[PATCH] mlock error handling fix
[linux-2.6/history.git] / mm / memory.c
blobbe552e3cffbd874da700dc8eb5c0d8f1cdd4801d
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
39 #include <linux/kernel_stat.h>
40 #include <linux/mm.h>
41 #include <linux/hugetlb.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/highmem.h>
45 #include <linux/pagemap.h>
46 #include <linux/rmap-locking.h>
47 #include <linux/module.h>
49 #include <asm/pgalloc.h>
50 #include <asm/rmap.h>
51 #include <asm/uaccess.h>
52 #include <asm/tlb.h>
53 #include <asm/tlbflush.h>
54 #include <asm/pgtable.h>
56 #include <linux/swapops.h>
58 #ifndef CONFIG_DISCONTIGMEM
59 /* use the per-pgdat data instead for discontigmem - mbligh */
60 unsigned long max_mapnr;
61 struct page *mem_map;
62 #endif
64 unsigned long num_physpages;
65 void * high_memory;
66 struct page *highmem_start_page;
69 * We special-case the C-O-W ZERO_PAGE, because it's such
70 * a common occurrence (no need to read the page to know
71 * that it's zero - better for the cache and memory subsystem).
73 static inline void copy_cow_page(struct page * from, struct page * to, unsigned long address)
75 if (from == ZERO_PAGE(address)) {
76 clear_user_highpage(to, address);
77 return;
79 copy_user_highpage(to, from, address);
83 * Note: this doesn't free the actual pages themselves. That
84 * has been handled earlier when unmapping all the memory regions.
86 static inline void free_one_pmd(struct mmu_gather *tlb, pmd_t * dir)
88 struct page *page;
90 if (pmd_none(*dir))
91 return;
92 if (pmd_bad(*dir)) {
93 pmd_ERROR(*dir);
94 pmd_clear(dir);
95 return;
97 page = pmd_page(*dir);
98 pmd_clear(dir);
99 pgtable_remove_rmap(page);
100 pte_free_tlb(tlb, page);
103 static inline void free_one_pgd(struct mmu_gather *tlb, pgd_t * dir)
105 int j;
106 pmd_t * pmd;
108 if (pgd_none(*dir))
109 return;
110 if (pgd_bad(*dir)) {
111 pgd_ERROR(*dir);
112 pgd_clear(dir);
113 return;
115 pmd = pmd_offset(dir, 0);
116 pgd_clear(dir);
117 for (j = 0; j < PTRS_PER_PMD ; j++)
118 free_one_pmd(tlb, pmd+j);
119 pmd_free_tlb(tlb, pmd);
123 * This function clears all user-level page tables of a process - this
124 * is needed by execve(), so that old pages aren't in the way.
126 * Must be called with pagetable lock held.
128 void clear_page_tables(struct mmu_gather *tlb, unsigned long first, int nr)
130 pgd_t * page_dir = tlb->mm->pgd;
132 page_dir += first;
133 do {
134 free_one_pgd(tlb, page_dir);
135 page_dir++;
136 } while (--nr);
139 pte_t * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
141 if (!pmd_present(*pmd)) {
142 struct page *new;
144 spin_unlock(&mm->page_table_lock);
145 new = pte_alloc_one(mm, address);
146 spin_lock(&mm->page_table_lock);
147 if (!new)
148 return NULL;
151 * Because we dropped the lock, we should re-check the
152 * entry, as somebody else could have populated it..
154 if (pmd_present(*pmd)) {
155 pte_free(new);
156 goto out;
158 pgtable_add_rmap(new, mm, address);
159 pmd_populate(mm, pmd, new);
161 out:
162 return pte_offset_map(pmd, address);
165 pte_t * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
167 if (!pmd_present(*pmd)) {
168 pte_t *new;
170 spin_unlock(&mm->page_table_lock);
171 new = pte_alloc_one_kernel(mm, address);
172 spin_lock(&mm->page_table_lock);
173 if (!new)
174 return NULL;
177 * Because we dropped the lock, we should re-check the
178 * entry, as somebody else could have populated it..
180 if (pmd_present(*pmd)) {
181 pte_free_kernel(new);
182 goto out;
184 pgtable_add_rmap(virt_to_page(new), mm, address);
185 pmd_populate_kernel(mm, pmd, new);
187 out:
188 return pte_offset_kernel(pmd, address);
190 #define PTE_TABLE_MASK ((PTRS_PER_PTE-1) * sizeof(pte_t))
191 #define PMD_TABLE_MASK ((PTRS_PER_PMD-1) * sizeof(pmd_t))
194 * copy one vm_area from one task to the other. Assumes the page tables
195 * already present in the new task to be cleared in the whole range
196 * covered by this vma.
198 * 08Jan98 Merged into one routine from several inline routines to reduce
199 * variable count and make things faster. -jj
201 * dst->page_table_lock is held on entry and exit,
202 * but may be dropped within pmd_alloc() and pte_alloc_map().
204 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
205 struct vm_area_struct *vma)
207 pgd_t * src_pgd, * dst_pgd;
208 unsigned long address = vma->vm_start;
209 unsigned long end = vma->vm_end;
210 unsigned long cow;
211 struct pte_chain *pte_chain = NULL;
213 if (is_vm_hugetlb_page(vma))
214 return copy_hugetlb_page_range(dst, src, vma);
216 pte_chain = pte_chain_alloc(GFP_ATOMIC);
217 if (!pte_chain) {
218 spin_unlock(&dst->page_table_lock);
219 pte_chain = pte_chain_alloc(GFP_KERNEL);
220 spin_lock(&dst->page_table_lock);
221 if (!pte_chain)
222 goto nomem;
225 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
226 src_pgd = pgd_offset(src, address)-1;
227 dst_pgd = pgd_offset(dst, address)-1;
229 for (;;) {
230 pmd_t * src_pmd, * dst_pmd;
232 src_pgd++; dst_pgd++;
234 /* copy_pmd_range */
236 if (pgd_none(*src_pgd))
237 goto skip_copy_pmd_range;
238 if (pgd_bad(*src_pgd)) {
239 pgd_ERROR(*src_pgd);
240 pgd_clear(src_pgd);
241 skip_copy_pmd_range: address = (address + PGDIR_SIZE) & PGDIR_MASK;
242 if (!address || (address >= end))
243 goto out;
244 continue;
247 src_pmd = pmd_offset(src_pgd, address);
248 dst_pmd = pmd_alloc(dst, dst_pgd, address);
249 if (!dst_pmd)
250 goto nomem;
252 do {
253 pte_t * src_pte, * dst_pte;
255 /* copy_pte_range */
257 if (pmd_none(*src_pmd))
258 goto skip_copy_pte_range;
259 if (pmd_bad(*src_pmd)) {
260 pmd_ERROR(*src_pmd);
261 pmd_clear(src_pmd);
262 skip_copy_pte_range:
263 address = (address + PMD_SIZE) & PMD_MASK;
264 if (address >= end)
265 goto out;
266 goto cont_copy_pmd_range;
269 dst_pte = pte_alloc_map(dst, dst_pmd, address);
270 if (!dst_pte)
271 goto nomem;
272 spin_lock(&src->page_table_lock);
273 src_pte = pte_offset_map_nested(src_pmd, address);
274 do {
275 pte_t pte = *src_pte;
276 struct page *page;
277 unsigned long pfn;
279 /* copy_one_pte */
281 if (pte_none(pte))
282 goto cont_copy_pte_range_noset;
283 /* pte contains position in swap, so copy. */
284 if (!pte_present(pte)) {
285 if (!pte_file(pte))
286 swap_duplicate(pte_to_swp_entry(pte));
287 set_pte(dst_pte, pte);
288 goto cont_copy_pte_range_noset;
290 pfn = pte_pfn(pte);
291 /* the pte points outside of valid memory, the
292 * mapping is assumed to be good, meaningful
293 * and not mapped via rmap - duplicate the
294 * mapping as is.
