[PATCH] More modules.txt removals
[linux-2.6/history.git] / drivers / block / ll_rw_blk.c
blob473121c6b686ee7c75dd3d6d3cb42b7334c68c32
1 /*
2 * linux/drivers/block/ll_rw_blk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
31 static void blk_unplug_work(void *data);
32 static void blk_unplug_timeout(unsigned long data);
35 * For the allocated request tables
37 static kmem_cache_t *request_cachep;
40 * plug management
42 static LIST_HEAD(blk_plug_list);
43 static spinlock_t blk_plug_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
45 static wait_queue_head_t congestion_wqh[2];
48 * Controlling structure to kblockd
50 static struct workqueue_struct *kblockd_workqueue;
52 unsigned long blk_max_low_pfn, blk_max_pfn;
54 /* Amount of time in which a process may batch requests */
55 #define BLK_BATCH_TIME (HZ/50UL)
57 /* Number of requests a "batching" process may submit */
58 #define BLK_BATCH_REQ 32
61 * Return the threshold (number of used requests) at which the queue is
62 * considered to be congested. It include a little hysteresis to keep the
63 * context switch rate down.
65 static inline int queue_congestion_on_threshold(struct request_queue *q)
67 int ret;
69 ret = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (ret > q->nr_requests)
72 ret = q->nr_requests;
74 return ret;
78 * The threshold at which a queue is considered to be uncongested
80 static inline int queue_congestion_off_threshold(struct request_queue *q)
82 int ret;
84 ret = q->nr_requests - (q->nr_requests / 8) - 1;
86 if (ret < 1)
87 ret = 1;
89 return ret;
93 * A queue has just exitted congestion. Note this in the global counter of
94 * congested queues, and wake up anyone who was waiting for requests to be
95 * put back.
97 static void clear_queue_congested(request_queue_t *q, int rw)
99 enum bdi_state bit;
100 wait_queue_head_t *wqh = &congestion_wqh[rw];
102 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
103 clear_bit(bit, &q->backing_dev_info.state);
104 if (waitqueue_active(wqh))
105 wake_up(wqh);
109 * A queue has just entered congestion. Flag that in the queue's VM-visible
110 * state flags and increment the global gounter of congested queues.
112 static void set_queue_congested(request_queue_t *q, int rw)
114 enum bdi_state bit;
116 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
117 set_bit(bit, &q->backing_dev_info.state);
121 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
122 * @bdev: device
124 * Locates the passed device's request queue and returns the address of its
125 * backing_dev_info
127 * Will return NULL if the request queue cannot be located.
129 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
131 struct backing_dev_info *ret = NULL;
132 request_queue_t *q = bdev_get_queue(bdev);
134 if (q)
135 ret = &q->backing_dev_info;
136 return ret;
139 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
141 q->activity_fn = fn;
142 q->activity_data = data;
146 * blk_queue_prep_rq - set a prepare_request function for queue
147 * @q: queue
148 * @pfn: prepare_request function
150 * It's possible for a queue to register a prepare_request callback which
151 * is invoked before the request is handed to the request_fn. The goal of
152 * the function is to prepare a request for I/O, it can be used to build a
153 * cdb from the request data for instance.
156 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
158 q->prep_rq_fn = pfn;
162 * blk_queue_merge_bvec - set a merge_bvec function for queue
163 * @q: queue
164 * @mbfn: merge_bvec_fn
166 * Usually queues have static limitations on the max sectors or segments that
167 * we can put in a request. Stacking drivers may have some settings that
168 * are dynamic, and thus we have to query the queue whether it is ok to
169 * add a new bio_vec to a bio at a given offset or not. If the block device
170 * has such limitations, it needs to register a merge_bvec_fn to control
171 * the size of bio's sent to it. Per default now merge_bvec_fn is defined for
172 * a queue, and only the fixed limits are honored.
175 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
177 q->merge_bvec_fn = mbfn;
181 * blk_queue_make_request - define an alternate make_request function for a device
182 * @q: the request queue for the device to be affected
183 * @mfn: the alternate make_request function
185 * Description:
186 * The normal way for &struct bios to be passed to a device
187 * driver is for them to be collected into requests on a request
188 * queue, and then to allow the device driver to select requests
189 * off that queue when it is ready. This works well for many block
190 * devices. However some block devices (typically virtual devices
191 * such as md or lvm) do not benefit from the processing on the
192 * request queue, and are served best by having the requests passed
193 * directly to them. This can be achieved by providing a function
194 * to blk_queue_make_request().
196 * Caveat:
197 * The driver that does this *must* be able to deal appropriately
198 * with buffers in "highmemory". This can be accomplished by either calling
199 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
200 * blk_queue_bounce() to create a buffer in normal memory.
202 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
205 * set defaults
207 q->nr_requests = BLKDEV_MAX_RQ;
208 q->max_phys_segments = MAX_PHYS_SEGMENTS;
209 q->max_hw_segments = MAX_HW_SEGMENTS;
210 q->make_request_fn = mfn;
211 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
212 q->backing_dev_info.state = 0;
213 q->backing_dev_info.memory_backed = 0;
214 blk_queue_max_sectors(q, MAX_SECTORS);
215 blk_queue_hardsect_size(q, 512);
216 blk_queue_dma_alignment(q, 511);
218 q->unplug_thresh = 4; /* hmm */
219 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
220 if (q->unplug_delay == 0)
221 q->unplug_delay = 1;
223 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
225 q->unplug_timer.function = blk_unplug_timeout;
226 q->unplug_timer.data = (unsigned long)q;
229 * by default assume old behaviour and bounce for any highmem page
231 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
233 INIT_LIST_HEAD(&q->plug_list);
235 blk_queue_activity_fn(q, NULL, NULL);
239 * blk_queue_bounce_limit - set bounce buffer limit for queue
240 * @q: the request queue for the device
241 * @dma_addr: bus address limit
243 * Description:
244 * Different hardware can have different requirements as to what pages
245 * it can do I/O directly to. A low level driver can call
246 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
247 * buffers for doing I/O to pages residing above @page. By default
248 * the block layer sets this to the highest numbered "low" memory page.
250 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
252 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
253 unsigned long mb = dma_addr >> 20;
254 static request_queue_t *last_q;
257 * set appropriate bounce gfp mask -- unfortunately we don't have a
258 * full 4GB zone, so we have to resort to low memory for any bounces.
259 * ISA has its own < 16MB zone.
261 if (bounce_pfn < blk_max_low_pfn) {
262 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
263 init_emergency_isa_pool();
264 q->bounce_gfp = GFP_NOIO | GFP_DMA;
265 } else
266 q->bounce_gfp = GFP_NOIO;
269 * keep this for debugging for now...
271 if (dma_addr != BLK_BOUNCE_HIGH && q != last_q) {
272 printk("blk: queue %p, ", q);
273 if (dma_addr == BLK_BOUNCE_ANY)
274 printk("no I/O memory limit\n");
275 else
276 printk("I/O limit %luMb (mask 0x%Lx)\n", mb, (long long) dma_addr);
279 q->bounce_pfn = bounce_pfn;
280 last_q = q;
285 * blk_queue_max_sectors - set max sectors for a request for this queue
286 * @q: the request queue for the device
287 * @max_sectors: max sectors in the usual 512b unit
289 * Description:
290 * Enables a low level driver to set an upper limit on the size of
291 * received requests.
293 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
295 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
296 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
297 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
300 q->max_sectors = max_sectors;
304 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
305 * @q: the request queue for the device
306 * @max_segments: max number of segments
308 * Description:
309 * Enables a low level driver to set an upper limit on the number of
310 * physical data segments in a request. This would be the largest sized
311 * scatter list the driver could handle.
313 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
315 if (!max_segments) {
316 max_segments = 1;
317 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
320 q->max_phys_segments = max_segments;
324 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
325 * @q: the request queue for the device
326 * @max_segments: max number of segments
328 * Description:
329 * Enables a low level driver to set an upper limit on the number of
330 * hw data segments in a request. This would be the largest number of
331 * address/length pairs the host adapter can actually give as once
332 * to the device.
334 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
336 if (!max_segments) {
337 max_segments = 1;
338 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
341 q->max_hw_segments = max_segments;
345 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
346 * @q: the request queue for the device
347 * @max_size: max size of segment in bytes
349 * Description:
350 * Enables a low level driver to set an upper limit on the size of a
351 * coalesced segment
353 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
355 if (max_size < PAGE_CACHE_SIZE) {
356 max_size = PAGE_CACHE_SIZE;
357 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
360 q->max_segment_size = max_size;
364 * blk_queue_hardsect_size - set hardware sector size for the queue
365 * @q: the request queue for the device
366 * @size: the hardware sector size, in bytes
368 * Description:
369 * This should typically be set to the lowest possible sector size
370 * that the hardware can operate on (possible without reverting to
371 * even internal read-modify-write operations). Usually the default
372 * of 512 covers most hardware.
374 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
376 q->hardsect_size = size;
380 * Returns the minimum that is _not_ zero, unless both are zero.
382 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
385 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
386 * @t: the stacking driver (top)
387 * @b: the underlying device (bottom)
389 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
391 /* zero is "infinity" */
392 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
394 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
395 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
396 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
397 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
401 * blk_queue_segment_boundary - set boundary rules for segment merging
402 * @q: the request queue for the device
403 * @mask: the memory boundary mask
405 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
407 if (mask < PAGE_CACHE_SIZE - 1) {
408 mask = PAGE_CACHE_SIZE - 1;
409 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
412 q->seg_boundary_mask = mask;
416 * blk_queue_dma_alignment - set dma length and memory alignment
417 * @q: the request queue for the device
418 * @mask: alignment mask
420 * description:
421 * set required memory and length aligment for direct dma transactions.
422 * this is used when buiding direct io requests for the queue.
425 void blk_queue_dma_alignment(request_queue_t *q, int mask)
427 q->dma_alignment = mask;
431 * blk_queue_find_tag - find a request by its tag and queue
433 * @q: The request queue for the device
434 * @tag: The tag of the request
436 * Notes:
437 * Should be used when a device returns a tag and you want to match
438 * it with a request.
