 ac->avail = 0;
1340 static void drain_cpu_caches(kmem_cache_t *cachep)
1342 smp_call_function_all_cpus(do_drain, cachep);
1343 check_irq_on();
1344 spin_lock_irq(&cachep->spinlock);
1345 if (cachep->lists.shared)
1346 drain_array_locked(cachep, cachep->lists.shared, 1);
1347 spin_unlock_irq(&cachep->spinlock);
1351 /* NUMA shrink all list3s */
1352 static int __cache_shrink(kmem_cache_t *cachep)
1354 struct slab *slabp;
1355 int ret;
1357 drain_cpu_caches(cachep);
1359 check_irq_on();
1360 spin_lock_irq(&cachep->spinlock);
1362 for(;;) {
1363 struct list_head *p;
1365 p = cachep->lists.slabs_free.prev;
1366 if (p == &cachep->lists.slabs_free)
1367 break;
1369 slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list);
1370 #if DEBUG
1371 if (slabp->inuse)
1372 BUG();
1373 #endif
1374 list_del(&slabp->list);
1376 cachep->lists.free_objects -= cachep->num;
1377 spin_unlock_irq(&cachep->spinlock);
1378 slab_destroy(cachep, slabp);
1379 spin_lock_irq(&cachep->spinlock);
1381 ret = !list_empty(&cachep->lists.slabs_full) ||
1382 !list_empty(&cachep->lists.slabs_partial);
1383 spin_unlock_irq(&cachep->spinlock);
1384 return ret;
1388 * kmem_cache_shrink - Shrink a cache.
1389 * @cachep: The cache to shrink.
1391 * Releases as many slabs as possible for a cache.
1392 * To help debugging, a zero exit status indicates all slabs were released.
1394 int kmem_cache_shrink(kmem_cache_t *cachep)
1396 if (!cachep || in_interrupt())
1397 BUG();
1399 return __cache_shrink(cachep);
1402 EXPORT_SYMBOL(kmem_cache_shrink);
1405 * kmem_cache_destroy - delete a cache
1406 * @cachep: the cache to destroy
1408 * Remove a kmem_cache_t object from the slab cache.
1409 * Returns 0 on success.
1411 * It is expected this function will be called by a module when it is
1412 * unloaded. This will remove the cache completely, and avoid a duplicate
1413 * cache being allocated each time a module is loaded and unloaded, if the
1414 * module doesn't have persistent in-kernel storage across loads and unloads.
1416 * The cache must be empty before calling this function.
1418 * The caller must guarantee that noone will allocate memory from the cache
1419 * during the kmem_cache_destroy().
1421 int kmem_cache_destroy (kmem_cache_t * cachep)
1423 int i;
1425 if (!cachep || in_interrupt())
1426 BUG();
1428 /* Find the cache in the chain of caches. */
1429 down(&cache_chain_sem);
1431 * the chain is never empty, cache_cache is never destroyed
1433 list_del(&cachep->next);
1434 up(&cache_chain_sem);
1436 if (__cache_shrink(cachep)) {
1437 slab_error(cachep, "Can't free all objects");
1438 down(&cache_chain_sem);
1439 list_add(&cachep->next,&cache_chain);
1440 up(&cache_chain_sem);
1441 return 1;
1444 for (i = 0; i < NR_CPUS; i++)
1445 kfree(cachep->array[i]);
1447 /* NUMA: free the list3 structures */
1448 kfree(cachep->lists.shared);
1449 cachep->lists.shared = NULL;
1450 kmem_cache_free(&cache_cache, cachep);
1452 return 0;
1455 EXPORT_SYMBOL(kmem_cache_destroy);
1457 /* Get the memory for a slab management obj. */
1458 static inline struct slab* alloc_slabmgmt (kmem_cache_t *cachep,
1459 void *objp, int colour_off, int local_flags)
1461 struct slab *slabp;
1463 if (OFF_SLAB(cachep)) {
1464 /* Slab management obj is off-slab. */
1465 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
1466 if (!slabp)
1467 return NULL;
1468 } else {
1469 slabp = objp+colour_off;
1470 colour_off += L1_CACHE_ALIGN(cachep->num *
1471 sizeof(kmem_bufctl_t) + sizeof(struct slab));
1473 slabp->inuse = 0;
1474 slabp->colouroff = colour_off;
1475 slabp->s_mem = objp+colour_off;
1477 return slabp;
1480 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
1482 return (kmem_bufctl_t *)(slabp+1);
1485 static void cache_init_objs (kmem_cache_t * cachep,
1486 struct slab * slabp, unsigned long ctor_flags)
1488 int i;
1490 for (i = 0; i < cachep->num; i++) {
1491 void* objp = slabp->s_mem+cachep->objsize*i;
1492 #if DEBUG
1493 /* need to poison the objs? */
1494 if (cachep->flags & SLAB_POISON)
1495 poison_obj(cachep, objp, POISON_BEFORE);
1496 if (cachep->flags & SLAB_STORE_USER)
1497 *dbg_userword(cachep, objp) = NULL;
1499 if (cachep->flags & SLAB_RED_ZONE) {
1500 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
1501 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
1504 * Constructors are not allowed to allocate memory from
1505 * the same cache which they are a constructor for.
1506 * Otherwise, deadlock. They must also be threaded.