296 page = NULL;
297 if (pfn_valid(pfn))
298 page = pfn_to_page(pfn);
300 if (!page || PageReserved(page)) {
301 set_pte(dst_pte, pte);
302 goto cont_copy_pte_range_noset;
306 * If it's a COW mapping, write protect it both
307 * in the parent and the child
309 if (cow) {
310 ptep_set_wrprotect(src_pte);
311 pte = *src_pte;
315 * If it's a shared mapping, mark it clean in
316 * the child
318 if (vma->vm_flags & VM_SHARED)
319 pte = pte_mkclean(pte);
320 pte = pte_mkold(pte);
321 get_page(page);
322 dst->rss++;
324 set_pte(dst_pte, pte);
325 pte_chain = page_add_rmap(page, dst_pte,
326 pte_chain);
327 if (pte_chain)
328 goto cont_copy_pte_range_noset;
329 pte_chain = pte_chain_alloc(GFP_ATOMIC);
330 if (pte_chain)
331 goto cont_copy_pte_range_noset;
334 * pte_chain allocation failed, and we need to
335 * run page reclaim.
337 pte_unmap_nested(src_pte);
338 pte_unmap(dst_pte);
339 spin_unlock(&src->page_table_lock);
340 spin_unlock(&dst->page_table_lock);
341 pte_chain = pte_chain_alloc(GFP_KERNEL);
342 spin_lock(&dst->page_table_lock);
343 if (!pte_chain)
344 goto nomem;
345 spin_lock(&src->page_table_lock);
346 dst_pte = pte_offset_map(dst_pmd, address);
347 src_pte = pte_offset_map_nested(src_pmd,
348 address);
349 cont_copy_pte_range_noset:
350 address += PAGE_SIZE;
351 if (address >= end) {
352 pte_unmap_nested(src_pte);
353 pte_unmap(dst_pte);
354 goto out_unlock;
356 src_pte++;
357 dst_pte++;
358 } while ((unsigned long)src_pte & PTE_TABLE_MASK);
359 pte_unmap_nested(src_pte-1);
360 pte_unmap(dst_pte-1);
361 spin_unlock(&src->page_table_lock);
363 cont_copy_pmd_range:
364 src_pmd++;
365 dst_pmd++;
366 } while ((unsigned long)src_pmd & PMD_TABLE_MASK);
368 out_unlock:
369 spin_unlock(&src->page_table_lock);
370 out:
371 pte_chain_free(pte_chain);
372 return 0;
373 nomem:
374 pte_chain_free(pte_chain);
375 return -ENOMEM;
378 static void
379 zap_pte_range(struct mmu_gather *tlb, pmd_t * pmd,
380 unsigned long address, unsigned long size)
382 unsigned long offset;
383 pte_t *ptep;
385 if (pmd_none(*pmd))
386 return;
387 if (pmd_bad(*pmd)) {
388 pmd_ERROR(*pmd);
389 pmd_clear(pmd);
390 return;
392 ptep = pte_offset_map(pmd, address);
393 offset = address & ~PMD_MASK;
394 if (offset + size > PMD_SIZE)
395 size = PMD_SIZE - offset;
396 size &= PAGE_MASK;
397 for (offset=0; offset < size; ptep++, offset += PAGE_SIZE) {
398 pte_t pte = *ptep;
399 if (pte_none(pte))
400 continue;
401 if (pte_present(pte)) {
402 unsigned long pfn = pte_pfn(pte);
404 pte = ptep_get_and_clear(ptep);
405 tlb_remove_tlb_entry(tlb, ptep, address+offset);
406 if (pfn_valid(pfn)) {
407 struct page *page = pfn_to_page(pfn);
408 if (!PageReserved(page)) {
409 if (pte_dirty(pte))
410 set_page_dirty(page);
411 if (page->mapping && pte_young(pte) &&
412 !PageSwapCache(page))
413 mark_page_accessed(page);
414 tlb->freed++;
415 page_remove_rmap(page, ptep);
416 tlb_remove_page(tlb, page);
419 } else {
420 if (!pte_file(pte))
421 free_swap_and_cache(pte_to_swp_entry(pte));
422 pte_clear(ptep);
425 pte_unmap(ptep-1);
428 static void
429 zap_pmd_range(struct mmu_gather *tlb, pgd_t * dir,
430 unsigned long address, unsigned long size)
432 pmd_t * pmd;
433 unsigned long end;
435 if (pgd_none(*dir))
436 return;
437 if (pgd_bad(*dir)) {
438 pgd_ERROR(*dir);
439 pgd_clear(dir);
440 return;
442 pmd = pmd_offset(dir, address);
443 end = address + size;
444 if (end > ((address + PGDIR_SIZE) & PGDIR_MASK))
445 end = ((address + PGDIR_SIZE) & PGDIR_MASK);
446 do {
447 zap_pte_range(tlb, pmd, address, end - address);
448 address = (address + PMD_SIZE) & PMD_MASK;
449 pmd++;
450 } while (address < end);
453 void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
454 unsigned long address, unsigned long end)
456 pgd_t * dir;
458 if (is_vm_hugetlb_page(vma)) {
459 unmap_hugepage_range(vma, address, end);
460 return;
463 BUG_ON(address >= end);
465 dir = pgd_offset(vma->vm_mm, address);
466 tlb_start_vma(tlb, vma);
467 do {
468 zap_pmd_range(tlb, dir, address, end - address);
469 address = (address + PGDIR_SIZE) & PGDIR_MASK;
470 dir++;
471 } while (address && (address < end));
472 tlb_end_vma(tlb, vma);
475 /* Dispose of an entire struct mmu_gather per rescheduling point */
476 #if defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
477 #define ZAP_BLOCK_SIZE (FREE_PTE_NR * PAGE_SIZE)
478 #endif
480 /* For UP, 256 pages at a time gives nice low latency */
481 #if !defined(CONFIG_SMP) && defined(CONFIG_PREEMPT)
482 #define ZAP_BLOCK_SIZE (256 * PAGE_SIZE)
483 #endif
485 /* No preempt: go for the best straight-line efficiency */
486 #if !defined(CONFIG_PREEMPT)
487 #define ZAP_BLOCK_SIZE (~(0UL))
488 #endif
491 * unmap_vmas - unmap a range of memory covered by a list of vma's
492 * @tlbp: address of the caller's struct mmu_gather
493 * @mm: the controlling mm_struct
494 * @vma: the starting vma
495 * @start_addr: virtual address at which to start unmapping
496 * @end_addr: virtual address at which to end unmapping
497 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
499 * Returns the number of vma's which were covered by the unmapping.
