[PATCH] V4L: follow changes in saa7146
[linux-2.6/history.git] / fs / bio.c
blob0ebd86b4ad9f6f6008867b3a424e2e60a4bb60b3
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
29 #define BIO_POOL_SIZE 256
31 static mempool_t *bio_pool;
32 static kmem_cache_t *bio_slab;
34 #define BIOVEC_NR_POOLS 6
37 * a small number of entries is fine, not going to be performance critical.
38 * basically we just need to survive
40 #define BIO_SPLIT_ENTRIES 8
41 mempool_t *bio_split_pool;
43 struct biovec_pool {
44 int nr_vecs;
45 char *name;
46 kmem_cache_t *slab;
47 mempool_t *pool;
51 * if you change this list, also change bvec_alloc or things will
52 * break badly! cannot be bigger than what you can fit into an
53 * unsigned short
56 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
57 static struct biovec_pool bvec_array[BIOVEC_NR_POOLS] = {
58 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
60 #undef BV
62 static inline struct bio_vec *bvec_alloc(int gfp_mask, int nr, unsigned long *idx)
64 struct biovec_pool *bp;
65 struct bio_vec *bvl;
68 * see comment near bvec_array define!
70 switch (nr) {
71 case 1 : *idx = 0; break;
72 case 2 ... 4: *idx = 1; break;
73 case 5 ... 16: *idx = 2; break;
74 case 17 ... 64: *idx = 3; break;
75 case 65 ... 128: *idx = 4; break;
76 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
77 default:
78 return NULL;
81 * idx now points to the pool we want to allocate from
83 bp = bvec_array + *idx;
85 bvl = mempool_alloc(bp->pool, gfp_mask);
86 if (bvl)
87 memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
88 return bvl;
92 * default destructor for a bio allocated with bio_alloc()
94 void bio_destructor(struct bio *bio)
96 const int pool_idx = BIO_POOL_IDX(bio);
97 struct biovec_pool *bp = bvec_array + pool_idx;
99 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
102 * cloned bio doesn't own the veclist
104 if (!bio_flagged(bio, BIO_CLONED))
105 mempool_free(bio->bi_io_vec, bp->pool);
107 mempool_free(bio, bio_pool);
110 inline void bio_init(struct bio *bio)
112 bio->bi_next = NULL;
113 bio->bi_flags = 1 << BIO_UPTODATE;
114 bio->bi_rw = 0;
115 bio->bi_vcnt = 0;
116 bio->bi_idx = 0;
117 bio->bi_phys_segments = 0;
118 bio->bi_hw_segments = 0;
119 bio->bi_hw_front_size = 0;
120 bio->bi_hw_back_size = 0;
121 bio->bi_size = 0;
122 bio->bi_max_vecs = 0;
123 bio->bi_end_io = NULL;
124 atomic_set(&bio->bi_cnt, 1);
125 bio->bi_private = NULL;
129 * bio_alloc - allocate a bio for I/O
130 * @gfp_mask: the GFP_ mask given to the slab allocator
131 * @nr_iovecs: number of iovecs to pre-allocate
133 * Description:
134 * bio_alloc will first try it's on mempool to satisfy the allocation.
135 * If %__GFP_WAIT is set then we will block on the internal pool waiting
136 * for a &struct bio to become free.
138 struct bio *bio_alloc(int gfp_mask, int nr_iovecs)
140 struct bio *bio = mempool_alloc(bio_pool, gfp_mask);
142 if (likely(bio)) {
143 struct bio_vec *bvl = NULL;
145 bio_init(bio);
146 if (likely(nr_iovecs)) {
147 unsigned long idx;
149 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx);
150 if (unlikely(!bvl)) {
151 mempool_free(bio, bio_pool);
152 bio = NULL;
153 goto out;
155 bio->bi_flags |= idx << BIO_POOL_OFFSET;
156 bio->bi_max_vecs = bvec_array[idx].nr_vecs;
158 bio->bi_io_vec = bvl;
159 bio->bi_destructor = bio_destructor;
161 out:
162 return bio;
166 * bio_put - release a reference to a bio
167 * @bio: bio to release reference to
169 * Description:
170 * Put a reference to a &struct bio, either one you have gotten with
171 * bio_alloc or bio_get. The last put of a bio will free it.