1508 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
1509 cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
1511 if (cachep->flags & SLAB_RED_ZONE) {
1512 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1513 slab_error(cachep, "constructor overwrote the"
1514 " end of an object");
1515 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1516 slab_error(cachep, "constructor overwrote the"
1517 " start of an object");
1519 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
1520 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
1521 #else
1522 if (cachep->ctor)
1523 cachep->ctor(objp, cachep, ctor_flags);
1524 #endif
1525 slab_bufctl(slabp)[i] = i+1;
1527 slab_bufctl(slabp)[i-1] = BUFCTL_END;
1528 slabp->free = 0;
1531 static void kmem_flagcheck(kmem_cache_t *cachep, int flags)
1533 if (flags & SLAB_DMA) {
1534 if (!(cachep->gfpflags & GFP_DMA))
1535 BUG();
1536 } else {
1537 if (cachep->gfpflags & GFP_DMA)
1538 BUG();
1543 * Grow (by 1) the number of slabs within a cache. This is called by
1544 * kmem_cache_alloc() when there are no active objs left in a cache.
1546 static int cache_grow (kmem_cache_t * cachep, int flags)
1548 struct slab *slabp;
1549 struct page *page;
1550 void *objp;
1551 size_t offset;
1552 unsigned int i, local_flags;
1553 unsigned long ctor_flags;
1555 /* Be lazy and only check for valid flags here,
1556 * keeping it out of the critical path in kmem_cache_alloc().
1558 if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
1559 BUG();
1560 if (flags & SLAB_NO_GROW)
1561 return 0;
1563 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1564 local_flags = (flags & SLAB_LEVEL_MASK);
1565 if (!(local_flags & __GFP_WAIT))
1567 * Not allowed to sleep. Need to tell a constructor about
1568 * this - it might need to know...
1570 ctor_flags |= SLAB_CTOR_ATOMIC;
1572 /* About to mess with non-constant members - lock. */
1573 check_irq_off();
1574 spin_lock(&cachep->spinlock);
1576 /* Get colour for the slab, and cal the next value. */
1577 offset = cachep->colour_next;
1578 cachep->colour_next++;
1579 if (cachep->colour_next >= cachep->colour)
1580 cachep->colour_next = 0;
1581 offset *= cachep->colour_off;
1583 spin_unlock(&cachep->spinlock);
1585 if (local_flags & __GFP_WAIT)
1586 local_irq_enable();
1589 * The test for missing atomic flag is performed here, rather than
1590 * the more obvious place, simply to reduce the critical path length
1591 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
1592 * will eventually be caught here (where it matters).
1594 kmem_flagcheck(cachep, flags);
1597 /* Get mem for the objs. */
1598 if (!(objp = kmem_getpages(cachep, flags)))
1599 goto failed;
1601 /* Get slab management. */
1602 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
1603 goto opps1;
1605 /* Nasty!!!!!! I hope this is OK. */
1606 i = 1 << cachep->gfporder;
1607 page = virt_to_page(objp);
1608 do {
1609 SET_PAGE_CACHE(page, cachep);
1610 SET_PAGE_SLAB(page, slabp);
1611 SetPageSlab(page);
1612 inc_page_state(nr_slab);
1613 page++;
1614 } while (--i);
1616 cache_init_objs(cachep, slabp, ctor_flags);
1618 if (local_flags & __GFP_WAIT)
1619 local_irq_disable();
1620 check_irq_off();
1621 spin_lock(&cachep->spinlock);
1623 /* Make slab active. */
1624 list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free));
1625 STATS_INC_GROWN(cachep);
1626 list3_data(cachep)->free_objects += cachep->num;
1627 spin_unlock(&cachep->spinlock);
1628 return 1;
1629 opps1:
1630 kmem_freepages(cachep, objp);
1631 failed:
1632 if (local_flags & __GFP_WAIT)
1633 local_irq_disable();
1634 return 0;
1638 * Perform extra freeing checks:
1639 * - detect bad pointers.
1640 * - POISON/RED_ZONE checking
1641 * - destructor calls, for caches with POISON+dtor
1643 static inline void kfree_debugcheck(const void *objp)
1645 #if DEBUG
1646 struct page *page;
1648 if (!virt_addr_valid(objp)) {
1649 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
1650 (unsigned long)objp);
1651 BUG();
1653 page = virt_to_page(objp);
1654 if (!PageSlab(page)) {
1655 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
1656 BUG();
1658 #endif
1661 static inline void *cache_free_debugcheck (kmem_cache_t * cachep, void * objp, void *caller)
1663 #if DEBUG
1664 struct page *page;
1665 unsigned int objnr;
1666 struct slab *slabp;
1668 objp -= obj_dbghead(cachep);
1669 kfree_debugcheck(objp);
1670 page = virt_to_page(objp);
1672 if (GET_PAGE_CACHE(page) != cachep) {
1673 printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
1674 GET_PAGE_CACHE(page),cachep);
1675 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
1676 printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name);
1677 WARN_ON(1);
1679 slabp = GET_PAGE_SLAB(page);
1681 if (cachep->flags & SLAB_RED_ZONE) {
1682 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
1683 slab_error(cachep, "double free, or memory outside"
1684 " object was overwritten");
1685 printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
1686 objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
1688 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
1689 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
1691 if (cachep->flags & SLAB_STORE_USER)
1692 *dbg_userword(cachep, objp) = caller;
1694 objnr = (objp-slabp->s_mem)/cachep->objsize;
1696 BUG_ON(objnr >= cachep->num);
1697 BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
1699 if (cachep->flags & SLAB_DEBUG_INITIAL) {
1700 /* Need to call the slab's constructor so the
1701 * caller can perform a verify of its state (debugging).
1702 * Called without the cache-lock held.
