[PATCH] Fix bug in saa7146 analog tv i2c-handling
[linux-2.6/history.git] / fs / bio.c
blob390d862325b9ef05dfc01f7e8ab219d95992a25c
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
29 #define BIO_POOL_SIZE 256
31 static mempool_t *bio_pool;
32 static kmem_cache_t *bio_slab;
34 #define BIOVEC_NR_POOLS 6
37 * a small number of entries is fine, not going to be performance critical.
38 * basically we just need to survive
40 #define BIO_SPLIT_ENTRIES 8
41 mempool_t *bio_split_pool;
43 struct biovec_pool {
44 int nr_vecs;
45 char *name;
46 kmem_cache_t *slab;
47 mempool_t *pool;
51 * if you change this list, also change bvec_alloc or things will
52 * break badly! cannot be bigger than what you can fit into an
53 * unsigned short
56 #define BV(x) { .nr_vecs = x, .name = "biovec-" #x }
57 static struct biovec_pool bvec_array[BIOVEC_NR_POOLS] = {
58 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
60 #undef BV
62 static inline struct bio_vec *bvec_alloc(int gfp_mask, int nr, unsigned long *idx)
64 struct biovec_pool *bp;
65 struct bio_vec *bvl;
68 * see comment near bvec_array define!
70 switch (nr) {
71 case 1 : *idx = 0; break;
72 case 2 ... 4: *idx = 1; break;
73 case 5 ... 16: *idx = 2; break;
74 case 17 ... 64: *idx = 3; break;
75 case 65 ... 128: *idx = 4; break;
76 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
77 default:
78 return NULL;
81 * idx now points to the pool we want to allocate from
83 bp = bvec_array + *idx;
85 bvl = mempool_alloc(bp->pool, gfp_mask);
86 if (bvl)
87 memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
88 return bvl;
92 * default destructor for a bio allocated with bio_alloc()
94 void bio_destructor(struct bio *bio)
96 const int pool_idx = BIO_POOL_IDX(bio);
97 struct biovec_pool *bp = bvec_array + pool_idx;
99 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
102 * cloned bio doesn't own the veclist
104 if (!bio_flagged(bio, BIO_CLONED))
105 mempool_free(bio->bi_io_vec, bp->pool);
107 mempool_free(bio, bio_pool);
110 inline void bio_init(struct bio *bio)
112 bio->bi_next = NULL;
113 bio->bi_flags = 1 << BIO_UPTODATE;
114 bio->bi_rw = 0;
115 bio->bi_vcnt = 0;
116 bio->bi_idx = 0;
117 bio->bi_phys_segments = 0;
118 bio->bi_hw_segments = 0;
119 bio->bi_size = 0;
120 bio->bi_max_vecs = 0;
121 bio->bi_end_io = NULL;
122 atomic_set(&bio->bi_cnt, 1);
123 bio->bi_private = NULL;
127 * bio_alloc - allocate a bio for I/O
128 * @gfp_mask: the GFP_ mask given to the slab allocator
129 * @nr_iovecs: number of iovecs to pre-allocate
131 * Description:
132 * bio_alloc will first try it's on mempool to satisfy the allocation.
133 * If %__GFP_WAIT is set then we will block on the internal pool waiting
134 * for a &struct bio to become free.
136 struct bio *bio_alloc(int gfp_mask, int nr_iovecs)
138 struct bio_vec *bvl = NULL;
139 unsigned long idx;
140 struct bio *bio;
142 bio = mempool_alloc(bio_pool, gfp_mask);
143 if (unlikely(!bio))
144 goto out;
146 bio_init(bio);
148 if (unlikely(!nr_iovecs))
149 goto noiovec;
151 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx);
152 if (bvl) {
153 bio->bi_flags |= idx << BIO_POOL_OFFSET;
154 bio->bi_max_vecs = bvec_array[idx].nr_vecs;
155 noiovec:
156 bio->bi_io_vec = bvl;
157 bio->bi_destructor = bio_destructor;
158 out:
159 return bio;
162 mempool_free(bio, bio_pool);
163 bio = NULL;
164 goto out;
168 * bio_put - release a reference to a bio
169 * @bio: bio to release reference to
171 * Description:
172 * Put a reference to a &struct bio, either one you have gotten with
173 * bio_alloc or bio_get. The last put of a bio will free it.