501 * Unmap all pages in the vma list. Called under page_table_lock.
503 * We aim to not hold page_table_lock for too long (for scheduling latency
504 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
505 * return the ending mmu_gather to the caller.
507 * Only addresses between `start' and `end' will be unmapped.
509 * The VMA list must be sorted in ascending virtual address order.
511 * unmap_vmas() assumes that the caller will flush the whole unmapped address
512 * range after unmap_vmas() returns. So the only responsibility here is to
513 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
514 * drops the lock and schedules.
516 int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
517 struct vm_area_struct *vma, unsigned long start_addr,
518 unsigned long end_addr, unsigned long *nr_accounted)
520 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
521 unsigned long tlb_start; /* For tlb_finish_mmu */
522 int tlb_start_valid = 0;
523 int ret = 0;
525 if (vma) { /* debug. killme. */
526 if (end_addr <= vma->vm_start)
527 printk("%s: end_addr(0x%08lx) <= vm_start(0x%08lx)\n",
528 __FUNCTION__, end_addr, vma->vm_start);
529 if (start_addr >= vma->vm_end)
530 printk("%s: start_addr(0x%08lx) <= vm_end(0x%08lx)\n",
531 __FUNCTION__, start_addr, vma->vm_end);
534 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
535 unsigned long start;
536 unsigned long end;
538 start = max(vma->vm_start, start_addr);
539 if (start >= vma->vm_end)
540 continue;
541 end = min(vma->vm_end, end_addr);
542 if (end <= vma->vm_start)
543 continue;
545 if (vma->vm_flags & VM_ACCOUNT)
546 *nr_accounted += (end - start) >> PAGE_SHIFT;
548 ret++;
549 while (start != end) {
550 unsigned long block;
552 if (is_vm_hugetlb_page(vma))
553 block = end - start;
554 else
555 block = min(zap_bytes, end - start);
557 if (!tlb_start_valid) {
558 tlb_start = start;
559 tlb_start_valid = 1;
562 unmap_page_range(*tlbp, vma, start, start + block);
563 start += block;
564 zap_bytes -= block;
565 if ((long)zap_bytes > 0)
566 continue;
567 if (need_resched()) {
568 tlb_finish_mmu(*tlbp, tlb_start, start);
569 cond_resched_lock(&mm->page_table_lock);
570 *tlbp = tlb_gather_mmu(mm, 0);
571 tlb_start_valid = 0;
573 zap_bytes = ZAP_BLOCK_SIZE;
575 if (vma->vm_next && vma->vm_next->vm_start < vma->vm_end)
576 printk("%s: VMA list is not sorted correctly!\n",
577 __FUNCTION__);
579 return ret;
583 * zap_page_range - remove user pages in a given range
584 * @vma: vm_area_struct holding the applicable pages
585 * @address: starting address of pages to zap
586 * @size: number of bytes to zap
588 void zap_page_range(struct vm_area_struct *vma,
589 unsigned long address, unsigned long size)
591 struct mm_struct *mm = vma->vm_mm;
592 struct mmu_gather *tlb;
593 unsigned long end = address + size;
594 unsigned long nr_accounted = 0;
596 might_sleep();
598 if (is_vm_hugetlb_page(vma)) {
599 zap_hugepage_range(vma, address, size);
600 return;
603 lru_add_drain();
604 spin_lock(&mm->page_table_lock);
605 tlb = tlb_gather_mmu(mm, 0);
606 unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted);
607 tlb_finish_mmu(tlb, address, end);
608 spin_unlock(&mm->page_table_lock);
612 * Do a quick page-table lookup for a single page.
613 * mm->page_table_lock must be held.
615 struct page *
616 follow_page(struct mm_struct *mm, unsigned long address, int write)
618 pgd_t *pgd;
619 pmd_t *pmd;
620 pte_t *ptep, pte;
621 unsigned long pfn;
622 struct vm_area_struct *vma;
624 vma = hugepage_vma(mm, address);
625 if (vma)
626 return follow_huge_addr(mm, vma, address, write);
628 pgd = pgd_offset(mm, address);
629 if (pgd_none(*pgd) || pgd_bad(*pgd))
630 goto out;
632 pmd = pmd_offset(pgd, address);
633 if (pmd_none(*pmd))
634 goto out;
635 if (pmd_huge(*pmd))
636 return follow_huge_pmd(mm, address, pmd, write);
637 if (pmd_bad(*pmd))
638 goto out;
640 ptep = pte_offset_map(pmd, address);
641 if (!ptep)
642 goto out;
644 pte = *ptep;
645 pte_unmap(ptep);
646 if (pte_present(pte)) {
647 if (!write || (pte_write(pte) && pte_dirty(pte))) {
648 pfn = pte_pfn(pte);
649 if (pfn_valid(pfn)) {
650 struct page *page = pfn_to_page(pfn);
652 mark_page_accessed(page);
653 return page;
658 out:
659 return NULL;
663 * Given a physical address, is there a useful struct page pointing to
664 * it? This may become more complex in the future if we start dealing
665 * with IO-aperture pages for direct-IO.
