[PATCH] DVB: Documentation and Kconfig updazes
[linux-2.6/history.git] / mm / swap.c
bloba5352c98751a4b2bfcebdd6d3b24e54e5f1938ae
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the opereation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * linux/Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/module.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/init.h>
34 /* How many pages do we try to swap or page in/out together? */
35 int page_cluster;
38 * Writeback is about to end against a page which has been marked for immediate
39 * reclaim. If it still appears to be reclaimable, move it to the tail of the
40 * inactive list. The page still has PageWriteback set, which will pin it.
42 * We don't expect many pages to come through here, so don't bother batching
43 * things up.
45 * To avoid placing the page at the tail of the LRU while PG_writeback is still
46 * set, this function will clear PG_writeback before performing the page
47 * motion. Do that inside the lru lock because once PG_writeback is cleared
48 * we may not touch the page.
50 * Returns zero if it cleared PG_writeback.
52 int rotate_reclaimable_page(struct page *page)
54 struct zone *zone;
55 unsigned long flags;
57 if (PageLocked(page))
58 return 1;
59 if (PageDirty(page))
60 return 1;
61 if (PageActive(page))
62 return 1;
63 if (!PageLRU(page))
64 return 1;
66 zone = page_zone(page);
67 spin_lock_irqsave(&zone->lru_lock, flags);
68 if (PageLRU(page) && !PageActive(page)) {
69 list_del(&page->lru);
70 list_add_tail(&page->lru, &zone->inactive_list);
71 inc_page_state(pgrotated);
73 if (!TestClearPageWriteback(page))
74 BUG();
75 spin_unlock_irqrestore(&zone->lru_lock, flags);
76 return 0;
80 * FIXME: speed this up?
82 void fastcall activate_page(struct page *page)
84 struct zone *zone = page_zone(page);
86 spin_lock_irq(&zone->lru_lock);
87 if (PageLRU(page) && !PageActive(page)) {
88 del_page_from_inactive_list(zone, page);
89 SetPageActive(page);
90 add_page_to_active_list(zone, page);
91 inc_page_state(pgactivate);
93 spin_unlock_irq(&zone->lru_lock);
97 * Mark a page as having seen activity.
99 * inactive,unreferenced -> inactive,referenced
100 * inactive,referenced -> active,unreferenced
101 * active,unreferenced -> active,referenced
103 void fastcall mark_page_accessed(struct page *page)
105 if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) {
106 activate_page(page);
107 ClearPageReferenced(page);
108 } else if (!PageReferenced(page)) {
109 SetPageReferenced(page);
113 EXPORT_SYMBOL(mark_page_accessed);
116 * lru_cache_add: add a page to the page lists
117 * @page: the page to add
119 static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, };
120 static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, };
122 void fastcall lru_cache_add(struct page *page)
124 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
126 page_cache_get(page);
127 if (!pagevec_add(pvec, page))
128 __pagevec_lru_add(pvec);
129 put_cpu_var(lru_add_pvecs);
132 void fastcall lru_cache_add_active(struct page *page)
134 struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs);
136 page_cache_get(page);
137 if (!pagevec_add(pvec, page))
138 __pagevec_lru_add_active(pvec);
139 put_cpu_var(lru_add_active_pvecs);
142 void lru_add_drain(void)
144 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs);
146 if (pagevec_count(pvec))
147 __pagevec_lru_add(pvec);
148 pvec = &__get_cpu_var(lru_add_active_pvecs);
149 if (pagevec_count(pvec))
150 __pagevec_lru_add_active(pvec);
151 put_cpu_var(lru_add_pvecs);
155 * This path almost never happens for VM activity - pages are normally
156 * freed via pagevecs. But it gets used by networking.
158 void fastcall __page_cache_release(struct page *page)
160 unsigned long flags;
161 struct zone *zone = page_zone(page);
163 spin_lock_irqsave(&zone->lru_lock, flags);
164 if (TestClearPageLRU(page))
165 del_page_from_lru(zone, page);
166 if (page_count(page) != 0)
167 page = NULL;
168 spin_unlock_irqrestore(&zone->lru_lock, flags);
169 if (page)
170 free_hot_page(page);
173 EXPORT_SYMBOL(__page_cache_release);
176 * Batched page_cache_release(). Decrement the reference count on all the
177 * passed pages. If it fell to zero then remove the page from the LRU and
178 * free it.