173 void bio_put(struct bio *bio)
175 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
178 * last put frees it
180 if (atomic_dec_and_test(&bio->bi_cnt)) {
181 bio->bi_next = NULL;
182 bio->bi_destructor(bio);
186 inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
188 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
189 blk_recount_segments(q, bio);
191 return bio->bi_phys_segments;
194 inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
196 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
197 blk_recount_segments(q, bio);
199 return bio->bi_hw_segments;
203 * __bio_clone - clone a bio
204 * @bio: destination bio
205 * @bio_src: bio to clone
207 * Clone a &bio. Caller will own the returned bio, but not
208 * the actual data it points to. Reference count of returned
209 * bio will be one.
211 inline void __bio_clone(struct bio *bio, struct bio *bio_src)
213 bio->bi_io_vec = bio_src->bi_io_vec;
215 bio->bi_sector = bio_src->bi_sector;
216 bio->bi_bdev = bio_src->bi_bdev;
217 bio->bi_flags |= 1 << BIO_CLONED;
218 bio->bi_rw = bio_src->bi_rw;
221 * notes -- maybe just leave bi_idx alone. assume identical mapping
222 * for the clone
224 bio->bi_vcnt = bio_src->bi_vcnt;
225 bio->bi_idx = bio_src->bi_idx;
226 if (bio_flagged(bio, BIO_SEG_VALID)) {
227 bio->bi_phys_segments = bio_src->bi_phys_segments;
228 bio->bi_hw_segments = bio_src->bi_hw_segments;
229 bio->bi_flags |= (1 << BIO_SEG_VALID);
231 bio->bi_size = bio_src->bi_size;
234 * cloned bio does not own the bio_vec, so users cannot fiddle with
235 * it. clear bi_max_vecs and clear the BIO_POOL_BITS to make this
236 * apparent
238 bio->bi_max_vecs = 0;
239 bio->bi_flags &= (BIO_POOL_MASK - 1);
243 * bio_clone - clone a bio
244 * @bio: bio to clone
245 * @gfp_mask: allocation priority
247 * Like __bio_clone, only also allocates the returned bio
249 struct bio *bio_clone(struct bio *bio, int gfp_mask)
251 struct bio *b = bio_alloc(gfp_mask, 0);
253 if (b)
254 __bio_clone(b, bio);
256 return b;
260 * bio_get_nr_vecs - return approx number of vecs
261 * @bdev: I/O target
263 * Return the approximate number of pages we can send to this target.
264 * There's no guarantee that you will be able to fit this number of pages
265 * into a bio, it does not account for dynamic restrictions that vary
266 * on offset.
268 int bio_get_nr_vecs(struct block_device *bdev)
270 request_queue_t *q = bdev_get_queue(bdev);
271 int nr_pages;
273 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
274 if (nr_pages > q->max_phys_segments)
275 nr_pages = q->max_phys_segments;
276 if (nr_pages > q->max_hw_segments)
277 nr_pages = q->max_hw_segments;
279 return nr_pages;
282 static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page
283 *page, unsigned int len, unsigned int offset)
285 int retried_segments = 0;
286 struct bio_vec *bvec;
289 * cloned bio must not modify vec list
291 if (unlikely(bio_flagged(bio, BIO_CLONED)))
292 return 0;
294 if (bio->bi_vcnt >= bio->bi_max_vecs)
295 return 0;
297 if (((bio->bi_size + len) >> 9) > q->max_sectors)
298 return 0;
301 * we might lose a segment or two here, but rather that than
302 * make this too complex.
305 while (bio->bi_phys_segments >= q->max_phys_segments
306 || bio->bi_hw_segments >= q->max_hw_segments
307 || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
309 if (retried_segments)
310 return 0;
312 retried_segments = 1;
313 blk_recount_segments(q, bio);
317 * setup the new entry, we might clear it again later if we
318 * cannot add the page
320 bvec = &bio->bi_io_vec[bio->bi_vcnt];
321 bvec->bv_page = page;
322 bvec->bv_len = len;
323 bvec->bv_offset = offset;
326 * if queue has other restrictions (eg varying max sector size
327 * depending on offset), it can specify a merge_bvec_fn in the
328 * queue to get further control
330 if (q->merge_bvec_fn) {
332 * merge_bvec_fn() returns number of bytes it can accept
333 * at this offset
335 if (q->merge_bvec_fn(q, bio, bvec) < len) {
336 bvec->bv_page = NULL;
337 bvec->bv_len = 0;
338 bvec->bv_offset = 0;
339 return 0;
343 /* If we may be able to merge these biovecs, force a recount */
344 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
345 BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
346 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
348 bio->bi_vcnt++;
349 bio->bi_phys_segments++;
350 bio->bi_hw_segments++;
351 bio->bi_size += len;
352 return len;
356 * bio_add_page - attempt to add page to bio
357 * @bio: destination bio
358 * @page: page to add
359 * @len: vec entry length
360 * @offset: vec entry offset
362 * Attempt to add a page to the bio_vec maplist. This can fail for a
363 * number of reasons, such as the bio being full or target block
364 * device limitations. The target block device must allow bio's
365 * smaller than PAGE_SIZE, so it is always possible to add a single
366 * page to an empty bio.
