[PATCH] kconfig documentation update
[linux-2.6/history.git] / fs / namespace.c
blob57d6c0d6a5c53d820be2b35c9ae14c97e87594bb
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/config.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/quotaops.h>
17 #include <linux/acct.h>
18 #include <linux/module.h>
19 #include <linux/seq_file.h>
20 #include <linux/namespace.h>
21 #include <linux/namei.h>
23 #include <asm/uaccess.h>
25 extern struct vfsmount *do_kern_mount(const char *type, int flags, char *name, void *data);
26 extern int do_remount_sb(struct super_block *sb, int flags, void * data);
27 extern int __init init_rootfs(void);
29 static struct list_head *mount_hashtable;
30 static int hash_mask, hash_bits;
31 static kmem_cache_t *mnt_cache;
33 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
35 unsigned long tmp = ((unsigned long) mnt / L1_CACHE_BYTES);
36 tmp += ((unsigned long) dentry / L1_CACHE_BYTES);
37 tmp = tmp + (tmp >> hash_bits);
38 return tmp & hash_mask;
41 struct vfsmount *alloc_vfsmnt(char *name)
43 struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
44 if (mnt) {
45 memset(mnt, 0, sizeof(struct vfsmount));
46 atomic_set(&mnt->mnt_count,1);
47 INIT_LIST_HEAD(&mnt->mnt_hash);
48 INIT_LIST_HEAD(&mnt->mnt_child);
49 INIT_LIST_HEAD(&mnt->mnt_mounts);
50 INIT_LIST_HEAD(&mnt->mnt_list);
51 if (name) {
52 int size = strlen(name)+1;
53 char * newname = kmalloc(size, GFP_KERNEL);
54 if (newname) {
55 memcpy(newname, name, size);
56 mnt->mnt_devname = newname;
60 return mnt;
63 void free_vfsmnt(struct vfsmount *mnt)
65 if (mnt->mnt_devname)
66 kfree(mnt->mnt_devname);
67 kmem_cache_free(mnt_cache, mnt);
70 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
72 struct list_head * head = mount_hashtable + hash(mnt, dentry);
73 struct list_head * tmp = head;
74 struct vfsmount *p;
76 for (;;) {
77 tmp = tmp->next;
78 p = NULL;
79 if (tmp == head)
80 break;
81 p = list_entry(tmp, struct vfsmount, mnt_hash);
82 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry)
83 break;
85 return p;
88 static int check_mnt(struct vfsmount *mnt)
90 spin_lock(&dcache_lock);
91 while (mnt->mnt_parent != mnt)
92 mnt = mnt->mnt_parent;
93 spin_unlock(&dcache_lock);
94 return mnt == current->namespace->root;
97 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
99 old_nd->dentry = mnt->mnt_mountpoint;
100 old_nd->mnt = mnt->mnt_parent;
101 mnt->mnt_parent = mnt;
102 mnt->mnt_mountpoint = mnt->mnt_root;
103 list_del_init(&mnt->mnt_child);
104 list_del_init(&mnt->mnt_hash);
105 old_nd->dentry->d_mounted--;
108 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
110 mnt->mnt_parent = mntget(nd->mnt);
111 mnt->mnt_mountpoint = dget(nd->dentry);
112 list_add(&mnt->mnt_hash, mount_hashtable+hash(nd->mnt, nd->dentry));
113 list_add(&mnt->mnt_child, &nd->mnt->mnt_mounts);
114 nd->dentry->d_mounted++;
117 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
119 struct list_head *next = p->mnt_mounts.next;
120 if (next == &p->mnt_mounts) {
121 while (1) {
122 if (p == root)
123 return NULL;
124 next = p->mnt_child.next;
125 if (next != &p->mnt_parent->mnt_mounts)
126 break;