668 static inline struct page *get_page_map(struct page *page)
670 if (!pfn_valid(page_to_pfn(page)))
671 return 0;
672 return page;
676 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
677 unsigned long start, int len, int write, int force,
678 struct page **pages, struct vm_area_struct **vmas)
680 int i;
681 unsigned int flags;
684 * Require read or write permissions.
685 * If 'force' is set, we only require the "MAY" flags.
687 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
688 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
689 i = 0;
691 do {
692 struct vm_area_struct * vma;
694 vma = find_extend_vma(mm, start);
696 #ifdef FIXADDR_USER_START
697 if (!vma &&
698 start >= FIXADDR_USER_START && start < FIXADDR_USER_END) {
699 static struct vm_area_struct fixmap_vma = {
700 /* Catch users - if there are any valid
701 ones, we can make this be "&init_mm" or
702 something. */
703 .vm_mm = NULL,
704 .vm_start = FIXADDR_USER_START,
705 .vm_end = FIXADDR_USER_END,
706 .vm_page_prot = PAGE_READONLY,
707 .vm_flags = VM_READ | VM_EXEC,
709 unsigned long pg = start & PAGE_MASK;
710 pgd_t *pgd;
711 pmd_t *pmd;
712 pte_t *pte;
713 if (write) /* user fixmap pages are read-only */
714 return i ? : -EFAULT;
715 pgd = pgd_offset_k(pg);
716 if (!pgd)
717 return i ? : -EFAULT;
718 pmd = pmd_offset(pgd, pg);
719 if (!pmd)
720 return i ? : -EFAULT;
721 pte = pte_offset_kernel(pmd, pg);
722 if (!pte || !pte_present(*pte))
723 return i ? : -EFAULT;
724 if (pages) {
725 pages[i] = pte_page(*pte);
726 get_page(pages[i]);
728 if (vmas)
729 vmas[i] = &fixmap_vma;
730 i++;
731 start += PAGE_SIZE;
732 len--;
733 continue;
735 #endif
737 if (!vma || (pages && (vma->vm_flags & VM_IO))
738 || !(flags & vma->vm_flags))
739 return i ? : -EFAULT;
741 if (is_vm_hugetlb_page(vma)) {
742 i = follow_hugetlb_page(mm, vma, pages, vmas,
743 &start, &len, i);
744 continue;
746 spin_lock(&mm->page_table_lock);
747 do {
748 struct page *map;
749 while (!(map = follow_page(mm, start, write))) {
750 spin_unlock(&mm->page_table_lock);
751 switch (handle_mm_fault(mm,vma,start,write)) {
752 case VM_FAULT_MINOR:
753 tsk->min_flt++;
754 break;
755 case VM_FAULT_MAJOR:
756 tsk->maj_flt++;
757 break;
758 case VM_FAULT_SIGBUS:
759 return i ? i : -EFAULT;
760 case VM_FAULT_OOM:
761 return i ? i : -ENOMEM;
762 default:
763 BUG();
765 spin_lock(&mm->page_table_lock);
767 if (pages) {
768 pages[i] = get_page_map(map);
769 if (!pages[i]) {
770 spin_unlock(&mm->page_table_lock);
771 while (i--)
772 page_cache_release(pages[i]);
773 i = -EFAULT;
774 goto out;
776 flush_dcache_page(pages[i]);
777 if (!PageReserved(pages[i]))
778 page_cache_get(pages[i]);
780 if (vmas)
781 vmas[i] = vma;
782 i++;
783 start += PAGE_SIZE;
784 len--;
785 } while(len && start < vma->vm_end);
786 spin_unlock(&mm->page_table_lock);
787 } while(len);
788 out:
789 return i;
792 static void zeromap_pte_range(pte_t * pte, unsigned long address,
793 unsigned long size, pgprot_t prot)
795 unsigned long end;
797 address &= ~PMD_MASK;
798 end = address + size;
799 if (end > PMD_SIZE)
800 end = PMD_SIZE;
801 do {
802 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(address), prot));
803 BUG_ON(!pte_none(*pte));
804 set_pte(pte, zero_pte);
805 address += PAGE_SIZE;
806 pte++;
807 } while (address && (address < end));
810 static inline int zeromap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address,
811 unsigned long size, pgprot_t prot)
813 unsigned long base, end;
815 base = address & PGDIR_MASK;
816 address &= ~PGDIR_MASK;
817 end = address + size;
818 if (end > PGDIR_SIZE)
819 end = PGDIR_SIZE;
820 do {
821 pte_t * pte = pte_alloc_map(mm, pmd, base + address);
822 if (!pte)
823 return -ENOMEM;
824 zeromap_pte_range(pte, base + address, end - address, prot);
825 pte_unmap(pte);
826 address = (address + PMD_SIZE) & PMD_MASK;
827 pmd++;
828 } while (address && (address < end));
829 return 0;
832 int zeromap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size, pgprot_t prot)
834 int error = 0;
835 pgd_t * dir;
836 unsigned long beg = address;
837 unsigned long end = address + size;
838 struct mm_struct *mm = vma->vm_mm;
840 dir = pgd_offset(mm, address);
841 flush_cache_range(vma, beg, end);
842 if (address >= end)
843 BUG();
845 spin_lock(&mm->page_table_lock);
846 do {
847 pmd_t *pmd = pmd_alloc(mm, dir, address);
848 error = -ENOMEM;
849 if (!pmd)
850 break;
851 error = zeromap_pmd_range(mm, pmd, address, end - address, prot);
852 if (error)
853 break;
854 address = (address + PGDIR_SIZE) & PGDIR_MASK;
855 dir++;
856 } while (address && (address < end));
857 flush_tlb_range(vma, beg, end);
858 spin_unlock(&mm->page_table_lock);
859 return error;
863 * maps a range of physical memory into the requested pages. the old
864 * mappings are removed. any references to nonexistent pages results
865 * in null mappings (currently treated as "copy-on-access")
867 static inline void remap_pte_range(pte_t * pte, unsigned long address, unsigned long size,
868 unsigned long phys_addr, pgprot_t prot)
870 unsigned long end;
871 unsigned long pfn;
873 address &= ~PMD_MASK;
874 end = address + size;
875 if (end > PMD_SIZE)
876 end = PMD_SIZE;
877 pfn = phys_addr >> PAGE_SHIFT;
878 do {
879 BUG_ON(!pte_none(*pte));
880 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
881 set_pte(pte, pfn_pte(pfn, prot));
882 address += PAGE_SIZE;
883 pfn++;
884 pte++;
885 } while (address && (address < end));