180 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
181 * for the remainder of the operation.
183 * The locking in this function is against shrink_cache(): we recheck the
184 * page count inside the lock to see whether shrink_cache grabbed the page
185 * via the LRU. If it did, give up: shrink_cache will free it.
187 void release_pages(struct page **pages, int nr, int cold)
189 int i;
190 struct pagevec pages_to_free;
191 struct zone *zone = NULL;
193 pagevec_init(&pages_to_free, cold);
194 for (i = 0; i < nr; i++) {
195 struct page *page = pages[i];
196 struct zone *pagezone;
198 if (PageReserved(page) || !put_page_testzero(page))
199 continue;
201 pagezone = page_zone(page);
202 if (pagezone != zone) {
203 if (zone)
204 spin_unlock_irq(&zone->lru_lock);
205 zone = pagezone;
206 spin_lock_irq(&zone->lru_lock);
208 if (TestClearPageLRU(page))
209 del_page_from_lru(zone, page);
210 if (page_count(page) == 0) {
211 if (!pagevec_add(&pages_to_free, page)) {
212 spin_unlock_irq(&zone->lru_lock);
213 __pagevec_free(&pages_to_free);
214 pagevec_reinit(&pages_to_free);
215 zone = NULL; /* No lock is held */
219 if (zone)
220 spin_unlock_irq(&zone->lru_lock);
222 pagevec_free(&pages_to_free);
226 * The pages which we're about to release may be in the deferred lru-addition
227 * queues. That would prevent them from really being freed right now. That's
228 * OK from a correctness point of view but is inefficient - those pages may be
229 * cache-warm and we want to give them back to the page allocator ASAP.
231 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
232 * and __pagevec_lru_add_active() call release_pages() directly to avoid
233 * mutual recursion.
235 void __pagevec_release(struct pagevec *pvec)
237 lru_add_drain();
238 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
239 pagevec_reinit(pvec);
243 * pagevec_release() for pages which are known to not be on the LRU
245 * This function reinitialises the caller's pagevec.
247 void __pagevec_release_nonlru(struct pagevec *pvec)
249 int i;
250 struct pagevec pages_to_free;
252 pagevec_init(&pages_to_free, pvec->cold);
253 pages_to_free.cold = pvec->cold;
254 for (i = 0; i < pagevec_count(pvec); i++) {
255 struct page *page = pvec->pages[i];
257 BUG_ON(PageLRU(page));
258 if (put_page_testzero(page))
259 pagevec_add(&pages_to_free, page);
261 pagevec_free(&pages_to_free);
262 pagevec_reinit(pvec);
266 * Add the passed pages to the LRU, then drop the caller's refcount
267 * on them. Reinitialises the caller's pagevec.
269 void __pagevec_lru_add(struct pagevec *pvec)
271 int i;
272 struct zone *zone = NULL;
274 for (i = 0; i < pagevec_count(pvec); i++) {
275 struct page *page = pvec->pages[i];
276 struct zone *pagezone = page_zone(page);
278 if (pagezone != zone) {
279 if (zone)
280 spin_unlock_irq(&zone->lru_lock);
281 zone = pagezone;
282 spin_lock_irq(&zone->lru_lock);
284 if (TestSetPageLRU(page))
285 BUG();
286 add_page_to_inactive_list(zone, page);
288 if (zone)
289 spin_unlock_irq(&zone->lru_lock);
290 release_pages(pvec->pages, pvec->nr, pvec->cold);
291 pagevec_reinit(pvec);
294 EXPORT_SYMBOL(__pagevec_lru_add);
296 void __pagevec_lru_add_active(struct pagevec *pvec)
298 int i;
299 struct zone *zone = NULL;
301 for (i = 0; i < pagevec_count(pvec); i++) {
302 struct page *page = pvec->pages[i];
303 struct zone *pagezone = page_zone(page);
305 if (pagezone != zone) {
306 if (zone)
307 spin_unlock_irq(&zone->lru_lock);
308 zone = pagezone;
309 spin_lock_irq(&zone->lru_lock);
311 if (TestSetPageLRU(page))
312 BUG();
313 if (TestSetPageActive(page))
314 BUG();
315 add_page_to_active_list(zone, page);
317 if (zone)
318 spin_unlock_irq(&zone->lru_lock);
319 release_pages(pvec->pages, pvec->nr, pvec->cold);
320 pagevec_reinit(pvec);
324 * Try to drop buffers from the pages in a pagevec
326 void pagevec_strip(struct pagevec *pvec)
328 int i;
330 for (i = 0; i < pagevec_count(pvec); i++) {
331 struct page *page = pvec->pages[i];
333 if (PagePrivate(page) && !TestSetPageLocked(page)) {
334 try_to_release_page(page, 0);
335 unlock_page(page);
341 * pagevec_lookup - gang pagecache lookup
342 * @pvec: Where the resulting pages are placed
343 * @mapping: The address_space to search
344 * @start: The starting page index
345 * @nr_pages: The maximum number of pages
347 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
348 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
349 * reference against the pages in @pvec.