127 p = p->mnt_parent;
130 return list_entry(next, struct vfsmount, mnt_child);
133 static struct vfsmount *
134 clone_mnt(struct vfsmount *old, struct dentry *root)
136 struct super_block *sb = old->mnt_sb;
137 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
139 if (mnt) {
140 mnt->mnt_flags = old->mnt_flags;
141 atomic_inc(&sb->s_active);
142 mnt->mnt_sb = sb;
143 mnt->mnt_root = dget(root);
144 mnt->mnt_mountpoint = mnt->mnt_root;
145 mnt->mnt_parent = mnt;
147 return mnt;
150 void __mntput(struct vfsmount *mnt)
152 struct super_block *sb = mnt->mnt_sb;
153 dput(mnt->mnt_root);
154 free_vfsmnt(mnt);
155 deactivate_super(sb);
158 /* iterator */
159 static void *m_start(struct seq_file *m, loff_t *pos)
161 struct namespace *n = m->private;
162 struct list_head *p;
163 loff_t l = *pos;
165 down_read(&n->sem);
166 list_for_each(p, &n->list)
167 if (!l--)
168 return list_entry(p, struct vfsmount, mnt_list);
169 return NULL;
172 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
174 struct namespace *n = m->private;
175 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
176 (*pos)++;
177 return p==&n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
180 static void m_stop(struct seq_file *m, void *v)
182 struct namespace *n = m->private;
183 up_read(&n->sem);
186 static inline void mangle(struct seq_file *m, const char *s)
188 seq_escape(m, s, " \t\n\\");
191 static int show_vfsmnt(struct seq_file *m, void *v)
193 struct vfsmount *mnt = v;
194 int err = 0;
195 static struct proc_fs_info {
196 int flag;
197 char *str;
198 } fs_info[] = {
199 { MS_SYNCHRONOUS, ",sync" },
200 { MS_DIRSYNC, ",dirsync" },
201 { MS_MANDLOCK, ",mand" },
202 { MS_NOATIME, ",noatime" },
203 { MS_NODIRATIME, ",nodiratime" },
204 { 0, NULL }
206 static struct proc_fs_info mnt_info[] = {
207 { MNT_NOSUID, ",nosuid" },
208 { MNT_NODEV, ",nodev" },
209 { MNT_NOEXEC, ",noexec" },
210 { 0, NULL }
212 struct proc_fs_info *fs_infop;
213 char *path_buf, *path;
215 path_buf = (char *) __get_free_page(GFP_KERNEL);
216 if (!path_buf)
217 return -ENOMEM;
218 path = d_path(mnt->mnt_root, mnt, path_buf, PAGE_SIZE);
220 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
221 seq_putc(m, ' ');
222 mangle(m, path);
223 free_page((unsigned long) path_buf);
224 seq_putc(m, ' ');
225 mangle(m, mnt->mnt_sb->s_type->name);
226 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
227 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
228 if (mnt->mnt_sb->s_flags & fs_infop->flag)
229 seq_puts(m, fs_infop->str);
231 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
232 if (mnt->mnt_flags & fs_infop->flag)
233 seq_puts(m, fs_infop->str);
235 if (mnt->mnt_sb->s_op->show_options)
236 err = mnt->mnt_sb->s_op->show_options(m, mnt);
237 seq_puts(m, " 0 0\n");
238 return err;
241 struct seq_operations mounts_op = {
242 .start = m_start,
243 .next = m_next,
244 .stop = m_stop,
245 .show = show_vfsmnt
249 * Doesn't take quota and stuff into account. IOW, in some cases it will
250 * give false negatives. The main reason why it's here is that we need
251 * a non-destructive way to look for easily umountable filesystems.