888 static inline int remap_pmd_range(struct mm_struct *mm, pmd_t * pmd, unsigned long address, unsigned long size,
889 unsigned long phys_addr, pgprot_t prot)
891 unsigned long base, end;
893 base = address & PGDIR_MASK;
894 address &= ~PGDIR_MASK;
895 end = address + size;
896 if (end > PGDIR_SIZE)
897 end = PGDIR_SIZE;
898 phys_addr -= address;
899 do {
900 pte_t * pte = pte_alloc_map(mm, pmd, base + address);
901 if (!pte)
902 return -ENOMEM;
903 remap_pte_range(pte, base + address, end - address, address + phys_addr, prot);
904 pte_unmap(pte);
905 address = (address + PMD_SIZE) & PMD_MASK;
906 pmd++;
907 } while (address && (address < end));
908 return 0;
911 /* Note: this is only safe if the mm semaphore is held when called. */
912 int remap_page_range(struct vm_area_struct *vma, unsigned long from, unsigned long phys_addr, unsigned long size, pgprot_t prot)
914 int error = 0;
915 pgd_t * dir;
916 unsigned long beg = from;
917 unsigned long end = from + size;
918 struct mm_struct *mm = vma->vm_mm;
920 phys_addr -= from;
921 dir = pgd_offset(mm, from);
922 flush_cache_range(vma, beg, end);
923 if (from >= end)
924 BUG();
926 spin_lock(&mm->page_table_lock);
927 do {
928 pmd_t *pmd = pmd_alloc(mm, dir, from);
929 error = -ENOMEM;
930 if (!pmd)
931 break;
932 error = remap_pmd_range(mm, pmd, from, end - from, phys_addr + from, prot);
933 if (error)
934 break;
935 from = (from + PGDIR_SIZE) & PGDIR_MASK;
936 dir++;
937 } while (from && (from < end));
938 flush_tlb_range(vma, beg, end);
939 spin_unlock(&mm->page_table_lock);
940 return error;
944 * Establish a new mapping:
945 * - flush the old one
946 * - update the page tables
947 * - inform the TLB about the new one
949 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
951 static inline void establish_pte(struct vm_area_struct * vma, unsigned long address, pte_t *page_table, pte_t entry)
953 set_pte(page_table, entry);
954 flush_tlb_page(vma, address);
955 update_mmu_cache(vma, address, entry);
959 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
961 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
962 pte_t *page_table)
964 flush_cache_page(vma, address);
965 establish_pte(vma, address, page_table, pte_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot))));
969 * This routine handles present pages, when users try to write
970 * to a shared page. It is done by copying the page to a new address
971 * and decrementing the shared-page counter for the old page.
973 * Goto-purists beware: the only reason for goto's here is that it results
974 * in better assembly code.. The "default" path will see no jumps at all.
976 * Note that this routine assumes that the protection checks have been
977 * done by the caller (the low-level page fault routine in most cases).
978 * Thus we can safely just mark it writable once we've done any necessary
979 * COW.
981 * We also mark the page dirty at this point even though the page will
982 * change only once the write actually happens. This avoids a few races,
983 * and potentially makes it more efficient.
985 * We hold the mm semaphore and the page_table_lock on entry and exit
986 * with the page_table_lock released.
988 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
989 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
991 struct page *old_page, *new_page;
992 unsigned long pfn = pte_pfn(pte);
993 struct pte_chain *pte_chain = NULL;
994 int ret;
996 if (unlikely(!pfn_valid(pfn))) {
998 * This should really halt the system so it can be debugged or
999 * at least the kernel stops what it's doing before it corrupts
1000 * data, but for the moment just pretend this is OOM.
1002 pte_unmap(page_table);
1003 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1004 address);
1005 goto oom;
1007 old_page = pfn_to_page(pfn);
1009 if (!TestSetPageLocked(old_page)) {
1010 int reuse = can_share_swap_page(old_page);
1011 unlock_page(old_page);
1012 if (reuse) {
1013 flush_cache_page(vma, address);
1014 establish_pte(vma, address, page_table,
1015 pte_mkyoung(pte_mkdirty(pte_mkwrite(pte))));
1016 pte_unmap(page_table);
1017 ret = VM_FAULT_MINOR;
1018 goto out;
1021 pte_unmap(page_table);
1024 * Ok, we need to copy. Oh, well..
1026 page_cache_get(old_page);
1027 spin_unlock(&mm->page_table_lock);
1029 pte_chain = pte_chain_alloc(GFP_KERNEL);
1030 if (!pte_chain)
1031 goto no_mem;
1032 new_page = alloc_page(GFP_HIGHUSER);
1033 if (!new_page)
1034 goto no_mem;
1035 copy_cow_page(old_page,new_page,address);
1038 * Re-check the pte - we dropped the lock
1040 spin_lock(&mm->page_table_lock);
1041 page_table = pte_offset_map(pmd, address);
1042 if (pte_same(*page_table, pte)) {
1043 if (PageReserved(old_page))
1044 ++mm->rss;
1045 page_remove_rmap(old_page, page_table);
1046 break_cow(vma, new_page, address, page_table);
1047 pte_chain = page_add_rmap(new_page, page_table, pte_chain);
1048 lru_cache_add_active(new_page);
1050 /* Free the old page.. */
1051 new_page = old_page;
1053 pte_unmap(page_table);
1054 page_cache_release(new_page);
1055 page_cache_release(old_page);
1056 ret = VM_FAULT_MINOR;
1057 goto out;
1059 no_mem:
1060 page_cache_release(old_page);
1061 oom:
1062 ret = VM_FAULT_OOM;
1063 out:
1064 spin_unlock(&mm->page_table_lock);
1065 pte_chain_free(pte_chain);
1066 return ret;
1070 * Helper function for invalidate_mmap_range().
1071 * Both hba and hlen are page numbers in PAGE_SIZE units.
1072 * An hlen of zero blows away the entire portion file after hba.
