2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@redhat.com>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
20 #include <linux/sched.h>
22 #include <linux/file.h>
24 #include <linux/mman.h>
25 #include <linux/slab.h>
26 #include <linux/timer.h>
27 #include <linux/aio.h>
28 #include <linux/module.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
32 #include <asm/kmap_types.h>
33 #include <asm/uaccess.h>
34 #include <asm/mmu_context.h>
37 #define dprintk printk
39 #define dprintk(x...) do { ; } while (0)
42 /*------ sysctl variables----*/
43 atomic_t aio_nr
= ATOMIC_INIT(0); /* current system wide number of aio requests */
44 unsigned aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
45 /*----end sysctl variables---*/
47 static kmem_cache_t
*kiocb_cachep
;
48 static kmem_cache_t
*kioctx_cachep
;
50 static struct workqueue_struct
*aio_wq
;
52 /* Used for rare fput completion. */
53 static void aio_fput_routine(void *);
54 static DECLARE_WORK(fput_work
, aio_fput_routine
, NULL
);
56 static spinlock_t fput_lock
= SPIN_LOCK_UNLOCKED
;
59 static void aio_kick_handler(void *);
62 * Creates the slab caches used by the aio routines, panic on
63 * failure as this is done early during the boot sequence.
65 static int __init
aio_setup(void)
67 kiocb_cachep
= kmem_cache_create("kiocb", sizeof(struct kiocb
),
68 0, SLAB_HWCACHE_ALIGN
, NULL
, NULL
);
70 panic("unable to create kiocb cache\n");
72 kioctx_cachep
= kmem_cache_create("kioctx", sizeof(struct kioctx
),
73 0, SLAB_HWCACHE_ALIGN
, NULL
, NULL
);
75 panic("unable to create kioctx cache");
77 aio_wq
= create_workqueue("aio");
79 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
84 static void aio_free_ring(struct kioctx
*ctx
)
86 struct aio_ring_info
*info
= &ctx
->ring_info
;
89 for (i
=0; i
<info
->nr_pages
; i
++)
90 put_page(info
->ring_pages
[i
]);
92 if (info
->mmap_size
) {
93 down_write(&ctx
->mm
->mmap_sem
);
94 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
95 up_write(&ctx
->mm
->mmap_sem
);
98 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
99 kfree(info
->ring_pages
);
100 info
->ring_pages
= NULL
;
104 static int aio_setup_ring(struct kioctx
*ctx
)
106 struct aio_ring
*ring
;
107 struct aio_ring_info
*info
= &ctx
->ring_info
;
108 unsigned nr_events
= ctx
->max_reqs
;
112 /* Compensate for the ring buffer's head/tail overlap entry */
113 nr_events
+= 2; /* 1 is required, 2 for good luck */
115 size
= sizeof(struct aio_ring
);
116 size
+= sizeof(struct io_event
) * nr_events
;
117 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
122 info
->nr_pages
= nr_pages
;
124 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
127 info
->ring_pages
= info
->internal_pages
;
128 if (nr_pages
> AIO_RING_PAGES
) {
129 info
->ring_pages
= kmalloc(sizeof(struct page
*) * nr_pages
, GFP_KERNEL
);
130 if (!info
->ring_pages
)
132 memset(info
->ring_pages
, 0, sizeof(struct page
*) * nr_pages
);
135 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
136 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
137 down_write(&ctx
->mm
->mmap_sem
);
138 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
139 PROT_READ
|PROT_WRITE
, MAP_ANON
|MAP_PRIVATE
,
141 if (IS_ERR((void *)info
->mmap_base
)) {
142 up_write(&ctx
->mm
->mmap_sem
);
143 printk("mmap err: %ld\n", -info
->mmap_base
);
149 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