1704 cachep->ctor(objp+obj_dbghead(cachep),
1705 cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
1707 if (cachep->flags & SLAB_POISON && cachep->dtor) {
1708 /* we want to cache poison the object,
1709 * call the destruction callback
1711 cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
1713 if (cachep->flags & SLAB_POISON) {
1714 #ifdef CONFIG_DEBUG_PAGEALLOC
1715 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
1716 store_stackinfo(cachep, objp, POISON_AFTER);
1717 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
1718 } else {
1719 poison_obj(cachep, objp, POISON_AFTER);
1721 #else
1722 poison_obj(cachep, objp, POISON_AFTER);
1723 #endif
1725 #endif
1726 return objp;
1729 static inline void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
1731 #if DEBUG
1732 int i;
1733 int entries = 0;
1735 check_spinlock_acquired(cachep);
1736 /* Check slab's freelist to see if this obj is there. */
1737 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
1738 entries++;
1739 if (entries > cachep->num || i < 0 || i >= cachep->num)
1740 goto bad;
1742 if (entries != cachep->num - slabp->inuse) {
1743 int i;
1744 bad:
1745 printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
1746 cachep->name, cachep->num, slabp, slabp->inuse);
1747 for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
1748 if ((i%16)==0)
1749 printk("\n%03x:", i);
1750 printk(" %02x", ((unsigned char*)slabp)[i]);
1752 printk("\n");
1753 BUG();
1755 #endif
1758 static void* cache_alloc_refill(kmem_cache_t* cachep, int flags)
1760 int batchcount;
1761 struct kmem_list3 *l3;
1762 struct array_cache *ac;
1764 check_irq_off();
1765 ac = ac_data(cachep);
1766 retry:
1767 batchcount = ac->batchcount;
1768 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
1769 /* if there was little recent activity on this
1770 * cache, then perform only a partial refill.
1771 * Otherwise we could generate refill bouncing.
1773 batchcount = BATCHREFILL_LIMIT;
1775 l3 = list3_data(cachep);
1777 BUG_ON(ac->avail > 0);
1778 spin_lock(&cachep->spinlock);
1779 if (l3->shared) {
1780 struct array_cache *shared_array = l3->shared;
1781 if (shared_array->avail) {
1782 if (batchcount > shared_array->avail)
1783 batchcount = shared_array->avail;
1784 shared_array->avail -= batchcount;
1785 ac->avail = batchcount;
1786 memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail],
1787 sizeof(void*)*batchcount);
1788 shared_array->touched = 1;
1789 goto alloc_done;
1792 while (batchcount > 0) {
1793 struct list_head *entry;
1794 struct slab *slabp;
1795 /* Get slab alloc is to come from. */
1796 entry = l3->slabs_partial.next;
1797 if (entry == &l3->slabs_partial) {
1798 l3->free_touched = 1;
1799 entry = l3->slabs_free.next;
1800 if (entry == &l3->slabs_free)
1801 goto must_grow;
1804 slabp = list_entry(entry, struct slab, list);
1805 check_slabp(cachep, slabp);
1806 check_spinlock_acquired(cachep);
1807 while (slabp->inuse < cachep->num && batchcount--) {
1808 kmem_bufctl_t next;
1809 STATS_INC_ALLOCED(cachep);
1810 STATS_INC_ACTIVE(cachep);
1811 STATS_SET_HIGH(cachep);
1813 /* get obj pointer */
1814 ac_entry(ac)[ac->avail++] = slabp->s_mem + slabp->free*cachep->objsize;
1816 slabp->inuse++;
1817 next = slab_bufctl(slabp)[slabp->free];
1818 #if DEBUG
1819 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
1820 #endif
1821 slabp->free = next;
1823 check_slabp(cachep, slabp);
1825 /* move slabp to correct slabp list: */
1826 list_del(&slabp->list);
1827 if (slabp->free == BUFCTL_END)
1828 list_add(&slabp->list, &l3->slabs_full);
1829 else
1830 list_add(&slabp->list, &l3->slabs_partial);
1833 must_grow:
1834 l3->free_objects -= ac->avail;
1835 alloc_done:
1836 spin_unlock(&cachep->spinlock);
1838 if (unlikely(!ac->avail)) {
1839 int x;
1840 x = cache_grow(cachep, flags);
1842 // cache_grow can reenable interrupts, then ac could change.
1843 ac = ac_data(cachep);
1844 if (!x && ac->avail == 0) // no objects in sight? abort
1845 return NULL;
1847 if (!ac->avail) // objects refilled by interrupt?