368 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
369 unsigned int offset)
371 return __bio_add_page(bdev_get_queue(bio->bi_bdev), bio, page,
372 len, offset);
375 struct bio_map_data {
376 struct bio_vec *iovecs;
377 void __user *userptr;
380 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio)
382 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
383 bio->bi_private = bmd;
386 static void bio_free_map_data(struct bio_map_data *bmd)
388 kfree(bmd->iovecs);
389 kfree(bmd);
392 static struct bio_map_data *bio_alloc_map_data(int nr_segs)
394 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
396 if (!bmd)
397 return NULL;
399 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
400 if (bmd->iovecs)
401 return bmd;
403 kfree(bmd);
404 return NULL;
408 * bio_uncopy_user - finish previously mapped bio
409 * @bio: bio being terminated
411 * Free pages allocated from bio_copy_user() and write back data
412 * to user space in case of a read.
414 int bio_uncopy_user(struct bio *bio)
416 struct bio_map_data *bmd = bio->bi_private;
417 const int read = bio_data_dir(bio) == READ;
418 struct bio_vec *bvec;
419 int i, ret = 0;
421 __bio_for_each_segment(bvec, bio, i, 0) {
422 char *addr = page_address(bvec->bv_page);
423 unsigned int len = bmd->iovecs[i].bv_len;
425 if (read && !ret && copy_to_user(bmd->userptr, addr, len))
426 ret = -EFAULT;
428 __free_page(bvec->bv_page);
429 bmd->userptr += len;
431 bio_free_map_data(bmd);
432 bio_put(bio);
433 return ret;
437 * bio_copy_user - copy user data to bio
438 * @q: destination block queue
439 * @uaddr: start of user address
440 * @len: length in bytes
441 * @write_to_vm: bool indicating writing to pages or not
443 * Prepares and returns a bio for indirect user io, bouncing data
444 * to/from kernel pages as necessary. Must be paired with
445 * call bio_uncopy_user() on io completion.
447 struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr,
448 unsigned int len, int write_to_vm)
450 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
451 unsigned long start = uaddr >> PAGE_SHIFT;
452 struct bio_map_data *bmd;
453 struct bio_vec *bvec;
454 struct page *page;
455 struct bio *bio;
456 int i, ret;
458 bmd = bio_alloc_map_data(end - start);
459 if (!bmd)
460 return ERR_PTR(-ENOMEM);
462 bmd->userptr = (void __user *) uaddr;
464 bio = bio_alloc(GFP_KERNEL, end - start);
465 if (!bio) {
466 bio_free_map_data(bmd);
467 return ERR_PTR(-ENOMEM);
470 bio->bi_rw |= (!write_to_vm << BIO_RW);
472 ret = 0;
473 while (len) {
474 unsigned int bytes = PAGE_SIZE;
476 if (bytes > len)
477 bytes = len;
479 page = alloc_page(q->bounce_gfp | GFP_KERNEL);
480 if (!page) {
481 ret = -ENOMEM;
482 break;
485 if (__bio_add_page(q, bio, page, bytes, 0) < bytes) {
486 ret = -EINVAL;
487 break;
490 len -= bytes;
493 if (ret)
494 goto cleanup;
497 * success
499 if (!write_to_vm) {
500 char __user *p = (char __user *) uaddr;
503 * for a write, copy in data to kernel pages
505 ret = -EFAULT;
506 bio_for_each_segment(bvec, bio, i) {
507 char *addr = page_address(bvec->bv_page);
509 if (copy_from_user(addr, p, bvec->bv_len))
510 goto cleanup;
511 p += bvec->bv_len;
515 bio_set_map_data(bmd, bio);
516 return bio;
517 cleanup:
518 bio_for_each_segment(bvec, bio, i)
519 __free_page(bvec->bv_page);
521 bio_put(bio);
522 return ERR_PTR(ret);
525 static struct bio *__bio_map_user(request_queue_t *q, struct block_device *bdev,
526 unsigned long uaddr, unsigned int len,
527 int write_to_vm)
529 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
530 unsigned long start = uaddr >> PAGE_SHIFT;
531 const int nr_pages = end - start;
532 int ret, offset, i;