175 void bio_put(struct bio *bio)
177 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
180 * last put frees it
182 if (atomic_dec_and_test(&bio->bi_cnt)) {
183 bio->bi_next = NULL;
184 bio->bi_destructor(bio);
188 inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
190 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
191 blk_recount_segments(q, bio);
193 return bio->bi_phys_segments;
196 inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
198 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
199 blk_recount_segments(q, bio);
201 return bio->bi_hw_segments;
205 * __bio_clone - clone a bio
206 * @bio: destination bio
207 * @bio_src: bio to clone
209 * Clone a &bio. Caller will own the returned bio, but not
210 * the actual data it points to. Reference count of returned
211 * bio will be one.
213 inline void __bio_clone(struct bio *bio, struct bio *bio_src)
215 bio->bi_io_vec = bio_src->bi_io_vec;
217 bio->bi_sector = bio_src->bi_sector;
218 bio->bi_bdev = bio_src->bi_bdev;
219 bio->bi_flags |= 1 << BIO_CLONED;
220 bio->bi_rw = bio_src->bi_rw;
223 * notes -- maybe just leave bi_idx alone. assume identical mapping
224 * for the clone
226 bio->bi_vcnt = bio_src->bi_vcnt;
227 bio->bi_idx = bio_src->bi_idx;
228 if (bio_flagged(bio, BIO_SEG_VALID)) {
229 bio->bi_phys_segments = bio_src->bi_phys_segments;
230 bio->bi_hw_segments = bio_src->bi_hw_segments;
231 bio->bi_flags |= (1 << BIO_SEG_VALID);
233 bio->bi_size = bio_src->bi_size;
236 * cloned bio does not own the bio_vec, so users cannot fiddle with
237 * it. clear bi_max_vecs and clear the BIO_POOL_BITS to make this
238 * apparent
240 bio->bi_max_vecs = 0;
241 bio->bi_flags &= (BIO_POOL_MASK - 1);
245 * bio_clone - clone a bio
246 * @bio: bio to clone
247 * @gfp_mask: allocation priority
249 * Like __bio_clone, only also allocates the returned bio
251 struct bio *bio_clone(struct bio *bio, int gfp_mask)
253 struct bio *b = bio_alloc(gfp_mask, 0);
255 if (b)
256 __bio_clone(b, bio);
258 return b;
262 * bio_get_nr_vecs - return approx number of vecs
263 * @bdev: I/O target
265 * Return the approximate number of pages we can send to this target.
266 * There's no guarantee that you will be able to fit this number of pages
267 * into a bio, it does not account for dynamic restrictions that vary
268 * on offset.
270 int bio_get_nr_vecs(struct block_device *bdev)
272 request_queue_t *q = bdev_get_queue(bdev);
273 int nr_pages;
275 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
276 if (nr_pages > q->max_phys_segments)
277 nr_pages = q->max_phys_segments;
278 if (nr_pages > q->max_hw_segments)
279 nr_pages = q->max_hw_segments;
281 return nr_pages;
285 * bio_add_page - attempt to add page to bio
286 * @bio: destination bio
287 * @page: page to add
288 * @len: vec entry length
289 * @offset: vec entry offset
291 * Attempt to add a page to the bio_vec maplist. This can fail for a
292 * number of reasons, such as the bio being full or target block
293 * device limitations.
295 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
296 unsigned int offset)
298 request_queue_t *q = bdev_get_queue(bio->bi_bdev);
299 int retried_segments = 0;
300 struct bio_vec *bvec;
303 * cloned bio must not modify vec list
305 if (unlikely(bio_flagged(bio, BIO_CLONED)))
306 return 0;
308 if (bio->bi_vcnt >= bio->bi_max_vecs)
309 return 0;
311 if (((bio->bi_size + len) >> 9) > q->max_sectors)
312 return 0;
315 * we might lose a segment or two here, but rather that than
316 * make this too complex.