253 int may_umount(struct vfsmount *mnt)
255 if (atomic_read(&mnt->mnt_count) > 2)
256 return -EBUSY;
257 return 0;
260 void umount_tree(struct vfsmount *mnt)
262 struct vfsmount *p;
263 LIST_HEAD(kill);
265 for (p = mnt; p; p = next_mnt(p, mnt)) {
266 list_del(&p->mnt_list);
267 list_add(&p->mnt_list, &kill);
270 while (!list_empty(&kill)) {
271 mnt = list_entry(kill.next, struct vfsmount, mnt_list);
272 list_del_init(&mnt->mnt_list);
273 if (mnt->mnt_parent == mnt) {
274 spin_unlock(&dcache_lock);
275 } else {
276 struct nameidata old_nd;
277 detach_mnt(mnt, &old_nd);
278 spin_unlock(&dcache_lock);
279 path_release(&old_nd);
281 mntput(mnt);
282 spin_lock(&dcache_lock);
286 static int do_umount(struct vfsmount *mnt, int flags)
288 struct super_block * sb = mnt->mnt_sb;
289 int retval = 0;
291 retval = security_ops->sb_umount(mnt, flags);
292 if (retval)
293 return retval;
296 * If we may have to abort operations to get out of this
297 * mount, and they will themselves hold resources we must
298 * allow the fs to do things. In the Unix tradition of
299 * 'Gee thats tricky lets do it in userspace' the umount_begin
300 * might fail to complete on the first run through as other tasks
301 * must return, and the like. Thats for the mount program to worry
302 * about for the moment.
305 lock_kernel();
306 if( (flags&MNT_FORCE) && sb->s_op->umount_begin)
307 sb->s_op->umount_begin(sb);
308 unlock_kernel();
311 * No sense to grab the lock for this test, but test itself looks
312 * somewhat bogus. Suggestions for better replacement?
313 * Ho-hum... In principle, we might treat that as umount + switch
314 * to rootfs. GC would eventually take care of the old vfsmount.
315 * Actually it makes sense, especially if rootfs would contain a
316 * /reboot - static binary that would close all descriptors and
317 * call reboot(9). Then init(8) could umount root and exec /reboot.
319 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
321 * Special case for "unmounting" root ...
322 * we just try to remount it readonly.
324 down_write(&sb->s_umount);
325 if (!(sb->s_flags & MS_RDONLY)) {
326 lock_kernel();
327 retval = do_remount_sb(sb, MS_RDONLY, 0);
328 unlock_kernel();
330 up_write(&sb->s_umount);
331 return retval;
334 down_write(&current->namespace->sem);
335 spin_lock(&dcache_lock);
337 if (atomic_read(&sb->s_active) == 1) {
338 /* last instance - try to be smart */
339 spin_unlock(&dcache_lock);
340 lock_kernel();
341 DQUOT_OFF(sb);
342 acct_auto_close(sb);
343 unlock_kernel();
344 security_ops->sb_umount_close(mnt);
345 spin_lock(&dcache_lock);
347 retval = -EBUSY;
348 if (atomic_read(&mnt->mnt_count) == 2 || flags & MNT_DETACH) {
349 if (!list_empty(&mnt->mnt_list))
350 umount_tree(mnt);
351 retval = 0;
353 spin_unlock(&dcache_lock);
354 if (retval)
355 security_ops->sb_umount_busy(mnt);
356 up_write(&current->namespace->sem);
357 return retval;
361 * Now umount can handle mount points as well as block devices.
362 * This is important for filesystems which use unnamed block devices.
364 * We now support a flag for forced unmount like the other 'big iron'
365 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
368 asmlinkage long sys_umount(char * name, int flags)
370 struct nameidata nd;
371 int retval;
373 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
374 if (retval)
375 goto out;
376 retval = -EINVAL;
377 if (nd.dentry != nd.mnt->mnt_root)
378 goto dput_and_out;
379 if (!check_mnt(nd.mnt))
380 goto dput_and_out;
382 retval = -EPERM;
383 if (!capable(CAP_SYS_ADMIN))
384 goto dput_and_out;
386 retval = do_umount(nd.mnt, flags);
387 dput_and_out:
388 path_release(&nd);
389 out:
390 return retval;
394 * The 2.0 compatible umount. No flags.
