[PATCH] fix broken blk_start_queue behavior
[linux-2.6/history.git] / drivers / block / ll_rw_blk.c
blob74e65481e35c2d4b028a5073abd0f7b0082413aa
1 /*
2 * linux/drivers/block/ll_rw_blk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
31 static void blk_unplug_work(void *data);
32 static void blk_unplug_timeout(unsigned long data);
35 * For the allocated request tables
37 static kmem_cache_t *request_cachep;
40 * plug management
42 static LIST_HEAD(blk_plug_list);
43 static spinlock_t blk_plug_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
45 static wait_queue_head_t congestion_wqh[2];
48 * Controlling structure to kblockd
50 static struct workqueue_struct *kblockd_workqueue;
52 unsigned long blk_max_low_pfn, blk_max_pfn;
54 /* Amount of time in which a process may batch requests */
55 #define BLK_BATCH_TIME (HZ/50UL)
57 /* Number of requests a "batching" process may submit */
58 #define BLK_BATCH_REQ 32
61 * Return the threshold (number of used requests) at which the queue is
62 * considered to be congested. It include a little hysteresis to keep the
63 * context switch rate down.
65 static inline int queue_congestion_on_threshold(struct request_queue *q)
67 int ret;
69 ret = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (ret > q->nr_requests)
72 ret = q->nr_requests;
74 return ret;
78 * The threshold at which a queue is considered to be uncongested
80 static inline int queue_congestion_off_threshold(struct request_queue *q)
82 int ret;
84 ret = q->nr_requests - (q->nr_requests / 8) - 1;
86 if (ret < 1)
87 ret = 1;
89 return ret;
93 * A queue has just exitted congestion. Note this in the global counter of
94 * congested queues, and wake up anyone who was waiting for requests to be
95 * put back.
97 static void clear_queue_congested(request_queue_t *q, int rw)
99 enum bdi_state bit;
100 wait_queue_head_t *wqh = &congestion_wqh[rw];
102 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
103 clear_bit(bit, &q->backing_dev_info.state);
104 if (waitqueue_active(wqh))
105 wake_up(wqh);
109 * A queue has just entered congestion. Flag that in the queue's VM-visible
110 * state flags and increment the global gounter of congested queues.
112 static void set_queue_congested(request_queue_t *q, int rw)
114 enum bdi_state bit;
116 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
117 set_bit(bit, &q->backing_dev_info.state);
121 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
122 * @dev: device
124 * Locates the passed device's request queue and returns the address of its
125 * backing_dev_info
127 * Will return NULL if the request queue cannot be located.
129 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
131 struct backing_dev_info *ret = NULL;
132 request_queue_t *q = bdev_get_queue(bdev);
134 if (q)
135 ret = &q->backing_dev_info;
136 return ret;
140 * blk_queue_prep_rq - set a prepare_request function for queue
141 * @q: queue
142 * @pfn: prepare_request function
144 * It's possible for a queue to register a prepare_request callback which
145 * is invoked before the request is handed to the request_fn. The goal of
146 * the function is to prepare a request for I/O, it can be used to build a
147 * cdb from the request data for instance.
150 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
152 q->prep_rq_fn = pfn;
156 * blk_queue_merge_bvec - set a merge_bvec function for queue
157 * @q: queue
158 * @mbfn: merge_bvec_fn
160 * Usually queues have static limitations on the max sectors or segments that
161 * we can put in a request. Stacking drivers may have some settings that
162 * are dynamic, and thus we have to query the queue whether it is ok to
163 * add a new bio_vec to a bio at a given offset or not. If the block device
164 * has such limitations, it needs to register a merge_bvec_fn to control
165 * the size of bio's sent to it. Per default now merge_bvec_fn is defined for
166 * a queue, and only the fixed limits are honored.
169 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
171 q->merge_bvec_fn = mbfn;
175 * blk_queue_make_request - define an alternate make_request function for a device
176 * @q: the request queue for the device to be affected
177 * @mfn: the alternate make_request function
179 * Description:
180 * The normal way for &struct bios to be passed to a device
181 * driver is for them to be collected into requests on a request
182 * queue, and then to allow the device driver to select requests
183 * off that queue when it is ready. This works well for many block
184 * devices. However some block devices (typically virtual devices
185 * such as md or lvm) do not benefit from the processing on the
186 * request queue, and are served best by having the requests passed
187 * directly to them. This can be achieved by providing a function
188 * to blk_queue_make_request().
190 * Caveat:
191 * The driver that does this *must* be able to deal appropriately
192 * with buffers in "highmemory". This can be accomplished by either calling
193 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
194 * blk_queue_bounce() to create a buffer in normal memory.
196 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
199 * set defaults
201 q->nr_requests = BLKDEV_MAX_RQ;
202 q->max_phys_segments = MAX_PHYS_SEGMENTS;
203 q->max_hw_segments = MAX_HW_SEGMENTS;
204 q->make_request_fn = mfn;
205 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
206 q->backing_dev_info.state = 0;
207 q->backing_dev_info.memory_backed = 0;
208 blk_queue_max_sectors(q, MAX_SECTORS);
209 blk_queue_hardsect_size(q, 512);
210 blk_queue_dma_alignment(q, 511);
212 q->unplug_thresh = 4; /* hmm */
213 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
214 if (q->unplug_delay == 0)
215 q->unplug_delay = 1;
217 init_timer(&q->unplug_timer);
218 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
220 q->unplug_timer.function = blk_unplug_timeout;
221 q->unplug_timer.data = (unsigned long)q;
224 * by default assume old behaviour and bounce for any highmem page
226 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
228 init_waitqueue_head(&q->queue_wait);
229 INIT_LIST_HEAD(&q->plug_list);
233 * blk_queue_bounce_limit - set bounce buffer limit for queue
234 * @q: the request queue for the device
235 * @dma_addr: bus address limit
237 * Description:
238 * Different hardware can have different requirements as to what pages
239 * it can do I/O directly to. A low level driver can call
240 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
241 * buffers for doing I/O to pages residing above @page. By default
242 * the block layer sets this to the highest numbered "low" memory page.
244 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
246 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
247 unsigned long mb = dma_addr >> 20;
248 static request_queue_t *last_q;
251 * set appropriate bounce gfp mask -- unfortunately we don't have a
252 * full 4GB zone, so we have to resort to low memory for any bounces.
253 * ISA has its own < 16MB zone.
255 if (bounce_pfn < blk_max_low_pfn) {
256 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
257 init_emergency_isa_pool();
258 q->bounce_gfp = GFP_NOIO | GFP_DMA;
259 } else
260 q->bounce_gfp = GFP_NOIO;
263 * keep this for debugging for now...
265 if (dma_addr != BLK_BOUNCE_HIGH && q != last_q) {
266 printk("blk: queue %p, ", q);
267 if (dma_addr == BLK_BOUNCE_ANY)
268 printk("no I/O memory limit\n");
269 else
270 printk("I/O limit %luMb (mask 0x%Lx)\n", mb, (long long) dma_addr);
273 q->bounce_pfn = bounce_pfn;
274 last_q = q;
279 * blk_queue_max_sectors - set max sectors for a request for this queue
280 * @q: the request queue for the device
281 * @max_sectors: max sectors in the usual 512b unit
283 * Description:
284 * Enables a low level driver to set an upper limit on the size of
285 * received requests.
287 void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
289 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
290 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
291 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
294 q->max_sectors = max_sectors;
298 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
299 * @q: the request queue for the device
300 * @max_segments: max number of segments
302 * Description:
303 * Enables a low level driver to set an upper limit on the number of
304 * physical data segments in a request. This would be the largest sized
305 * scatter list the driver could handle.
307 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
309 if (!max_segments) {
310 max_segments = 1;
311 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
314 q->max_phys_segments = max_segments;
318 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
319 * @q: the request queue for the device
320 * @max_segments: max number of segments
322 * Description:
323 * Enables a low level driver to set an upper limit on the number of
324 * hw data segments in a request. This would be the largest number of
325 * address/length pairs the host adapter can actually give as once
326 * to the device.
328 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
330 if (!max_segments) {
331 max_segments = 1;
332 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
335 q->max_hw_segments = max_segments;
339 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
340 * @q: the request queue for the device
341 * @max_size: max size of segment in bytes
343 * Description:
344 * Enables a low level driver to set an upper limit on the size of a
345 * coalesced segment
347 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
349 if (max_size < PAGE_CACHE_SIZE) {
350 max_size = PAGE_CACHE_SIZE;
351 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
354 q->max_segment_size = max_size;
358 * blk_queue_hardsect_size - set hardware sector size for the queue
359 * @q: the request queue for the device
360 * @size: the hardware sector size, in bytes
362 * Description:
363 * This should typically be set to the lowest possible sector size
364 * that the hardware can operate on (possible without reverting to
365 * even internal read-modify-write operations). Usually the default
366 * of 512 covers most hardware.
368 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
370 q->hardsect_size = size;
374 * blk_queue_segment_boundary - set boundary rules for segment merging
375 * @q: the request queue for the device
376 * @mask: the memory boundary mask
378 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
380 if (mask < PAGE_CACHE_SIZE - 1) {
381 mask = PAGE_CACHE_SIZE - 1;
382 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
385 q->seg_boundary_mask = mask;
389 * blk_queue_dma_alignment - set dma length and memory alignment
390 * @q: the request queue for the device
391 * @dma_mask: alignment mask
393 * description:
394 * set required memory and length aligment for direct dma transactions.
395 * this is used when buiding direct io requests for the queue.
398 void blk_queue_dma_alignment(request_queue_t *q, int mask)
400 q->dma_alignment = mask;
404 * blk_queue_find_tag - find a request by its tag and queue
406 * @q: The request queue for the device
407 * @tag: The tag of the request
409 * Notes:
410 * Should be used when a device returns a tag and you want to match
411 * it with a request.