440 * no locks need be held.
442 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
444 struct blk_queue_tag *bqt = q->queue_tags;
446 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
447 return NULL;
449 return bqt->tag_index[tag];
453 * blk_queue_free_tags - release tag maintenance info
454 * @q: the request queue for the device
456 * Notes:
457 * blk_cleanup_queue() will take care of calling this function, if tagging
458 * has been used. So there's usually no need to call this directly, unless
459 * tagging is just being disabled but the queue remains in function.
461 void blk_queue_free_tags(request_queue_t *q)
463 struct blk_queue_tag *bqt = q->queue_tags;
465 if (!bqt)
466 return;
468 if (atomic_dec_and_test(&bqt->refcnt)) {
469 BUG_ON(bqt->busy);
470 BUG_ON(!list_empty(&bqt->busy_list));
472 kfree(bqt->tag_index);
473 bqt->tag_index = NULL;
475 kfree(bqt->tag_map);
476 bqt->tag_map = NULL;
478 kfree(bqt);
481 q->queue_tags = NULL;
482 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
485 static int
486 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
488 int bits, i;
490 if (depth > q->nr_requests * 2) {
491 depth = q->nr_requests * 2;
492 printk(KERN_ERR "%s: adjusted depth to %d\n",
493 __FUNCTION__, depth);
496 tags->tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
497 if (!tags->tag_index)
498 goto fail;
500 bits = (depth / BLK_TAGS_PER_LONG) + 1;
501 tags->tag_map = kmalloc(bits * sizeof(unsigned long), GFP_ATOMIC);
502 if (!tags->tag_map)
503 goto fail;
505 memset(tags->tag_index, 0, depth * sizeof(struct request *));
506 memset(tags->tag_map, 0, bits * sizeof(unsigned long));
507 tags->max_depth = depth;
508 tags->real_max_depth = bits * BITS_PER_LONG;
511 * set the upper bits if the depth isn't a multiple of the word size
513 for (i = depth; i < bits * BLK_TAGS_PER_LONG; i++)
514 __set_bit(i, tags->tag_map);
516 INIT_LIST_HEAD(&tags->busy_list);
517 tags->busy = 0;
518 atomic_set(&tags->refcnt, 1);
519 return 0;
520 fail:
521 kfree(tags->tag_index);
522 return -ENOMEM;
526 * blk_queue_init_tags - initialize the queue tag info
527 * @q: the request queue for the device
528 * @depth: the maximum queue depth supported
530 int blk_queue_init_tags(request_queue_t *q, int depth,
531 struct blk_queue_tag *tags)
533 if (!tags) {
534 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
535 if (!tags)
536 goto fail;
538 if (init_tag_map(q, tags, depth))
539 goto fail;
540 } else
541 atomic_inc(&tags->refcnt);
544 * assign it, all done
546 q->queue_tags = tags;
547 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
548 return 0;
549 fail:
550 kfree(tags);
551 return -ENOMEM;
555 * blk_queue_resize_tags - change the queueing depth
556 * @q: the request queue for the device
557 * @new_depth: the new max command queueing depth
559 * Notes:
560 * Must be called with the queue lock held.
562 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
564 struct blk_queue_tag *bqt = q->queue_tags;
565 struct request **tag_index;
566 unsigned long *tag_map;
567 int bits, max_depth;
569 if (!bqt)
570 return -ENXIO;
573 * don't bother sizing down
575 if (new_depth <= bqt->real_max_depth) {
576 bqt->max_depth = new_depth;
577 return 0;
581 * save the old state info, so we can copy it back
583 tag_index = bqt->tag_index;
584 tag_map = bqt->tag_map;
585 max_depth = bqt->real_max_depth;
587 if (init_tag_map(q, bqt, new_depth))
588 return -ENOMEM;
590 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
591 bits = max_depth / BLK_TAGS_PER_LONG;
592 memcpy(bqt->tag_map, tag_map, bits * sizeof(unsigned long));
594 kfree(tag_index);
595 kfree(tag_map);
596 return 0;
600 * blk_queue_end_tag - end tag operations for a request
601 * @q: the request queue for the device
602 * @rq: the request that has completed
604 * Description:
605 * Typically called when end_that_request_first() returns 0, meaning
606 * all transfers have been done for a request. It's important to call
607 * this function before end_that_request_last(), as that will put the
608 * request back on the free list thus corrupting the internal tag list.
610 * Notes:
611 * queue lock must be held.
613 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
615 struct blk_queue_tag *bqt = q->queue_tags;
616 int tag = rq->tag;
618 BUG_ON(tag == -1);
620 if (unlikely(tag >= bqt->real_max_depth))
621 return;
623 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
624 printk("attempt to clear non-busy tag (%d)\n", tag);
625 return;
628 list_del_init(&rq->queuelist);
629 rq->flags &= ~REQ_QUEUED;
630 rq->tag = -1;
632 if (unlikely(bqt->tag_index[tag] == NULL))
633 printk("tag %d is missing\n", tag);
635 bqt->tag_index[tag] = NULL;
636 bqt->busy--;
640 * blk_queue_start_tag - find a free tag and assign it
641 * @q: the request queue for the device
642 * @rq: the block request that needs tagging
644 * Description:
645 * This can either be used as a stand-alone helper, or possibly be
646 * assigned as the queue &prep_rq_fn (in which case &struct request
647 * automagically gets a tag assigned). Note that this function
648 * assumes that any type of request can be queued! if this is not
649 * true for your device, you must check the request type before
650 * calling this function. The request will also be removed from
651 * the request queue, so it's the drivers responsibility to readd
652 * it if it should need to be restarted for some reason.
654 * Notes:
655 * queue lock must be held.
657 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
659 struct blk_queue_tag *bqt = q->queue_tags;
660 unsigned long *map = bqt->tag_map;
661 int tag = 0;
663 if (unlikely((rq->flags & REQ_QUEUED))) {
664 printk(KERN_ERR
665 "request %p for device [%s] already tagged %d",
666 rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
667 BUG();
670 for (map = bqt->tag_map; *map == -1UL; map++) {
671 tag += BLK_TAGS_PER_LONG;
673 if (tag >= bqt->max_depth)
674 return 1;
677 tag += ffz(*map);
678 __set_bit(tag, bqt->tag_map);
680 rq->flags |= REQ_QUEUED;
681 rq->tag = tag;
682 bqt->tag_index[tag] = rq;
683 blkdev_dequeue_request(rq);
684 list_add(&rq->queuelist, &bqt->busy_list);
685 bqt->busy++;
686 return 0;
690 * blk_queue_invalidate_tags - invalidate all pending tags
691 * @q: the request queue for the device
693 * Description:
694 * Hardware conditions may dictate a need to stop all pending requests.
695 * In this case, we will safely clear the block side of the tag queue and
696 * readd all requests to the request queue in the right order.
698 * Notes:
699 * queue lock must be held.
701 void blk_queue_invalidate_tags(request_queue_t *q)
703 struct blk_queue_tag *bqt = q->queue_tags;
704 struct list_head *tmp, *n;
705 struct request *rq;
707 list_for_each_safe(tmp, n, &bqt->busy_list) {
708 rq = list_entry_rq(tmp);
710 if (rq->tag == -1) {
711 printk("bad tag found on list\n");
712 list_del_init(&rq->queuelist);
713 rq->flags &= ~REQ_QUEUED;
714 } else
715 blk_queue_end_tag(q, rq);
717 rq->flags &= ~REQ_STARTED;
718 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
722 static char *rq_flags[] = {
723 "REQ_RW",
724 "REQ_FAILFAST",
725 "REQ_SOFTBARRIER",
726 "REQ_HARDBARRIER",
727 "REQ_CMD",
728 "REQ_NOMERGE",
729 "REQ_STARTED",
730 "REQ_DONTPREP",
731 "REQ_QUEUED",
732 "REQ_PC",
733 "REQ_BLOCK_PC",
734 "REQ_SENSE",
735 "REQ_FAILED",
736 "REQ_QUIET",
737 "REQ_SPECIAL",
738 "REQ_DRIVE_CMD",
739 "REQ_DRIVE_TASK",
740 "REQ_DRIVE_TASKFILE",
741 "REQ_PREEMPT",
742 "REQ_PM_SUSPEND",
743 "REQ_PM_RESUME",
744 "REQ_PM_SHUTDOWN",
747 void blk_dump_rq_flags(struct request *rq, char *msg)
749 int bit;
751 printk("%s: dev %s: flags = ", msg,
752 rq->rq_disk ? rq->rq_disk->disk_name : "?");
753 bit = 0;
754 do {
755 if (rq->flags & (1 << bit))
756 printk("%s ", rq_flags[bit]);
757 bit++;
758 } while (bit < __REQ_NR_BITS);
760 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
761 rq->nr_sectors,
762 rq->current_nr_sectors);
763 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
765 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
766 printk("cdb: ");
767 for (bit = 0; bit < sizeof(rq->cmd); bit++)
768 printk("%02x ", rq->cmd[bit]);
769 printk("\n");
773 void blk_recount_segments(request_queue_t *q, struct bio *bio)
775 struct bio_vec *bv, *bvprv = NULL;
776 int i, nr_phys_segs, nr_hw_segs, seg_size, cluster;
778 if (unlikely(!bio->bi_io_vec))
779 return;
781 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
782 seg_size = nr_phys_segs = nr_hw_segs = 0;
783 bio_for_each_segment(bv, bio, i) {
784 if (bvprv && cluster) {
785 if (seg_size + bv->bv_len > q->max_segment_size)
786 goto new_segment;
787 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
788 goto new_segment;
789 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
790 goto new_segment;
792 seg_size += bv->bv_len;
793 bvprv = bv;
794 continue;
796 new_segment:
797 if (!bvprv || !BIOVEC_VIRT_MERGEABLE(bvprv, bv))
798 nr_hw_segs++;
800 nr_phys_segs++;
801 bvprv = bv;
802 seg_size = bv->bv_len;
805 bio->bi_phys_segments = nr_phys_segs;
806 bio->bi_hw_segments = nr_hw_segs;
807 bio->bi_flags |= (1 << BIO_SEG_VALID);
811 int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
812 struct bio *nxt)
814 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
815 return 0;
817 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
818 return 0;
819 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
820 return 0;
823 * bio and nxt are contigous in memory, check if the queue allows
824 * these two to be merged into one
826 if (BIO_SEG_BOUNDARY(q, bio, nxt))
827 return 1;
829 return 0;
832 int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
833 struct bio *nxt)
835 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
836 return 0;
838 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
839 return 0;
840 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
841 return 0;
844 * bio and nxt are contigous in memory, check if the queue allows
845 * these two to be merged into one
847 if (BIO_SEG_BOUNDARY(q, bio, nxt))
848 return 1;
850 return 0;
854 * map a request to scatterlist, return number of sg entries setup. Caller
855 * must make sure sg can hold rq->nr_phys_segments entries
857 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
859 struct bio_vec *bvec, *bvprv;
860 struct bio *bio;
861 int nsegs, i, cluster;
863 nsegs = 0;
864 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
867 * for each bio in rq
869 bvprv = NULL;
870 rq_for_each_bio(bio, rq) {
872 * for each segment in bio
874 bio_for_each_segment(bvec, bio, i) {
875 int nbytes = bvec->bv_len;
877 if (bvprv && cluster) {
878 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
879 goto new_segment;
881 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
882 goto new_segment;
883 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
884 goto new_segment;
886 sg[nsegs - 1].length += nbytes;
887 } else {
888 new_segment:
889 memset(&sg[nsegs],0,sizeof(struct scatterlist));
890 sg[nsegs].page = bvec->bv_page;
891 sg[nsegs].length = nbytes;
892 sg[nsegs].offset = bvec->bv_offset;
894 nsegs++;
896 bvprv = bvec;
897 } /* segments in bio */
898 } /* bios in rq */
900 return nsegs;
904 * the standard queue merge functions, can be overridden with device
905 * specific ones if so desired
908 static inline int ll_new_mergeable(request_queue_t *q,
909 struct request *req,
910 struct bio *bio)
912 int nr_phys_segs = bio_phys_segments(q, bio);
914 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
915 req->flags |= REQ_NOMERGE;
916 q->last_merge = NULL;
917 return 0;
921 * A hw segment is just getting larger, bump just the phys
922 * counter.