150 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
151 info
->mmap_base
, nr_pages
,
152 1, 0, info
->ring_pages
, NULL
);
153 up_write(&ctx
->mm
->mmap_sem
);
155 if (unlikely(info
->nr_pages
!= nr_pages
)) {
160 ctx
->user_id
= info
->mmap_base
;
162 info
->nr
= nr_events
; /* trusted copy */
164 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
165 ring
->nr
= nr_events
; /* user copy */
166 ring
->id
= ctx
->user_id
;
167 ring
->head
= ring
->tail
= 0;
168 ring
->magic
= AIO_RING_MAGIC
;
169 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
170 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
171 ring
->header_length
= sizeof(struct aio_ring
);
172 kunmap_atomic(ring
, KM_USER0
);
178 /* aio_ring_event: returns a pointer to the event at the given index from
179 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
181 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
182 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
183 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
185 #define aio_ring_event(info, nr, km) ({ \
186 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
187 struct io_event *__event; \
188 __event = kmap_atomic( \
189 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
190 __event += pos % AIO_EVENTS_PER_PAGE; \
194 #define put_aio_ring_event(event, km) do { \
195 struct io_event *__event = (event); \
197 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
201 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
203 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
205 struct mm_struct
*mm
;
208 /* Prevent overflows */
209 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
210 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
211 pr_debug("ENOMEM: nr_events too high\n");
212 return ERR_PTR(-EINVAL
);
215 if (nr_events
> aio_max_nr
)
216 return ERR_PTR(-EAGAIN
);
218 ctx
= kmem_cache_alloc(kioctx_cachep
, GFP_KERNEL
);
220 return ERR_PTR(-ENOMEM
);
222 memset(ctx
, 0, sizeof(*ctx
));
223 ctx
->max_reqs
= nr_events
;
224 mm
= ctx
->mm
= current
->mm
;
225 atomic_inc(&mm
->mm_count
);
227 atomic_set(&ctx
->users
, 1);
228 spin_lock_init(&ctx
->ctx_lock
);
229 spin_lock_init(&ctx
->ring_info
.ring_lock
);
230 init_waitqueue_head(&ctx
->wait
);
232 INIT_LIST_HEAD(&ctx
->active_reqs
);
233 INIT_LIST_HEAD(&ctx
->run_list
);
234 INIT_WORK(&ctx
->wq
, aio_kick_handler
, ctx
);
236 if (aio_setup_ring(ctx
) < 0)
239 /* limit the number of system wide aios */
240 atomic_add(ctx
->max_reqs
, &aio_nr
); /* undone by __put_ioctx */
241 if (unlikely(atomic_read(&aio_nr
) > aio_max_nr
))
244 /* now link into global list. kludge. FIXME */
245 write_lock(&mm
->ioctx_list_lock
);
246 ctx
->next
= mm
->ioctx_list
;
247 mm
->ioctx_list
= ctx
;
248 write_unlock(&mm
->ioctx_list_lock
);
250 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
251 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
255 atomic_sub(ctx
->max_reqs
, &aio_nr
);
256 ctx
->max_reqs
= 0; /* prevent __put_ioctx from sub'ing aio_nr */
258 return ERR_PTR(-EAGAIN
);
261 kmem_cache_free(kioctx_cachep
, ctx
);
262 ctx
= ERR_PTR(-ENOMEM
);
264 dprintk("aio: error allocating ioctx %p\n", ctx
);
269 * Cancels all outstanding aio requests on an aio context. Used
270 * when the processes owning a context have all exited to encourage
271 * the rapid destruction of the kioctx.