1848 goto retry;
1850 ac->touched = 1;
1851 return ac_entry(ac)[--ac->avail];
1854 static inline void
1855 cache_alloc_debugcheck_before(kmem_cache_t *cachep, int flags)
1857 might_sleep_if(flags & __GFP_WAIT);
1858 #if DEBUG
1859 kmem_flagcheck(cachep, flags);
1860 #endif
1863 static inline void *
1864 cache_alloc_debugcheck_after(kmem_cache_t *cachep,
1865 unsigned long flags, void *objp, void *caller)
1867 #if DEBUG
1868 if (!objp)
1869 return objp;
1870 if (cachep->flags & SLAB_POISON) {
1871 #ifdef CONFIG_DEBUG_PAGEALLOC
1872 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
1873 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
1874 else
1875 check_poison_obj(cachep, objp);
1876 #else
1877 check_poison_obj(cachep, objp);
1878 #endif
1879 poison_obj(cachep, objp, POISON_BEFORE);
1881 if (cachep->flags & SLAB_STORE_USER)
1882 *dbg_userword(cachep, objp) = caller;
1884 if (cachep->flags & SLAB_RED_ZONE) {
1885 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
1886 slab_error(cachep, "double free, or memory outside"
1887 " object was overwritten");
1888 printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
1889 objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
1891 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
1892 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
1894 objp += obj_dbghead(cachep);
1895 if (cachep->ctor && cachep->flags & SLAB_POISON) {
1896 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1898 if (!(flags & __GFP_WAIT))
1899 ctor_flags |= SLAB_CTOR_ATOMIC;
1901 cachep->ctor(objp, cachep, ctor_flags);
1903 #endif
1904 return objp;
1908 static inline void * __cache_alloc (kmem_cache_t *cachep, int flags)
1910 unsigned long save_flags;
1911 void* objp;
1912 struct array_cache *ac;
1914 cache_alloc_debugcheck_before(cachep, flags);
1916 local_irq_save(save_flags);
1917 ac = ac_data(cachep);
1918 if (likely(ac->avail)) {
1919 STATS_INC_ALLOCHIT(cachep);
1920 ac->touched = 1;
1921 objp = ac_entry(ac)[--ac->avail];
1922 } else {
1923 STATS_INC_ALLOCMISS(cachep);
1924 objp = cache_alloc_refill(cachep, flags);
1926 local_irq_restore(save_flags);
1927 objp = cache_alloc_debugcheck_after(cachep, flags, objp, __builtin_return_address(0));
1928 return objp;
1932 * NUMA: different approach needed if the spinlock is moved into
1933 * the l3 structure
1936 static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects)
1938 int i;
1940 check_spinlock_acquired(cachep);
1942 /* NUMA: move add into loop */
1943 cachep->lists.free_objects += nr_objects;
1945 for (i = 0; i < nr_objects; i++) {
1946 void *objp = objpp[i];
1947 struct slab *slabp;
1948 unsigned int objnr;
1950 slabp = GET_PAGE_SLAB(virt_to_page(objp));
1951 list_del(&slabp->list);
1952 objnr = (objp - slabp->s_mem) / cachep->objsize;
1953 check_slabp(cachep, slabp);
1954 #if DEBUG
1955 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
1956 printk(KERN_ERR "slab: double free detected in cache '%s', objp %p.\n",
1957 cachep->name, objp);
1958 BUG();
1960 #endif
1961 slab_bufctl(slabp)[objnr] = slabp->free;
1962 slabp->free = objnr;
1963 STATS_DEC_ACTIVE(cachep);
1964 slabp->inuse--;
1965 check_slabp(cachep, slabp);
1967 /* fixup slab chains */
1968 if (slabp->inuse == 0) {
1969 if (cachep->lists.free_objects > cachep->free_limit) {
1970 cachep->lists.free_objects -= cachep->num;
1971 slab_destroy(cachep, slabp);
1972 } else {
1973 list_add(&slabp->list,
1974 &list3_data_ptr(cachep, objp)->slabs_free);
1976 } else {
1977 /* Unconditionally move a slab to the end of the
1978 * partial list on free - maximum time for the
1979 * other objects to be freed, too.
1981 list_add_tail(&slabp->list,
1982 &list3_data_ptr(cachep, objp)->slabs_partial);
1987 static void cache_flusharray (kmem_cache_t* cachep, struct array_cache *ac)
1989 int batchcount;
1991 batchcount = ac->batchcount;
1992 #if DEBUG
1993 BUG_ON(!batchcount || batchcount > ac->avail);
1994 #endif
1995 check_irq_off();
1996 spin_lock(&cachep->spinlock);
1997 if (cachep->lists.shared) {
1998 struct array_cache *shared_array = cachep->lists.shared;
1999 int max = shared_array->limit-shared_array->avail;
2000 if (max) {
2001 if (batchcount > max)
2002 batchcount = max;
2003 memcpy(&ac_entry(shared_array)[shared_array->avail],
2004 &ac_entry(ac)[0],
2005 sizeof(void*)*batchcount);
2006 shared_array->avail += batchcount;
2007 goto free_done;
2011 free_block(cachep, &ac_entry(ac)[0], batchcount);
2012 free_done:
2013 #if STATS
2015 int i = 0;
2016 struct list_head *p;
2018 p = list3_data(cachep)->slabs_free.next;
2019 while (p != &(list3_data(cachep)->slabs_free)) {
2020 struct slab *slabp;
2022 slabp = list_entry(p, struct slab, list);
2023 BUG_ON(slabp->inuse);
2025 i++;
2026 p = p->next;
2028 STATS_SET_FREEABLE(cachep, i);
2030 #endif
2031 spin_unlock(&cachep->spinlock);
2032 ac->avail -= batchcount;
2033 memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount],
2034 sizeof(void*)*ac->avail);
2038 * __cache_free
2039 * Release an obj back to its cache. If the obj has a constructed
2040 * state, it must be in this state _before_ it is released.
2042 * Called with disabled ints.
2044 static inline void __cache_free (kmem_cache_t *cachep, void* objp)
2046 struct array_cache *ac = ac_data(cachep);
2048 check_irq_off();
2049 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2051 if (likely(ac->avail < ac->limit)) {
2052 STATS_INC_FREEHIT(cachep);
2053 ac_entry(ac)[ac->avail++] = objp;
2054 return;
2055 } else {
2056 STATS_INC_FREEMISS(cachep);
2057 cache_flusharray(cachep, ac);
2058 ac_entry(ac)[ac->avail++] = objp;
2063 * kmem_cache_alloc - Allocate an object
2064 * @cachep: The cache to allocate from.
2065 * @flags: See kmalloc().
2067 * Allocate an object from this cache. The flags are only relevant
2068 * if the cache has no available objects.
2070 void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)
2072 return __cache_alloc(cachep, flags);
2075 EXPORT_SYMBOL(kmem_cache_alloc);
2078 * kmalloc - allocate memory
2079 * @size: how many bytes of memory are required.
2080 * @flags: the type of memory to allocate.
2082 * kmalloc is the normal method of allocating memory
2083 * in the kernel.
2085 * The @flags argument may be one of:
2087 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2089 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2091 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2093 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2094 * must be suitable for DMA. This can mean different things on different
2095 * platforms. For example, on i386, it means that the memory must come
2096 * from the first 16MB.