413 * no locks need be held.
415 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
417 struct blk_queue_tag *bqt = q->queue_tags;
419 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
420 return NULL;
422 return bqt->tag_index[tag];
426 * blk_queue_free_tags - release tag maintenance info
427 * @q: the request queue for the device
429 * Notes:
430 * blk_cleanup_queue() will take care of calling this function, if tagging
431 * has been used. So there's usually no need to call this directly, unless
432 * tagging is just being disabled but the queue remains in function.
434 void blk_queue_free_tags(request_queue_t *q)
436 struct blk_queue_tag *bqt = q->queue_tags;
438 if (!bqt)
439 return;
441 BUG_ON(bqt->busy);
442 BUG_ON(!list_empty(&bqt->busy_list));
444 kfree(bqt->tag_index);
445 bqt->tag_index = NULL;
447 kfree(bqt->tag_map);
448 bqt->tag_map = NULL;
450 kfree(bqt);
451 q->queue_tags = NULL;
452 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
455 static int
456 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
458 int bits, i;
460 if (depth > q->nr_requests * 2) {
461 depth = q->nr_requests * 2;
462 printk(KERN_ERR "%s: adjusted depth to %d\n",
463 __FUNCTION__, depth);
466 tags->tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
467 if (!tags->tag_index)
468 goto fail;
470 bits = (depth / BLK_TAGS_PER_LONG) + 1;
471 tags->tag_map = kmalloc(bits * sizeof(unsigned long), GFP_ATOMIC);
472 if (!tags->tag_map)
473 goto fail;
475 memset(tags->tag_index, 0, depth * sizeof(struct request *));
476 memset(tags->tag_map, 0, bits * sizeof(unsigned long));
477 tags->max_depth = depth;
478 tags->real_max_depth = bits * BITS_PER_LONG;
481 * set the upper bits if the depth isn't a multiple of the word size
483 for (i = depth; i < bits * BLK_TAGS_PER_LONG; i++)
484 __set_bit(i, tags->tag_map);
486 return 0;
487 fail:
488 kfree(tags->tag_index);
489 return -ENOMEM;
493 * blk_queue_init_tags - initialize the queue tag info
494 * @q: the request queue for the device
495 * @depth: the maximum queue depth supported
497 int blk_queue_init_tags(request_queue_t *q, int depth)
499 struct blk_queue_tag *tags;
501 tags = kmalloc(sizeof(struct blk_queue_tag),GFP_ATOMIC);
502 if (!tags)
503 goto fail;
505 if (init_tag_map(q, tags, depth))
506 goto fail;
508 INIT_LIST_HEAD(&tags->busy_list);
509 tags->busy = 0;
512 * assign it, all done
514 q->queue_tags = tags;
515 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
516 return 0;
517 fail:
518 kfree(tags);
519 return -ENOMEM;
523 * blk_queue_resize_tags - change the queueing depth
524 * @q: the request queue for the device
525 * @new_depth: the new max command queueing depth
527 * Notes:
528 * Must be called with the queue lock held.
530 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
532 struct blk_queue_tag *bqt = q->queue_tags;
533 struct request **tag_index;
534 unsigned long *tag_map;
535 int bits, max_depth;
537 if (!bqt)
538 return -ENXIO;
541 * don't bother sizing down
543 if (new_depth <= bqt->real_max_depth) {
544 bqt->max_depth = new_depth;
545 return 0;
549 * save the old state info, so we can copy it back
551 tag_index = bqt->tag_index;
552 tag_map = bqt->tag_map;
553 max_depth = bqt->real_max_depth;
555 if (init_tag_map(q, bqt, new_depth))
556 return -ENOMEM;
558 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
559 bits = max_depth / BLK_TAGS_PER_LONG;
560 memcpy(bqt->tag_map, tag_map, bits * sizeof(unsigned long));
562 kfree(tag_index);
563 kfree(tag_map);
564 return 0;
568 * blk_queue_end_tag - end tag operations for a request
569 * @q: the request queue for the device
570 * @tag: the tag that has completed
572 * Description:
573 * Typically called when end_that_request_first() returns 0, meaning
574 * all transfers have been done for a request. It's important to call
575 * this function before end_that_request_last(), as that will put the
576 * request back on the free list thus corrupting the internal tag list.
578 * Notes:
579 * queue lock must be held.
581 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
583 struct blk_queue_tag *bqt = q->queue_tags;
584 int tag = rq->tag;
586 BUG_ON(tag == -1);
588 if (unlikely(tag >= bqt->real_max_depth))
589 return;
591 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
592 printk("attempt to clear non-busy tag (%d)\n", tag);
593 return;
596 list_del_init(&rq->queuelist);
597 rq->flags &= ~REQ_QUEUED;
598 rq->tag = -1;
600 if (unlikely(bqt->tag_index[tag] == NULL))
601 printk("tag %d is missing\n", tag);
603 bqt->tag_index[tag] = NULL;
604 bqt->busy--;
608 * blk_queue_start_tag - find a free tag and assign it
609 * @q: the request queue for the device
610 * @rq: the block request that needs tagging
612 * Description:
613 * This can either be used as a stand-alone helper, or possibly be
614 * assigned as the queue &prep_rq_fn (in which case &struct request
615 * automagically gets a tag assigned). Note that this function
616 * assumes that any type of request can be queued! if this is not
617 * true for your device, you must check the request type before
618 * calling this function. The request will also be removed from
619 * the request queue, so it's the drivers responsibility to readd
620 * it if it should need to be restarted for some reason.
622 * Notes:
623 * queue lock must be held.
625 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
627 struct blk_queue_tag *bqt = q->queue_tags;
628 unsigned long *map = bqt->tag_map;
629 int tag = 0;
631 if (unlikely((rq->flags & REQ_QUEUED))) {
632 printk(KERN_ERR
633 "request %p for device [%s] already tagged %d",
634 rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
635 BUG();
638 for (map = bqt->tag_map; *map == -1UL; map++) {
639 tag += BLK_TAGS_PER_LONG;
641 if (tag >= bqt->max_depth)
642 return 1;
645 tag += ffz(*map);
646 __set_bit(tag, bqt->tag_map);
648 rq->flags |= REQ_QUEUED;
649 rq->tag = tag;
650 bqt->tag_index[tag] = rq;
651 blkdev_dequeue_request(rq);
652 list_add(&rq->queuelist, &bqt->busy_list);
653 bqt->busy++;
654 return 0;
658 * blk_queue_invalidate_tags - invalidate all pending tags
659 * @q: the request queue for the device
661 * Description:
662 * Hardware conditions may dictate a need to stop all pending requests.
663 * In this case, we will safely clear the block side of the tag queue and
664 * readd all requests to the request queue in the right order.
666 * Notes:
667 * queue lock must be held.
669 void blk_queue_invalidate_tags(request_queue_t *q)
671 struct blk_queue_tag *bqt = q->queue_tags;
672 struct list_head *tmp, *n;
673 struct request *rq;
675 list_for_each_safe(tmp, n, &bqt->busy_list) {
676 rq = list_entry_rq(tmp);
678 if (rq->tag == -1) {
679 printk("bad tag found on list\n");
680 list_del_init(&rq->queuelist);
681 rq->flags &= ~REQ_QUEUED;
682 } else
683 blk_queue_end_tag(q, rq);
685 rq->flags &= ~REQ_STARTED;
686 __elv_add_request(q, rq, 0, 0);
690 static char *rq_flags[] = {
691 "REQ_RW",
692 "REQ_FAILFAST",
693 "REQ_SOFTBARRIER",
694 "REQ_HARDBARRIER",
695 "REQ_CMD",
696 "REQ_NOMERGE",
697 "REQ_STARTED",
698 "REQ_DONTPREP",
699 "REQ_QUEUED",
700 "REQ_PC",
701 "REQ_BLOCK_PC",
702 "REQ_SENSE",
703 "REQ_FAILED",
704 "REQ_QUIET",
705 "REQ_SPECIAL",
706 "REQ_DRIVE_CMD",
707 "REQ_DRIVE_TASK",
708 "REQ_DRIVE_TASKFILE",
709 "REQ_PREEMPT",
710 "REQ_PM_SUSPEND",
711 "REQ_PM_RESUME",
712 "REQ_PM_SHUTDOWN",
715 void blk_dump_rq_flags(struct request *rq, char *msg)
717 int bit;
719 printk("%s: dev %s: flags = ", msg,
720 rq->rq_disk ? rq->rq_disk->disk_name : "?");
721 bit = 0;
722 do {
723 if (rq->flags & (1 << bit))
724 printk("%s ", rq_flags[bit]);
725 bit++;
726 } while (bit < __REQ_NR_BITS);
728 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
729 rq->nr_sectors,
730 rq->current_nr_sectors);
731 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
733 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
734 printk("cdb: ");
735 for (bit = 0; bit < sizeof(rq->cmd); bit++)
736 printk("%02x ", rq->cmd[bit]);
737 printk("\n");
741 void blk_recount_segments(request_queue_t *q, struct bio *bio)
743 struct bio_vec *bv, *bvprv = NULL;
744 int i, nr_phys_segs, nr_hw_segs, seg_size, cluster;
746 if (unlikely(!bio->bi_io_vec))
747 return;
749 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
750 seg_size = nr_phys_segs = nr_hw_segs = 0;
751 bio_for_each_segment(bv, bio, i) {
752 if (bvprv && cluster) {
753 if (seg_size + bv->bv_len > q->max_segment_size)
754 goto new_segment;
755 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
756 goto new_segment;
757 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
758 goto new_segment;
760 seg_size += bv->bv_len;
761 bvprv = bv;
762 continue;
764 new_segment:
765 if (!bvprv || !BIOVEC_VIRT_MERGEABLE(bvprv, bv))
766 nr_hw_segs++;
768 nr_phys_segs++;
769 bvprv = bv;
770 seg_size = bv->bv_len;
773 bio->bi_phys_segments = nr_phys_segs;
774 bio->bi_hw_segments = nr_hw_segs;
775 bio->bi_flags |= (1 << BIO_SEG_VALID);
779 int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
780 struct bio *nxt)
782 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
783 return 0;
785 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
786 return 0;
787 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
788 return 0;
791 * bio and nxt are contigous in memory, check if the queue allows
792 * these two to be merged into one
794 if (BIO_SEG_BOUNDARY(q, bio, nxt))
795 return 1;
797 return 0;
800 int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
801 struct bio *nxt)
803 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
804 return 0;
806 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
807 return 0;
808 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
809 return 0;
812 * bio and nxt are contigous in memory, check if the queue allows
813 * these two to be merged into one
815 if (BIO_SEG_BOUNDARY(q, bio, nxt))
816 return 1;
818 return 0;
822 * map a request to scatterlist, return number of sg entries setup. Caller
823 * must make sure sg can hold rq->nr_phys_segments entries
825 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
827 struct bio_vec *bvec, *bvprv;
828 struct bio *bio;
829 int nsegs, i, cluster;
831 nsegs = 0;
832 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
835 * for each bio in rq
837 bvprv = NULL;
838 rq_for_each_bio(bio, rq) {
840 * for each segment in bio
842 bio_for_each_segment(bvec, bio, i) {
843 int nbytes = bvec->bv_len;
845 if (bvprv && cluster) {
846 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
847 goto new_segment;
849 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
850 goto new_segment;
851 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
852 goto new_segment;
854 sg[nsegs - 1].length += nbytes;
855 } else {
856 new_segment:
857 memset(&sg[nsegs],0,sizeof(struct scatterlist));
858 sg[nsegs].page = bvec->bv_page;
859 sg[nsegs].length = nbytes;
860 sg[nsegs].offset = bvec->bv_offset;
862 nsegs++;
864 bvprv = bvec;
865 } /* segments in bio */
866 } /* bios in rq */
868 return nsegs;
872 * the standard queue merge functions, can be overridden with device
873 * specific ones if so desired
876 static inline int ll_new_mergeable(request_queue_t *q,
877 struct request *req,
878 struct bio *bio)
880 int nr_phys_segs = bio_phys_segments(q, bio);
882 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
883 req->flags |= REQ_NOMERGE;
884 q->last_merge = NULL;
885 return 0;
889 * A hw segment is just getting larger, bump just the phys
890 * counter.