924 req->nr_phys_segments += nr_phys_segs;
925 return 1;
928 static inline int ll_new_hw_segment(request_queue_t *q,
929 struct request *req,
930 struct bio *bio)
932 int nr_hw_segs = bio_hw_segments(q, bio);
933 int nr_phys_segs = bio_phys_segments(q, bio);
935 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
936 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
937 req->flags |= REQ_NOMERGE;
938 q->last_merge = NULL;
939 return 0;
943 * This will form the start of a new hw segment. Bump both
944 * counters.
946 req->nr_hw_segments += nr_hw_segs;
947 req->nr_phys_segments += nr_phys_segs;
948 return 1;
951 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
952 struct bio *bio)
954 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
955 req->flags |= REQ_NOMERGE;
956 q->last_merge = NULL;
957 return 0;
960 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)))
961 return ll_new_mergeable(q, req, bio);
963 return ll_new_hw_segment(q, req, bio);
966 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
967 struct bio *bio)
969 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
970 req->flags |= REQ_NOMERGE;
971 q->last_merge = NULL;
972 return 0;
975 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)))
976 return ll_new_mergeable(q, req, bio);
978 return ll_new_hw_segment(q, req, bio);
981 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
982 struct request *next)
984 int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
985 int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
988 * First check if the either of the requests are re-queued
989 * requests. Can't merge them if they are.
991 if (req->special || next->special)
992 return 0;
995 * Will it become to large?
997 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
998 return 0;
1000 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1001 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1002 total_phys_segments--;
1004 if (total_phys_segments > q->max_phys_segments)
1005 return 0;
1007 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1008 if (blk_hw_contig_segment(q, req->biotail, next->bio))
1009 total_hw_segments--;
1011 if (total_hw_segments > q->max_hw_segments)
1012 return 0;
1014 /* Merge is OK... */
1015 req->nr_phys_segments = total_phys_segments;
1016 req->nr_hw_segments = total_hw_segments;
1017 return 1;
1021 * "plug" the device if there are no outstanding requests: this will
1022 * force the transfer to start only after we have put all the requests
1023 * on the list.
1025 * This is called with interrupts off and no requests on the queue and
1026 * with the queue lock held.
1028 void blk_plug_device(request_queue_t *q)
1030 WARN_ON(!irqs_disabled());
1033 * don't plug a stopped queue, it must be paired with blk_start_queue()
1034 * which will restart the queueing
1036 if (!blk_queue_plugged(q)
1037 && !test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)) {
1038 spin_lock(&blk_plug_lock);
1039 list_add_tail(&q->plug_list, &blk_plug_list);
1040 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1041 spin_unlock(&blk_plug_lock);
1046 * remove the queue from the plugged list, if present. called with
1047 * queue lock held and interrupts disabled.
1049 int blk_remove_plug(request_queue_t *q)
1051 WARN_ON(!irqs_disabled());
1052 if (blk_queue_plugged(q)) {
1053 spin_lock(&blk_plug_lock);
1054 list_del_init(&q->plug_list);
1055 del_timer(&q->unplug_timer);
1056 spin_unlock(&blk_plug_lock);
1057 return 1;
1060 return 0;
1064 * remove the plug and let it rip..
1066 static inline void __generic_unplug_device(request_queue_t *q)
1068 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1069 return;
1071 if (!blk_remove_plug(q))
1072 return;
1074 del_timer(&q->unplug_timer);
1077 * was plugged, fire request_fn if queue has stuff to do
1079 if (elv_next_request(q))
1080 q->request_fn(q);
1084 * generic_unplug_device - fire a request queue
1085 * @data: The &request_queue_t in question
1087 * Description:
1088 * Linux uses plugging to build bigger requests queues before letting
1089 * the device have at them. If a queue is plugged, the I/O scheduler
1090 * is still adding and merging requests on the queue. Once the queue
1091 * gets unplugged (either by manually calling this function, or by
1092 * calling blk_run_queues()), the request_fn defined for the
1093 * queue is invoked and transfers started.
1095 void generic_unplug_device(void *data)
1097 request_queue_t *q = data;
1099 spin_lock_irq(q->queue_lock);
1100 __generic_unplug_device(q);
1101 spin_unlock_irq(q->queue_lock);
1104 static void blk_unplug_work(void *data)
1106 request_queue_t *q = data;
1107 q->unplug_fn(q);
1110 static void blk_unplug_timeout(unsigned long data)
1112 request_queue_t *q = (request_queue_t *)data;
1114 kblockd_schedule_work(&q->unplug_work);
1118 * blk_start_queue - restart a previously stopped queue
1119 * @q: The &request_queue_t in question
1121 * Description:
1122 * blk_start_queue() will clear the stop flag on the queue, and call
1123 * the request_fn for the queue if it was in a stopped state when
1124 * entered. Also see blk_stop_queue(). Must not be called from driver
1125 * request function due to recursion issues. Queue lock must be held.
1127 void blk_start_queue(request_queue_t *q)
1129 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1130 schedule_work(&q->unplug_work);
1134 * blk_stop_queue - stop a queue
1135 * @q: The &request_queue_t in question
1137 * Description:
1138 * The Linux block layer assumes that a block driver will consume all
1139 * entries on the request queue when the request_fn strategy is called.
1140 * Often this will not happen, because of hardware limitations (queue
1141 * depth settings). If a device driver gets a 'queue full' response,
1142 * or if it simply chooses not to queue more I/O at one point, it can
1143 * call this function to prevent the request_fn from being called until
1144 * the driver has signalled it's ready to go again. This happens by calling
1145 * blk_start_queue() to restart queue operations. Queue lock must be held.
1147 void blk_stop_queue(request_queue_t *q)
1149 blk_remove_plug(q);
1150 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1154 * blk_run_queue - run a single device queue
1155 * @q: The queue to run
1157 void blk_run_queue(struct request_queue *q)
1159 unsigned long flags;
1161 spin_lock_irqsave(q->queue_lock, flags);
1162 blk_remove_plug(q);
1163 q->request_fn(q);
1164 spin_unlock_irqrestore(q->queue_lock, flags);
1168 * blk_run_queues - fire all plugged queues
1170 * Description:
1171 * Start I/O on all plugged queues known to the block layer. Queues that
1172 * are currently stopped are ignored. This is equivalent to the older
1173 * tq_disk task queue run.
1175 #define blk_plug_entry(entry) list_entry((entry), request_queue_t, plug_list)
1176 void blk_run_queues(void)
1178 LIST_HEAD(local_plug_list);
1180 spin_lock_irq(&blk_plug_lock);
1183 * this will happen fairly often
1185 if (list_empty(&blk_plug_list))
1186 goto out;
1188 list_splice_init(&blk_plug_list, &local_plug_list);
1190 while (!list_empty(&local_plug_list)) {
1191 request_queue_t *q = blk_plug_entry(local_plug_list.next);
1193 spin_unlock_irq(&blk_plug_lock);
1194 q->unplug_fn(q);
1195 spin_lock_irq(&blk_plug_lock);
1197 out:
1198 spin_unlock_irq(&blk_plug_lock);
1202 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1203 * @q: the request queue to be released
1205 * Description:
1206 * blk_cleanup_queue is the pair to blk_init_queue() or
1207 * blk_queue_make_request(). It should be called when a request queue is
1208 * being released; typically when a block device is being de-registered.
1209 * Currently, its primary task it to free all the &struct request
1210 * structures that were allocated to the queue and the queue itself.