273 static void aio_cancel_all(struct kioctx
*ctx
)
275 int (*cancel
)(struct kiocb
*, struct io_event
*);
277 spin_lock_irq(&ctx
->ctx_lock
);
279 while (!list_empty(&ctx
->active_reqs
)) {
280 struct list_head
*pos
= ctx
->active_reqs
.next
;
281 struct kiocb
*iocb
= list_kiocb(pos
);
282 list_del_init(&iocb
->ki_list
);
283 cancel
= iocb
->ki_cancel
;
286 spin_unlock_irq(&ctx
->ctx_lock
);
288 spin_lock_irq(&ctx
->ctx_lock
);
291 spin_unlock_irq(&ctx
->ctx_lock
);
294 void wait_for_all_aios(struct kioctx
*ctx
)
296 struct task_struct
*tsk
= current
;
297 DECLARE_WAITQUEUE(wait
, tsk
);
299 if (!ctx
->reqs_active
)
302 add_wait_queue(&ctx
->wait
, &wait
);
303 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
304 while (ctx
->reqs_active
) {
306 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
308 __set_task_state(tsk
, TASK_RUNNING
);
309 remove_wait_queue(&ctx
->wait
, &wait
);
312 /* wait_on_sync_kiocb:
313 * Waits on the given sync kiocb to complete.
315 ssize_t
wait_on_sync_kiocb(struct kiocb
*iocb
)
317 while (iocb
->ki_users
) {
318 set_current_state(TASK_UNINTERRUPTIBLE
);
323 __set_current_state(TASK_RUNNING
);
324 return iocb
->ki_user_data
;
327 /* exit_aio: called when the last user of mm goes away. At this point,
328 * there is no way for any new requests to be submited or any of the
329 * io_* syscalls to be called on the context. However, there may be
330 * outstanding requests which hold references to the context; as they
331 * go away, they will call put_ioctx and release any pinned memory
332 * associated with the request (held via struct page * references).
334 void exit_aio(struct mm_struct
*mm
)
336 struct kioctx
*ctx
= mm
->ioctx_list
;
337 mm
->ioctx_list
= NULL
;
339 struct kioctx
*next
= ctx
->next
;
343 wait_for_all_aios(ctx
);
345 if (1 != atomic_read(&ctx
->users
))
347 "exit_aio:ioctx still alive: %d %d %d\n",
348 atomic_read(&ctx
->users
), ctx
->dead
,
356 * Called when the last user of an aio context has gone away,
357 * and the struct needs to be freed.
359 void __put_ioctx(struct kioctx
*ctx
)
361 unsigned nr_events
= ctx
->max_reqs
;
363 if (unlikely(ctx
->reqs_active
))
369 pr_debug("__put_ioctx: freeing %p\n", ctx
);
370 kmem_cache_free(kioctx_cachep
, ctx
);
372 atomic_sub(nr_events
, &aio_nr
);
376 * Allocate a slot for an aio request. Increments the users count
377 * of the kioctx so that the kioctx stays around until all requests are
378 * complete. Returns NULL if no requests are free.
380 static struct kiocb
*FASTCALL(__aio_get_req(struct kioctx
*ctx
));
381 static struct kiocb
*__aio_get_req(struct kioctx
*ctx
)
383 struct kiocb
*req
= NULL
;
384 struct aio_ring
*ring
;
387 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
391 req
->ki_flags
= 1 << KIF_LOCKED
;
395 req
->ki_cancel
= NULL
;
396 req
->ki_retry
= NULL
;
397 req
->ki_user_obj
= NULL
;
399 /* Check if the completion queue has enough free space to
400 * accept an event from this io.
402 spin_lock_irq(&ctx
->ctx_lock
);
403 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
404 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
405 list_add(&req
->ki_list
, &ctx
->active_reqs
);
410 kunmap_atomic(ring
, KM_USER0
);
411 spin_unlock_irq(&ctx
->ctx_lock
);
414 kmem_cache_free(kiocb_cachep
, req
);
421 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
424 /* Handle a potential starvation case -- should be exceedingly rare as
425 * requests will be stuck on fput_head only if the aio_fput_routine is
426 * delayed and the requests were the last user of the struct file.