892 req->nr_phys_segments += nr_phys_segs;
893 return 1;
896 static inline int ll_new_hw_segment(request_queue_t *q,
897 struct request *req,
898 struct bio *bio)
900 int nr_hw_segs = bio_hw_segments(q, bio);
901 int nr_phys_segs = bio_phys_segments(q, bio);
903 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
904 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
905 req->flags |= REQ_NOMERGE;
906 q->last_merge = NULL;
907 return 0;
911 * This will form the start of a new hw segment. Bump both
912 * counters.
914 req->nr_hw_segments += nr_hw_segs;
915 req->nr_phys_segments += nr_phys_segs;
916 return 1;
919 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
920 struct bio *bio)
922 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
923 req->flags |= REQ_NOMERGE;
924 q->last_merge = NULL;
925 return 0;
928 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)))
929 return ll_new_mergeable(q, req, bio);
931 return ll_new_hw_segment(q, req, bio);
934 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
935 struct bio *bio)
937 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
938 req->flags |= REQ_NOMERGE;
939 q->last_merge = NULL;
940 return 0;
943 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)))
944 return ll_new_mergeable(q, req, bio);
946 return ll_new_hw_segment(q, req, bio);
949 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
950 struct request *next)
952 int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
953 int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
956 * First check if the either of the requests are re-queued
957 * requests. Can't merge them if they are.
959 if (req->special || next->special)
960 return 0;
963 * Will it become to large?
965 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
966 return 0;
968 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
969 if (blk_phys_contig_segment(q, req->biotail, next->bio))
970 total_phys_segments--;
972 if (total_phys_segments > q->max_phys_segments)
973 return 0;
975 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
976 if (blk_hw_contig_segment(q, req->biotail, next->bio))
977 total_hw_segments--;
979 if (total_hw_segments > q->max_hw_segments)
980 return 0;
982 /* Merge is OK... */
983 req->nr_phys_segments = total_phys_segments;
984 req->nr_hw_segments = total_hw_segments;
985 return 1;
989 * "plug" the device if there are no outstanding requests: this will
990 * force the transfer to start only after we have put all the requests
991 * on the list.
993 * This is called with interrupts off and no requests on the queue and
994 * with the queue lock held.
996 void blk_plug_device(request_queue_t *q)
998 WARN_ON(!irqs_disabled());
999 if (!blk_queue_plugged(q)) {
1000 spin_lock(&blk_plug_lock);
1001 list_add_tail(&q->plug_list, &blk_plug_list);
1002 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1003 spin_unlock(&blk_plug_lock);
1008 * remove the queue from the plugged list, if present. called with
1009 * queue lock held and interrupts disabled.
1011 int blk_remove_plug(request_queue_t *q)
1013 WARN_ON(!irqs_disabled());
1014 if (blk_queue_plugged(q)) {
1015 spin_lock(&blk_plug_lock);
1016 list_del_init(&q->plug_list);
1017 del_timer(&q->unplug_timer);
1018 spin_unlock(&blk_plug_lock);
1019 return 1;
1022 return 0;
1026 * remove the plug and let it rip..
1028 static inline void __generic_unplug_device(request_queue_t *q)
1030 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1031 return;
1033 if (!blk_remove_plug(q))
1034 return;
1036 del_timer(&q->unplug_timer);
1039 * was plugged, fire request_fn if queue has stuff to do
1041 if (elv_next_request(q))
1042 q->request_fn(q);
1046 * generic_unplug_device - fire a request queue
1047 * @data: The &request_queue_t in question
1049 * Description:
1050 * Linux uses plugging to build bigger requests queues before letting
1051 * the device have at them. If a queue is plugged, the I/O scheduler
1052 * is still adding and merging requests on the queue. Once the queue
1053 * gets unplugged (either by manually calling this function, or by
1054 * calling blk_run_queues()), the request_fn defined for the
1055 * queue is invoked and transfers started.
1057 void generic_unplug_device(void *data)
1059 request_queue_t *q = data;
1061 spin_lock_irq(q->queue_lock);
1062 __generic_unplug_device(q);
1063 spin_unlock_irq(q->queue_lock);
1066 static void blk_unplug_work(void *data)
1068 request_queue_t *q = data;
1069 q->unplug_fn(q);
1072 static void blk_unplug_timeout(unsigned long data)
1074 request_queue_t *q = (request_queue_t *)data;
1076 kblockd_schedule_work(&q->unplug_work);
1080 * blk_start_queue - restart a previously stopped queue
1081 * @q: The &request_queue_t in question
1083 * Description:
1084 * blk_start_queue() will clear the stop flag on the queue, and call
1085 * the request_fn for the queue if it was in a stopped state when
1086 * entered. Also see blk_stop_queue(). Must not be called from driver
1087 * request function due to recursion issues. Queue lock must be held.
1089 void blk_start_queue(request_queue_t *q)
1091 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1092 schedule_work(&q->unplug_work);
1096 * blk_stop_queue - stop a queue
1097 * @q: The &request_queue_t in question
1099 * Description:
1100 * The Linux block layer assumes that a block driver will consume all
1101 * entries on the request queue when the request_fn strategy is called.
1102 * Often this will not happen, because of hardware limitations (queue
1103 * depth settings). If a device driver gets a 'queue full' response,
1104 * or if it simply chooses not to queue more I/O at one point, it can
1105 * call this function to prevent the request_fn from being called until
1106 * the driver has signalled it's ready to go again. This happens by calling
1107 * blk_start_queue() to restart queue operations. Queue lock must be held.
1109 void blk_stop_queue(request_queue_t *q)
1111 blk_remove_plug(q);
1112 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1116 * blk_run_queue - run a single device queue
1117 * @q The queue to run
1119 void blk_run_queue(struct request_queue *q)
1121 unsigned long flags;
1123 spin_lock_irqsave(q->queue_lock, flags);
1124 blk_remove_plug(q);
1125 q->request_fn(q);
1126 spin_unlock_irqrestore(q->queue_lock, flags);
1130 * blk_run_queues - fire all plugged queues
1132 * Description:
1133 * Start I/O on all plugged queues known to the block layer. Queues that
1134 * are currently stopped are ignored. This is equivalent to the older
1135 * tq_disk task queue run.
1137 #define blk_plug_entry(entry) list_entry((entry), request_queue_t, plug_list)
1138 void blk_run_queues(void)
1140 LIST_HEAD(local_plug_list);
1142 spin_lock_irq(&blk_plug_lock);
1145 * this will happen fairly often
1147 if (list_empty(&blk_plug_list))
1148 goto out;
1150 list_splice_init(&blk_plug_list, &local_plug_list);
1152 while (!list_empty(&local_plug_list)) {
1153 request_queue_t *q = blk_plug_entry(local_plug_list.next);
1155 spin_unlock_irq(&blk_plug_lock);
1156 q->unplug_fn(q);
1157 spin_lock_irq(&blk_plug_lock);
1159 out:
1160 spin_unlock_irq(&blk_plug_lock);
1164 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1165 * @q: the request queue to be released
1167 * Description:
1168 * blk_cleanup_queue is the pair to blk_init_queue(). It should
1169 * be called when a request queue is being released; typically
1170 * when a block device is being de-registered. Currently, its
1171 * primary task it to free all the &struct request structures that
1172 * were allocated to the queue.