351 * The search returns a group of mapping-contiguous pages with ascending
352 * indexes. There may be holes in the indices due to not-present pages.
354 * pagevec_lookup() returns the number of pages which were found.
356 unsigned int pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
357 pgoff_t start, unsigned int nr_pages)
359 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
360 return pagevec_count(pvec);
364 #ifdef CONFIG_SMP
366 * We tolerate a little inaccuracy to avoid ping-ponging the counter between
367 * CPUs
369 #define ACCT_THRESHOLD max(16, NR_CPUS * 2)
371 static DEFINE_PER_CPU(long, committed_space) = 0;
373 void vm_acct_memory(long pages)
375 long *local;
377 preempt_disable();
378 local = &__get_cpu_var(committed_space);
379 *local += pages;
380 if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) {
381 atomic_add(*local, &vm_committed_space);
382 *local = 0;
384 preempt_enable();
386 EXPORT_SYMBOL(vm_acct_memory);
388 #ifdef CONFIG_HOTPLUG_CPU
389 static void lru_drain_cache(unsigned int cpu)
391 struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu);
393 /* CPU is dead, so no locking needed. */
394 if (pagevec_count(pvec))
395 __pagevec_lru_add(pvec);
396 pvec = &per_cpu(lru_add_active_pvecs, cpu);
397 if (pagevec_count(pvec))
398 __pagevec_lru_add_active(pvec);
401 /* Drop the CPU's cached committed space back into the central pool. */
402 static int cpu_swap_callback(struct notifier_block *nfb,
403 unsigned long action,
404 void *hcpu)
406 long *committed;
408 committed = &per_cpu(committed_space, (long)hcpu);
409 if (action == CPU_DEAD) {
410 atomic_add(*committed, &vm_committed_space);
411 *committed = 0;
412 lru_drain_cache((long)hcpu);
414 return NOTIFY_OK;
416 #endif /* CONFIG_HOTPLUG_CPU */
417 #endif /* CONFIG_SMP */
419 #ifdef CONFIG_SMP
420 void percpu_counter_mod(struct percpu_counter *fbc, long amount)
422 long count;
423 long *pcount;
424 int cpu = get_cpu();
426 pcount = per_cpu_ptr(fbc->counters, cpu);
427 count = *pcount + amount;
428 if (count >= FBC_BATCH || count <= -FBC_BATCH) {
429 spin_lock(&fbc->lock);
430 fbc->count += count;
431 spin_unlock(&fbc->lock);
432 count = 0;
434 *pcount = count;
435 put_cpu();
437 EXPORT_SYMBOL(percpu_counter_mod);
438 #endif
441 * Perform any setup for the swap system
443 void __init swap_setup(void)
445 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
447 /* Use a smaller cluster for small-memory machines */
448 if (megs < 16)
449 page_cluster = 2;
450 else
451 page_cluster = 3;
453 * Right now other parts of the system means that we
454 * _really_ don't want to cluster much more
456 hotcpu_notifier(cpu_swap_callback, 0);