397 asmlinkage long sys_oldumount(char * name)
399 return sys_umount(name,0);
402 static int mount_is_safe(struct nameidata *nd)
404 if (capable(CAP_SYS_ADMIN))
405 return 0;
406 return -EPERM;
407 #ifdef notyet
408 if (S_ISLNK(nd->dentry->d_inode->i_mode))
409 return -EPERM;
410 if (nd->dentry->d_inode->i_mode & S_ISVTX) {
411 if (current->uid != nd->dentry->d_inode->i_uid)
412 return -EPERM;
414 if (permission(nd->dentry->d_inode, MAY_WRITE))
415 return -EPERM;
416 return 0;
417 #endif
420 static struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry)
422 struct vfsmount *p, *next, *q, *res;
423 struct nameidata nd;
425 p = mnt;
426 res = nd.mnt = q = clone_mnt(p, dentry);
427 if (!q)
428 goto Enomem;
429 q->mnt_parent = q;
430 q->mnt_mountpoint = p->mnt_mountpoint;
432 while ( (next = next_mnt(p, mnt)) != NULL) {
433 while (p != next->mnt_parent) {
434 p = p->mnt_parent;
435 q = q->mnt_parent;
437 p = next;
438 nd.mnt = q;
439 nd.dentry = p->mnt_mountpoint;
440 q = clone_mnt(p, p->mnt_root);
441 if (!q)
442 goto Enomem;
443 spin_lock(&dcache_lock);
444 list_add_tail(&q->mnt_list, &res->mnt_list);
445 attach_mnt(q, &nd);
446 spin_unlock(&dcache_lock);
448 return res;
449 Enomem:
450 if (res) {
451 spin_lock(&dcache_lock);
452 umount_tree(res);
453 spin_unlock(&dcache_lock);
455 return NULL;
458 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
460 int err;
461 if (mnt->mnt_sb->s_flags & MS_NOUSER)
462 return -EINVAL;
464 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
465 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
466 return -ENOTDIR;
468 err = -ENOENT;
469 down(&nd->dentry->d_inode->i_sem);
470 if (IS_DEADDIR(nd->dentry->d_inode))
471 goto out_unlock;
473 err = security_ops->sb_check_sb(mnt, nd);
474 if (err)
475 goto out_unlock;
477 spin_lock(&dcache_lock);
478 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry)) {
479 struct list_head head;
480 attach_mnt(mnt, nd);
481 list_add_tail(&head, &mnt->mnt_list);
482 list_splice(&head, current->namespace->list.prev);
483 mntget(mnt);
484 err = 0;
486 spin_unlock(&dcache_lock);
487 out_unlock:
488 up(&nd->dentry->d_inode->i_sem);
489 if (!err)
490 security_ops->sb_post_addmount(mnt, nd);
491 return err;
495 * do loopback mount.
497 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
499 struct nameidata old_nd;
500 struct vfsmount *mnt = NULL;
501 int err = mount_is_safe(nd);
502 if (err)
503 return err;
504 if (!old_name || !*old_name)
505 return -EINVAL;
506 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
507 if (err)
508 return err;
510 down_write(&current->namespace->sem);
511 err = -EINVAL;
512 if (check_mnt(nd->mnt) && (!recurse || check_mnt(old_nd.mnt))) {
513 err = -ENOMEM;
514 if (recurse)
515 mnt = copy_tree(old_nd.mnt, old_nd.dentry);
516 else
517 mnt = clone_mnt(old_nd.mnt, old_nd.dentry);
520 if (mnt) {
521 err = graft_tree(mnt, nd);
522 if (err) {
523 spin_lock(&dcache_lock);
524 umount_tree(mnt);
525 spin_unlock(&dcache_lock);
526 } else
527 mntput(mnt);
530 up_write(&current->namespace->sem);
531 path_release(&old_nd);
532 return err;
536 * change filesystem flags. dir should be a physical root of filesystem.
537 * If you've mounted a non-root directory somewhere and want to do remount
538 * on it - tough luck.