319 while (bio_phys_segments(q, bio) >= q->max_phys_segments
320 || bio_hw_segments(q, bio) >= q->max_hw_segments) {
322 if (retried_segments)
323 return 0;
325 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
326 retried_segments = 1;
330 * setup the new entry, we might clear it again later if we
331 * cannot add the page
333 bvec = &bio->bi_io_vec[bio->bi_vcnt];
334 bvec->bv_page = page;
335 bvec->bv_len = len;
336 bvec->bv_offset = offset;
339 * if queue has other restrictions (eg varying max sector size
340 * depending on offset), it can specify a merge_bvec_fn in the
341 * queue to get further control
343 if (q->merge_bvec_fn) {
345 * merge_bvec_fn() returns number of bytes it can accept
346 * at this offset
348 if (q->merge_bvec_fn(q, bio, bvec) < len) {
349 bvec->bv_page = NULL;
350 bvec->bv_len = 0;
351 bvec->bv_offset = 0;
352 return 0;
356 bio->bi_vcnt++;
357 bio->bi_phys_segments++;
358 bio->bi_hw_segments++;
359 bio->bi_size += len;
360 return len;
363 static struct bio *__bio_map_user(struct block_device *bdev,
364 unsigned long uaddr, unsigned int len,
365 int write_to_vm)
367 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
368 unsigned long start = uaddr >> PAGE_SHIFT;
369 const int nr_pages = end - start;
370 request_queue_t *q = bdev_get_queue(bdev);
371 int ret, offset, i;
372 struct page **pages;
373 struct bio *bio;
376 * transfer and buffer must be aligned to at least hardsector
377 * size for now, in the future we can relax this restriction
379 if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
380 return NULL;
382 bio = bio_alloc(GFP_KERNEL, nr_pages);
383 if (!bio)
384 return NULL;
386 pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
387 if (!pages)
388 goto out;
390 down_read(&current->mm->mmap_sem);
391 ret = get_user_pages(current, current->mm, uaddr, nr_pages,
392 write_to_vm, 0, pages, NULL);
393 up_read(&current->mm->mmap_sem);
395 if (ret < nr_pages)
396 goto out;
398 bio->bi_bdev = bdev;
400 offset = uaddr & ~PAGE_MASK;
401 for (i = 0; i < nr_pages; i++) {
402 unsigned int bytes = PAGE_SIZE - offset;
404 if (len <= 0)
405 break;
407 if (bytes > len)
408 bytes = len;
411 * sorry...
413 if (bio_add_page(bio, pages[i], bytes, offset) < bytes)
414 break;
416 len -= bytes;
417 offset = 0;
421 * release the pages we didn't map into the bio, if any
423 while (i < nr_pages)
424 page_cache_release(pages[i++]);
426 kfree(pages);
429 * set data direction, and check if mapped pages need bouncing
431 if (!write_to_vm)
432 bio->bi_rw |= (1 << BIO_RW);
434 blk_queue_bounce(q, &bio);
435 return bio;
436 out:
437 kfree(pages);
438 bio_put(bio);
439 return NULL;
443 * bio_map_user - map user address into bio
444 * @bdev: destination block device
445 * @uaddr: start of user address
446 * @len: length in bytes
447 * @write_to_vm: bool indicating writing to pages or not
449 * Map the user space address into a bio suitable for io to a block
450 * device.
452 struct bio *bio_map_user(struct block_device *bdev, unsigned long uaddr,
453 unsigned int len, int write_to_vm)
455 struct bio *bio;
457 bio = __bio_map_user(bdev, uaddr, len, write_to_vm);
459 if (bio) {
461 * subtle -- if __bio_map_user() ended up bouncing a bio,
462 * it would normally disappear when its bi_end_io is run.
463 * however, we need it for the unmap, so grab an extra
464 * reference to it
466 bio_get(bio);
468 if (bio->bi_size < len) {
469 bio_endio(bio, bio->bi_size, 0);
470 bio_unmap_user(bio, 0);
471 return NULL;
475 return bio;
478 static void __bio_unmap_user(struct bio *bio, int write_to_vm)
480 struct bio_vec *bvec;
481 int i;
484 * find original bio if it was bounced
486 if (bio->bi_private) {
488 * someone stole our bio, must not happen
490 BUG_ON(!bio_flagged(bio, BIO_BOUNCED));
492 bio = bio->bi_private;
496 * make sure we dirty pages we wrote to
498 __bio_for_each_segment(bvec, bio, i, 0) {
499 if (write_to_vm)
500 set_page_dirty_lock(bvec->bv_page);
502 page_cache_release(bvec->bv_page);
505 bio_put(bio);
509 * bio_unmap_user - unmap a bio
510 * @bio: the bio being unmapped
511 * @write_to_vm: bool indicating whether pages were written to
513 * Unmap a bio previously mapped by bio_map_user(). The @write_to_vm
514 * must be the same as passed into bio_map_user(). Must be called with
515 * a process context.
517 * bio_unmap_user() may sleep.
519 void bio_unmap_user(struct bio *bio, int write_to_vm)
521 __bio_unmap_user(bio, write_to_vm);
522 bio_put(bio);
526 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
527 * for performing direct-IO in BIOs.
529 * The problem is that we cannot run set_page_dirty() from interrupt context
530 * because the required locks are not interrupt-safe. So what we can do is to
531 * mark the pages dirty _before_ performing IO. And in interrupt context,
532 * check that the pages are still dirty. If so, fine. If not, redirty them
533 * in process context.