1074 static void
1075 invalidate_mmap_range_list(struct list_head *head,
1076 unsigned long const hba,
1077 unsigned long const hlen)
1079 struct list_head *curr;
1080 unsigned long hea; /* last page of hole. */
1081 unsigned long vba;
1082 unsigned long vea; /* last page of corresponding uva hole. */
1083 struct vm_area_struct *vp;
1084 unsigned long zba;
1085 unsigned long zea;
1087 hea = hba + hlen - 1; /* avoid overflow. */
1088 if (hea < hba)
1089 hea = ULONG_MAX;
1090 list_for_each(curr, head) {
1091 vp = list_entry(curr, struct vm_area_struct, shared);
1092 vba = vp->vm_pgoff;
1093 vea = vba + ((vp->vm_end - vp->vm_start) >> PAGE_SHIFT) - 1;
1094 if (hea < vba || vea < hba)
1095 continue; /* Mapping disjoint from hole. */
1096 zba = (hba <= vba) ? vba : hba;
1097 zea = (vea <= hea) ? vea : hea;
1098 zap_page_range(vp,
1099 ((zba - vba) << PAGE_SHIFT) + vp->vm_start,
1100 (zea - zba + 1) << PAGE_SHIFT);
1105 * invalidate_mmap_range - invalidate the portion of all mmaps
1106 * in the specified address_space corresponding to the specified
1107 * page range in the underlying file.
1108 * @address_space: the address space containing mmaps to be invalidated.
1109 * @holebegin: byte in first page to invalidate, relative to the start of
1110 * the underlying file. This will be rounded down to a PAGE_SIZE
1111 * boundary. Note that this is different from vmtruncate(), which
1112 * must keep the partial page. In contrast, we must get rid of
1113 * partial pages.
1114 * @holelen: size of prospective hole in bytes. This will be rounded
1115 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1116 * end of the file.
1118 void invalidate_mmap_range(struct address_space *mapping,
1119 loff_t const holebegin, loff_t const holelen)
1121 unsigned long hba = holebegin >> PAGE_SHIFT;
1122 unsigned long hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1124 /* Check for overflow. */
1125 if (sizeof(holelen) > sizeof(hlen)) {
1126 long long holeend =
1127 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1129 if (holeend & ~(long long)ULONG_MAX)
1130 hlen = ULONG_MAX - hba + 1;
1132 down(&mapping->i_shared_sem);
1133 /* Protect against page fault */
1134 atomic_inc(&mapping->truncate_count);
1135 if (unlikely(!list_empty(&mapping->i_mmap)))
1136 invalidate_mmap_range_list(&mapping->i_mmap, hba, hlen);
1137 if (unlikely(!list_empty(&mapping->i_mmap_shared)))
1138 invalidate_mmap_range_list(&mapping->i_mmap_shared, hba, hlen);
1139 up(&mapping->i_shared_sem);
1141 EXPORT_SYMBOL_GPL(invalidate_mmap_range);
1144 * Handle all mappings that got truncated by a "truncate()"
1145 * system call.
1147 * NOTE! We have to be ready to update the memory sharing
1148 * between the file and the memory map for a potential last
1149 * incomplete page. Ugly, but necessary.
1151 int vmtruncate(struct inode * inode, loff_t offset)
1153 struct address_space *mapping = inode->i_mapping;
1154 unsigned long limit;
1156 if (inode->i_size < offset)
1157 goto do_expand;
1158 i_size_write(inode, offset);
1159 invalidate_mmap_range(mapping, offset + PAGE_SIZE - 1, 0);
1160 truncate_inode_pages(mapping, offset);
1161 goto out_truncate;
1163 do_expand:
1164 limit = current->rlim[RLIMIT_FSIZE].rlim_cur;
1165 if (limit != RLIM_INFINITY && offset > limit)
1166 goto out_sig;
1167 if (offset > inode->i_sb->s_maxbytes)
1168 goto out;
1169 i_size_write(inode, offset);
1171 out_truncate:
1172 if (inode->i_op && inode->i_op->truncate)
1173 inode->i_op->truncate(inode);
1174 return 0;
1175 out_sig:
1176 send_sig(SIGXFSZ, current, 0);
1177 out:
1178 return -EFBIG;
1182 * Primitive swap readahead code. We simply read an aligned block of
1183 * (1 << page_cluster) entries in the swap area. This method is chosen
1184 * because it doesn't cost us any seek time. We also make sure to queue
1185 * the 'original' request together with the readahead ones...
1187 void swapin_readahead(swp_entry_t entry)
1189 int i, num;
1190 struct page *new_page;
1191 unsigned long offset;
1194 * Get the number of handles we should do readahead io to.
1196 num = valid_swaphandles(entry, &offset);
1197 for (i = 0; i < num; offset++, i++) {
1198 /* Ok, do the async read-ahead now */
1199 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1200 offset));
1201 if (!new_page)
1202 break;
1203 page_cache_release(new_page);
1205 lru_add_drain(); /* Push any new pages onto the LRU now */
1209 * We hold the mm semaphore and the page_table_lock on entry and
1210 * should release the pagetable lock on exit..
1212 static int do_swap_page(struct mm_struct * mm,
1213 struct vm_area_struct * vma, unsigned long address,
1214 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1216 struct page *page;
1217 swp_entry_t entry = pte_to_swp_entry(orig_pte);
1218 pte_t pte;
1219 int ret = VM_FAULT_MINOR;
1220 struct pte_chain *pte_chain = NULL;
1222 pte_unmap(page_table);
1223 spin_unlock(&mm->page_table_lock);
1224 page = lookup_swap_cache(entry);
1225 if (!page) {
1226 swapin_readahead(entry);
1227 page = read_swap_cache_async(entry);
1228 if (!page) {
1230 * Back out if somebody else faulted in this pte while
1231 * we released the page table lock.
1233 spin_lock(&mm->page_table_lock);
1234 page_table = pte_offset_map(pmd, address);
1235 if (pte_same(*page_table, orig_pte))
1236 ret = VM_FAULT_OOM;
1237 else
1238 ret = VM_FAULT_MINOR;
1239 pte_unmap(page_table);
1240 spin_unlock(&mm->page_table_lock);
1241 goto out;
1244 /* Had to read the page from swap area: Major fault */
1245 ret = VM_FAULT_MAJOR;
1246 inc_page_state(pgmajfault);
1249 mark_page_accessed(page);
1250 pte_chain = pte_chain_alloc(GFP_KERNEL);
1251 if (!pte_chain) {
1252 ret = -ENOMEM;
1253 goto out;
1255 lock_page(page);
1258 * Back out if somebody else faulted in this pte while we
1259 * released the page table lock.