428 req
= __aio_get_req(ctx
);
429 if (unlikely(NULL
== req
)) {
430 aio_fput_routine(NULL
);
431 req
= __aio_get_req(ctx
);
436 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
440 req
->ki_user_obj
= NULL
;
441 kmem_cache_free(kiocb_cachep
, req
);
444 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
448 static void aio_fput_routine(void *data
)
450 spin_lock_irq(&fput_lock
);
451 while (likely(!list_empty(&fput_head
))) {
452 struct kiocb
*req
= list_kiocb(fput_head
.next
);
453 struct kioctx
*ctx
= req
->ki_ctx
;
455 list_del(&req
->ki_list
);
456 spin_unlock_irq(&fput_lock
);
458 /* Complete the fput */
459 __fput(req
->ki_filp
);
461 /* Link the iocb into the context's free list */
462 spin_lock_irq(&ctx
->ctx_lock
);
463 really_put_req(ctx
, req
);
464 spin_unlock_irq(&ctx
->ctx_lock
);
467 spin_lock_irq(&fput_lock
);
469 spin_unlock_irq(&fput_lock
);
473 * Returns true if this put was the last user of the request.
475 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
477 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%d\n",
478 req
, atomic_read(&req
->ki_filp
->f_count
));
481 if (unlikely(req
->ki_users
< 0))
483 if (likely(req
->ki_users
))
485 list_del(&req
->ki_list
); /* remove from active_reqs */
486 req
->ki_cancel
= NULL
;
487 req
->ki_retry
= NULL
;
489 /* Must be done under the lock to serialise against cancellation.
490 * Call this aio_fput as it duplicates fput via the fput_work.
492 if (unlikely(atomic_dec_and_test(&req
->ki_filp
->f_count
))) {
494 spin_lock(&fput_lock
);
495 list_add(&req
->ki_list
, &fput_head
);
496 spin_unlock(&fput_lock
);
497 queue_work(aio_wq
, &fput_work
);
499 really_put_req(ctx
, req
);
504 * Returns true if this put was the last user of the kiocb,
505 * false if the request is still in use.
507 int aio_put_req(struct kiocb
*req
)
509 struct kioctx
*ctx
= req
->ki_ctx
;
511 spin_lock_irq(&ctx
->ctx_lock
);
512 ret
= __aio_put_req(ctx
, req
);
513 spin_unlock_irq(&ctx
->ctx_lock
);
519 /* Lookup an ioctx id. ioctx_list is lockless for reads.
520 * FIXME: this is O(n) and is only suitable for development.
522 struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
524 struct kioctx
*ioctx
;
525 struct mm_struct
*mm
;
528 read_lock(&mm
->ioctx_list_lock
);
529 for (ioctx
= mm
->ioctx_list
; ioctx
; ioctx
= ioctx
->next
)
530 if (likely(ioctx
->user_id
== ctx_id
&& !ioctx
->dead
)) {
534 read_unlock(&mm
->ioctx_list_lock
);
539 static void use_mm(struct mm_struct
*mm
)
541 struct mm_struct
*active_mm
= current
->active_mm
;
542 atomic_inc(&mm
->mm_count
);
544 if (mm
!= active_mm
) {
545 current
->active_mm
= mm
;
546 activate_mm(active_mm
, mm
);
551 static void unuse_mm(struct mm_struct
*mm
)
554 /* active_mm is still 'mm' */
555 enter_lazy_tlb(mm
, current
);
558 /* Run on kevent's context. FIXME: needs to be per-cpu and warn if an
561 static void aio_kick_handler(void *data
)
563 struct kioctx
*ctx
= data
;
567 spin_lock_irq(&ctx
->ctx_lock
);
568 while (!list_empty(&ctx
->run_list
)) {
572 iocb
= list_entry(ctx
->run_list
.next
, struct kiocb
,
574 list_del(&iocb
->ki_run_list
);
576 spin_unlock_irq(&ctx
->ctx_lock
);
578 kiocbClearKicked(iocb
);
579 ret
= iocb
->ki_retry(iocb
);
580 if (-EIOCBQUEUED
!= ret
) {
581 aio_complete(iocb
, ret
, 0);
585 spin_lock_irq(&ctx
->ctx_lock
);
587 __aio_put_req(ctx
, iocb
);
589 spin_unlock_irq(&ctx
->ctx_lock
);
594 void kick_iocb(struct kiocb
*iocb
)
596 struct kioctx
*ctx
= iocb
->ki_ctx
;
598 /* sync iocbs are easy: they can only ever be executing from a
600 if (is_sync_kiocb(iocb
)) {
601 kiocbSetKicked(iocb
);
602 wake_up_process(iocb
->ki_user_obj
);
606 if (!kiocbTryKick(iocb
)) {
608 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
609 list_add_tail(&iocb
->ki_run_list
, &ctx
->run_list
);
610 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
611 schedule_work(&ctx
->wq
);
616 * Called when the io request on the given iocb is complete.