541 static int do_remount(struct nameidata *nd,int flags,int mnt_flags,void *data)
543 int err;
544 struct super_block * sb = nd->mnt->mnt_sb;
546 if (!capable(CAP_SYS_ADMIN))
547 return -EPERM;
549 if (!check_mnt(nd->mnt))
550 return -EINVAL;
552 if (nd->dentry != nd->mnt->mnt_root)
553 return -EINVAL;
555 down_write(&sb->s_umount);
556 err = do_remount_sb(sb, flags, data);
557 if (!err)
558 nd->mnt->mnt_flags=mnt_flags;
559 up_write(&sb->s_umount);
560 if (!err)
561 security_ops->sb_post_remount(nd->mnt, flags, data);
562 return err;
565 static int do_move_mount(struct nameidata *nd, char *old_name)
567 struct nameidata old_nd, parent_nd;
568 struct vfsmount *p;
569 int err = 0;
570 if (!capable(CAP_SYS_ADMIN))
571 return -EPERM;
572 if (!old_name || !*old_name)
573 return -EINVAL;
574 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
575 if (err)
576 return err;
578 down_write(&current->namespace->sem);
579 while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
581 err = -EINVAL;
582 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
583 goto out;
585 err = -ENOENT;
586 down(&nd->dentry->d_inode->i_sem);
587 if (IS_DEADDIR(nd->dentry->d_inode))
588 goto out1;
590 spin_lock(&dcache_lock);
591 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
592 goto out2;
594 err = -EINVAL;
595 if (old_nd.dentry != old_nd.mnt->mnt_root)
596 goto out2;
598 if (old_nd.mnt == old_nd.mnt->mnt_parent)
599 goto out2;
601 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
602 S_ISDIR(old_nd.dentry->d_inode->i_mode))
603 goto out2;
605 err = -ELOOP;
606 for (p = nd->mnt; p->mnt_parent!=p; p = p->mnt_parent)
607 if (p == old_nd.mnt)
608 goto out2;
609 err = 0;
611 detach_mnt(old_nd.mnt, &parent_nd);
612 attach_mnt(old_nd.mnt, nd);
613 out2:
614 spin_unlock(&dcache_lock);
615 out1:
616 up(&nd->dentry->d_inode->i_sem);
617 out:
618 up_write(&current->namespace->sem);
619 if (!err)
620 path_release(&parent_nd);
621 path_release(&old_nd);
622 return err;
625 static int do_add_mount(struct nameidata *nd, char *type, int flags,
626 int mnt_flags, char *name, void *data)
628 struct vfsmount *mnt;
629 int err;
631 if (!type || !memchr(type, 0, PAGE_SIZE))
632 return -EINVAL;
634 /* we need capabilities... */
635 if (!capable(CAP_SYS_ADMIN))
636 return -EPERM;
638 mnt = do_kern_mount(type, flags, name, data);
639 err = PTR_ERR(mnt);
640 if (IS_ERR(mnt))
641 goto out;
643 down_write(&current->namespace->sem);
644 /* Something was mounted here while we slept */
645 while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
647 err = -EINVAL;
648 if (!check_mnt(nd->mnt))
649 goto unlock;
651 /* Refuse the same filesystem on the same mount point */
652 err = -EBUSY;
653 if (nd->mnt->mnt_sb == mnt->mnt_sb && nd->mnt->mnt_root == nd->dentry)
654 goto unlock;
656 mnt->mnt_flags = mnt_flags;
657 err = graft_tree(mnt, nd);
658 unlock:
659 up_write(&current->namespace->sem);
660 mntput(mnt);
661 out:
662 return err;
665 static int copy_mount_options (const void *data, unsigned long *where)
667 int i;
668 unsigned long page;
669 unsigned long size;
671 *where = 0;
672 if (!data)
673 return 0;
675 if (!(page = __get_free_page(GFP_KERNEL)))
676 return -ENOMEM;
678 /* We only care that *some* data at the address the user
679 * gave us is valid. Just in case, we'll zero
680 * the remainder of the page.