533 struct page **pages;
534 struct bio *bio;
537 * transfer and buffer must be aligned to at least hardsector
538 * size for now, in the future we can relax this restriction
540 if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
541 return ERR_PTR(-EINVAL);
543 bio = bio_alloc(GFP_KERNEL, nr_pages);
544 if (!bio)
545 return ERR_PTR(-ENOMEM);
547 ret = -ENOMEM;
548 pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
549 if (!pages)
550 goto out;
552 down_read(&current->mm->mmap_sem);
553 ret = get_user_pages(current, current->mm, uaddr, nr_pages,
554 write_to_vm, 0, pages, NULL);
555 up_read(&current->mm->mmap_sem);
557 if (ret < nr_pages)
558 goto out;
560 bio->bi_bdev = bdev;
562 offset = uaddr & ~PAGE_MASK;
563 for (i = 0; i < nr_pages; i++) {
564 unsigned int bytes = PAGE_SIZE - offset;
566 if (len <= 0)
567 break;
569 if (bytes > len)
570 bytes = len;
573 * sorry...
575 if (__bio_add_page(q, bio, pages[i], bytes, offset) < bytes)
576 break;
578 len -= bytes;
579 offset = 0;
583 * release the pages we didn't map into the bio, if any
585 while (i < nr_pages)
586 page_cache_release(pages[i++]);
588 kfree(pages);
591 * set data direction, and check if mapped pages need bouncing
593 if (!write_to_vm)
594 bio->bi_rw |= (1 << BIO_RW);
596 bio->bi_flags |= (1 << BIO_USER_MAPPED);
597 return bio;
598 out:
599 kfree(pages);
600 bio_put(bio);
601 return ERR_PTR(ret);
605 * bio_map_user - map user address into bio
606 * @bdev: destination block device
607 * @uaddr: start of user address
608 * @len: length in bytes
609 * @write_to_vm: bool indicating writing to pages or not
611 * Map the user space address into a bio suitable for io to a block
612 * device. Returns an error pointer in case of error.
614 struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev,
615 unsigned long uaddr, unsigned int len, int write_to_vm)
617 struct bio *bio;
619 bio = __bio_map_user(q, bdev, uaddr, len, write_to_vm);
621 if (IS_ERR(bio))
622 return bio;
625 * subtle -- if __bio_map_user() ended up bouncing a bio,
626 * it would normally disappear when its bi_end_io is run.
627 * however, we need it for the unmap, so grab an extra
628 * reference to it
630 bio_get(bio);
632 if (bio->bi_size == len)
633 return bio;
636 * don't support partial mappings
638 bio_endio(bio, bio->bi_size, 0);
639 bio_unmap_user(bio);
640 return ERR_PTR(-EINVAL);
643 static void __bio_unmap_user(struct bio *bio)
645 struct bio_vec *bvec;
646 int i;
649 * make sure we dirty pages we wrote to
651 __bio_for_each_segment(bvec, bio, i, 0) {
652 if (bio_data_dir(bio) == READ)
653 set_page_dirty_lock(bvec->bv_page);
655 page_cache_release(bvec->bv_page);
658 bio_put(bio);
662 * bio_unmap_user - unmap a bio
663 * @bio: the bio being unmapped
665 * Unmap a bio previously mapped by bio_map_user(). Must be called with
666 * a process context.
668 * bio_unmap_user() may sleep.
670 void bio_unmap_user(struct bio *bio)
672 __bio_unmap_user(bio);
673 bio_put(bio);
677 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
678 * for performing direct-IO in BIOs.
680 * The problem is that we cannot run set_page_dirty() from interrupt context
681 * because the required locks are not interrupt-safe. So what we can do is to
682 * mark the pages dirty _before_ performing IO. And in interrupt context,
683 * check that the pages are still dirty. If so, fine. If not, redirty them
684 * in process context.
686 * We special-case compound pages here: normally this means reads into hugetlb
687 * pages. The logic in here doesn't really work right for compound pages
688 * because the VM does not uniformly chase down the head page in all cases.