617 * Returns true if this is the last user of the request. The
618 * only other user of the request can be the cancellation code.
620 int aio_complete(struct kiocb
*iocb
, long res
, long res2
)
622 struct kioctx
*ctx
= iocb
->ki_ctx
;
623 struct aio_ring_info
*info
;
624 struct aio_ring
*ring
;
625 struct io_event
*event
;
630 /* Special case handling for sync iocbs: events go directly
631 * into the iocb for fast handling. Note that this will not
632 * work if we allow sync kiocbs to be cancelled. in which
633 * case the usage count checks will have to move under ctx_lock
636 if (is_sync_kiocb(iocb
)) {
639 iocb
->ki_user_data
= res
;
640 if (iocb
->ki_users
== 1) {
644 spin_lock_irq(&ctx
->ctx_lock
);
646 ret
= (0 == iocb
->ki_users
);
647 spin_unlock_irq(&ctx
->ctx_lock
);
649 /* sync iocbs put the task here for us */
650 wake_up_process(iocb
->ki_user_obj
);
654 info
= &ctx
->ring_info
;
656 /* add a completion event to the ring buffer.
657 * must be done holding ctx->ctx_lock to prevent
658 * other code from messing with the tail
659 * pointer since we might be called from irq
662 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
664 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
667 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
668 tail
= (tail
+ 1) % info
->nr
;
670 event
->obj
= (u64
)(unsigned long)iocb
->ki_user_obj
;
671 event
->data
= iocb
->ki_user_data
;
675 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
676 ctx
, tail
, iocb
, iocb
->ki_user_obj
, iocb
->ki_user_data
,
679 /* after flagging the request as done, we
680 * must never even look at it again
682 smp_wmb(); /* make event visible before updating tail */
687 put_aio_ring_event(event
, KM_IRQ0
);
688 kunmap_atomic(ring
, KM_IRQ1
);
690 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
692 /* everything turned out well, dispose of the aiocb. */
693 ret
= __aio_put_req(ctx
, iocb
);
695 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
697 if (waitqueue_active(&ctx
->wait
))
707 * Pull an event off of the ioctx's event ring. Returns the number of
708 * events fetched (0 or 1 ;-)
709 * FIXME: make this use cmpxchg.
710 * TODO: make the ringbuffer user mmap()able (requires FIXME).