682 /* copy_from_user cannot cross TASK_SIZE ! */
683 size = TASK_SIZE - (unsigned long)data;
684 if (size > PAGE_SIZE)
685 size = PAGE_SIZE;
687 i = size - copy_from_user((void *)page, data, size);
688 if (!i) {
689 free_page(page);
690 return -EFAULT;
692 if (i != PAGE_SIZE)
693 memset((char *)page + i, 0, PAGE_SIZE - i);
694 *where = page;
695 return 0;
699 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
700 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
702 * data is a (void *) that can point to any structure up to
703 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
704 * information (or be NULL).
706 * Pre-0.97 versions of mount() didn't have a flags word.
707 * When the flags word was introduced its top half was required
708 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
709 * Therefore, if this magic number is present, it carries no information
710 * and must be discarded.
712 long do_mount(char * dev_name, char * dir_name, char *type_page,
713 unsigned long flags, void *data_page)
715 struct nameidata nd;
716 int retval = 0;
717 int mnt_flags = 0;
719 /* Discard magic */
720 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
721 flags &= ~MS_MGC_MSK;
723 /* Basic sanity checks */
725 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
726 return -EINVAL;
727 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
728 return -EINVAL;
730 /* Separate the per-mountpoint flags */
731 if (flags & MS_NOSUID)
732 mnt_flags |= MNT_NOSUID;
733 if (flags & MS_NODEV)
734 mnt_flags |= MNT_NODEV;
735 if (flags & MS_NOEXEC)
736 mnt_flags |= MNT_NOEXEC;
737 flags &= ~(MS_NOSUID|MS_NOEXEC|MS_NODEV);
739 /* ... and get the mountpoint */
740 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
741 if (retval)
742 return retval;
744 retval = security_ops->sb_mount(dev_name, &nd, type_page, flags, data_page);
745 if (retval)
746 goto dput_out;
748 if (flags & MS_REMOUNT)
749 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
750 data_page);
751 else if (flags & MS_BIND)
752 retval = do_loopback(&nd, dev_name, flags & MS_REC);
753 else if (flags & MS_MOVE)
754 retval = do_move_mount(&nd, dev_name);
755 else
756 retval = do_add_mount(&nd, type_page, flags, mnt_flags,
757 dev_name, data_page);
758 dput_out:
759 path_release(&nd);
760 return retval;
763 int copy_namespace(int flags, struct task_struct *tsk)
765 struct namespace *namespace = tsk->namespace;
766 struct namespace *new_ns;
767 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
768 struct fs_struct *fs = tsk->fs;
770 if (!namespace)
771 return 0;
773 get_namespace(namespace);
775 if (! (flags & CLONE_NEWNS))
776 return 0;
778 if (!capable(CAP_SYS_ADMIN)) {
779 put_namespace(namespace);
780 return -EPERM;
783 new_ns = kmalloc(sizeof(struct namespace *), GFP_KERNEL);
784 if (!new_ns)
785 goto out;
787 atomic_set(&new_ns->count, 1);
788 init_rwsem(&new_ns->sem);
789 new_ns->root = NULL;
790 INIT_LIST_HEAD(&new_ns->list);
792 down_write(&tsk->namespace->sem);
793 /* First pass: copy the tree topology */
794 new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root);
795 spin_lock(&dcache_lock);
796 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
797 spin_unlock(&dcache_lock);
799 /* Second pass: switch the tsk->fs->* elements */
800 if (fs) {
801 struct vfsmount *p, *q;
802 write_lock(&fs->lock);
804 p = namespace->root;
805 q = new_ns->root;
806 while (p) {
807 if (p == fs->rootmnt) {
808 rootmnt = p;
809 fs->rootmnt = mntget(q);
811 if (p == fs->pwdmnt) {
812 pwdmnt = p;
813 fs->pwdmnt = mntget(q);
815 if (p == fs->altrootmnt) {
816 altrootmnt = p;