689 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
690 * handle them at all. So we skip compound pages here at an early stage.
692 * Note that this code is very hard to test under normal circumstances because
693 * direct-io pins the pages with get_user_pages(). This makes
694 * is_page_cache_freeable return false, and the VM will not clean the pages.
695 * But other code (eg, pdflush) could clean the pages if they are mapped
696 * pagecache.
698 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
699 * deferred bio dirtying paths.
703 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
705 void bio_set_pages_dirty(struct bio *bio)
707 struct bio_vec *bvec = bio->bi_io_vec;
708 int i;
710 for (i = 0; i < bio->bi_vcnt; i++) {
711 struct page *page = bvec[i].bv_page;
713 if (page && !PageCompound(page))
714 set_page_dirty_lock(page);
718 static void bio_release_pages(struct bio *bio)
720 struct bio_vec *bvec = bio->bi_io_vec;
721 int i;
723 for (i = 0; i < bio->bi_vcnt; i++) {
724 struct page *page = bvec[i].bv_page;
726 if (page)
727 put_page(page);
732 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
733 * If they are, then fine. If, however, some pages are clean then they must
734 * have been written out during the direct-IO read. So we take another ref on
735 * the BIO and the offending pages and re-dirty the pages in process context.
737 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
738 * here on. It will run one page_cache_release() against each page and will
739 * run one bio_put() against the BIO.
742 static void bio_dirty_fn(void *data);
744 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
745 static spinlock_t bio_dirty_lock = SPIN_LOCK_UNLOCKED;
746 static struct bio *bio_dirty_list;
749 * This runs in process context
751 static void bio_dirty_fn(void *data)
753 unsigned long flags;
754 struct bio *bio;
756 spin_lock_irqsave(&bio_dirty_lock, flags);
757 bio = bio_dirty_list;
758 bio_dirty_list = NULL;
759 spin_unlock_irqrestore(&bio_dirty_lock, flags);
761 while (bio) {
762 struct bio *next = bio->bi_private;
764 bio_set_pages_dirty(bio);
765 bio_release_pages(bio);
766 bio_put(bio);
767 bio = next;
771 void bio_check_pages_dirty(struct bio *bio)
773 struct bio_vec *bvec = bio->bi_io_vec;
774 int nr_clean_pages = 0;
775 int i;
777 for (i = 0; i < bio->bi_vcnt; i++) {
778 struct page *page = bvec[i].bv_page;
780 if (PageDirty(page) || PageCompound(page)) {
781 page_cache_release(page);
782 bvec[i].bv_page = NULL;
783 } else {
784 nr_clean_pages++;
788 if (nr_clean_pages) {
789 unsigned long flags;
791 spin_lock_irqsave(&bio_dirty_lock, flags);
792 bio->bi_private = bio_dirty_list;
793 bio_dirty_list = bio;
794 spin_unlock_irqrestore(&bio_dirty_lock, flags);
795 schedule_work(&bio_dirty_work);
796 } else {
797 bio_put(bio);
802 * bio_endio - end I/O on a bio
803 * @bio: bio
804 * @bytes_done: number of bytes completed
805 * @error: error, if any
807 * Description:
808 * bio_endio() will end I/O on @bytes_done number of bytes. This may be
809 * just a partial part of the bio, or it may be the whole bio. bio_endio()
810 * is the preferred way to end I/O on a bio, it takes care of decrementing
811 * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
812 * and one of the established -Exxxx (-EIO, for instance) error values in
813 * case something went wrong. Noone should call bi_end_io() directly on
814 * a bio unless they own it and thus know that it has an end_io function.