712 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
714 struct aio_ring_info
*info
= &ioctx
->ring_info
;
715 struct aio_ring
*ring
;
719 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
720 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
721 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
722 (unsigned long)ring
->nr
);
724 if (ring
->head
== ring
->tail
)
727 spin_lock(&info
->ring_lock
);
729 head
= ring
->head
% info
->nr
;
730 if (head
!= ring
->tail
) {
731 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
733 head
= (head
+ 1) % info
->nr
;
734 smp_mb(); /* finish reading the event before updatng the head */
737 put_aio_ring_event(evp
, KM_USER1
);
739 spin_unlock(&info
->ring_lock
);
742 kunmap_atomic(ring
, KM_USER0
);
743 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
744 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
749 struct timer_list timer
;
751 struct task_struct
*p
;
754 static void timeout_func(unsigned long data
)
756 struct timeout
*to
= (struct timeout
*)data
;
759 wake_up_process(to
->p
);
762 static inline void init_timeout(struct timeout
*to
)
764 init_timer(&to
->timer
);
765 to
->timer
.data
= (unsigned long)to
;
766 to
->timer
.function
= timeout_func
;
771 static inline void set_timeout(long start_jiffies
, struct timeout
*to
,
772 const struct timespec
*ts
)
774 unsigned long how_long
;
776 if (ts
->tv_sec
< 0 || (!ts
->tv_sec
&& !ts
->tv_nsec
)) {
781 how_long
= ts
->tv_sec
* HZ
;
782 #define HZ_NS (1000000000 / HZ)
783 how_long
+= (ts
->tv_nsec
+ HZ_NS
- 1) / HZ_NS
;
785 to
->timer
.expires
= jiffies
+ how_long
;
786 add_timer(&to
->timer
);
789 static inline void clear_timeout(struct timeout
*to
)
791 del_timer_sync(&to
->timer
);
794 static int read_events(struct kioctx
*ctx
,
795 long min_nr
, long nr
,
796 struct io_event
*event
,
797 struct timespec
*timeout
)
799 long start_jiffies
= jiffies
;
800 struct task_struct
*tsk
= current
;
801 DECLARE_WAITQUEUE(wait
, tsk
);
807 /* needed to zero any padding within an entry (there shouldn't be
810 memset(&ent
, 0, sizeof(ent
));
813 while (likely(i
< nr
)) {
814 ret
= aio_read_evt(ctx
, &ent
);
815 if (unlikely(ret
<= 0))
818 dprintk("read event: %Lx %Lx %Lx %Lx\n",
819 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
821 /* Could we split the check in two? */
823 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
824 dprintk("aio: lost an event due to EFAULT.\n");
829 /* Good, event copied to userland, update counts. */
845 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
848 set_timeout(start_jiffies
, &to
, &ts
);
851 while (likely(i
< nr
)) {
852 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
854 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
856 ret
= aio_read_evt(ctx
, &ent
);
862 if (to
.timed_out
) /* Only check after read evt */
865 if (signal_pending(tsk
)) {
869 /*ret = aio_read_evt(ctx, &ent);*/
872 set_task_state(tsk
, TASK_RUNNING
);
873 remove_wait_queue(&ctx
->wait
, &wait
);
875 if (unlikely(ret
<= 0))
879 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
880 dprintk("aio: lost an event due to EFAULT.\n");
884 /* Good, event copied to userland, update counts. */
895 /* Take an ioctx and remove it from the list of ioctx's. Protects
896 * against races with itself via ->dead.
898 static void io_destroy(struct kioctx
*ioctx
)
900 struct mm_struct
*mm
= current
->mm
;
904 /* delete the entry from the list is someone else hasn't already */
905 write_lock(&mm
->ioctx_list_lock
);
906 was_dead
= ioctx
->dead
;
908 for (tmp
= &mm
->ioctx_list
; *tmp
&& *tmp
!= ioctx
;
913 write_unlock(&mm
->ioctx_list_lock
);
915 dprintk("aio_release(%p)\n", ioctx
);
916 if (likely(!was_dead
))
917 put_ioctx(ioctx
); /* twice for the list */
919 aio_cancel_all(ioctx
);
920 wait_for_all_aios(ioctx
);
921 put_ioctx(ioctx
); /* once for the lookup */
925 * Create an aio_context capable of receiving at least nr_events.