1261 spin_lock(&mm->page_table_lock);
1262 page_table = pte_offset_map(pmd, address);
1263 if (!pte_same(*page_table, orig_pte)) {
1264 pte_unmap(page_table);
1265 spin_unlock(&mm->page_table_lock);
1266 unlock_page(page);
1267 page_cache_release(page);
1268 ret = VM_FAULT_MINOR;
1269 goto out;
1272 /* The page isn't present yet, go ahead with the fault. */
1274 swap_free(entry);
1275 if (vm_swap_full())
1276 remove_exclusive_swap_page(page);
1278 mm->rss++;
1279 pte = mk_pte(page, vma->vm_page_prot);
1280 if (write_access && can_share_swap_page(page))
1281 pte = pte_mkdirty(pte_mkwrite(pte));
1282 unlock_page(page);
1284 flush_icache_page(vma, page);
1285 set_pte(page_table, pte);
1286 pte_chain = page_add_rmap(page, page_table, pte_chain);
1288 /* No need to invalidate - it was non-present before */
1289 update_mmu_cache(vma, address, pte);
1290 pte_unmap(page_table);
1291 spin_unlock(&mm->page_table_lock);
1292 out:
1293 pte_chain_free(pte_chain);
1294 return ret;
1298 * We are called with the MM semaphore and page_table_lock
1299 * spinlock held to protect against concurrent faults in
1300 * multithreaded programs.
1302 static int
1303 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1304 pte_t *page_table, pmd_t *pmd, int write_access,
1305 unsigned long addr)
1307 pte_t entry;
1308 struct page * page = ZERO_PAGE(addr);
1309 struct pte_chain *pte_chain;
1310 int ret;
1312 pte_chain = pte_chain_alloc(GFP_ATOMIC);
1313 if (!pte_chain) {
1314 pte_unmap(page_table);
1315 spin_unlock(&mm->page_table_lock);
1316 pte_chain = pte_chain_alloc(GFP_KERNEL);
1317 if (!pte_chain)
1318 goto no_mem;
1319 spin_lock(&mm->page_table_lock);
1320 page_table = pte_offset_map(pmd, addr);
1323 /* Read-only mapping of ZERO_PAGE. */
1324 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1326 /* ..except if it's a write access */
1327 if (write_access) {
1328 /* Allocate our own private page. */
1329 pte_unmap(page_table);
1330 spin_unlock(&mm->page_table_lock);
1332 page = alloc_page(GFP_HIGHUSER);
1333 if (!page)
1334 goto no_mem;
1335 clear_user_highpage(page, addr);
1337 spin_lock(&mm->page_table_lock);
1338 page_table = pte_offset_map(pmd, addr);
1340 if (!pte_none(*page_table)) {
1341 pte_unmap(page_table);
1342 page_cache_release(page);
1343 spin_unlock(&mm->page_table_lock);
1344 ret = VM_FAULT_MINOR;
1345 goto out;
1347 mm->rss++;
1348 entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1349 lru_cache_add_active(page);
1350 mark_page_accessed(page);
1353 set_pte(page_table, entry);
1354 /* ignores ZERO_PAGE */
1355 pte_chain = page_add_rmap(page, page_table, pte_chain);
1356 pte_unmap(page_table);
1358 /* No need to invalidate - it was non-present before */
1359 update_mmu_cache(vma, addr, entry);
1360 spin_unlock(&mm->page_table_lock);
1361 ret = VM_FAULT_MINOR;
1362 goto out;
1364 no_mem:
1365 ret = VM_FAULT_OOM;
1366 out:
1367 pte_chain_free(pte_chain);
1368 return ret;
1372 * do_no_page() tries to create a new page mapping. It aggressively
1373 * tries to share with existing pages, but makes a separate copy if
1374 * the "write_access" parameter is true in order to avoid the next
1375 * page fault.
1377 * As this is called only for pages that do not currently exist, we
1378 * do not need to flush old virtual caches or the TLB.
1380 * This is called with the MM semaphore held and the page table
1381 * spinlock held. Exit with the spinlock released.
1383 static int
1384 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1385 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1387 struct page * new_page;
1388 struct address_space *mapping = NULL;
1389 pte_t entry;
1390 struct pte_chain *pte_chain;
1391 int sequence = 0;
1392 int ret;
1394 if (!vma->vm_ops || !vma->vm_ops->nopage)
1395 return do_anonymous_page(mm, vma, page_table,
1396 pmd, write_access, address);
1397 pte_unmap(page_table);
1398 spin_unlock(&mm->page_table_lock);
1400 if (vma->vm_file) {
1401 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
1402 sequence = atomic_read(&mapping->truncate_count);
1404 smp_rmb(); /* Prevent CPU from reordering lock-free ->nopage() */
1405 retry:
1406 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, 0);
1408 /* no page was available -- either SIGBUS or OOM */
1409 if (new_page == NOPAGE_SIGBUS)
1410 return VM_FAULT_SIGBUS;
1411 if (new_page == NOPAGE_OOM)
1412 return VM_FAULT_OOM;
1414 pte_chain = pte_chain_alloc(GFP_KERNEL);
1415 if (!pte_chain)
1416 goto oom;
1419 * Should we do an early C-O-W break?
1421 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1422 struct page * page = alloc_page(GFP_HIGHUSER);
1423 if (!page) {
1424 page_cache_release(new_page);
1425 goto oom;
1427 copy_user_highpage(page, new_page, address);
1428 page_cache_release(new_page);
1429 lru_cache_add_active(page);
1430 new_page = page;
1433 spin_lock(&mm->page_table_lock);
1435 * For a file-backed vma, someone could have truncated or otherwise
1436 * invalidated this page. If invalidate_mmap_range got called,
1437 * retry getting the page.
1439 if (mapping &&
1440 (unlikely(sequence != atomic_read(&mapping->truncate_count)))) {
1441 sequence = atomic_read(&mapping->truncate_count);
1442 spin_unlock(&mm->page_table_lock);
1443 page_cache_release(new_page);
1444 goto retry;
1446 page_table = pte_offset_map(pmd, address);
1449 * This silly early PAGE_DIRTY setting removes a race
1450 * due to the bad i386 page protection. But it's valid
1451 * for other architectures too.
1453 * Note that if write_access is true, we either now have
1454 * an exclusive copy of the page, or this is a shared mapping,
1455 * so we can make it writable and dirty to avoid having to
1456 * handle that later.