816 void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
818 if (error)
819 clear_bit(BIO_UPTODATE, &bio->bi_flags);
821 if (unlikely(bytes_done > bio->bi_size)) {
822 printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
823 bytes_done, bio->bi_size);
824 bytes_done = bio->bi_size;
827 bio->bi_size -= bytes_done;
828 bio->bi_sector += (bytes_done >> 9);
830 if (bio->bi_end_io)
831 bio->bi_end_io(bio, bytes_done, error);
834 void bio_pair_release(struct bio_pair *bp)
836 if (atomic_dec_and_test(&bp->cnt)) {
837 struct bio *master = bp->bio1.bi_private;
839 bio_endio(master, master->bi_size, bp->error);
840 mempool_free(bp, bp->bio2.bi_private);
844 static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
846 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
848 if (err)
849 bp->error = err;
851 if (bi->bi_size)
852 return 1;
854 bio_pair_release(bp);
855 return 0;
858 static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
860 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
862 if (err)
863 bp->error = err;
865 if (bi->bi_size)
866 return 1;
868 bio_pair_release(bp);
869 return 0;
873 * split a bio - only worry about a bio with a single page
874 * in it's iovec
876 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
878 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
880 if (!bp)
881 return bp;
883 BUG_ON(bi->bi_vcnt != 1);
884 BUG_ON(bi->bi_idx != 0);
885 atomic_set(&bp->cnt, 3);
886 bp->error = 0;
887 bp->bio1 = *bi;
888 bp->bio2 = *bi;
889 bp->bio2.bi_sector += first_sectors;
890 bp->bio2.bi_size -= first_sectors << 9;
891 bp->bio1.bi_size = first_sectors << 9;
893 bp->bv1 = bi->bi_io_vec[0];
894 bp->bv2 = bi->bi_io_vec[0];
895 bp->bv2.bv_offset += first_sectors << 9;
896 bp->bv2.bv_len -= first_sectors << 9;
897 bp->bv1.bv_len = first_sectors << 9;
899 bp->bio1.bi_io_vec = &bp->bv1;
900 bp->bio2.bi_io_vec = &bp->bv2;
902 bp->bio1.bi_end_io = bio_pair_end_1;
903 bp->bio2.bi_end_io = bio_pair_end_2;
905 bp->bio1.bi_private = bi;
906 bp->bio2.bi_private = pool;
908 return bp;
911 static void *bio_pair_alloc(int gfp_flags, void *data)
913 return kmalloc(sizeof(struct bio_pair), gfp_flags);
916 static void bio_pair_free(void *bp, void *data)
918 kfree(bp);
921 static void __init biovec_init_pools(void)
923 int i, size, megabytes, pool_entries = BIO_POOL_SIZE;
924 int scale = BIOVEC_NR_POOLS;
926 megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
929 * find out where to start scaling
931 if (megabytes <= 16)
932 scale = 0;
933 else if (megabytes <= 32)
934 scale = 1;
935 else if (megabytes <= 64)
936 scale = 2;
937 else if (megabytes <= 96)
938 scale = 3;
939 else if (megabytes <= 128)
940 scale = 4;
943 * scale number of entries
945 pool_entries = megabytes * 2;
946 if (pool_entries > 256)
947 pool_entries = 256;
949 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
950 struct biovec_pool *bp = bvec_array + i;
952 size = bp->nr_vecs * sizeof(struct bio_vec);
954 bp->slab = kmem_cache_create(bp->name, size, 0,
955 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
957 if (i >= scale)
958 pool_entries >>= 1;
960 bp->pool = mempool_create(pool_entries, mempool_alloc_slab,
961 mempool_free_slab, bp->slab);
962 if (!bp->pool)
963 panic("biovec: can't init mempool\n");
967 static int __init init_bio(void)
969 bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
970 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
971 bio_pool = mempool_create(BIO_POOL_SIZE, mempool_alloc_slab,
972 mempool_free_slab, bio_slab);
973 if (!bio_pool)
974 panic("bio: can't create mempool\n");
976 biovec_init_pools();
978 bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES,
979 bio_pair_alloc, bio_pair_free, NULL);
980 if (!bio_split_pool)
981 panic("bio: can't create split pool\n");
983 return 0;
986 subsys_initcall(init_bio);
988 EXPORT_SYMBOL(bio_alloc);
989 EXPORT_SYMBOL(bio_put);
990 EXPORT_SYMBOL(bio_endio);
991 EXPORT_SYMBOL(bio_init);
992 EXPORT_SYMBOL(__bio_clone);
993 EXPORT_SYMBOL(bio_clone);
994 EXPORT_SYMBOL(bio_phys_segments);
995 EXPORT_SYMBOL(bio_hw_segments);
996 EXPORT_SYMBOL(bio_add_page);
997 EXPORT_SYMBOL(bio_get_nr_vecs);
998 EXPORT_SYMBOL(bio_map_user);
999 EXPORT_SYMBOL(bio_unmap_user);
1000 EXPORT_SYMBOL(bio_pair_release);
1001 EXPORT_SYMBOL(bio_split);
1002 EXPORT_SYMBOL(bio_split_pool);
1003 EXPORT_SYMBOL(bio_copy_user);
1004 EXPORT_SYMBOL(bio_uncopy_user);