926 * ctxp must not point to an aio_context that already exists, and
927 * must be initialized to 0 prior to the call. On successful
928 * creation of the aio_context, *ctxp is filled in with the resulting
929 * handle. May fail with -EINVAL if *ctxp is not initialized,
930 * if the specified nr_events exceeds internal limits. May fail
931 * with -EAGAIN if the specified nr_events exceeds the user's limit
932 * of available events. May fail with -ENOMEM if insufficient kernel
933 * resources are available. May fail with -EFAULT if an invalid
934 * pointer is passed for ctxp. Will fail with -ENOSYS if not
937 asmlinkage
long sys_io_setup(unsigned nr_events
, aio_context_t
*ctxp
)
939 struct kioctx
*ioctx
= NULL
;
943 ret
= get_user(ctx
, ctxp
);
948 if (unlikely(ctx
|| (int)nr_events
<= 0)) {
949 pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
953 ioctx
= ioctx_alloc(nr_events
);
954 ret
= PTR_ERR(ioctx
);
955 if (!IS_ERR(ioctx
)) {
956 ret
= put_user(ioctx
->user_id
, ctxp
);
967 * Destroy the aio_context specified. May cancel any outstanding
968 * AIOs and block on completion. Will fail with -ENOSYS if not
969 * implemented. May fail with -EFAULT if the context pointed to
972 asmlinkage
long sys_io_destroy(aio_context_t ctx
)
974 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
975 if (likely(NULL
!= ioctx
)) {
979 pr_debug("EINVAL: io_destroy: invalid context id\n");
983 int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
991 /* enforce forwards compatibility on users */
992 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
||
993 iocb
->aio_reserved3
)) {
994 pr_debug("EINVAL: io_submit: reserve field set\n");
998 /* prevent overflows */
1000 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1001 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1002 ((ssize_t
)iocb
->aio_nbytes
< 0)
1004 pr_debug("EINVAL: io_submit: overflow check\n");
1008 file
= fget(iocb
->aio_fildes
);
1009 if (unlikely(!file
))
1012 req
= aio_get_req(ctx
);
1013 if (unlikely(!req
)) {
1018 req
->ki_filp
= file
;
1019 iocb
->aio_key
= req
->ki_key
;
1020 ret
= put_user(iocb
->aio_key
, &user_iocb
->aio_key
);
1021 if (unlikely(ret
)) {
1022 dprintk("EFAULT: aio_key\n");
1026 req
->ki_user_obj
= user_iocb
;
1027 req
->ki_user_data
= iocb
->aio_data
;
1028 req
->ki_pos
= iocb
->aio_offset
;
1030 buf
= (char *)(unsigned long)iocb
->aio_buf
;
1032 switch (iocb
->aio_lio_opcode
) {
1033 case IOCB_CMD_PREAD
:
1035 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1038 if (unlikely(!access_ok(VERIFY_WRITE
, buf
, iocb
->aio_nbytes
)))
1041 if (file
->f_op
->aio_read
)
1042 ret
= file
->f_op
->aio_read(req
, buf
,
1043 iocb
->aio_nbytes
, req
->ki_pos
);
1045 case IOCB_CMD_PWRITE
:
1047 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1050 if (unlikely(!access_ok(VERIFY_READ
, buf
, iocb
->aio_nbytes
)))
1053 if (file
->f_op
->aio_write
)
1054 ret
= file
->f_op
->aio_write(req
, buf
,
1055 iocb
->aio_nbytes
, req
->ki_pos
);
1057 case IOCB_CMD_FDSYNC
:
1059 if (file
->f_op
->aio_fsync
)
1060 ret
= file
->f_op
->aio_fsync(req
, 1);
1062 case IOCB_CMD_FSYNC
:
1064 if (file
->f_op
->aio_fsync
)
1065 ret
= file
->f_op
->aio_fsync(req
, 0);
1068 dprintk("EINVAL: io_submit: no operation provided\n");
1072 if (likely(-EIOCBQUEUED
== ret
))
1074 aio_complete(req
, ret
, 0);
1083 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1084 * the number of iocbs queued. May return -EINVAL if the aio_context
1085 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1086 * *iocbpp[0] is not properly initialized, if the operation specified
1087 * is invalid for the file descriptor in the iocb. May fail with
1088 * -EFAULT if any of the data structures point to invalid data. May
1089 * fail with -EBADF if the file descriptor specified in the first
1090 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1091 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1092 * fail with -ENOSYS if not implemented.