1212 * Caveat:
1213 * Hopefully the low level driver will have finished any
1214 * outstanding requests first...
1216 void blk_cleanup_queue(request_queue_t * q)
1218 struct request_list *rl = &q->rq;
1220 if (!atomic_dec_and_test(&q->refcnt))
1221 return;
1223 elevator_exit(q);
1225 del_timer_sync(&q->unplug_timer);
1226 kblockd_flush();
1228 if (rl->rq_pool)
1229 mempool_destroy(rl->rq_pool);
1231 if (blk_queue_tagged(q))
1232 blk_queue_free_tags(q);
1234 kfree(q);
1237 static int blk_init_free_list(request_queue_t *q)
1239 struct request_list *rl = &q->rq;
1241 rl->count[READ] = rl->count[WRITE] = 0;
1242 init_waitqueue_head(&rl->wait[READ]);
1243 init_waitqueue_head(&rl->wait[WRITE]);
1245 rl->rq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, request_cachep);
1247 if (!rl->rq_pool)
1248 return -ENOMEM;
1250 return 0;
1253 static int __make_request(request_queue_t *, struct bio *);
1255 static elevator_t *chosen_elevator =
1256 #if defined(CONFIG_IOSCHED_AS)
1257 &iosched_as;
1258 #elif defined(CONFIG_IOSCHED_DEADLINE)
1259 &iosched_deadline;
1260 #elif defined(CONFIG_IOSCHED_NOOP)
1261 &elevator_noop;
1262 #else
1263 NULL;
1264 #error "You must have at least 1 I/O scheduler selected"
1265 #endif
1267 #if defined(CONFIG_IOSCHED_AS) || defined(CONFIG_IOSCHED_DEADLINE) || defined (CONFIG_IOSCHED_NOOP)
1268 static int __init elevator_setup(char *str)
1270 #ifdef CONFIG_IOSCHED_DEADLINE
1271 if (!strcmp(str, "deadline"))
1272 chosen_elevator = &iosched_deadline;
1273 #endif
1274 #ifdef CONFIG_IOSCHED_AS
1275 if (!strcmp(str, "as"))
1276 chosen_elevator = &iosched_as;
1277 #endif
1278 #ifdef CONFIG_IOSCHED_NOOP
1279 if (!strcmp(str, "noop"))
1280 chosen_elevator = &elevator_noop;
1281 #endif
1282 return 1;
1285 __setup("elevator=", elevator_setup);
1286 #endif /* CONFIG_IOSCHED_AS || CONFIG_IOSCHED_DEADLINE || CONFIG_IOSCHED_NOOP */
1288 request_queue_t *blk_alloc_queue(int gfp_mask)
1290 request_queue_t *q = kmalloc(sizeof(*q), gfp_mask);
1292 if (!q)
1293 return NULL;
1295 memset(q, 0, sizeof(*q));
1296 init_timer(&q->unplug_timer);
1297 atomic_set(&q->refcnt, 1);
1298 return q;
1302 * blk_init_queue - prepare a request queue for use with a block device
1303 * @rfn: The function to be called to process requests that have been
1304 * placed on the queue.
1305 * @lock: Request queue spin lock
1307 * Description:
1308 * If a block device wishes to use the standard request handling procedures,
1309 * which sorts requests and coalesces adjacent requests, then it must
1310 * call blk_init_queue(). The function @rfn will be called when there
1311 * are requests on the queue that need to be processed. If the device
1312 * supports plugging, then @rfn may not be called immediately when requests
1313 * are available on the queue, but may be called at some time later instead.
1314 * Plugged queues are generally unplugged when a buffer belonging to one
1315 * of the requests on the queue is needed, or due to memory pressure.
1317 * @rfn is not required, or even expected, to remove all requests off the
1318 * queue, but only as many as it can handle at a time. If it does leave
1319 * requests on the queue, it is responsible for arranging that the requests
1320 * get dealt with eventually.
1322 * The queue spin lock must be held while manipulating the requests on the
1323 * request queue.
1325 * Function returns a pointer to the initialized request queue, or NULL if
1326 * it didn't succeed.
1328 * Note:
1329 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1330 * when the block device is deactivated (such as at module unload).
1332 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1334 request_queue_t *q;
1335 static int printed;
1337 q = blk_alloc_queue(GFP_KERNEL);
1338 if (!q)
1339 return NULL;
1341 if (blk_init_free_list(q))
1342 goto out_init;
1344 if (!printed) {
1345 printed = 1;
1346 printk("Using %s io scheduler\n", chosen_elevator->elevator_name);
1349 if (elevator_init(q, chosen_elevator))
1350 goto out_elv;
1352 q->request_fn = rfn;
1353 q->back_merge_fn = ll_back_merge_fn;
1354 q->front_merge_fn = ll_front_merge_fn;
1355 q->merge_requests_fn = ll_merge_requests_fn;
1356 q->prep_rq_fn = NULL;
1357 q->unplug_fn = generic_unplug_device;
1358 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1359 q->queue_lock = lock;
1361 blk_queue_segment_boundary(q, 0xffffffff);
1363 blk_queue_make_request(q, __make_request);
1364 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1366 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1367 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1369 return q;
1370 out_elv:
1371 blk_cleanup_queue(q);
1372 out_init:
1373 kfree(q);
1374 return NULL;
1378 int blk_get_queue(request_queue_t *q)
1380 if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
1381 atomic_inc(&q->refcnt);
1382 return 0;
1385 return 1;
1388 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1390 elv_put_request(q, rq);
1391 mempool_free(rq, q->rq.rq_pool);
1394 static inline struct request *blk_alloc_request(request_queue_t *q,int gfp_mask)
1396 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1398 if (!rq)
1399 return NULL;
1401 if (!elv_set_request(q, rq, gfp_mask))
1402 return rq;
1404 mempool_free(rq, q->rq.rq_pool);
1405 return NULL;
1409 * ioc_batching returns true if the ioc is a valid batching request and
1410 * should be given priority access to a request.
1412 static inline int ioc_batching(struct io_context *ioc)
1414 if (!ioc)
1415 return 0;
1418 * Make sure the process is able to allocate at least 1 request
1419 * even if the batch times out, otherwise we could theoretically
1420 * lose wakeups.
1422 return ioc->nr_batch_requests == BLK_BATCH_REQ ||
1423 (ioc->nr_batch_requests > 0
1424 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1428 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1429 * will cause the process to be a "batcher" on all queues in the system. This
1430 * is the behaviour we want though - once it gets a wakeup it should be given
1431 * a nice run.
1433 void ioc_set_batching(struct io_context *ioc)
1435 if (!ioc || ioc_batching(ioc))
1436 return;
1438 ioc->nr_batch_requests = BLK_BATCH_REQ;
1439 ioc->last_waited = jiffies;
1443 * A request has just been released. Account for it, update the full and
1444 * congestion status, wake up any waiters. Called under q->queue_lock.
1446 static void freed_request(request_queue_t *q, int rw)
1448 struct request_list *rl = &q->rq;
1450 rl->count[rw]--;
1451 if (rl->count[rw] < queue_congestion_off_threshold(q))
1452 clear_queue_congested(q, rw);
1453 if (rl->count[rw]+1 <= q->nr_requests) {
1454 smp_mb();
1455 if (waitqueue_active(&rl->wait[rw]))
1456 wake_up(&rl->wait[rw]);
1457 if (!waitqueue_active(&rl->wait[rw]))
1458 blk_clear_queue_full(q, rw);
1462 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1464 * Get a free request, queue_lock must not be held
1466 static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1468 struct request *rq = NULL;
1469 struct request_list *rl = &q->rq;
1470 struct io_context *ioc = get_io_context(gfp_mask);
1472 spin_lock_irq(q->queue_lock);
1473 if (rl->count[rw]+1 >= q->nr_requests) {
1475 * The queue will fill after this allocation, so set it as
1476 * full, and mark this process as "batching". This process
1477 * will be allowed to complete a batch of requests, others
1478 * will be blocked.
1480 if (!blk_queue_full(q, rw)) {
1481 ioc_set_batching(ioc);
1482 blk_set_queue_full(q, rw);
1486 if (blk_queue_full(q, rw)
1487 && !ioc_batching(ioc) && !elv_may_queue(q, rw)) {
1489 * The queue is full and the allocating process is not a
1490 * "batcher", and not exempted by the IO scheduler
1492 spin_unlock_irq(q->queue_lock);
1493 goto out;
1496 rl->count[rw]++;
1497 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1498 set_queue_congested(q, rw);
1499 spin_unlock_irq(q->queue_lock);
1501 rq = blk_alloc_request(q, gfp_mask);
1502 if (!rq) {
1504 * Allocation failed presumably due to memory. Undo anything
1505 * we might have messed up.
1507 * Allocating task should really be put onto the front of the
1508 * wait queue, but this is pretty rare.
1510 spin_lock_irq(q->queue_lock);
1511 freed_request(q, rw);
1512 spin_unlock_irq(q->queue_lock);
1513 goto out;
1516 if (ioc_batching(ioc))
1517 ioc->nr_batch_requests--;
1519 INIT_LIST_HEAD(&rq->queuelist);
1522 * first three bits are identical in rq->flags and bio->bi_rw,
1523 * see bio.h and blkdev.h
1525 rq->flags = rw;
1527 rq->errors = 0;
1528 rq->rq_status = RQ_ACTIVE;
1529 rq->bio = rq->biotail = NULL;
1530 rq->buffer = NULL;
1531 rq->ref_count = 1;
1532 rq->q = q;
1533 rq->rl = rl;
1534 rq->waiting = NULL;
1535 rq->special = NULL;
1536 rq->data = NULL;
1537 rq->sense = NULL;
1539 out:
1540 put_io_context(ioc);
1541 return rq;
1545 * No available requests for this queue, unplug the device and wait for some
1546 * requests to become available.