1173 * Caveat:
1174 * Hopefully the low level driver will have finished any
1175 * outstanding requests first...
1177 void blk_cleanup_queue(request_queue_t * q)
1179 struct request_list *rl = &q->rq;
1181 elevator_exit(q);
1183 del_timer_sync(&q->unplug_timer);
1184 kblockd_flush();
1186 mempool_destroy(rl->rq_pool);
1188 if (blk_queue_tagged(q))
1189 blk_queue_free_tags(q);
1191 memset(q, 0, sizeof(*q));
1194 static int blk_init_free_list(request_queue_t *q)
1196 struct request_list *rl = &q->rq;
1198 rl->count[READ] = rl->count[WRITE] = 0;
1199 init_waitqueue_head(&rl->wait[READ]);
1200 init_waitqueue_head(&rl->wait[WRITE]);
1202 rl->rq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, request_cachep);
1204 if (!rl->rq_pool)
1205 return -ENOMEM;
1207 return 0;
1210 static int __make_request(request_queue_t *, struct bio *);
1212 static elevator_t *chosen_elevator =
1213 #if defined(CONFIG_IOSCHED_AS)
1214 &iosched_as;
1215 #elif defined(CONFIG_IOSCHED_DEADLINE)
1216 &iosched_deadline;
1217 #else
1218 &elevator_noop;
1219 #endif
1221 #if defined(CONFIG_IOSCHED_AS) || defined(CONFIG_IOSCHED_DEADLINE)
1222 static int __init elevator_setup(char *str)
1224 #ifdef CONFIG_IOSCHED_DEADLINE
1225 if (!strcmp(str, "deadline"))
1226 chosen_elevator = &iosched_deadline;
1227 #endif
1228 #ifdef CONFIG_IOSCHED_AS
1229 if (!strcmp(str, "as"))
1230 chosen_elevator = &iosched_as;
1231 #endif
1232 return 1;
1235 __setup("elevator=", elevator_setup);
1236 #endif /* CONFIG_IOSCHED_AS || CONFIG_IOSCHED_DEADLINE */
1239 * blk_init_queue - prepare a request queue for use with a block device
1240 * @q: The &request_queue_t to be initialised
1241 * @rfn: The function to be called to process requests that have been
1242 * placed on the queue.
1244 * Description:
1245 * If a block device wishes to use the standard request handling procedures,
1246 * which sorts requests and coalesces adjacent requests, then it must
1247 * call blk_init_queue(). The function @rfn will be called when there
1248 * are requests on the queue that need to be processed. If the device
1249 * supports plugging, then @rfn may not be called immediately when requests
1250 * are available on the queue, but may be called at some time later instead.
1251 * Plugged queues are generally unplugged when a buffer belonging to one
1252 * of the requests on the queue is needed, or due to memory pressure.
1254 * @rfn is not required, or even expected, to remove all requests off the
1255 * queue, but only as many as it can handle at a time. If it does leave
1256 * requests on the queue, it is responsible for arranging that the requests
1257 * get dealt with eventually.
1259 * The queue spin lock must be held while manipulating the requests on the
1260 * request queue.
1262 * Note:
1263 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1264 * when the block device is deactivated (such as at module unload).
1266 int blk_init_queue(request_queue_t *q, request_fn_proc *rfn, spinlock_t *lock)
1268 int ret;
1269 static int printed;
1271 if (blk_init_free_list(q))
1272 return -ENOMEM;
1274 if (!printed) {
1275 printed = 1;
1276 printk("Using %s elevator\n", chosen_elevator->elevator_name);
1279 if ((ret = elevator_init(q, chosen_elevator))) {
1280 blk_cleanup_queue(q);
1281 return ret;
1284 q->request_fn = rfn;
1285 q->back_merge_fn = ll_back_merge_fn;
1286 q->front_merge_fn = ll_front_merge_fn;
1287 q->merge_requests_fn = ll_merge_requests_fn;
1288 q->prep_rq_fn = NULL;
1289 q->unplug_fn = generic_unplug_device;
1290 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1291 q->queue_lock = lock;
1293 blk_queue_segment_boundary(q, 0xffffffff);
1295 blk_queue_make_request(q, __make_request);
1296 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1298 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1299 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1301 return 0;
1304 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1306 elv_put_request(q, rq);
1307 mempool_free(rq, q->rq.rq_pool);
1310 static inline struct request *blk_alloc_request(request_queue_t *q,int gfp_mask)
1312 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1314 if (!rq)
1315 return NULL;
1317 if (!elv_set_request(q, rq, gfp_mask))
1318 return rq;
1320 mempool_free(rq, q->rq.rq_pool);
1321 return NULL;
1325 * ioc_batching returns true if the ioc is a valid batching request and
1326 * should be given priority access to a request.
1328 static inline int ioc_batching(struct io_context *ioc)
1330 if (!ioc)
1331 return 0;
1334 * Make sure the process is able to allocate at least 1 request
1335 * even if the batch times out, otherwise we could theoretically
1336 * lose wakeups.
1338 return ioc->nr_batch_requests == BLK_BATCH_REQ ||
1339 (ioc->nr_batch_requests > 0
1340 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1344 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1345 * will cause the process to be a "batcher" on all queues in the system. This
1346 * is the behaviour we want though - once it gets a wakeup it should be given
1347 * a nice run.
1349 void ioc_set_batching(struct io_context *ioc)
1351 if (!ioc || ioc_batching(ioc))
1352 return;
1354 ioc->nr_batch_requests = BLK_BATCH_REQ;
1355 ioc->last_waited = jiffies;
1359 * A request has just been released. Account for it, update the full and
1360 * congestion status, wake up any waiters. Called under q->queue_lock.
1362 static void freed_request(request_queue_t *q, int rw)
1364 struct request_list *rl = &q->rq;
1366 rl->count[rw]--;
1367 if (rl->count[rw] < queue_congestion_off_threshold(q))
1368 clear_queue_congested(q, rw);
1369 if (rl->count[rw]+1 <= q->nr_requests) {
1370 smp_mb();
1371 if (waitqueue_active(&rl->wait[rw]))
1372 wake_up(&rl->wait[rw]);
1373 if (!waitqueue_active(&rl->wait[rw]))
1374 blk_clear_queue_full(q, rw);
1378 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1380 * Get a free request, queue_lock must not be held
1382 static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1384 struct request *rq = NULL;
1385 struct request_list *rl = &q->rq;
1386 struct io_context *ioc = get_io_context(gfp_mask);
1388 spin_lock_irq(q->queue_lock);
1389 if (rl->count[rw]+1 >= q->nr_requests) {
1391 * The queue will fill after this allocation, so set it as
1392 * full, and mark this process as "batching". This process
1393 * will be allowed to complete a batch of requests, others
1394 * will be blocked.
1396 if (!blk_queue_full(q, rw)) {
1397 ioc_set_batching(ioc);
1398 blk_set_queue_full(q, rw);
1402 if (blk_queue_full(q, rw)
1403 && !ioc_batching(ioc) && !elv_may_queue(q, rw)) {
1405 * The queue is full and the allocating process is not a
1406 * "batcher", and not exempted by the IO scheduler
1408 spin_unlock_irq(q->queue_lock);
1409 goto out;
1412 rl->count[rw]++;
1413 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1414 set_queue_congested(q, rw);
1415 spin_unlock_irq(q->queue_lock);
1417 rq = blk_alloc_request(q, gfp_mask);
1418 if (!rq) {
1420 * Allocation failed presumably due to memory. Undo anything
1421 * we might have messed up.
1423 * Allocating task should really be put onto the front of the
1424 * wait queue, but this is pretty rare.
1426 spin_lock_irq(q->queue_lock);
1427 freed_request(q, rw);
1428 spin_unlock_irq(q->queue_lock);
1429 goto out;
1432 if (ioc_batching(ioc))
1433 ioc->nr_batch_requests--;
1435 INIT_LIST_HEAD(&rq->queuelist);
1438 * first three bits are identical in rq->flags and bio->bi_rw,
1439 * see bio.h and blkdev.h
1441 rq->flags = rw;
1443 rq->errors = 0;
1444 rq->rq_status = RQ_ACTIVE;
1445 rq->bio = rq->biotail = NULL;
1446 rq->buffer = NULL;
1447 rq->ref_count = 1;
1448 rq->q = q;
1449 rq->rl = rl;
1450 rq->waiting = NULL;
1451 rq->special = NULL;
1452 rq->data = NULL;
1453 rq->sense = NULL;
1455 out:
1456 put_io_context(ioc);
1457 return rq;
1461 * No available requests for this queue, unplug the device and wait for some
1462 * requests to become available.
1464 static struct request *get_request_wait(request_queue_t *q, int rw)
1466 DEFINE_WAIT(wait);
1467 struct request *rq;
1469 generic_unplug_device(q);
1470 do {
1471 struct request_list *rl = &q->rq;
1473 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1474 TASK_UNINTERRUPTIBLE);
1476 rq = get_request(q, rw, GFP_NOIO);
1478 if (!rq) {
1479 struct io_context *ioc;
1481 io_schedule();
1484 * After sleeping, we become a "batching" process and
1485 * will be able to allocate at least one request, and
1486 * up to a big batch of them for a small period time.
1487 * See ioc_batching, ioc_set_batching
1489 ioc = get_io_context(GFP_NOIO);
1490 ioc_set_batching(ioc);
1491 put_io_context(ioc);
1493 finish_wait(&rl->wait[rw], &wait);
1494 } while (!rq);
1496 return rq;
1499 struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
1501 struct request *rq;
1503 BUG_ON(rw != READ && rw != WRITE);
1505 if (gfp_mask & __GFP_WAIT)
1506 rq = get_request_wait(q, rw);
1507 else
1508 rq = get_request(q, rw, gfp_mask);
1510 return rq;
1513 * blk_requeue_request - put a request back on queue
1514 * @q: request queue where request should be inserted
1515 * @rq: request to be inserted
1517 * Description:
1518 * Drivers often keep queueing requests until the hardware cannot accept
1519 * more, when that condition happens we need to put the request back
1520 * on the queue. Must be called with queue lock held.