817 fs->altrootmnt = mntget(q);
819 p = next_mnt(p, namespace->root);
820 q = next_mnt(q, new_ns->root);
822 write_unlock(&fs->lock);
824 up_write(&tsk->namespace->sem);
826 tsk->namespace = new_ns;
828 if (rootmnt)
829 mntput(rootmnt);
830 if (pwdmnt)
831 mntput(pwdmnt);
832 if (altrootmnt)
833 mntput(altrootmnt);
835 put_namespace(namespace);
836 return 0;
838 out:
839 put_namespace(namespace);
840 return -ENOMEM;
843 asmlinkage long sys_mount(char * dev_name, char * dir_name, char * type,
844 unsigned long flags, void * data)
846 int retval;
847 unsigned long data_page;
848 unsigned long type_page;
849 unsigned long dev_page;
850 char *dir_page;
852 retval = copy_mount_options (type, &type_page);
853 if (retval < 0)
854 return retval;
856 dir_page = getname(dir_name);
857 retval = PTR_ERR(dir_page);
858 if (IS_ERR(dir_page))
859 goto out1;
861 retval = copy_mount_options (dev_name, &dev_page);
862 if (retval < 0)
863 goto out2;
865 retval = copy_mount_options (data, &data_page);
866 if (retval < 0)
867 goto out3;
869 lock_kernel();
870 retval = do_mount((char*)dev_page, dir_page, (char*)type_page,
871 flags, (void*)data_page);
872 unlock_kernel();
873 free_page(data_page);
875 out3:
876 free_page(dev_page);
877 out2:
878 putname(dir_page);
879 out1:
880 free_page(type_page);
881 return retval;
884 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
886 struct task_struct *g, *p;
887 struct fs_struct *fs;
889 read_lock(&tasklist_lock);
890 do_each_thread(g, p) {
891 task_lock(p);
892 fs = p->fs;
893 if (fs) {
894 atomic_inc(&fs->count);
895 task_unlock(p);
896 if (fs->root==old_nd->dentry&&fs->rootmnt==old_nd->mnt)
897 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
898 if (fs->pwd==old_nd->dentry&&fs->pwdmnt==old_nd->mnt)
899 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
900 put_fs_struct(fs);
901 } else
902 task_unlock(p);
903 } while_each_thread(g, p);
904 read_unlock(&tasklist_lock);
908 * Moves the current root to put_root, and sets root/cwd of all processes
909 * which had them on the old root to new_root.
911 * Note:
912 * - we don't move root/cwd if they are not at the root (reason: if something
913 * cared enough to change them, it's probably wrong to force them elsewhere)
914 * - it's okay to pick a root that isn't the root of a file system, e.g.
915 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
916 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
917 * first.
920 asmlinkage long sys_pivot_root(const char *new_root, const char *put_old)
922 struct vfsmount *tmp;
923 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
924 int error;
926 if (!capable(CAP_SYS_ADMIN))
927 return -EPERM;
929 lock_kernel();
931 error = __user_walk(new_root, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &new_nd);
932 if (error)
933 goto out0;
934 error = -EINVAL;
935 if (!check_mnt(new_nd.mnt))
936 goto out1;
938 error = __user_walk(put_old, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &old_nd);
939 if (error)
940 goto out1;
942 error = security_ops->sb_pivotroot(&old_nd, &new_nd);
943 if (error) {
944 path_release(&old_nd);
945 goto out1;
948 read_lock(&current->fs->lock);
949 user_nd.mnt = mntget(current->fs->rootmnt);
950 user_nd.dentry = dget(current->fs->root);
951 read_unlock(&current->fs->lock);
952 down_write(&current->namespace->sem);
953 down(&old_nd.dentry->d_inode->i_sem);
954 error = -EINVAL;
955 if (!check_mnt(user_nd.mnt))
956 goto out2;
957 error = -ENOENT;
958 if (IS_DEADDIR(new_nd.dentry->d_inode))
959 goto out2;
960 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
961 goto out2;
962 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