1548 static struct request *get_request_wait(request_queue_t *q, int rw)
1550 DEFINE_WAIT(wait);
1551 struct request *rq;
1553 generic_unplug_device(q);
1554 do {
1555 struct request_list *rl = &q->rq;
1557 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1558 TASK_UNINTERRUPTIBLE);
1560 rq = get_request(q, rw, GFP_NOIO);
1562 if (!rq) {
1563 struct io_context *ioc;
1565 io_schedule();
1568 * After sleeping, we become a "batching" process and
1569 * will be able to allocate at least one request, and
1570 * up to a big batch of them for a small period time.
1571 * See ioc_batching, ioc_set_batching
1573 ioc = get_io_context(GFP_NOIO);
1574 ioc_set_batching(ioc);
1575 put_io_context(ioc);
1577 finish_wait(&rl->wait[rw], &wait);
1578 } while (!rq);
1580 return rq;
1583 struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
1585 struct request *rq;
1587 BUG_ON(rw != READ && rw != WRITE);
1589 if (gfp_mask & __GFP_WAIT)
1590 rq = get_request_wait(q, rw);
1591 else
1592 rq = get_request(q, rw, gfp_mask);
1594 return rq;
1597 * blk_requeue_request - put a request back on queue
1598 * @q: request queue where request should be inserted
1599 * @rq: request to be inserted
1601 * Description:
1602 * Drivers often keep queueing requests until the hardware cannot accept
1603 * more, when that condition happens we need to put the request back
1604 * on the queue. Must be called with queue lock held.
1606 void blk_requeue_request(request_queue_t *q, struct request *rq)
1608 if (blk_rq_tagged(rq))
1609 blk_queue_end_tag(q, rq);
1611 elv_requeue_request(q, rq);
1615 * blk_insert_request - insert a special request in to a request queue
1616 * @q: request queue where request should be inserted
1617 * @rq: request to be inserted
1618 * @at_head: insert request at head or tail of queue
1619 * @data: private data
1620 * @reinsert: true if request it a reinsertion of previously processed one
1622 * Description:
1623 * Many block devices need to execute commands asynchronously, so they don't
1624 * block the whole kernel from preemption during request execution. This is
1625 * accomplished normally by inserting aritficial requests tagged as
1626 * REQ_SPECIAL in to the corresponding request queue, and letting them be
1627 * scheduled for actual execution by the request queue.
1629 * We have the option of inserting the head or the tail of the queue.
1630 * Typically we use the tail for new ioctls and so forth. We use the head
1631 * of the queue for things like a QUEUE_FULL message from a device, or a
1632 * host that is unable to accept a particular command.
1634 void blk_insert_request(request_queue_t *q, struct request *rq,
1635 int at_head, void *data, int reinsert)
1637 unsigned long flags;
1640 * tell I/O scheduler that this isn't a regular read/write (ie it
1641 * must not attempt merges on this) and that it acts as a soft
1642 * barrier
1644 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
1646 rq->special = data;
1648 spin_lock_irqsave(q->queue_lock, flags);
1651 * If command is tagged, release the tag
1653 if(reinsert) {
1654 blk_requeue_request(q, rq);
1655 } else {
1656 int where = ELEVATOR_INSERT_BACK;
1658 if (at_head)
1659 where = ELEVATOR_INSERT_FRONT;
1661 if (blk_rq_tagged(rq))
1662 blk_queue_end_tag(q, rq);
1664 drive_stat_acct(rq, rq->nr_sectors, 1);
1665 __elv_add_request(q, rq, where, 0);
1667 q->request_fn(q);
1668 spin_unlock_irqrestore(q->queue_lock, flags);
1671 void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1673 int rw = rq_data_dir(rq);
1675 if (!blk_fs_request(rq) || !rq->rq_disk)
1676 return;
1678 if (rw == READ) {
1679 disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
1680 if (!new_io)
1681 disk_stat_inc(rq->rq_disk, read_merges);
1682 } else if (rw == WRITE) {
1683 disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
1684 if (!new_io)
1685 disk_stat_inc(rq->rq_disk, write_merges);
1687 if (new_io) {
1688 disk_round_stats(rq->rq_disk);
1689 rq->rq_disk->in_flight++;
1694 * add-request adds a request to the linked list.
1695 * queue lock is held and interrupts disabled, as we muck with the
1696 * request queue list.
1698 static inline void add_request(request_queue_t * q, struct request * req)
1700 drive_stat_acct(req, req->nr_sectors, 1);
1702 if (q->activity_fn)
1703 q->activity_fn(q->activity_data, rq_data_dir(req));
1706 * elevator indicated where it wants this request to be
1707 * inserted at elevator_merge time
1709 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1713 * disk_round_stats() - Round off the performance stats on a struct
1714 * disk_stats.
1716 * The average IO queue length and utilisation statistics are maintained
1717 * by observing the current state of the queue length and the amount of
1718 * time it has been in this state for.
1720 * Normally, that accounting is done on IO completion, but that can result
1721 * in more than a second's worth of IO being accounted for within any one
1722 * second, leading to >100% utilisation. To deal with that, we call this
1723 * function to do a round-off before returning the results when reading
1724 * /proc/diskstats. This accounts immediately for all queue usage up to
1725 * the current jiffies and restarts the counters again.
1727 void disk_round_stats(struct gendisk *disk)
1729 unsigned long now = jiffies;
1731 disk_stat_add(disk, time_in_queue,
1732 disk->in_flight * (now - disk->stamp));
1733 disk->stamp = now;
1735 if (disk->in_flight)
1736 disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
1737 disk->stamp_idle = now;
1741 * queue lock must be held
1743 void __blk_put_request(request_queue_t *q, struct request *req)
1745 struct request_list *rl = req->rl;
1747 if (unlikely(!q))
1748 return;
1749 if (unlikely(--req->ref_count))
1750 return;
1752 elv_completed_request(req->q, req);
1754 req->rq_status = RQ_INACTIVE;
1755 req->q = NULL;
1756 req->rl = NULL;
1759 * Request may not have originated from ll_rw_blk. if not,
1760 * it didn't come out of our reserved rq pools
1762 if (rl) {
1763 int rw = rq_data_dir(req);
1765 BUG_ON(!list_empty(&req->queuelist));
1767 blk_free_request(q, req);
1768 freed_request(q, rw);
1772 void blk_put_request(struct request *req)
1774 request_queue_t *q = req->q;
1777 * if req->q isn't set, this request didnt originate from the
1778 * block layer, so it's safe to just disregard it
1780 if (q) {
1781 unsigned long flags;
1783 spin_lock_irqsave(q->queue_lock, flags);
1784 __blk_put_request(q, req);
1785 spin_unlock_irqrestore(q->queue_lock, flags);
1790 * blk_congestion_wait - wait for a queue to become uncongested
1791 * @rw: READ or WRITE
1792 * @timeout: timeout in jiffies
1794 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
1795 * If no queues are congested then just wait for the next request to be
1796 * returned.
1798 void blk_congestion_wait(int rw, long timeout)
1800 DEFINE_WAIT(wait);
1801 wait_queue_head_t *wqh = &congestion_wqh[rw];
1803 blk_run_queues();
1804 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1805 io_schedule_timeout(timeout);
1806 finish_wait(wqh, &wait);
1810 * Has to be called with the request spinlock acquired
1812 static int attempt_merge(request_queue_t *q, struct request *req,
1813 struct request *next)
1815 if (!rq_mergeable(req) || !rq_mergeable(next))
1816 return 0;
1819 * not contigious
1821 if (req->sector + req->nr_sectors != next->sector)
1822 return 0;
1824 if (rq_data_dir(req) != rq_data_dir(next)
1825 || req->rq_disk != next->rq_disk
1826 || next->waiting || next->special)
1827 return 0;
1830 * If we are allowed to merge, then append bio list
1831 * from next to rq and release next. merge_requests_fn
1832 * will have updated segment counts, update sector
1833 * counts here.
1835 if (!q->merge_requests_fn(q, req, next))
1836 return 0;
1838 req->biotail->bi_next = next->bio;
1839 req->biotail = next->biotail;
1841 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
1843 elv_merge_requests(q, req, next);
1845 if (req->rq_disk) {
1846 disk_round_stats(req->rq_disk);
1847 req->rq_disk->in_flight--;
1850 __blk_put_request(q, next);
1851 return 1;
1854 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
1856 struct request *next = elv_latter_request(q, rq);
1858 if (next)
1859 return attempt_merge(q, rq, next);
1861 return 0;
1864 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
1866 struct request *prev = elv_former_request(q, rq);
1868 if (prev)
1869 return attempt_merge(q, prev, rq);
1871 return 0;
1875 * blk_attempt_remerge - attempt to remerge active head with next request
1876 * @q: The &request_queue_t belonging to the device
1877 * @rq: The head request (usually)
1879 * Description:
1880 * For head-active devices, the queue can easily be unplugged so quickly
1881 * that proper merging is not done on the front request. This may hurt
1882 * performance greatly for some devices. The block layer cannot safely
1883 * do merging on that first request for these queues, but the driver can
1884 * call this function and make it happen any way. Only the driver knows
1885 * when it is safe to do so.
1887 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
1889 unsigned long flags;
1891 spin_lock_irqsave(q->queue_lock, flags);
1892 attempt_back_merge(q, rq);
1893 spin_unlock_irqrestore(q->queue_lock, flags);
1897 * Non-locking blk_attempt_remerge variant.