535 * We special-case compound pages here: normally this means reads into hugetlb
536 * pages. The logic in here doesn't really work right for compound pages
537 * because the VM does not uniformly chase down the head page in all cases.
538 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
539 * handle them at all. So we skip compound pages here at an early stage.
541 * Note that this code is very hard to test under normal circumstances because
542 * direct-io pins the pages with get_user_pages(). This makes
543 * is_page_cache_freeable return false, and the VM will not clean the pages.
544 * But other code (eg, pdflush) could clean the pages if they are mapped
545 * pagecache.
547 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
548 * deferred bio dirtying paths.
552 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
554 void bio_set_pages_dirty(struct bio *bio)
556 struct bio_vec *bvec = bio->bi_io_vec;
557 int i;
559 for (i = 0; i < bio->bi_vcnt; i++) {
560 struct page *page = bvec[i].bv_page;
562 if (page && !PageCompound(page))
563 set_page_dirty_lock(page);
567 static void bio_release_pages(struct bio *bio)
569 struct bio_vec *bvec = bio->bi_io_vec;
570 int i;
572 for (i = 0; i < bio->bi_vcnt; i++) {
573 struct page *page = bvec[i].bv_page;
575 if (page)
576 put_page(page);
581 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
582 * If they are, then fine. If, however, some pages are clean then they must
583 * have been written out during the direct-IO read. So we take another ref on
584 * the BIO and the offending pages and re-dirty the pages in process context.
586 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
587 * here on. It will run one page_cache_release() against each page and will
588 * run one bio_put() against the BIO.
591 static void bio_dirty_fn(void *data);
593 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
594 static spinlock_t bio_dirty_lock = SPIN_LOCK_UNLOCKED;
595 static struct bio *bio_dirty_list = NULL;
598 * This runs in process context
600 static void bio_dirty_fn(void *data)
602 unsigned long flags;
603 struct bio *bio;
605 spin_lock_irqsave(&bio_dirty_lock, flags);
606 bio = bio_dirty_list;
607 bio_dirty_list = NULL;
608 spin_unlock_irqrestore(&bio_dirty_lock, flags);
610 while (bio) {
611 struct bio *next = bio->bi_private;
613 bio_set_pages_dirty(bio);
614 bio_release_pages(bio);
615 bio_put(bio);
616 bio = next;
620 void bio_check_pages_dirty(struct bio *bio)
622 struct bio_vec *bvec = bio->bi_io_vec;
623 int nr_clean_pages = 0;
624 int i;
626 for (i = 0; i < bio->bi_vcnt; i++) {
627 struct page *page = bvec[i].bv_page;
629 if (PageDirty(page) || PageCompound(page)) {
630 page_cache_release(page);
631 bvec[i].bv_page = NULL;
632 } else {
633 nr_clean_pages++;
637 if (nr_clean_pages) {
638 unsigned long flags;
640 spin_lock_irqsave(&bio_dirty_lock, flags);
641 bio->bi_private = bio_dirty_list;
642 bio_dirty_list = bio;
643 spin_unlock_irqrestore(&bio_dirty_lock, flags);
644 schedule_work(&bio_dirty_work);
645 } else {
646 bio_put(bio);
651 * bio_endio - end I/O on a bio
652 * @bio: bio
653 * @bytes_done: number of bytes completed
654 * @error: error, if any
656 * Description:
657 * bio_endio() will end I/O on @bytes_done number of bytes. This may be
658 * just a partial part of the bio, or it may be the whole bio. bio_endio()
659 * is the preferred way to end I/O on a bio, it takes care of decrementing
660 * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
661 * and one of the established -Exxxx (-EIO, for instance) error values in
662 * case something went wrong. Noone should call bi_end_io() directly on
663 * a bio unless they own it and thus know that it has an end_io function.