1522 void blk_requeue_request(request_queue_t *q, struct request *rq)
1524 if (blk_rq_tagged(rq))
1525 blk_queue_end_tag(q, rq);
1527 elv_requeue_request(q, rq);
1531 * blk_insert_request - insert a special request in to a request queue
1532 * @q: request queue where request should be inserted
1533 * @rq: request to be inserted
1534 * @at_head: insert request at head or tail of queue
1535 * @data: private data
1536 * @reinsert: true if request it a reinsertion of previously processed one
1538 * Description:
1539 * Many block devices need to execute commands asynchronously, so they don't
1540 * block the whole kernel from preemption during request execution. This is
1541 * accomplished normally by inserting aritficial requests tagged as
1542 * REQ_SPECIAL in to the corresponding request queue, and letting them be
1543 * scheduled for actual execution by the request queue.
1545 * We have the option of inserting the head or the tail of the queue.
1546 * Typically we use the tail for new ioctls and so forth. We use the head
1547 * of the queue for things like a QUEUE_FULL message from a device, or a
1548 * host that is unable to accept a particular command.
1550 void blk_insert_request(request_queue_t *q, struct request *rq,
1551 int at_head, void *data, int reinsert)
1553 unsigned long flags;
1556 * tell I/O scheduler that this isn't a regular read/write (ie it
1557 * must not attempt merges on this) and that it acts as a soft
1558 * barrier
1560 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
1562 rq->special = data;
1564 spin_lock_irqsave(q->queue_lock, flags);
1567 * If command is tagged, release the tag
1569 if(reinsert) {
1570 blk_requeue_request(q, rq);
1571 } else {
1572 if (blk_rq_tagged(rq))
1573 blk_queue_end_tag(q, rq);
1575 drive_stat_acct(rq, rq->nr_sectors, 1);
1576 __elv_add_request(q, rq, !at_head, 0);
1578 q->request_fn(q);
1579 spin_unlock_irqrestore(q->queue_lock, flags);
1582 void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1584 int rw = rq_data_dir(rq);
1586 if (!blk_fs_request(rq) || !rq->rq_disk)
1587 return;
1589 if (rw == READ) {
1590 disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
1591 if (!new_io)
1592 disk_stat_inc(rq->rq_disk, read_merges);
1593 } else if (rw == WRITE) {
1594 disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
1595 if (!new_io)
1596 disk_stat_inc(rq->rq_disk, write_merges);
1598 if (new_io) {
1599 disk_round_stats(rq->rq_disk);
1600 disk_stat_inc(rq->rq_disk, in_flight);
1605 * add-request adds a request to the linked list.
1606 * queue lock is held and interrupts disabled, as we muck with the
1607 * request queue list.
1609 static inline void add_request(request_queue_t * q, struct request * req,
1610 struct list_head *insert_here)
1612 drive_stat_acct(req, req->nr_sectors, 1);
1615 * elevator indicated where it wants this request to be
1616 * inserted at elevator_merge time
1618 __elv_add_request_pos(q, req, insert_here);
1622 * disk_round_stats() - Round off the performance stats on a struct
1623 * disk_stats.
1625 * The average IO queue length and utilisation statistics are maintained
1626 * by observing the current state of the queue length and the amount of
1627 * time it has been in this state for.
1629 * Normally, that accounting is done on IO completion, but that can result
1630 * in more than a second's worth of IO being accounted for within any one
1631 * second, leading to >100% utilisation. To deal with that, we call this
1632 * function to do a round-off before returning the results when reading
1633 * /proc/diskstats. This accounts immediately for all queue usage up to
1634 * the current jiffies and restarts the counters again.
1636 void disk_round_stats(struct gendisk *disk)
1638 unsigned long now = jiffies;
1640 disk_stat_add(disk, time_in_queue,
1641 disk_stat_read(disk, in_flight) * (now - disk->stamp));
1642 disk->stamp = now;
1644 if (disk_stat_read(disk, in_flight))
1645 disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
1646 disk->stamp_idle = now;
1650 * queue lock must be held
1652 void __blk_put_request(request_queue_t *q, struct request *req)
1654 struct request_list *rl = req->rl;
1656 if (unlikely(!q))
1657 return;
1658 if (unlikely(--req->ref_count))
1659 return;
1661 elv_completed_request(req->q, req);
1663 req->rq_status = RQ_INACTIVE;
1664 req->q = NULL;
1665 req->rl = NULL;
1668 * Request may not have originated from ll_rw_blk. if not,
1669 * it didn't come out of our reserved rq pools
1671 if (rl) {
1672 int rw = rq_data_dir(req);
1674 BUG_ON(!list_empty(&req->queuelist));
1676 blk_free_request(q, req);
1677 freed_request(q, rw);
1681 void blk_put_request(struct request *req)
1683 request_queue_t *q = req->q;
1686 * if req->q isn't set, this request didnt originate from the
1687 * block layer, so it's safe to just disregard it
1689 if (q) {
1690 unsigned long flags;
1692 spin_lock_irqsave(q->queue_lock, flags);
1693 __blk_put_request(q, req);
1694 spin_unlock_irqrestore(q->queue_lock, flags);
1699 * blk_congestion_wait - wait for a queue to become uncongested
1700 * @rw: READ or WRITE
1701 * @timeout: timeout in jiffies
1703 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
1704 * If no queues are congested then just wait for the next request to be
1705 * returned.
1707 void blk_congestion_wait(int rw, long timeout)
1709 DEFINE_WAIT(wait);
1710 wait_queue_head_t *wqh = &congestion_wqh[rw];
1712 blk_run_queues();
1713 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1714 io_schedule_timeout(timeout);
1715 finish_wait(wqh, &wait);
1719 * Has to be called with the request spinlock acquired
1721 static int attempt_merge(request_queue_t *q, struct request *req,
1722 struct request *next)
1724 if (!rq_mergeable(req) || !rq_mergeable(next))
1725 return 0;
1728 * not contigious
1730 if (req->sector + req->nr_sectors != next->sector)
1731 return 0;
1733 if (rq_data_dir(req) != rq_data_dir(next)
1734 || req->rq_disk != next->rq_disk
1735 || next->waiting || next->special)
1736 return 0;
1739 * If we are allowed to merge, then append bio list
1740 * from next to rq and release next. merge_requests_fn
1741 * will have updated segment counts, update sector
1742 * counts here.
1744 if (!q->merge_requests_fn(q, req, next))
1745 return 0;
1747 req->biotail->bi_next = next->bio;
1748 req->biotail = next->biotail;
1750 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
1752 elv_merge_requests(q, req, next);
1754 if (req->rq_disk) {
1755 disk_round_stats(req->rq_disk);
1756 disk_stat_dec(req->rq_disk, in_flight);
1759 __blk_put_request(q, next);
1760 return 1;
1763 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
1765 struct request *next = elv_latter_request(q, rq);
1767 if (next)
1768 return attempt_merge(q, rq, next);
1770 return 0;
1773 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
1775 struct request *prev = elv_former_request(q, rq);
1777 if (prev)
1778 return attempt_merge(q, prev, rq);
1780 return 0;
1784 * blk_attempt_remerge - attempt to remerge active head with next request
1785 * @q: The &request_queue_t belonging to the device
1786 * @rq: The head request (usually)
1788 * Description:
1789 * For head-active devices, the queue can easily be unplugged so quickly
1790 * that proper merging is not done on the front request. This may hurt
1791 * performance greatly for some devices. The block layer cannot safely
1792 * do merging on that first request for these queues, but the driver can
1793 * call this function and make it happen any way. Only the driver knows
1794 * when it is safe to do so.
1796 void blk_attempt_remerge(request_queue_t *q, struct request *rq)
1798 unsigned long flags;
1800 spin_lock_irqsave(q->queue_lock, flags);
1801 attempt_back_merge(q, rq);
1802 spin_unlock_irqrestore(q->queue_lock, flags);
1806 * Non-locking blk_attempt_remerge variant.
1808 void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
1810 attempt_back_merge(q, rq);
1813 static int __make_request(request_queue_t *q, struct bio *bio)
1815 struct request *req, *freereq = NULL;
1816 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, ra;
1817 struct list_head *insert_here;
1818 sector_t sector;
1820 sector = bio->bi_sector;
1821 nr_sectors = bio_sectors(bio);
1822 cur_nr_sectors = bio_cur_sectors(bio);
1824 rw = bio_data_dir(bio);
1827 * low level driver can indicate that it wants pages above a
1828 * certain limit bounced to low memory (ie for highmem, or even
1829 * ISA dma in theory)
1831 blk_queue_bounce(q, &bio);
1833 spin_lock_prefetch(q->queue_lock);
1835 barrier = test_bit(BIO_RW_BARRIER, &bio->bi_rw);
1837 ra = bio_flagged(bio, BIO_RW_AHEAD) || current->flags & PF_READAHEAD;
1839 again:
1840 insert_here = NULL;
1841 spin_lock_irq(q->queue_lock);
1843 if (elv_queue_empty(q)) {
1844 blk_plug_device(q);
1845 goto get_rq;
1847 if (barrier)
1848 goto get_rq;
1850 el_ret = elv_merge(q, &insert_here, bio);
1851 switch (el_ret) {
1852 case ELEVATOR_BACK_MERGE:
1853 req = list_entry_rq(insert_here);
1855 BUG_ON(!rq_mergeable(req));
1857 if (!q->back_merge_fn(q, req, bio)) {
1858 insert_here = &req->queuelist;
1859 break;
1862 req->biotail->bi_next = bio;
1863 req->biotail = bio;
1864 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1865 drive_stat_acct(req, nr_sectors, 0);
1866 if (!attempt_back_merge(q, req))
1867 elv_merged_request(q, req);
1868 goto out;
1870 case ELEVATOR_FRONT_MERGE:
1871 req = list_entry_rq(insert_here);
1873 BUG_ON(!rq_mergeable(req));
1875 if (!q->front_merge_fn(q, req, bio)) {
1876 insert_here = req->queuelist.prev;
1877 break;
1880 bio->bi_next = req->bio;
1881 req->cbio = req->bio = bio;
1882 req->nr_cbio_segments = bio_segments(bio);
1883 req->nr_cbio_sectors = bio_sectors(bio);
1886 * may not be valid. if the low level driver said
1887 * it didn't need a bounce buffer then it better
1888 * not touch req->buffer either...