1899 void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
1901 attempt_back_merge(q, rq);
1904 static int __make_request(request_queue_t *q, struct bio *bio)
1906 struct request *req, *freereq = NULL;
1907 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, ra;
1908 sector_t sector;
1910 sector = bio->bi_sector;
1911 nr_sectors = bio_sectors(bio);
1912 cur_nr_sectors = bio_cur_sectors(bio);
1914 rw = bio_data_dir(bio);
1917 * low level driver can indicate that it wants pages above a
1918 * certain limit bounced to low memory (ie for highmem, or even
1919 * ISA dma in theory)
1921 blk_queue_bounce(q, &bio);
1923 spin_lock_prefetch(q->queue_lock);
1925 barrier = test_bit(BIO_RW_BARRIER, &bio->bi_rw);
1927 ra = bio->bi_rw & (1 << BIO_RW_AHEAD);
1929 again:
1930 spin_lock_irq(q->queue_lock);
1932 if (elv_queue_empty(q)) {
1933 blk_plug_device(q);
1934 goto get_rq;
1936 if (barrier)
1937 goto get_rq;
1939 el_ret = elv_merge(q, &req, bio);
1940 switch (el_ret) {
1941 case ELEVATOR_BACK_MERGE:
1942 BUG_ON(!rq_mergeable(req));
1944 if (!q->back_merge_fn(q, req, bio))
1945 break;
1947 req->biotail->bi_next = bio;
1948 req->biotail = bio;
1949 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1950 drive_stat_acct(req, nr_sectors, 0);
1951 if (!attempt_back_merge(q, req))
1952 elv_merged_request(q, req);
1953 goto out;
1955 case ELEVATOR_FRONT_MERGE:
1956 BUG_ON(!rq_mergeable(req));
1958 if (!q->front_merge_fn(q, req, bio))
1959 break;
1961 bio->bi_next = req->bio;
1962 req->cbio = req->bio = bio;
1963 req->nr_cbio_segments = bio_segments(bio);
1964 req->nr_cbio_sectors = bio_sectors(bio);
1967 * may not be valid. if the low level driver said
1968 * it didn't need a bounce buffer then it better
1969 * not touch req->buffer either...
1971 req->buffer = bio_data(bio);
1972 req->current_nr_sectors = cur_nr_sectors;
1973 req->hard_cur_sectors = cur_nr_sectors;
1974 req->sector = req->hard_sector = sector;
1975 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1976 drive_stat_acct(req, nr_sectors, 0);
1977 if (!attempt_front_merge(q, req))
1978 elv_merged_request(q, req);
1979 goto out;
1982 * elevator says don't/can't merge. get new request
1984 case ELEVATOR_NO_MERGE:
1985 break;
1987 default:
1988 printk("elevator returned crap (%d)\n", el_ret);
1989 BUG();
1993 * Grab a free request from the freelist - if that is empty, check
1994 * if we are doing read ahead and abort instead of blocking for
1995 * a free slot.
1997 get_rq:
1998 if (freereq) {
1999 req = freereq;
2000 freereq = NULL;
2001 } else {
2002 spin_unlock_irq(q->queue_lock);
2003 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
2005 * READA bit set
2007 if (ra)
2008 goto end_io;
2010 freereq = get_request_wait(q, rw);
2012 goto again;
2016 * first three bits are identical in rq->flags and bio->bi_rw,
2017 * see bio.h and blkdev.h
2019 req->flags = (bio->bi_rw & 7) | REQ_CMD;
2022 * REQ_BARRIER implies no merging, but lets make it explicit
2024 if (barrier)
2025 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2028 * don't stack up retries for read ahead
2030 if (ra)
2031 req->flags |= REQ_FAILFAST;
2033 req->errors = 0;
2034 req->hard_sector = req->sector = sector;
2035 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2036 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2037 req->nr_phys_segments = bio_phys_segments(q, bio);
2038 req->nr_hw_segments = bio_hw_segments(q, bio);
2039 req->nr_cbio_segments = bio_segments(bio);
2040 req->nr_cbio_sectors = bio_sectors(bio);
2041 req->buffer = bio_data(bio); /* see ->buffer comment above */
2042 req->waiting = NULL;
2043 req->cbio = req->bio = req->biotail = bio;
2044 req->rq_disk = bio->bi_bdev->bd_disk;
2045 req->start_time = jiffies;
2047 add_request(q, req);
2048 out:
2049 if (freereq)
2050 __blk_put_request(q, freereq);
2052 if (blk_queue_plugged(q)) {
2053 int nr_queued = q->rq.count[READ] + q->rq.count[WRITE];
2055 if (nr_queued == q->unplug_thresh)
2056 __generic_unplug_device(q);
2058 spin_unlock_irq(q->queue_lock);
2059 return 0;
2061 end_io:
2062 bio_endio(bio, nr_sectors << 9, -EWOULDBLOCK);
2063 return 0;
2067 * If bio->bi_dev is a partition, remap the location
2069 static inline void blk_partition_remap(struct bio *bio)
2071 struct block_device *bdev = bio->bi_bdev;
2073 if (bdev != bdev->bd_contains) {
2074 struct hd_struct *p = bdev->bd_part;
2076 switch (bio->bi_rw) {
2077 case READ:
2078 p->read_sectors += bio_sectors(bio);
2079 p->reads++;
2080 break;
2081 case WRITE:
2082 p->write_sectors += bio_sectors(bio);
2083 p->writes++;
2084 break;
2086 bio->bi_sector += p->start_sect;
2087 bio->bi_bdev = bdev->bd_contains;
2092 * generic_make_request: hand a buffer to its device driver for I/O
2093 * @bio: The bio describing the location in memory and on the device.
2095 * generic_make_request() is used to make I/O requests of block
2096 * devices. It is passed a &struct bio, which describes the I/O that needs
2097 * to be done.
2099 * generic_make_request() does not return any status. The
2100 * success/failure status of the request, along with notification of
2101 * completion, is delivered asynchronously through the bio->bi_end_io
2102 * function described (one day) else where.
2104 * The caller of generic_make_request must make sure that bi_io_vec
2105 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2106 * set to describe the device address, and the
2107 * bi_end_io and optionally bi_private are set to describe how
2108 * completion notification should be signaled.
2110 * generic_make_request and the drivers it calls may use bi_next if this
2111 * bio happens to be merged with someone else, and may change bi_dev and
2112 * bi_sector for remaps as it sees fit. So the values of these fields
2113 * should NOT be depended on after the call to generic_make_request.
2115 void generic_make_request(struct bio *bio)
2117 request_queue_t *q;
2118 sector_t maxsector;
2119 int ret, nr_sectors = bio_sectors(bio);
2121 /* Test device or partition size, when known. */
2122 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2123 if (maxsector) {
2124 sector_t sector = bio->bi_sector;
2126 if (maxsector < nr_sectors ||
2127 maxsector - nr_sectors < sector) {
2128 char b[BDEVNAME_SIZE];
2129 /* This may well happen - the kernel calls
2130 * bread() without checking the size of the
2131 * device, e.g., when mounting a device. */
2132 printk(KERN_INFO
2133 "attempt to access beyond end of device\n");
2134 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2135 bdevname(bio->bi_bdev, b),
2136 bio->bi_rw,
2137 (unsigned long long) sector + nr_sectors,
2138 (long long) maxsector);
2140 set_bit(BIO_EOF, &bio->bi_flags);
2141 goto end_io;
2146 * Resolve the mapping until finished. (drivers are
2147 * still free to implement/resolve their own stacking
2148 * by explicitly returning 0)
2150 * NOTE: we don't repeat the blk_size check for each new device.
2151 * Stacking drivers are expected to know what they are doing.
2153 do {
2154 char b[BDEVNAME_SIZE];
2156 q = bdev_get_queue(bio->bi_bdev);
2157 if (!q) {
2158 printk(KERN_ERR
2159 "generic_make_request: Trying to access "
2160 "nonexistent block-device %s (%Lu)\n",
2161 bdevname(bio->bi_bdev, b),
2162 (long long) bio->bi_sector);
2163 end_io:
2164 bio_endio(bio, bio->bi_size, -EIO);
2165 break;
2168 if (unlikely(bio_sectors(bio) > q->max_sectors)) {
2169 printk("bio too big device %s (%u > %u)\n",
2170 bdevname(bio->bi_bdev, b),
2171 bio_sectors(bio),
2172 q->max_sectors);
2173 goto end_io;
2176 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
2177 goto end_io;
2180 * If this device has partitions, remap block n
2181 * of partition p to block n+start(p) of the disk.
2183 blk_partition_remap(bio);
2185 ret = q->make_request_fn(q, bio);
2186 } while (ret);
2190 * submit_bio: submit a bio to the block device layer for I/O
2191 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2192 * @bio: The &struct bio which describes the I/O
2194 * submit_bio() is very similar in purpose to generic_make_request(), and
2195 * uses that function to do most of the work. Both are fairly rough
2196 * interfaces, @bio must be presetup and ready for I/O.
2199 int submit_bio(int rw, struct bio *bio)
2201 int count = bio_sectors(bio);
2203 BIO_BUG_ON(!bio->bi_size);
2204 BIO_BUG_ON(!bio->bi_io_vec);
2205 bio->bi_rw = rw;
2206 if (rw & WRITE)
2207 mod_page_state(pgpgout, count);
2208 else
2209 mod_page_state(pgpgin, count);
2210 generic_make_request(bio);
2211 return 1;
2215 * blk_rq_next_segment
2216 * @rq: the request being processed
2218 * Description:
2219 * Points to the next segment in the request if the current segment
2220 * is complete. Leaves things unchanged if this segment is not over
2221 * or if no more segments are left in this request.
2223 * Meant to be used for bio traversal during I/O submission
2224 * Does not affect any I/O completions or update completion state
2225 * in the request, and does not modify any bio fields.
2227 * Decrementing rq->nr_sectors, rq->current_nr_sectors and
2228 * rq->nr_cbio_sectors as data is transferred is the caller's
2229 * responsibility and should be done before calling this routine.
2231 void blk_rq_next_segment(struct request *rq)
2233 if (rq->current_nr_sectors > 0)
2234 return;
2236 if (rq->nr_cbio_sectors > 0) {
2237 --rq->nr_cbio_segments;
2238 rq->current_nr_sectors = blk_rq_vec(rq)->bv_len >> 9;
2239 } else {
2240 if ((rq->cbio = rq->cbio->bi_next)) {
2241 rq->nr_cbio_segments = bio_segments(rq->cbio);
2242 rq->nr_cbio_sectors = bio_sectors(rq->cbio);
2243 rq->current_nr_sectors = bio_cur_sectors(rq->cbio);
2247 /* remember the size of this segment before we start I/O */
2248 rq->hard_cur_sectors = rq->current_nr_sectors;
2252 * process_that_request_first - process partial request submission
2253 * @req: the request being processed
2254 * @nr_sectors: number of sectors I/O has been submitted on
2256 * Description:
2257 * May be used for processing bio's while submitting I/O without
2258 * signalling completion. Fails if more data is requested than is
2259 * available in the request in which case it doesn't advance any
2260 * pointers.