665 void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
667 if (error)
668 clear_bit(BIO_UPTODATE, &bio->bi_flags);
670 if (unlikely(bytes_done > bio->bi_size)) {
671 printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
672 bytes_done, bio->bi_size);
673 bytes_done = bio->bi_size;
676 bio->bi_size -= bytes_done;
677 bio->bi_sector += (bytes_done >> 9);
679 if (bio->bi_end_io)
680 bio->bi_end_io(bio, bytes_done, error);
683 void bio_pair_release(struct bio_pair *bp)
685 if (atomic_dec_and_test(&bp->cnt)) {
686 struct bio *master = bp->bio1.bi_private;
688 bio_endio(master, master->bi_size, bp->error);
689 mempool_free(bp, bp->bio2.bi_private);
693 static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
695 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
697 if (bi->bi_size)
698 return 1;
699 if (err)
700 bp->error = err;
702 bio_pair_release(bp);
703 return 0;
706 static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
708 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
710 if (bi->bi_size)
711 return 1;
712 if (err)
713 bp->error = err;
715 bio_pair_release(bp);
716 return 0;
720 * split a bio - only worry about a bio with a single page
721 * in it's iovec
723 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
725 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
727 if (!bp)
728 return bp;
730 BUG_ON(bi->bi_vcnt != 1);
731 BUG_ON(bi->bi_idx != 0);
732 atomic_set(&bp->cnt, 3);
733 bp->error = 0;
734 bp->bio1 = *bi;
735 bp->bio2 = *bi;
736 bp->bio2.bi_sector += first_sectors;
737 bp->bio2.bi_size -= first_sectors << 9;
738 bp->bio1.bi_size = first_sectors << 9;
740 bp->bv1 = bi->bi_io_vec[0];
741 bp->bv2 = bi->bi_io_vec[0];
742 bp->bv2.bv_offset += first_sectors << 9;
743 bp->bv2.bv_len -= first_sectors << 9;
744 bp->bv1.bv_len = first_sectors << 9;
746 bp->bio1.bi_io_vec = &bp->bv1;
747 bp->bio2.bi_io_vec = &bp->bv2;
749 bp->bio1.bi_end_io = bio_pair_end_1;
750 bp->bio2.bi_end_io = bio_pair_end_2;
752 bp->bio1.bi_private = bi;
753 bp->bio2.bi_private = pool;
755 return bp;
758 static void *bio_pair_alloc(int gfp_flags, void *data)
760 return kmalloc(sizeof(struct bio_pair), gfp_flags);
763 static void bio_pair_free(void *bp, void *data)
765 kfree(bp);
768 static void __init biovec_init_pools(void)
770 int i, size, megabytes, pool_entries = BIO_POOL_SIZE;
771 int scale = BIOVEC_NR_POOLS;
773 megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
776 * find out where to start scaling
778 if (megabytes <= 16)
779 scale = 0;
780 else if (megabytes <= 32)
781 scale = 1;
782 else if (megabytes <= 64)
783 scale = 2;
784 else if (megabytes <= 96)
785 scale = 3;
786 else if (megabytes <= 128)
787 scale = 4;
790 * scale number of entries
792 pool_entries = megabytes * 2;
793 if (pool_entries > 256)
794 pool_entries = 256;
796 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
797 struct biovec_pool *bp = bvec_array + i;
799 size = bp->nr_vecs * sizeof(struct bio_vec);
801 bp->slab = kmem_cache_create(bp->name, size, 0,
802 SLAB_HWCACHE_ALIGN, NULL, NULL);
803 if (!bp->slab)
804 panic("biovec: can't init slab cache\n");
806 if (i >= scale)
807 pool_entries >>= 1;
809 bp->pool = mempool_create(pool_entries, mempool_alloc_slab,
810 mempool_free_slab, bp->slab);
811 if (!bp->pool)
812 panic("biovec: can't init mempool\n");
816 static int __init init_bio(void)
818 bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
819 SLAB_HWCACHE_ALIGN, NULL, NULL);
820 if (!bio_slab)
821 panic("bio: can't create slab cache\n");
822 bio_pool = mempool_create(BIO_POOL_SIZE, mempool_alloc_slab, mempool_free_slab, bio_slab);
823 if (!bio_pool)
824 panic("bio: can't create mempool\n");
826 biovec_init_pools();
828 bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES, bio_pair_alloc, bio_pair_free, NULL);
829 if (!bio_split_pool)
830 panic("bio: can't create split pool\n");
832 return 0;
835 subsys_initcall(init_bio);
837 EXPORT_SYMBOL(bio_alloc);
838 EXPORT_SYMBOL(bio_put);
839 EXPORT_SYMBOL(bio_endio);
840 EXPORT_SYMBOL(bio_init);
841 EXPORT_SYMBOL(__bio_clone);
842 EXPORT_SYMBOL(bio_clone);
843 EXPORT_SYMBOL(bio_phys_segments);
844 EXPORT_SYMBOL(bio_hw_segments);
845 EXPORT_SYMBOL(bio_add_page);
846 EXPORT_SYMBOL(bio_get_nr_vecs);
847 EXPORT_SYMBOL(bio_map_user);
848 EXPORT_SYMBOL(bio_unmap_user);
849 EXPORT_SYMBOL(bio_pair_release);
850 EXPORT_SYMBOL(bio_split);
851 EXPORT_SYMBOL(bio_split_pool);