1094 asmlinkage
long sys_io_submit(aio_context_t ctx_id
, long nr
,
1095 struct iocb __user
**iocbpp
)
1101 if (unlikely(nr
< 0))
1104 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1107 ctx
= lookup_ioctx(ctx_id
);
1108 if (unlikely(!ctx
)) {
1109 pr_debug("EINVAL: io_submit: invalid context id\n");
1114 * AKPM: should this return a partial result if some of the IOs were
1115 * successfully submitted?
1117 for (i
=0; i
<nr
; i
++) {
1118 struct iocb __user
*user_iocb
;
1121 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1126 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1131 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1141 * Finds a given iocb for cancellation.
1142 * MUST be called with ctx->ctx_lock held.
1144 struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb
*iocb
, u32 key
)
1146 struct list_head
*pos
;
1147 /* TODO: use a hash or array, this sucks. */
1148 list_for_each(pos
, &ctx
->active_reqs
) {
1149 struct kiocb
*kiocb
= list_kiocb(pos
);
1150 if (kiocb
->ki_user_obj
== iocb
&& kiocb
->ki_key
== key
)
1157 * Attempts to cancel an iocb previously passed to io_submit. If
1158 * the operation is successfully cancelled, the resulting event is
1159 * copied into the memory pointed to by result without being placed
1160 * into the completion queue and 0 is returned. May fail with
1161 * -EFAULT if any of the data structures pointed to are invalid.
1162 * May fail with -EINVAL if aio_context specified by ctx_id is
1163 * invalid. May fail with -EAGAIN if the iocb specified was not
1164 * cancelled. Will fail with -ENOSYS if not implemented.
1166 asmlinkage
long sys_io_cancel(aio_context_t ctx_id
, struct iocb
*iocb
,
1167 struct io_event
*result
)
1169 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1171 struct kiocb
*kiocb
;
1175 ret
= get_user(key
, &iocb
->aio_key
);
1179 ctx
= lookup_ioctx(ctx_id
);
1183 spin_lock_irq(&ctx
->ctx_lock
);
1185 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1186 if (kiocb
&& kiocb
->ki_cancel
) {
1187 cancel
= kiocb
->ki_cancel
;
1191 spin_unlock_irq(&ctx
->ctx_lock
);
1193 if (NULL
!= cancel
) {
1194 struct io_event tmp
;
1195 pr_debug("calling cancel\n");
1196 memset(&tmp
, 0, sizeof(tmp
));
1197 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_user_obj
;
1198 tmp
.data
= kiocb
->ki_user_data
;
1199 ret
= cancel(kiocb
, &tmp
);
1201 /* Cancellation succeeded -- copy the result
1202 * into the user's buffer.
1204 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1208 printk(KERN_DEBUG
"iocb has no cancel operation\n");
1216 * Attempts to read at least min_nr events and up to nr events from
1217 * the completion queue for the aio_context specified by ctx_id. May
1218 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1219 * if nr is out of range, if when is out of range. May fail with
1220 * -EFAULT if any of the memory specified to is invalid. May return
1221 * 0 or < min_nr if no events are available and the timeout specified
1222 * by when has elapsed, where when == NULL specifies an infinite
1223 * timeout. Note that the timeout pointed to by when is relative and
1224 * will be updated if not NULL and the operation blocks. Will fail
1225 * with -ENOSYS if not implemented.
1227 asmlinkage
long sys_io_getevents(aio_context_t ctx_id
,
1230 struct io_event
*events
,
1231 struct timespec
*timeout
)
1233 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1236 if (unlikely(min_nr
> nr
|| min_nr
< 0 || nr
< 0))
1239 if (likely(NULL
!= ioctx
)) {
1240 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1247 __initcall(aio_setup
);
1249 EXPORT_SYMBOL(aio_complete
);
1250 EXPORT_SYMBOL(aio_put_req
);
1251 EXPORT_SYMBOL(wait_on_sync_kiocb
);