2262 * Assumes a request is correctly set up. No sanity checks.
2264 * Return:
2265 * 0 - no more data left to submit (not processed)
2266 * 1 - data available to submit for this request (processed)
2268 int process_that_request_first(struct request *req, unsigned int nr_sectors)
2270 unsigned int nsect;
2272 if (req->nr_sectors < nr_sectors)
2273 return 0;
2275 req->nr_sectors -= nr_sectors;
2276 req->sector += nr_sectors;
2277 while (nr_sectors) {
2278 nsect = min_t(unsigned, req->current_nr_sectors, nr_sectors);
2279 req->current_nr_sectors -= nsect;
2280 nr_sectors -= nsect;
2281 if (req->cbio) {
2282 req->nr_cbio_sectors -= nsect;
2283 blk_rq_next_segment(req);
2286 return 1;
2289 void blk_recalc_rq_segments(struct request *rq)
2291 struct bio *bio;
2292 int nr_phys_segs, nr_hw_segs;
2294 if (!rq->bio)
2295 return;
2297 nr_phys_segs = nr_hw_segs = 0;
2298 rq_for_each_bio(bio, rq) {
2299 /* Force bio hw/phys segs to be recalculated. */
2300 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2302 nr_phys_segs += bio_phys_segments(rq->q, bio);
2303 nr_hw_segs += bio_hw_segments(rq->q, bio);
2306 rq->nr_phys_segments = nr_phys_segs;
2307 rq->nr_hw_segments = nr_hw_segs;
2310 void blk_recalc_rq_sectors(struct request *rq, int nsect)
2312 if (blk_fs_request(rq)) {
2313 rq->hard_sector += nsect;
2314 rq->hard_nr_sectors -= nsect;
2317 * Move the I/O submission pointers ahead if required,
2318 * i.e. for drivers not aware of rq->cbio.
2320 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
2321 (rq->sector <= rq->hard_sector)) {
2322 rq->sector = rq->hard_sector;
2323 rq->nr_sectors = rq->hard_nr_sectors;
2324 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
2325 rq->current_nr_sectors = rq->hard_cur_sectors;
2326 rq->nr_cbio_segments = bio_segments(rq->bio);
2327 rq->nr_cbio_sectors = bio_sectors(rq->bio);
2328 rq->buffer = bio_data(rq->bio);
2330 rq->cbio = rq->bio;
2334 * if total number of sectors is less than the first segment
2335 * size, something has gone terribly wrong
2337 if (rq->nr_sectors < rq->current_nr_sectors) {
2338 printk("blk: request botched\n");
2339 rq->nr_sectors = rq->current_nr_sectors;
2344 static int __end_that_request_first(struct request *req, int uptodate,
2345 int nr_bytes)
2347 int total_bytes, bio_nbytes, error = 0, next_idx = 0;
2348 struct bio *bio;
2351 * for a REQ_BLOCK_PC request, we want to carry any eventual
2352 * sense key with us all the way through
2354 if (!blk_pc_request(req))
2355 req->errors = 0;
2357 if (!uptodate) {
2358 error = -EIO;
2359 if (!(req->flags & REQ_QUIET))
2360 printk("end_request: I/O error, dev %s, sector %llu\n",
2361 req->rq_disk ? req->rq_disk->disk_name : "?",
2362 (unsigned long long)req->sector);
2365 total_bytes = bio_nbytes = 0;
2366 while ((bio = req->bio)) {
2367 int nbytes;
2369 if (nr_bytes >= bio->bi_size) {
2370 req->bio = bio->bi_next;
2371 nbytes = bio->bi_size;
2372 bio_endio(bio, nbytes, error);
2373 next_idx = 0;
2374 bio_nbytes = 0;
2375 } else {
2376 int idx = bio->bi_idx + next_idx;
2378 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
2379 blk_dump_rq_flags(req, "__end_that");
2380 printk("%s: bio idx %d >= vcnt %d\n",
2381 __FUNCTION__,
2382 bio->bi_idx, bio->bi_vcnt);
2383 break;
2386 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2387 BIO_BUG_ON(nbytes > bio->bi_size);
2390 * not a complete bvec done
2392 if (unlikely(nbytes > nr_bytes)) {
2393 bio_iovec_idx(bio, idx)->bv_offset += nr_bytes;
2394 bio_iovec_idx(bio, idx)->bv_len -= nr_bytes;
2395 bio_nbytes += nr_bytes;
2396 total_bytes += nr_bytes;
2397 break;
2401 * advance to the next vector
2403 next_idx++;
2404 bio_nbytes += nbytes;
2407 total_bytes += nbytes;
2408 nr_bytes -= nbytes;
2410 if ((bio = req->bio)) {
2412 * end more in this run, or just return 'not-done'
2414 if (unlikely(nr_bytes <= 0))
2415 break;
2420 * completely done
2422 if (!req->bio)
2423 return 0;
2426 * if the request wasn't completed, update state
2428 if (bio_nbytes) {
2429 bio_endio(bio, bio_nbytes, error);
2430 req->bio->bi_idx += next_idx;
2433 blk_recalc_rq_sectors(req, total_bytes >> 9);
2434 blk_recalc_rq_segments(req);
2435 return 1;
2439 * end_that_request_first - end I/O on a request
2440 * @req: the request being processed
2441 * @uptodate: 0 for I/O error
2442 * @nr_sectors: number of sectors to end I/O on
2444 * Description:
2445 * Ends I/O on a number of sectors attached to @req, and sets it up
2446 * for the next range of segments (if any) in the cluster.
2448 * Return:
2449 * 0 - we are done with this request, call end_that_request_last()
2450 * 1 - still buffers pending for this request
2452 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
2454 return __end_that_request_first(req, uptodate, nr_sectors << 9);
2458 * end_that_request_chunk - end I/O on a request
2459 * @req: the request being processed
2460 * @uptodate: 0 for I/O error
2461 * @nr_bytes: number of bytes to complete
2463 * Description:
2464 * Ends I/O on a number of bytes attached to @req, and sets it up
2465 * for the next range of segments (if any). Like end_that_request_first(),
2466 * but deals with bytes instead of sectors.
2468 * Return:
2469 * 0 - we are done with this request, call end_that_request_last()
2470 * 1 - still buffers pending for this request
2472 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
2474 return __end_that_request_first(req, uptodate, nr_bytes);
2478 * queue lock must be held
2480 void end_that_request_last(struct request *req)
2482 struct gendisk *disk = req->rq_disk;
2483 struct completion *waiting = req->waiting;
2485 if (disk && blk_fs_request(req)) {
2486 unsigned long duration = jiffies - req->start_time;
2487 switch (rq_data_dir(req)) {
2488 case WRITE:
2489 disk_stat_inc(disk, writes);
2490 disk_stat_add(disk, write_ticks, duration);
2491 break;
2492 case READ:
2493 disk_stat_inc(disk, reads);
2494 disk_stat_add(disk, read_ticks, duration);
2495 break;
2497 disk_round_stats(disk);
2498 disk->in_flight--;
2500 __blk_put_request(req->q, req);
2501 /* Do this LAST! The structure may be freed immediately afterwards */
2502 if (waiting)
2503 complete(waiting);
2506 void end_request(struct request *req, int uptodate)
2508 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
2509 add_disk_randomness(req->rq_disk);
2510 blkdev_dequeue_request(req);
2511 end_that_request_last(req);
2515 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
2517 /* first three bits are identical in rq->flags and bio->bi_rw */
2518 rq->flags |= (bio->bi_rw & 7);
2520 rq->nr_phys_segments = bio_phys_segments(q, bio);
2521 rq->nr_hw_segments = bio_hw_segments(q, bio);
2522 rq->current_nr_sectors = bio_cur_sectors(bio);
2523 rq->hard_cur_sectors = rq->current_nr_sectors;
2524 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2525 rq->nr_cbio_segments = bio_segments(bio);
2526 rq->nr_cbio_sectors = bio_sectors(bio);
2527 rq->buffer = bio_data(bio);
2529 rq->cbio = rq->bio = rq->biotail = bio;
2532 void blk_rq_prep_restart(struct request *rq)
2534 struct bio *bio;
2536 bio = rq->cbio = rq->bio;
2537 if (bio) {
2538 rq->nr_cbio_segments = bio_segments(bio);
2539 rq->nr_cbio_sectors = bio_sectors(bio);
2540 rq->hard_cur_sectors = bio_cur_sectors(bio);
2541 rq->buffer = bio_data(bio);
2543 rq->sector = rq->hard_sector;
2544 rq->nr_sectors = rq->hard_nr_sectors;
2545 rq->current_nr_sectors = rq->hard_cur_sectors;
2548 int kblockd_schedule_work(struct work_struct *work)
2550 return queue_work(kblockd_workqueue, work);
2553 void kblockd_flush(void)
2555 flush_workqueue(kblockd_workqueue);
2558 int __init blk_dev_init(void)
2560 int i;
2562 kblockd_workqueue = create_workqueue("kblockd");
2563 if (!kblockd_workqueue)
2564 panic("Failed to create kblockd\n");
2566 request_cachep = kmem_cache_create("blkdev_requests",
2567 sizeof(struct request), 0, 0, NULL, NULL);
2568 if (!request_cachep)
2569 panic("Can't create request pool slab cache\n");
2571 blk_max_low_pfn = max_low_pfn;
2572 blk_max_pfn = max_pfn;
2574 for (i = 0; i < ARRAY_SIZE(congestion_wqh); i++)
2575 init_waitqueue_head(&congestion_wqh[i]);
2576 return 0;
2580 * IO Context helper functions
2582 void put_io_context(struct io_context *ioc)
2584 if (ioc == NULL)
2585 return;
2587 BUG_ON(atomic_read(&ioc->refcount) == 0);
2589 if (atomic_dec_and_test(&ioc->refcount)) {
2590 if (ioc->aic && ioc->aic->dtor)
2591 ioc->aic->dtor(ioc->aic);
2592 kfree(ioc);
2596 /* Called by the exitting task */
2597 void exit_io_context(void)
2599 unsigned long flags;
2600 struct io_context *ioc;
2602 local_irq_save(flags);
2603 ioc = current->io_context;
2604 if (ioc) {
2605 if (ioc->aic && ioc->aic->exit)
2606 ioc->aic->exit(ioc->aic);
2607 put_io_context(ioc);
2608 current->io_context = NULL;
2609 } else
2610 WARN_ON(1);
2611 local_irq_restore(flags);
2615 * If the current task has no IO context then create one and initialise it.