963 goto out2;
964 error = -EBUSY;
965 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
966 goto out2; /* loop */
967 error = -EINVAL;
968 if (user_nd.mnt->mnt_root != user_nd.dentry)
969 goto out2;
970 if (new_nd.mnt->mnt_root != new_nd.dentry)
971 goto out2; /* not a mountpoint */
972 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
973 spin_lock(&dcache_lock);
974 if (tmp != new_nd.mnt) {
975 for (;;) {
976 if (tmp->mnt_parent == tmp)
977 goto out3;
978 if (tmp->mnt_parent == new_nd.mnt)
979 break;
980 tmp = tmp->mnt_parent;
982 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
983 goto out3;
984 } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
985 goto out3;
986 detach_mnt(new_nd.mnt, &parent_nd);
987 detach_mnt(user_nd.mnt, &root_parent);
988 attach_mnt(user_nd.mnt, &old_nd);
989 attach_mnt(new_nd.mnt, &root_parent);
990 spin_unlock(&dcache_lock);
991 chroot_fs_refs(&user_nd, &new_nd);
992 security_ops->sb_post_pivotroot(&user_nd, &new_nd);
993 error = 0;
994 path_release(&root_parent);
995 path_release(&parent_nd);
996 out2:
997 up(&old_nd.dentry->d_inode->i_sem);
998 up_write(&current->namespace->sem);
999 path_release(&user_nd);
1000 path_release(&old_nd);
1001 out1:
1002 path_release(&new_nd);
1003 out0:
1004 unlock_kernel();
1005 return error;
1006 out3:
1007 spin_unlock(&dcache_lock);
1008 goto out2;
1011 static void __init init_mount_tree(void)
1013 struct vfsmount *mnt;
1014 struct namespace *namespace;
1015 struct task_struct *g, *p;
1017 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1018 if (IS_ERR(mnt))
1019 panic("Can't create rootfs");
1020 namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1021 if (!namespace)
1022 panic("Can't allocate initial namespace");
1023 atomic_set(&namespace->count, 1);
1024 INIT_LIST_HEAD(&namespace->list);
1025 init_rwsem(&namespace->sem);
1026 list_add(&mnt->mnt_list, &namespace->list);
1027 namespace->root = mnt;
1029 init_task.namespace = namespace;
1030 read_lock(&tasklist_lock);
1031 do_each_thread(g, p) {
1032 get_namespace(namespace);
1033 p->namespace = namespace;
1034 } while_each_thread(g, p);
1035 read_unlock(&tasklist_lock);
1037 set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1038 set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1041 void __init mnt_init(unsigned long mempages)
1043 struct list_head *d;
1044 unsigned long order;
1045 unsigned int nr_hash;
1046 int i;
1048 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1049 0, SLAB_HWCACHE_ALIGN, NULL, NULL);
1050 if (!mnt_cache)
1051 panic("Cannot create vfsmount cache");
1053 order = 0;
1054 mount_hashtable = (struct list_head *)
1055 __get_free_pages(GFP_ATOMIC, order);
1057 if (!mount_hashtable)
1058 panic("Failed to allocate mount hash table\n");
1061 * Find the power-of-two list-heads that can fit into the allocation..
1062 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1063 * a power-of-two.
1065 nr_hash = (1UL << order) * PAGE_SIZE / sizeof(struct list_head);
1066 hash_bits = 0;
1067 do {
1068 hash_bits++;
1069 } while ((nr_hash >> hash_bits) != 0);
1070 hash_bits--;
1073 * Re-calculate the actual number of entries and the mask
1074 * from the number of bits we can fit.
1076 nr_hash = 1UL << hash_bits;
1077 hash_mask = nr_hash-1;
1079 printk("Mount-cache hash table entries: %d (order: %ld, %ld bytes)\n",
1080 nr_hash, order, (PAGE_SIZE << order));
1082 /* And initialize the newly allocated array */
1083 d = mount_hashtable;
1084 i = nr_hash;
1085 do {
1086 INIT_LIST_HEAD(d);
1087 d++;
1088 i--;
1089 } while (i);
1090 init_rootfs();
1091 init_mount_tree();