1890 req->buffer = bio_data(bio);
1891 req->current_nr_sectors = cur_nr_sectors;
1892 req->hard_cur_sectors = cur_nr_sectors;
1893 req->sector = req->hard_sector = sector;
1894 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1895 drive_stat_acct(req, nr_sectors, 0);
1896 if (!attempt_front_merge(q, req))
1897 elv_merged_request(q, req);
1898 goto out;
1901 * elevator says don't/can't merge. get new request
1903 case ELEVATOR_NO_MERGE:
1904 break;
1906 default:
1907 printk("elevator returned crap (%d)\n", el_ret);
1908 BUG();
1912 * Grab a free request from the freelist - if that is empty, check
1913 * if we are doing read ahead and abort instead of blocking for
1914 * a free slot.
1916 get_rq:
1917 if (freereq) {
1918 req = freereq;
1919 freereq = NULL;
1920 } else {
1921 spin_unlock_irq(q->queue_lock);
1922 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
1924 * READA bit set
1926 if (ra)
1927 goto end_io;
1929 freereq = get_request_wait(q, rw);
1931 goto again;
1935 * first three bits are identical in rq->flags and bio->bi_rw,
1936 * see bio.h and blkdev.h
1938 req->flags = (bio->bi_rw & 7) | REQ_CMD;
1941 * REQ_BARRIER implies no merging, but lets make it explicit
1943 if (barrier)
1944 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1947 * don't stack up retries for read ahead
1949 if (ra)
1950 req->flags |= REQ_FAILFAST;
1952 req->errors = 0;
1953 req->hard_sector = req->sector = sector;
1954 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
1955 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
1956 req->nr_phys_segments = bio_phys_segments(q, bio);
1957 req->nr_hw_segments = bio_hw_segments(q, bio);
1958 req->nr_cbio_segments = bio_segments(bio);
1959 req->nr_cbio_sectors = bio_sectors(bio);
1960 req->buffer = bio_data(bio); /* see ->buffer comment above */
1961 req->waiting = NULL;
1962 req->cbio = req->bio = req->biotail = bio;
1963 req->rq_disk = bio->bi_bdev->bd_disk;
1964 req->start_time = jiffies;
1966 add_request(q, req, insert_here);
1967 out:
1968 if (freereq)
1969 __blk_put_request(q, freereq);
1971 if (blk_queue_plugged(q)) {
1972 int nr_queued = q->rq.count[READ] + q->rq.count[WRITE];
1974 if (nr_queued == q->unplug_thresh)
1975 __generic_unplug_device(q);
1977 spin_unlock_irq(q->queue_lock);
1978 return 0;
1980 end_io:
1981 bio_endio(bio, nr_sectors << 9, -EWOULDBLOCK);
1982 return 0;
1986 * If bio->bi_dev is a partition, remap the location
1988 static inline void blk_partition_remap(struct bio *bio)
1990 struct block_device *bdev = bio->bi_bdev;
1991 struct gendisk *disk = bdev->bd_disk;
1992 struct hd_struct *p;
1993 if (bdev == bdev->bd_contains)
1994 return;
1996 p = disk->part[bdev->bd_dev-MKDEV(disk->major,disk->first_minor)-1];
1997 switch (bio->bi_rw) {
1998 case READ:
1999 p->read_sectors += bio_sectors(bio);
2000 p->reads++;
2001 break;
2002 case WRITE:
2003 p->write_sectors += bio_sectors(bio);
2004 p->writes++;
2005 break;
2007 bio->bi_sector += bdev->bd_offset;
2008 bio->bi_bdev = bdev->bd_contains;
2012 * generic_make_request: hand a buffer to its device driver for I/O
2013 * @bio: The bio describing the location in memory and on the device.
2015 * generic_make_request() is used to make I/O requests of block
2016 * devices. It is passed a &struct bio, which describes the I/O that needs
2017 * to be done.
2019 * generic_make_request() does not return any status. The
2020 * success/failure status of the request, along with notification of
2021 * completion, is delivered asynchronously through the bio->bi_end_io
2022 * function described (one day) else where.
2024 * The caller of generic_make_request must make sure that bi_io_vec
2025 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2026 * set to describe the device address, and the
2027 * bi_end_io and optionally bi_private are set to describe how
2028 * completion notification should be signaled.
2030 * generic_make_request and the drivers it calls may use bi_next if this
2031 * bio happens to be merged with someone else, and may change bi_dev and
2032 * bi_sector for remaps as it sees fit. So the values of these fields
2033 * should NOT be depended on after the call to generic_make_request.
2035 void generic_make_request(struct bio *bio)
2037 request_queue_t *q;
2038 sector_t maxsector;
2039 int ret, nr_sectors = bio_sectors(bio);
2041 /* Test device or partition size, when known. */
2042 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2043 if (maxsector) {
2044 sector_t sector = bio->bi_sector;
2046 if (maxsector < nr_sectors ||
2047 maxsector - nr_sectors < sector) {
2048 char b[BDEVNAME_SIZE];
2049 /* This may well happen - the kernel calls
2050 * bread() without checking the size of the
2051 * device, e.g., when mounting a device. */
2052 printk(KERN_INFO
2053 "attempt to access beyond end of device\n");
2054 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2055 bdevname(bio->bi_bdev, b),
2056 bio->bi_rw,
2057 (unsigned long long) sector + nr_sectors,
2058 (long long) maxsector);
2060 set_bit(BIO_EOF, &bio->bi_flags);
2061 goto end_io;
2066 * Resolve the mapping until finished. (drivers are
2067 * still free to implement/resolve their own stacking
2068 * by explicitly returning 0)
2070 * NOTE: we don't repeat the blk_size check for each new device.
2071 * Stacking drivers are expected to know what they are doing.
2073 do {
2074 char b[BDEVNAME_SIZE];
2076 q = bdev_get_queue(bio->bi_bdev);
2077 if (!q) {
2078 printk(KERN_ERR
2079 "generic_make_request: Trying to access "
2080 "nonexistent block-device %s (%Lu)\n",
2081 bdevname(bio->bi_bdev, b),
2082 (long long) bio->bi_sector);
2083 end_io:
2084 bio_endio(bio, bio->bi_size, -EIO);
2085 break;
2088 if (unlikely(bio_sectors(bio) > q->max_sectors)) {
2089 printk("bio too big device %s (%u > %u)\n",
2090 bdevname(bio->bi_bdev, b),
2091 bio_sectors(bio),
2092 q->max_sectors);
2093 goto end_io;
2097 * If this device has partitions, remap block n
2098 * of partition p to block n+start(p) of the disk.
2100 blk_partition_remap(bio);
2102 ret = q->make_request_fn(q, bio);
2103 } while (ret);
2107 * submit_bio: submit a bio to the block device layer for I/O
2108 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2109 * @bio: The &struct bio which describes the I/O
2111 * submit_bio() is very similar in purpose to generic_make_request(), and
2112 * uses that function to do most of the work. Both are fairly rough
2113 * interfaces, @bio must be presetup and ready for I/O.
2116 int submit_bio(int rw, struct bio *bio)
2118 int count = bio_sectors(bio);
2120 BIO_BUG_ON(!bio->bi_size);
2121 BIO_BUG_ON(!bio->bi_io_vec);
2122 bio->bi_rw = rw;
2123 if (rw & WRITE)
2124 mod_page_state(pgpgout, count);
2125 else
2126 mod_page_state(pgpgin, count);
2127 generic_make_request(bio);
2128 return 1;
2132 * blk_rq_next_segment
2133 * @rq: the request being processed
2135 * Description:
2136 * Points to the next segment in the request if the current segment
2137 * is complete. Leaves things unchanged if this segment is not over
2138 * or if no more segments are left in this request.
2140 * Meant to be used for bio traversal during I/O submission
2141 * Does not affect any I/O completions or update completion state
2142 * in the request, and does not modify any bio fields.
2144 * Decrementing rq->nr_sectors, rq->current_nr_sectors and
2145 * rq->nr_cbio_sectors as data is transferred is the caller's
2146 * responsibility and should be done before calling this routine.
2148 void blk_rq_next_segment(struct request *rq)
2150 if (rq->current_nr_sectors > 0)
2151 return;
2153 if (rq->nr_cbio_sectors > 0) {
2154 --rq->nr_cbio_segments;
2155 rq->current_nr_sectors = blk_rq_vec(rq)->bv_len >> 9;
2156 } else {
2157 if ((rq->cbio = rq->cbio->bi_next)) {
2158 rq->nr_cbio_segments = bio_segments(rq->cbio);
2159 rq->nr_cbio_sectors = bio_sectors(rq->cbio);
2160 rq->current_nr_sectors = bio_cur_sectors(rq->cbio);
2164 /* remember the size of this segment before we start I/O */
2165 rq->hard_cur_sectors = rq->current_nr_sectors;
2169 * process_that_request_first - process partial request submission
2170 * @req: the request being processed
2171 * @nr_sectors: number of sectors I/O has been submitted on
2173 * Description:
2174 * May be used for processing bio's while submitting I/O without
2175 * signalling completion. Fails if more data is requested than is
2176 * available in the request in which case it doesn't advance any
2177 * pointers.