2616 * If it does have a context, take a ref on it.
2618 * This is always called in the context of the task which submitted the I/O.
2619 * But weird things happen, so we disable local interrupts to ensure exclusive
2620 * access to *current.
2622 struct io_context *get_io_context(int gfp_flags)
2624 struct task_struct *tsk = current;
2625 unsigned long flags;
2626 struct io_context *ret;
2628 local_irq_save(flags);
2629 ret = tsk->io_context;
2630 if (ret == NULL) {
2631 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
2632 if (ret) {
2633 atomic_set(&ret->refcount, 1);
2634 ret->pid = tsk->pid;
2635 ret->last_waited = jiffies; /* doesn't matter... */
2636 ret->nr_batch_requests = 0; /* because this is 0 */
2637 ret->aic = NULL;
2638 tsk->io_context = ret;
2641 if (ret)
2642 atomic_inc(&ret->refcount);
2643 local_irq_restore(flags);
2644 return ret;
2647 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
2649 struct io_context *src = *psrc;
2650 struct io_context *dst = *pdst;
2652 if (src) {
2653 BUG_ON(atomic_read(&src->refcount) == 0);
2654 atomic_inc(&src->refcount);
2655 put_io_context(dst);
2656 *pdst = src;
2660 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
2662 struct io_context *temp;
2663 temp = *ioc1;
2664 *ioc1 = *ioc2;
2665 *ioc2 = temp;
2670 * sysfs parts below
2672 struct queue_sysfs_entry {
2673 struct attribute attr;
2674 ssize_t (*show)(struct request_queue *, char *);
2675 ssize_t (*store)(struct request_queue *, const char *, size_t);
2678 static ssize_t
2679 queue_var_show(unsigned int var, char *page)
2681 return sprintf(page, "%d\n", var);
2684 static ssize_t
2685 queue_var_store(unsigned long *var, const char *page, size_t count)
2687 char *p = (char *) page;
2689 *var = simple_strtoul(p, &p, 10);
2690 return count;
2693 static ssize_t queue_requests_show(struct request_queue *q, char *page)
2695 return queue_var_show(q->nr_requests, (page));
2698 static ssize_t
2699 queue_requests_store(struct request_queue *q, const char *page, size_t count)
2701 struct request_list *rl = &q->rq;
2703 int ret = queue_var_store(&q->nr_requests, page, count);
2704 if (q->nr_requests < BLKDEV_MIN_RQ)
2705 q->nr_requests = BLKDEV_MIN_RQ;
2707 if (rl->count[READ] >= queue_congestion_on_threshold(q))
2708 set_queue_congested(q, READ);
2709 else if (rl->count[READ] < queue_congestion_off_threshold(q))
2710 clear_queue_congested(q, READ);
2712 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
2713 set_queue_congested(q, WRITE);
2714 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
2715 clear_queue_congested(q, WRITE);
2717 if (rl->count[READ] >= q->nr_requests) {
2718 blk_set_queue_full(q, READ);
2719 } else if (rl->count[READ]+1 <= q->nr_requests) {
2720 blk_clear_queue_full(q, READ);
2721 wake_up(&rl->wait[READ]);
2724 if (rl->count[WRITE] >= q->nr_requests) {
2725 blk_set_queue_full(q, WRITE);
2726 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
2727 blk_clear_queue_full(q, WRITE);
2728 wake_up(&rl->wait[WRITE]);
2730 return ret;
2733 static struct queue_sysfs_entry queue_requests_entry = {
2734 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
2735 .show = queue_requests_show,
2736 .store = queue_requests_store,
2739 static struct attribute *default_attrs[] = {
2740 &queue_requests_entry.attr,
2741 NULL,
2744 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
2746 static ssize_t
2747 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2749 struct queue_sysfs_entry *entry = to_queue(attr);
2750 struct request_queue *q;
2752 q = container_of(kobj, struct request_queue, kobj);
2753 if (!entry->show)
2754 return 0;
2756 return entry->show(q, page);
2759 static ssize_t
2760 queue_attr_store(struct kobject *kobj, struct attribute *attr,
2761 const char *page, size_t length)
2763 struct queue_sysfs_entry *entry = to_queue(attr);
2764 struct request_queue *q;
2766 q = container_of(kobj, struct request_queue, kobj);
2767 if (!entry->store)
2768 return -EINVAL;
2770 return entry->store(q, page, length);
2773 static struct sysfs_ops queue_sysfs_ops = {
2774 .show = queue_attr_show,
2775 .store = queue_attr_store,
2778 struct kobj_type queue_ktype = {
2779 .sysfs_ops = &queue_sysfs_ops,
2780 .default_attrs = default_attrs,
2783 int blk_register_queue(struct gendisk *disk)
2785 int ret;
2787 request_queue_t *q = disk->queue;
2789 if (!q)
2790 return -ENXIO;
2792 q->kobj.parent = kobject_get(&disk->kobj);
2793 if (!q->kobj.parent)
2794 return -EBUSY;
2796 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
2797 q->kobj.ktype = &queue_ktype;
2799 ret = kobject_register(&q->kobj);
2800 if (ret < 0)
2801 return ret;
2803 ret = elv_register_queue(q);
2804 if (ret) {
2805 kobject_unregister(&q->kobj);
2806 return ret;
2809 return 0;
2812 void blk_unregister_queue(struct gendisk *disk)
2814 request_queue_t *q = disk->queue;
2816 if (q) {
2817 elv_unregister_queue(q);
2819 kobject_unregister(&q->kobj);
2820 kobject_put(&disk->kobj);
2825 EXPORT_SYMBOL(process_that_request_first);
2826 EXPORT_SYMBOL(end_that_request_first);
2827 EXPORT_SYMBOL(end_that_request_chunk);
2828 EXPORT_SYMBOL(end_that_request_last);
2829 EXPORT_SYMBOL(end_request);
2830 EXPORT_SYMBOL(blk_init_queue);
2831 EXPORT_SYMBOL(blk_cleanup_queue);
2832 EXPORT_SYMBOL(blk_get_queue);
2833 EXPORT_SYMBOL(blk_alloc_queue);
2834 EXPORT_SYMBOL(blk_queue_make_request);
2835 EXPORT_SYMBOL(blk_queue_bounce_limit);
2836 EXPORT_SYMBOL(generic_make_request);
2837 EXPORT_SYMBOL(generic_unplug_device);
2838 EXPORT_SYMBOL(blk_plug_device);
2839 EXPORT_SYMBOL(blk_remove_plug);
2840 EXPORT_SYMBOL(blk_attempt_remerge);
2841 EXPORT_SYMBOL(__blk_attempt_remerge);
2842 EXPORT_SYMBOL(blk_max_low_pfn);
2843 EXPORT_SYMBOL(blk_max_pfn);
2844 EXPORT_SYMBOL(blk_queue_max_sectors);
2845 EXPORT_SYMBOL(blk_queue_max_phys_segments);
2846 EXPORT_SYMBOL(blk_queue_max_hw_segments);
2847 EXPORT_SYMBOL(blk_queue_max_segment_size);
2848 EXPORT_SYMBOL(blk_queue_hardsect_size);
2849 EXPORT_SYMBOL(blk_queue_stack_limits);
2850 EXPORT_SYMBOL(blk_queue_segment_boundary);
2851 EXPORT_SYMBOL(blk_queue_dma_alignment);
2852 EXPORT_SYMBOL(blk_rq_map_sg);
2853 EXPORT_SYMBOL(blk_dump_rq_flags);
2854 EXPORT_SYMBOL(submit_bio);
2855 EXPORT_SYMBOL(blk_phys_contig_segment);
2856 EXPORT_SYMBOL(blk_hw_contig_segment);
2857 EXPORT_SYMBOL(blk_get_request);
2858 EXPORT_SYMBOL(blk_put_request);
2859 EXPORT_SYMBOL(blk_insert_request);
2860 EXPORT_SYMBOL(blk_requeue_request);
2862 EXPORT_SYMBOL(blk_queue_prep_rq);
2863 EXPORT_SYMBOL(blk_queue_merge_bvec);
2865 EXPORT_SYMBOL(blk_queue_find_tag);
2866 EXPORT_SYMBOL(blk_queue_init_tags);
2867 EXPORT_SYMBOL(blk_queue_free_tags);
2868 EXPORT_SYMBOL(blk_queue_start_tag);
2869 EXPORT_SYMBOL(blk_queue_end_tag);
2870 EXPORT_SYMBOL(blk_queue_invalidate_tags);
2872 EXPORT_SYMBOL(blk_start_queue);
2873 EXPORT_SYMBOL(blk_stop_queue);
2874 EXPORT_SYMBOL(blk_run_queue);
2875 EXPORT_SYMBOL(blk_run_queues);
2877 EXPORT_SYMBOL(blk_rq_bio_prep);
2878 EXPORT_SYMBOL(blk_rq_prep_restart);