2098 void * __kmalloc (size_t size, int flags)
2100 struct cache_sizes *csizep = malloc_sizes;
2102 for (; csizep->cs_size; csizep++) {
2103 if (size > csizep->cs_size)
2104 continue;
2105 #if DEBUG
2106 /* This happens if someone tries to call
2107 * kmem_cache_create(), or kmalloc(), before
2108 * the generic caches are initialized.
2110 BUG_ON(csizep->cs_cachep == NULL);
2111 #endif
2112 return __cache_alloc(flags & GFP_DMA ?
2113 csizep->cs_dmacachep : csizep->cs_cachep, flags);
2115 return NULL;
2118 EXPORT_SYMBOL(__kmalloc);
2120 #ifdef CONFIG_SMP
2122 * __alloc_percpu - allocate one copy of the object for every present
2123 * cpu in the system, zeroing them.
2124 * Objects should be dereferenced using per_cpu_ptr/get_cpu_ptr
2125 * macros only.
2127 * @size: how many bytes of memory are required.
2128 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2130 void *__alloc_percpu(size_t size, size_t align)
2132 int i;
2133 struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
2135 if (!pdata)
2136 return NULL;
2138 for (i = 0; i < NR_CPUS; i++) {
2139 if (!cpu_possible(i))
2140 continue;
2141 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
2142 if (!pdata->ptrs[i])
2143 goto unwind_oom;
2144 memset(pdata->ptrs[i], 0, size);
2147 /* Catch derefs w/o wrappers */
2148 return (void *) (~(unsigned long) pdata);
2150 unwind_oom:
2151 while (--i >= 0) {
2152 if (!cpu_possible(i))
2153 continue;
2154 kfree(pdata->ptrs[i]);
2156 kfree(pdata);
2157 return NULL;
2160 EXPORT_SYMBOL(__alloc_percpu);
2161 #endif
2164 * kmem_cache_free - Deallocate an object
2165 * @cachep: The cache the allocation was from.
2166 * @objp: The previously allocated object.
2168 * Free an object which was previously allocated from this
2169 * cache.
2171 void kmem_cache_free (kmem_cache_t *cachep, void *objp)
2173 unsigned long flags;
2175 local_irq_save(flags);
2176 __cache_free(cachep, objp);
2177 local_irq_restore(flags);
2180 EXPORT_SYMBOL(kmem_cache_free);
2183 * kfree - free previously allocated memory
2184 * @objp: pointer returned by kmalloc.
2186 * Don't free memory not originally allocated by kmalloc()
2187 * or you will run into trouble.
2189 void kfree (const void *objp)
2191 kmem_cache_t *c;
2192 unsigned long flags;
2194 if (!objp)
2195 return;
2196 local_irq_save(flags);
2197 kfree_debugcheck(objp);
2198 c = GET_PAGE_CACHE(virt_to_page(objp));
2199 __cache_free(c, (void*)objp);
2200 local_irq_restore(flags);
2203 EXPORT_SYMBOL(kfree);
2205 #ifdef CONFIG_SMP
2207 * free_percpu - free previously allocated percpu memory
2208 * @objp: pointer returned by alloc_percpu.
2210 * Don't free memory not originally allocated by alloc_percpu()
2211 * The complemented objp is to check for that.
2213 void
2214 free_percpu(const void *objp)
2216 int i;
2217 struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
2219 for (i = 0; i < NR_CPUS; i++) {
2220 if (!cpu_possible(i))
2221 continue;
2222 kfree(p->ptrs[i]);
2226 EXPORT_SYMBOL(free_percpu);
2227 #endif
2229 unsigned int kmem_cache_size(kmem_cache_t *cachep)
2231 return obj_reallen(cachep);
2234 EXPORT_SYMBOL(kmem_cache_size);
2236 kmem_cache_t * kmem_find_general_cachep (size_t size, int gfpflags)
2238 struct cache_sizes *csizep = malloc_sizes;
2240 /* This function could be moved to the header file, and
2241 * made inline so consumers can quickly determine what
2242 * cache pointer they require.