2179 * Assumes a request is correctly set up. No sanity checks.
2181 * Return:
2182 * 0 - no more data left to submit (not processed)
2183 * 1 - data available to submit for this request (processed)
2185 int process_that_request_first(struct request *req, unsigned int nr_sectors)
2187 unsigned int nsect;
2189 if (req->nr_sectors < nr_sectors)
2190 return 0;
2192 req->nr_sectors -= nr_sectors;
2193 req->sector += nr_sectors;
2194 while (nr_sectors) {
2195 nsect = min_t(unsigned, req->current_nr_sectors, nr_sectors);
2196 req->current_nr_sectors -= nsect;
2197 nr_sectors -= nsect;
2198 if (req->cbio) {
2199 req->nr_cbio_sectors -= nsect;
2200 blk_rq_next_segment(req);
2203 return 1;
2206 void blk_recalc_rq_segments(struct request *rq)
2208 struct bio *bio;
2209 int nr_phys_segs, nr_hw_segs;
2211 if (!rq->bio)
2212 return;
2214 nr_phys_segs = nr_hw_segs = 0;
2215 rq_for_each_bio(bio, rq) {
2216 /* Force bio hw/phys segs to be recalculated. */
2217 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
2219 nr_phys_segs += bio_phys_segments(rq->q, bio);
2220 nr_hw_segs += bio_hw_segments(rq->q, bio);
2223 rq->nr_phys_segments = nr_phys_segs;
2224 rq->nr_hw_segments = nr_hw_segs;
2227 void blk_recalc_rq_sectors(struct request *rq, int nsect)
2229 if (blk_fs_request(rq)) {
2230 rq->hard_sector += nsect;
2231 rq->hard_nr_sectors -= nsect;
2234 * Move the I/O submission pointers ahead if required,
2235 * i.e. for drivers not aware of rq->cbio.
2237 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
2238 (rq->sector <= rq->hard_sector)) {
2239 rq->sector = rq->hard_sector;
2240 rq->nr_sectors = rq->hard_nr_sectors;
2241 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
2242 rq->current_nr_sectors = rq->hard_cur_sectors;
2243 rq->nr_cbio_segments = bio_segments(rq->bio);
2244 rq->nr_cbio_sectors = bio_sectors(rq->bio);
2245 rq->buffer = bio_data(rq->bio);
2247 rq->cbio = rq->bio;
2251 * if total number of sectors is less than the first segment
2252 * size, something has gone terribly wrong
2254 if (rq->nr_sectors < rq->current_nr_sectors) {
2255 printk("blk: request botched\n");
2256 rq->nr_sectors = rq->current_nr_sectors;
2261 static int __end_that_request_first(struct request *req, int uptodate,
2262 int nr_bytes)
2264 int total_bytes, bio_nbytes, error = 0, next_idx = 0;
2265 struct bio *bio;
2268 * for a REQ_BLOCK_PC request, we want to carry any eventual
2269 * sense key with us all the way through
2271 if (!blk_pc_request(req))
2272 req->errors = 0;
2274 if (!uptodate) {
2275 error = -EIO;
2276 if (!(req->flags & REQ_QUIET))
2277 printk("end_request: I/O error, dev %s, sector %llu\n",
2278 req->rq_disk ? req->rq_disk->disk_name : "?",
2279 (unsigned long long)req->sector);
2282 total_bytes = bio_nbytes = 0;
2283 while ((bio = req->bio)) {
2284 int nbytes;
2286 if (nr_bytes >= bio->bi_size) {
2287 req->bio = bio->bi_next;
2288 nbytes = bio->bi_size;
2289 bio_endio(bio, nbytes, error);
2290 next_idx = 0;
2291 bio_nbytes = 0;
2292 } else {
2293 int idx = bio->bi_idx + next_idx;
2295 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
2296 blk_dump_rq_flags(req, "__end_that");
2297 printk("%s: bio idx %d >= vcnt %d\n",
2298 __FUNCTION__,
2299 bio->bi_idx, bio->bi_vcnt);
2300 break;
2303 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2304 BIO_BUG_ON(nbytes > bio->bi_size);
2307 * not a complete bvec done
2309 if (unlikely(nbytes > nr_bytes)) {
2310 bio_iovec_idx(bio, idx)->bv_offset += nr_bytes;
2311 bio_iovec_idx(bio, idx)->bv_len -= nr_bytes;
2312 bio_nbytes += nr_bytes;
2313 total_bytes += nr_bytes;
2314 break;
2318 * advance to the next vector
2320 next_idx++;
2321 bio_nbytes += nbytes;
2324 total_bytes += nbytes;
2325 nr_bytes -= nbytes;
2327 if ((bio = req->bio)) {
2329 * end more in this run, or just return 'not-done'
2331 if (unlikely(nr_bytes <= 0))
2332 break;
2337 * completely done
2339 if (!req->bio)
2340 return 0;
2343 * if the request wasn't completed, update state
2345 if (bio_nbytes) {
2346 bio_endio(bio, bio_nbytes, error);
2347 req->bio->bi_idx += next_idx;
2350 blk_recalc_rq_sectors(req, total_bytes >> 9);
2351 blk_recalc_rq_segments(req);
2352 return 1;
2356 * end_that_request_first - end I/O on a request
2357 * @req: the request being processed
2358 * @uptodate: 0 for I/O error
2359 * @nr_sectors: number of sectors to end I/O on
2361 * Description:
2362 * Ends I/O on a number of sectors attached to @req, and sets it up
2363 * for the next range of segments (if any) in the cluster.
2365 * Return:
2366 * 0 - we are done with this request, call end_that_request_last()
2367 * 1 - still buffers pending for this request
2369 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
2371 return __end_that_request_first(req, uptodate, nr_sectors << 9);
2375 * end_that_request_chunk - end I/O on a request
2376 * @req: the request being processed
2377 * @uptodate: 0 for I/O error
2378 * @nr_bytes: number of bytes to complete
2380 * Description:
2381 * Ends I/O on a number of bytes attached to @req, and sets it up
2382 * for the next range of segments (if any). Like end_that_request_first(),
2383 * but deals with bytes instead of sectors.
2385 * Return:
2386 * 0 - we are done with this request, call end_that_request_last()
2387 * 1 - still buffers pending for this request
2389 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
2391 return __end_that_request_first(req, uptodate, nr_bytes);
2395 * queue lock must be held
2397 void end_that_request_last(struct request *req)
2399 struct gendisk *disk = req->rq_disk;
2400 struct completion *waiting = req->waiting;
2402 if (disk && blk_fs_request(req)) {
2403 unsigned long duration = jiffies - req->start_time;
2404 switch (rq_data_dir(req)) {
2405 case WRITE:
2406 disk_stat_inc(disk, writes);
2407 disk_stat_add(disk, write_ticks, duration);
2408 break;
2409 case READ:
2410 disk_stat_inc(disk, reads);
2411 disk_stat_add(disk, read_ticks, duration);
2412 break;
2414 disk_round_stats(disk);
2415 disk_stat_dec(disk, in_flight);
2417 __blk_put_request(req->q, req);
2418 /* Do this LAST! The structure may be freed immediately afterwards */
2419 if (waiting)
2420 complete(waiting);
2423 void end_request(struct request *req, int uptodate)
2425 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
2426 add_disk_randomness(req->rq_disk);
2427 blkdev_dequeue_request(req);
2428 end_that_request_last(req);
2432 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
2434 /* first three bits are identical in rq->flags and bio->bi_rw */
2435 rq->flags |= (bio->bi_rw & 7);
2437 rq->nr_phys_segments = bio_phys_segments(q, bio);
2438 rq->nr_hw_segments = bio_hw_segments(q, bio);
2439 rq->current_nr_sectors = bio_cur_sectors(bio);
2440 rq->hard_cur_sectors = rq->current_nr_sectors;
2441 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2442 rq->nr_cbio_segments = bio_segments(bio);
2443 rq->nr_cbio_sectors = bio_sectors(bio);
2444 rq->buffer = bio_data(bio);
2446 rq->cbio = rq->bio = rq->biotail = bio;
2449 void blk_rq_prep_restart(struct request *rq)
2451 struct bio *bio;
2453 bio = rq->cbio = rq->bio;
2454 if (bio) {
2455 rq->nr_cbio_segments = bio_segments(bio);
2456 rq->nr_cbio_sectors = bio_sectors(bio);
2457 rq->hard_cur_sectors = bio_cur_sectors(bio);
2458 rq->buffer = bio_data(bio);
2460 rq->sector = rq->hard_sector;
2461 rq->nr_sectors = rq->hard_nr_sectors;
2462 rq->current_nr_sectors = rq->hard_cur_sectors;
2465 int kblockd_schedule_work(struct work_struct *work)
2467 return queue_work(kblockd_workqueue, work);
2470 void kblockd_flush(void)
2472 flush_workqueue(kblockd_workqueue);
2475 int __init blk_dev_init(void)
2477 int i;
2479 kblockd_workqueue = create_workqueue("kblockd");
2480 if (!kblockd_workqueue)
2481 panic("Failed to create kblockd\n");
2483 request_cachep = kmem_cache_create("blkdev_requests",
2484 sizeof(struct request), 0, 0, NULL, NULL);
2485 if (!request_cachep)
2486 panic("Can't create request pool slab cache\n");
2488 blk_max_low_pfn = max_low_pfn;
2489 blk_max_pfn = max_pfn;
2491 for (i = 0; i < ARRAY_SIZE(congestion_wqh); i++)
2492 init_waitqueue_head(&congestion_wqh[i]);
2493 return 0;
2496 static atomic_t nr_io_contexts = ATOMIC_INIT(0);
2499 * IO Context helper functions
2501 void put_io_context(struct io_context *ioc)
2503 if (ioc == NULL)
2504 return;
2506 BUG_ON(atomic_read(&ioc->refcount) == 0);
2508 if (atomic_dec_and_test(&ioc->refcount)) {
2509 if (ioc->aic && ioc->aic->dtor)
2510 ioc->aic->dtor(ioc->aic);
2511 kfree(ioc);
2512 atomic_dec(&nr_io_contexts);
2516 /* Called by the exitting task */
2517 void exit_io_context(void)
2519 unsigned long flags;
2520 struct io_context *ioc;
2522 local_irq_save(flags);
2523 ioc = current->io_context;
2524 if (ioc) {
2525 if (ioc->aic && ioc->aic->exit)
2526 ioc->aic->exit(ioc->aic);
2527 put_io_context(ioc);
2528 current->io_context = NULL;
2529 } else
2530 WARN_ON(1);
2531 local_irq_restore(flags);
2535 * If the current task has no IO context then create one and initialise it.