1458 /* Only go through if we didn't race with anybody else... */
1459 if (pte_none(*page_table)) {
1460 if (!PageReserved(new_page))
1461 ++mm->rss;
1462 flush_icache_page(vma, new_page);
1463 entry = mk_pte(new_page, vma->vm_page_prot);
1464 if (write_access)
1465 entry = pte_mkwrite(pte_mkdirty(entry));
1466 set_pte(page_table, entry);
1467 pte_chain = page_add_rmap(new_page, page_table, pte_chain);
1468 pte_unmap(page_table);
1469 } else {
1470 /* One of our sibling threads was faster, back out. */
1471 pte_unmap(page_table);
1472 page_cache_release(new_page);
1473 spin_unlock(&mm->page_table_lock);
1474 ret = VM_FAULT_MINOR;
1475 goto out;
1478 /* no need to invalidate: a not-present page shouldn't be cached */
1479 update_mmu_cache(vma, address, entry);
1480 spin_unlock(&mm->page_table_lock);
1481 ret = VM_FAULT_MAJOR;
1482 goto out;
1483 oom:
1484 ret = VM_FAULT_OOM;
1485 out:
1486 pte_chain_free(pte_chain);
1487 return ret;
1491 * Fault of a previously existing named mapping. Repopulate the pte
1492 * from the encoded file_pte if possible. This enables swappable
1493 * nonlinear vmas.
1495 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1496 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1498 unsigned long pgoff;
1499 int err;
1501 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1503 * Fall back to the linear mapping if the fs does not support
1504 * ->populate:
1506 if (!vma->vm_ops || !vma->vm_ops->populate ||
1507 (write_access && !(vma->vm_flags & VM_SHARED))) {
1508 pte_clear(pte);
1509 return do_no_page(mm, vma, address, write_access, pte, pmd);
1512 pgoff = pte_to_pgoff(*pte);
1514 pte_unmap(pte);
1515 spin_unlock(&mm->page_table_lock);
1517 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1518 if (err == -ENOMEM)
1519 return VM_FAULT_OOM;
1520 if (err)
1521 return VM_FAULT_SIGBUS;
1522 return VM_FAULT_MAJOR;
1526 * These routines also need to handle stuff like marking pages dirty
1527 * and/or accessed for architectures that don't do it in hardware (most
1528 * RISC architectures). The early dirtying is also good on the i386.
1530 * There is also a hook called "update_mmu_cache()" that architectures
1531 * with external mmu caches can use to update those (ie the Sparc or
1532 * PowerPC hashed page tables that act as extended TLBs).
1534 * Note the "page_table_lock". It is to protect against kswapd removing
1535 * pages from under us. Note that kswapd only ever _removes_ pages, never
1536 * adds them. As such, once we have noticed that the page is not present,
1537 * we can drop the lock early.
1539 * The adding of pages is protected by the MM semaphore (which we hold),
1540 * so we don't need to worry about a page being suddenly been added into
1541 * our VM.
1543 * We enter with the pagetable spinlock held, we are supposed to
1544 * release it when done.
1546 static inline int handle_pte_fault(struct mm_struct *mm,
1547 struct vm_area_struct * vma, unsigned long address,
1548 int write_access, pte_t *pte, pmd_t *pmd)
1550 pte_t entry;
1552 entry = *pte;
1553 if (!pte_present(entry)) {
1555 * If it truly wasn't present, we know that kswapd
1556 * and the PTE updates will not touch it later. So
1557 * drop the lock.
1559 if (pte_none(entry))
1560 return do_no_page(mm, vma, address, write_access, pte, pmd);
1561 if (pte_file(entry))
1562 return do_file_page(mm, vma, address, write_access, pte, pmd);
1563 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
1566 if (write_access) {
1567 if (!pte_write(entry))
1568 return do_wp_page(mm, vma, address, pte, pmd, entry);
1570 entry = pte_mkdirty(entry);
1572 entry = pte_mkyoung(entry);
1573 establish_pte(vma, address, pte, entry);
1574 pte_unmap(pte);
1575 spin_unlock(&mm->page_table_lock);
1576 return VM_FAULT_MINOR;
1580 * By the time we get here, we already hold the mm semaphore
1582 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
1583 unsigned long address, int write_access)
1585 pgd_t *pgd;
1586 pmd_t *pmd;
1588 __set_current_state(TASK_RUNNING);
1589 pgd = pgd_offset(mm, address);
1591 inc_page_state(pgfault);
1593 if (is_vm_hugetlb_page(vma))
1594 return VM_FAULT_SIGBUS; /* mapping truncation does this. */
1597 * We need the page table lock to synchronize with kswapd
1598 * and the SMP-safe atomic PTE updates.
1600 spin_lock(&mm->page_table_lock);
1601 pmd = pmd_alloc(mm, pgd, address);
1603 if (pmd) {
1604 pte_t * pte = pte_alloc_map(mm, pmd, address);
1605 if (pte)
1606 return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
1608 spin_unlock(&mm->page_table_lock);
1609 return VM_FAULT_OOM;
1613 * Allocate page middle directory.
1615 * We've already handled the fast-path in-line, and we own the
1616 * page table lock.
1618 * On a two-level page table, this ends up actually being entirely
1619 * optimized away.
1621 pmd_t *__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1623 pmd_t *new;
1625 spin_unlock(&mm->page_table_lock);
1626 new = pmd_alloc_one(mm, address);
1627 spin_lock(&mm->page_table_lock);
1628 if (!new)
1629 return NULL;
1632 * Because we dropped the lock, we should re-check the
1633 * entry, as somebody else could have populated it..
1635 if (pgd_present(*pgd)) {
1636 pmd_free(new);
1637 goto out;
1639 pgd_populate(mm, pgd, new);
1640 out:
1641 return pmd_offset(pgd, address);
1644 int make_pages_present(unsigned long addr, unsigned long end)
1646 int ret, len, write;
1647 struct vm_area_struct * vma;
1649 vma = find_vma(current->mm, addr);
1650 write = (vma->vm_flags & VM_WRITE) != 0;
1651 if (addr >= end)
1652 BUG();
1653 if (end > vma->vm_end)
1654 BUG();
1655 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
1656 ret = get_user_pages(current, current->mm, addr,
1657 len, write, 0, NULL, NULL);
1658 if (ret < 0)
1659 return ret;
1660 return ret == len ? 0 : -1;
1664 * Map a vmalloc()-space virtual address to the physical page.
1666 struct page * vmalloc_to_page(void * vmalloc_addr)
1668 unsigned long addr = (unsigned long) vmalloc_addr;
1669 struct page *page = NULL;
1670 pgd_t *pgd = pgd_offset_k(addr);
1671 pmd_t *pmd;
1672 pte_t *ptep, pte;
1674 if (!pgd_none(*pgd)) {
1675 pmd = pmd_offset(pgd, addr);
1676 if (!pmd_none(*pmd)) {
1677 preempt_disable();
1678 ptep = pte_offset_map(pmd, addr);
1679 pte = *ptep;
1680 if (pte_present(pte))
1681 page = pte_page(pte);
1682 pte_unmap(ptep);
1683 preempt_enable();
1686 return page;