2244 for ( ; csizep->cs_size; csizep++) {
2245 if (size > csizep->cs_size)
2246 continue;
2247 break;
2249 return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep : csizep->cs_cachep;
2252 EXPORT_SYMBOL(kmem_find_general_cachep);
2254 struct ccupdate_struct {
2255 kmem_cache_t *cachep;
2256 struct array_cache *new[NR_CPUS];
2259 static void do_ccupdate_local(void *info)
2261 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
2262 struct array_cache *old;
2264 check_irq_off();
2265 old = ac_data(new->cachep);
2267 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
2268 new->new[smp_processor_id()] = old;
2272 static int do_tune_cpucache (kmem_cache_t* cachep, int limit, int batchcount, int shared)
2274 struct ccupdate_struct new;
2275 struct array_cache *new_shared;
2276 int i;
2278 memset(&new.new,0,sizeof(new.new));
2279 for (i = 0; i < NR_CPUS; i++) {
2280 struct array_cache *ccnew;
2282 ccnew = kmalloc(sizeof(void*)*limit+
2283 sizeof(struct array_cache), GFP_KERNEL);
2284 if (!ccnew) {
2285 for (i--; i >= 0; i--) kfree(new.new[i]);
2286 return -ENOMEM;
2288 ccnew->avail = 0;
2289 ccnew->limit = limit;
2290 ccnew->batchcount = batchcount;
2291 ccnew->touched = 0;
2292 new.new[i] = ccnew;
2294 new.cachep = cachep;
2296 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
2298 check_irq_on();
2299 spin_lock_irq(&cachep->spinlock);
2300 cachep->batchcount = batchcount;
2301 cachep->limit = limit;
2302 cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num;
2303 spin_unlock_irq(&cachep->spinlock);
2305 for (i = 0; i < NR_CPUS; i++) {
2306 struct array_cache *ccold = new.new[i];
2307 if (!ccold)
2308 continue;
2309 spin_lock_irq(&cachep->spinlock);
2310 free_block(cachep, ac_entry(ccold), ccold->avail);
2311 spin_unlock_irq(&cachep->spinlock);
2312 kfree(ccold);
2314 new_shared = kmalloc(sizeof(void*)*batchcount*shared+
2315 sizeof(struct array_cache), GFP_KERNEL);
2316 if (new_shared) {
2317 struct array_cache *old;
2318 new_shared->avail = 0;
2319 new_shared->limit = batchcount*shared;
2320 new_shared->batchcount = 0xbaadf00d;
2321 new_shared->touched = 0;
2323 spin_lock_irq(&cachep->spinlock);
2324 old = cachep->lists.shared;
2325 cachep->lists.shared = new_shared;
2326 if (old)
2327 free_block(cachep, ac_entry(old), old->avail);
2328 spin_unlock_irq(&cachep->spinlock);
2329 kfree(old);
2332 return 0;
2336 static void enable_cpucache (kmem_cache_t *cachep)
2338 int err;
2339 int limit, shared;
2341 /* The head array serves three purposes:
2342 * - create a LIFO ordering, i.e. return objects that are cache-warm
2343 * - reduce the number of spinlock operations.
2344 * - reduce the number of linked list operations on the slab and
2345 * bufctl chains: array operations are cheaper.
2346 * The numbers are guessed, we should auto-tune as described by
2347 * Bonwick.
2349 if (cachep->objsize > 131072)
2350 limit = 1;
2351 else if (cachep->objsize > PAGE_SIZE)
2352 limit = 8;
2353 else if (cachep->objsize > 1024)
2354 limit = 24;
2355 else if (cachep->objsize > 256)
2356 limit = 54;
2357 else
2358 limit = 120;
2360 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
2361 * allocation behaviour: Most allocs on one cpu, most free operations
2362 * on another cpu. For these cases, an efficient object passing between
2363 * cpus is necessary. This is provided by a shared array. The array
2364 * replaces Bonwick's magazine layer.
2365 * On uniprocessor, it's functionally equivalent (but less efficient)
2366 * to a larger limit. Thus disabled by default.
2368 shared = 0;
2369 #ifdef CONFIG_SMP
2370 if (cachep->objsize <= PAGE_SIZE)
2371 shared = 8;
2372 #endif
2374 #if DEBUG
2375 /* With debugging enabled, large batchcount lead to excessively
2376 * long periods with disabled local interrupts. Limit the
2377 * batchcount
2379 if (limit > 32)
2380 limit = 32;
2381 #endif
2382 err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
2383 if (err)
2384 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
2385 cachep->name, -err);
2388 static void drain_array(kmem_cache_t *cachep, struct array_cache *ac)
2390 int tofree;
2392 check_irq_off();
2393 if (ac->touched) {
2394 ac->touched = 0;
2395 } else if (ac->avail) {
2396 tofree = (ac->limit+4)/5;
2397 if (tofree > ac->avail) {
2398 tofree = (ac->avail+1)/2;
2400 spin_lock(&cachep->spinlock);
2401 free_block(cachep, ac_entry(ac), tofree);
2402 spin_unlock(&cachep->spinlock);
2403 ac->avail -= tofree;
2404 memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree],
2405 sizeof(void*)*ac->avail);
2409 static void drain_array_locked(kmem_cache_t *cachep,
2410 struct array_cache *ac, int force)
2412 int tofree;
2414 check_spinlock_acquired(cachep);
2415 if (ac->touched && !force) {
2416 ac->touched = 0;
2417 } else if (ac->avail) {
2418 tofree = force ? ac->avail : (ac->limit+4)/5;
2419 if (tofree > ac->avail) {
2420 tofree = (ac->avail+1)/2;
2422 free_block(cachep, ac_entry(ac), tofree);
2423 ac->avail -= tofree;
2424 memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree],
2425 sizeof(void*)*ac->avail);
2430 * cache_reap - Reclaim memory from caches.
2432 * Called from a timer, every few seconds
2433 * Purpose:
2434 * - clear the per-cpu caches for this CPU.
2435 * - return freeable pages to the main free memory pool.
2437 * If we cannot acquire the cache chain semaphore then just give up - we'll
2438 * try again next timer interrupt.
2440 static inline void cache_reap (void)
2442 struct list_head *walk;
2444 #if DEBUG
2445 BUG_ON(!in_interrupt());
2446 BUG_ON(in_irq());
2447 #endif
2448 if (down_trylock(&cache_chain_sem))
2449 return;
2451 list_for_each(walk, &cache_chain) {
2452 kmem_cache_t *searchp;
2453 struct list_head* p;
2454 int tofree;
2455 struct slab *slabp;
2457 searchp = list_entry(walk, kmem_cache_t, next);
2459 if (searchp->flags & SLAB_NO_REAP)
2460 goto next;
2462 check_irq_on();
2463 local_irq_disable();
2464 drain_array(searchp, ac_data(searchp));
2466 if(time_after(searchp->lists.next_reap, jiffies))
2467 goto next_irqon;
2469 spin_lock(&searchp->spinlock);
2470 if(time_after(searchp->lists.next_reap, jiffies)) {
2471 goto next_unlock;
2473 searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3;
2475 if (searchp->lists.shared)
2476 drain_array_locked(searchp, searchp->lists.shared, 0);
2478 if (searchp->lists.free_touched) {
2479 searchp->lists.free_touched = 0;
2480 goto next_unlock;
2483 tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num);
2484 do {
2485 p = list3_data(searchp)->slabs_free.next;
2486 if (p == &(list3_data(searchp)->slabs_free))
2487 break;
2489 slabp = list_entry(p, struct slab, list);
2490 BUG_ON(slabp->inuse);
2491 list_del(&slabp->list);
2492 STATS_INC_REAPED(searchp);
2494 /* Safe to drop the lock. The slab is no longer
2495 * linked to the cache.