2536 * If it does have a context, take a ref on it.
2538 * This is always called in the context of the task which submitted the I/O.
2539 * But weird things happen, so we disable local interrupts to ensure exclusive
2540 * access to *current.
2542 struct io_context *get_io_context(int gfp_flags)
2544 struct task_struct *tsk = current;
2545 unsigned long flags;
2546 struct io_context *ret;
2548 local_irq_save(flags);
2549 ret = tsk->io_context;
2550 if (ret == NULL) {
2551 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
2552 if (ret) {
2553 atomic_inc(&nr_io_contexts);
2554 atomic_set(&ret->refcount, 1);
2555 ret->pid = tsk->pid;
2556 ret->last_waited = jiffies; /* doesn't matter... */
2557 ret->nr_batch_requests = 0; /* because this is 0 */
2558 ret->aic = NULL;
2559 tsk->io_context = ret;
2562 if (ret)
2563 atomic_inc(&ret->refcount);
2564 local_irq_restore(flags);
2565 return ret;
2568 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
2570 struct io_context *src = *psrc;
2571 struct io_context *dst = *pdst;
2573 if (src) {
2574 BUG_ON(atomic_read(&src->refcount) == 0);
2575 atomic_inc(&src->refcount);
2576 put_io_context(dst);
2577 *pdst = src;
2581 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
2583 struct io_context *temp;
2584 temp = *ioc1;
2585 *ioc1 = *ioc2;
2586 *ioc2 = temp;
2591 * sysfs parts below
2593 struct queue_sysfs_entry {
2594 struct attribute attr;
2595 ssize_t (*show)(struct request_queue *, char *);
2596 ssize_t (*store)(struct request_queue *, const char *, size_t);
2599 static ssize_t
2600 queue_var_show(unsigned int var, char *page)
2602 return sprintf(page, "%d\n", var);
2605 static ssize_t
2606 queue_var_store(unsigned long *var, const char *page, size_t count)
2608 char *p = (char *) page;
2610 *var = simple_strtoul(p, &p, 10);
2611 return count;
2614 static ssize_t queue_requests_show(struct request_queue *q, char *page)
2616 return queue_var_show(q->nr_requests, (page));
2619 static ssize_t
2620 queue_requests_store(struct request_queue *q, const char *page, size_t count)
2622 struct request_list *rl = &q->rq;
2624 int ret = queue_var_store(&q->nr_requests, page, count);
2625 if (q->nr_requests < BLKDEV_MIN_RQ)
2626 q->nr_requests = BLKDEV_MIN_RQ;
2628 if (rl->count[READ] >= queue_congestion_on_threshold(q))
2629 set_queue_congested(q, READ);
2630 else if (rl->count[READ] < queue_congestion_off_threshold(q))
2631 clear_queue_congested(q, READ);
2633 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
2634 set_queue_congested(q, WRITE);
2635 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
2636 clear_queue_congested(q, WRITE);
2638 if (rl->count[READ] >= q->nr_requests) {
2639 blk_set_queue_full(q, READ);
2640 } else if (rl->count[READ]+1 <= q->nr_requests) {
2641 blk_clear_queue_full(q, READ);
2642 wake_up(&rl->wait[READ]);
2645 if (rl->count[WRITE] >= q->nr_requests) {
2646 blk_set_queue_full(q, WRITE);
2647 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
2648 blk_clear_queue_full(q, WRITE);
2649 wake_up(&rl->wait[WRITE]);
2651 return ret;
2654 static struct queue_sysfs_entry queue_requests_entry = {
2655 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
2656 .show = queue_requests_show,
2657 .store = queue_requests_store,
2660 static struct attribute *default_attrs[] = {
2661 &queue_requests_entry.attr,
2662 NULL,
2665 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
2667 static ssize_t
2668 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2670 struct queue_sysfs_entry *entry = to_queue(attr);
2671 struct request_queue *q;
2673 q = container_of(kobj, struct request_queue, kobj);
2674 if (!entry->show)
2675 return 0;
2677 return entry->show(q, page);
2680 static ssize_t
2681 queue_attr_store(struct kobject *kobj, struct attribute *attr,
2682 const char *page, size_t length)
2684 struct queue_sysfs_entry *entry = to_queue(attr);
2685 struct request_queue *q;
2687 q = container_of(kobj, struct request_queue, kobj);
2688 if (!entry->store)
2689 return -EINVAL;
2691 return entry->store(q, page, length);
2694 static struct sysfs_ops queue_sysfs_ops = {
2695 .show = queue_attr_show,
2696 .store = queue_attr_store,
2699 struct kobj_type queue_ktype = {
2700 .sysfs_ops = &queue_sysfs_ops,
2701 .default_attrs = default_attrs,
2704 int blk_register_queue(struct gendisk *disk)
2706 int ret;
2708 request_queue_t *q = disk->queue;
2710 if (!q)
2711 return -ENXIO;
2713 q->kobj.parent = kobject_get(&disk->kobj);
2714 if (!q->kobj.parent)
2715 return -EBUSY;
2717 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
2718 q->kobj.ktype = &queue_ktype;
2720 ret = kobject_register(&q->kobj);
2721 if (ret < 0)
2722 return ret;
2724 ret = elv_register_queue(q);
2725 if (ret) {
2726 kobject_unregister(&q->kobj);
2727 return ret;
2730 return 0;
2733 void blk_unregister_queue(struct gendisk *disk)
2735 request_queue_t *q = disk->queue;
2737 if (q) {
2738 elv_unregister_queue(q);
2740 kobject_unregister(&q->kobj);
2741 kobject_put(&disk->kobj);
2746 EXPORT_SYMBOL(process_that_request_first);
2747 EXPORT_SYMBOL(end_that_request_first);
2748 EXPORT_SYMBOL(end_that_request_chunk);
2749 EXPORT_SYMBOL(end_that_request_last);
2750 EXPORT_SYMBOL(end_request);
2751 EXPORT_SYMBOL(blk_init_queue);
2752 EXPORT_SYMBOL(blk_cleanup_queue);
2753 EXPORT_SYMBOL(blk_queue_make_request);
2754 EXPORT_SYMBOL(blk_queue_bounce_limit);
2755 EXPORT_SYMBOL(generic_make_request);
2756 EXPORT_SYMBOL(generic_unplug_device);
2757 EXPORT_SYMBOL(blk_plug_device);
2758 EXPORT_SYMBOL(blk_remove_plug);
2759 EXPORT_SYMBOL(blk_attempt_remerge);
2760 EXPORT_SYMBOL(__blk_attempt_remerge);
2761 EXPORT_SYMBOL(blk_max_low_pfn);
2762 EXPORT_SYMBOL(blk_max_pfn);
2763 EXPORT_SYMBOL(blk_queue_max_sectors);
2764 EXPORT_SYMBOL(blk_queue_max_phys_segments);
2765 EXPORT_SYMBOL(blk_queue_max_hw_segments);
2766 EXPORT_SYMBOL(blk_queue_max_segment_size);
2767 EXPORT_SYMBOL(blk_queue_hardsect_size);
2768 EXPORT_SYMBOL(blk_queue_segment_boundary);
2769 EXPORT_SYMBOL(blk_queue_dma_alignment);
2770 EXPORT_SYMBOL(blk_rq_map_sg);
2771 EXPORT_SYMBOL(blk_dump_rq_flags);
2772 EXPORT_SYMBOL(submit_bio);
2773 EXPORT_SYMBOL(blk_phys_contig_segment);
2774 EXPORT_SYMBOL(blk_hw_contig_segment);
2775 EXPORT_SYMBOL(blk_get_request);
2776 EXPORT_SYMBOL(blk_put_request);
2777 EXPORT_SYMBOL(blk_insert_request);
2778 EXPORT_SYMBOL(blk_requeue_request);
2780 EXPORT_SYMBOL(blk_queue_prep_rq);
2781 EXPORT_SYMBOL(blk_queue_merge_bvec);
2783 EXPORT_SYMBOL(blk_queue_find_tag);
2784 EXPORT_SYMBOL(blk_queue_init_tags);
2785 EXPORT_SYMBOL(blk_queue_free_tags);
2786 EXPORT_SYMBOL(blk_queue_start_tag);
2787 EXPORT_SYMBOL(blk_queue_end_tag);
2788 EXPORT_SYMBOL(blk_queue_invalidate_tags);
2790 EXPORT_SYMBOL(blk_start_queue);
2791 EXPORT_SYMBOL(blk_stop_queue);
2792 EXPORT_SYMBOL(blk_run_queue);
2793 EXPORT_SYMBOL(blk_run_queues);
2795 EXPORT_SYMBOL(blk_rq_bio_prep);