2496 * searchp cannot disappear, we hold
2497 * cache_chain_lock
2499 searchp->lists.free_objects -= searchp->num;
2500 spin_unlock_irq(&searchp->spinlock);
2501 slab_destroy(searchp, slabp);
2502 spin_lock_irq(&searchp->spinlock);
2503 } while(--tofree > 0);
2504 next_unlock:
2505 spin_unlock(&searchp->spinlock);
2506 next_irqon:
2507 local_irq_enable();
2508 next:
2511 check_irq_on();
2512 up(&cache_chain_sem);
2516 * This is a timer handler. There is on per CPU. It is called periodially
2517 * to shrink this CPU's caches. Otherwise there could be memory tied up
2518 * for long periods (or for ever) due to load changes.
2520 static void reap_timer_fnc(unsigned long data)
2522 int cpu = smp_processor_id();
2523 struct timer_list *rt = &__get_cpu_var(reap_timers);
2525 cache_reap();
2526 mod_timer(rt, jiffies + REAPTIMEOUT_CPUC + cpu);
2529 #ifdef CONFIG_PROC_FS
2531 static void *s_start(struct seq_file *m, loff_t *pos)
2533 loff_t n = *pos;
2534 struct list_head *p;
2536 down(&cache_chain_sem);
2537 if (!n) {
2539 * Output format version, so at least we can change it
2540 * without _too_ many complaints.
2542 #if STATS
2543 seq_puts(m, "slabinfo - version: 2.0 (statistics)\n");
2544 #else
2545 seq_puts(m, "slabinfo - version: 2.0\n");
2546 #endif
2547 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
2548 seq_puts(m, " : tunables <batchcount> <limit> <sharedfactor>");
2549 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
2550 #if STATS
2551 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <freelimit>");
2552 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
2553 #endif
2554 seq_putc(m, '\n');
2556 p = cache_chain.next;
2557 while (n--) {
2558 p = p->next;
2559 if (p == &cache_chain)
2560 return NULL;
2562 return list_entry(p, kmem_cache_t, next);
2565 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2567 kmem_cache_t *cachep = p;
2568 ++*pos;
2569 return cachep->next.next == &cache_chain ? NULL
2570 : list_entry(cachep->next.next, kmem_cache_t, next);
2573 static void s_stop(struct seq_file *m, void *p)
2575 up(&cache_chain_sem);
2578 static int s_show(struct seq_file *m, void *p)
2580 kmem_cache_t *cachep = p;
2581 struct list_head *q;
2582 struct slab *slabp;
2583 unsigned long active_objs;
2584 unsigned long num_objs;
2585 unsigned long active_slabs = 0;
2586 unsigned long num_slabs;
2587 const char *name;
2588 char *error = NULL;
2589 mm_segment_t old_fs;
2590 char tmp;
2592 check_irq_on();
2593 spin_lock_irq(&cachep->spinlock);
2594 active_objs = 0;
2595 num_slabs = 0;
2596 list_for_each(q,&cachep->lists.slabs_full) {
2597 slabp = list_entry(q, struct slab, list);
2598 if (slabp->inuse != cachep->num && !error)
2599 error = "slabs_full accounting error";
2600 active_objs += cachep->num;
2601 active_slabs++;
2603 list_for_each(q,&cachep->lists.slabs_partial) {
2604 slabp = list_entry(q, struct slab, list);
2605 if (slabp->inuse == cachep->num && !error)
2606 error = "slabs_partial inuse accounting error";
2607 if (!slabp->inuse && !error)
2608 error = "slabs_partial/inuse accounting error";
2609 active_objs += slabp->inuse;
2610 active_slabs++;
2612 list_for_each(q,&cachep->lists.slabs_free) {
2613 slabp = list_entry(q, struct slab, list);
2614 if (slabp->inuse && !error)
2615 error = "slabs_free/inuse accounting error";
2616 num_slabs++;
2618 num_slabs+=active_slabs;
2619 num_objs = num_slabs*cachep->num;
2620 if (num_objs - active_objs != cachep->lists.free_objects && !error)
2621 error = "free_objects accounting error";
2623 name = cachep->name;
2626 * Check to see if `name' resides inside a module which has been
2627 * unloaded (someone forgot to destroy their cache)
2629 old_fs = get_fs();
2630 set_fs(KERNEL_DS);
2631 if (__get_user(tmp, name))
2632 name = "broken";
2633 set_fs(old_fs);
2635 if (error)
2636 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
2638 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
2639 name, active_objs, num_objs, cachep->objsize,
2640 cachep->num, (1<<cachep->gfporder));
2641 seq_printf(m, " : tunables %4u %4u %4u",
2642 cachep->limit, cachep->batchcount,
2643 cachep->lists.shared->limit/cachep->batchcount);
2644 seq_printf(m, " : slabdata %6lu %6lu %6u",
2645 active_slabs, num_slabs, cachep->lists.shared->avail);
2646 #if STATS
2647 { /* list3 stats */
2648 unsigned long high = cachep->high_mark;
2649 unsigned long allocs = cachep->num_allocations;
2650 unsigned long grown = cachep->grown;
2651 unsigned long reaped = cachep->reaped;
2652 unsigned long errors = cachep->errors;
2653 unsigned long max_freeable = cachep->max_freeable;
2654 unsigned long free_limit = cachep->free_limit;
2656 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu",
2657 allocs, high, grown, reaped, errors,
2658 max_freeable, free_limit);
2660 /* cpu stats */
2662 unsigned long allochit = atomic_read(&cachep->allochit);
2663 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
2664 unsigned long freehit = atomic_read(&cachep->freehit);
2665 unsigned long freemiss = atomic_read(&cachep->freemiss);
2667 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
2668 allochit, allocmiss, freehit, freemiss);
2670 #endif
2671 seq_putc(m, '\n');
2672 spin_unlock_irq(&cachep->spinlock);
2673 return 0;
2677 * slabinfo_op - iterator that generates /proc/slabinfo
2679 * Output layout:
2680 * cache-name
2681 * num-active-objs
2682 * total-objs
2683 * object size
2684 * num-active-slabs
2685 * total-slabs
2686 * num-pages-per-slab
2687 * + further values on SMP and with statistics enabled
2690 struct seq_operations slabinfo_op = {
2691 .start = s_start,
2692 .next = s_next,
2693 .stop = s_stop,
2694 .show = s_show,
2697 #define MAX_SLABINFO_WRITE 128
2699 * slabinfo_write - Tuning for the slab allocator
2700 * @file: unused
2701 * @buffer: user buffer
2702 * @count: data length
2703 * @ppos: unused
2705 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
2706 size_t count, loff_t *ppos)
2708 char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
2709 int limit, batchcount, shared, res;
2710 struct list_head *p;
2712 if (count > MAX_SLABINFO_WRITE)
2713 return -EINVAL;
2714 if (copy_from_user(&kbuf, buffer, count))
2715 return -EFAULT;
2716 kbuf[MAX_SLABINFO_WRITE] = '\0';
2718 tmp = strchr(kbuf, ' ');
2719 if (!tmp)
2720 return -EINVAL;
2721 *tmp = '\0';
2722 tmp++;
2723 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
2724 return -EINVAL;
2726 /* Find the cache in the chain of caches. */
2727 down(&cache_chain_sem);
2728 res = -EINVAL;
2729 list_for_each(p,&cache_chain) {
2730 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
2732 if (!strcmp(cachep->name, kbuf)) {
2733 if (limit < 1 ||
2734 batchcount < 1 ||
2735 batchcount > limit ||
2736 shared < 0) {
2737 res = -EINVAL;
2738 } else {
2739 res = do_tune_cpucache(cachep, limit, batchcount, shared);
2741 break;
2744 up(&cache_chain_sem);
2745 if (res >= 0)
2746 res = count;
2747 return res;
2749 #endif
2751 unsigned int ksize(const void *objp)
2753 kmem_cache_t *c;
2754 unsigned long flags;
2755 unsigned int size = 0;
2757 if (likely(objp != NULL)) {
2758 local_irq_save(flags);
2759 c = GET_PAGE_CACHE(virt_to_page(objp));
2760 size = kmem_cache_size(c);
2761 local_irq_restore(flags);
2764 return size;
2767 void ptrinfo(unsigned long addr)
2769 struct page *page;
2771 printk("Dumping data about address %p.\n", (void*)addr);
2772 if (!virt_addr_valid((void*)addr)) {
2773 printk("virt addr invalid.\n");
2774 return;
2776 do {
2777 pgd_t *pgd = pgd_offset_k(addr);
2778 pmd_t *pmd;
2779 if (pgd_none(*pgd)) {
2780 printk("No pgd.\n");
2781 break;
2783 pmd = pmd_offset(pgd, addr);
2784 if (pmd_none(*pmd)) {
2785 printk("No pmd.\n");
2786 break;
2788 #ifdef CONFIG_X86
2789 if (pmd_large(*pmd)) {
2790 printk("Large page.\n");
2791 break;
2793 #endif
2794 printk("normal page, pte_val 0x%llx\n",
2795 (unsigned long long)pte_val(*pte_offset_kernel(pmd, addr)));
2796 } while(0);
2798 page = virt_to_page((void*)addr);
2799 printk("struct page at %p, flags %lxh.\n", page, page->flags);
2800 if (PageSlab(page)) {
2801 kmem_cache_t *c;
2802 struct slab *s;
2803 unsigned long flags;
2804 int objnr;
2805 void *objp;
2807 c = GET_PAGE_CACHE(page);
2808 printk("belongs to cache %s.\n",c->name);
2810 spin_lock_irqsave(&c->spinlock, flags);
2811 s = GET_PAGE_SLAB(page);
2812 printk("slabp %p with %d inuse objects (from %d).\n",
2813 s, s->inuse, c->num);
2814 check_slabp(c,s);
2816 objnr = (addr-(unsigned long)s->s_mem)/c->objsize;
2817 objp = s->s_mem+c->objsize*objnr;
2818 printk("points into object no %d, starting at %p, len %d.\n",
2819 objnr, objp, c->objsize);
2820 if (objnr >= c->num) {
2821 printk("Bad obj number.\n");
2822 } else {
2823 kernel_map_pages(virt_to_page(objp),
2824 c->objsize/PAGE_SIZE, 1);
2826 if (c->flags & SLAB_RED_ZONE)
2827 printk("redzone: 0x%lx/0x%lx.\n",
2828 *dbg_redzone1(c, objp),
2829 *dbg_redzone2(c, objp));
2831 if (c->flags & SLAB_STORE_USER)
2832 printk("Last user: %p.\n",
2833 *dbg_userword(c, objp));
2835 spin_unlock_irqrestore(&c->spinlock, flags);