[PATCH] DVB: Documentation and Kconfig updazes
[linux-2.6/history.git] / mm / page-writeback.c
blob1ad6717ade9735787acee7936f3bb0c20027fcfe
1 /*
2 * mm/page-writeback.c.
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to writing back dirty pages at the
7 * address_space level.
9 * 10Apr2002 akpm@zip.com.au
10 * Initial version
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
33 * The maximum number of pages to writeout in a single bdflush/kupdate
34 * operation. We do this so we don't hold I_LOCK against an inode for
35 * enormous amounts of time, which would block a userspace task which has
36 * been forced to throttle against that inode. Also, the code reevaluates
37 * the dirty each time it has written this many pages.
39 #define MAX_WRITEBACK_PAGES 1024
42 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
43 * will look to see if it needs to force writeback or throttling.
45 static long ratelimit_pages = 32;
47 static long total_pages; /* The total number of pages in the machine. */
48 static int dirty_exceeded; /* Dirty mem may be over limit */
51 * When balance_dirty_pages decides that the caller needs to perform some
52 * non-background writeback, this is how many pages it will attempt to write.
53 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
54 * large amounts of I/O are submitted.
56 static inline long sync_writeback_pages(void)
58 return ratelimit_pages + ratelimit_pages / 2;
61 /* The following parameters are exported via /proc/sys/vm */
64 * Start background writeback (via pdflush) at this percentage
66 int dirty_background_ratio = 10;
69 * The generator of dirty data starts writeback at this percentage
71 int vm_dirty_ratio = 40;
74 * The interval between `kupdate'-style writebacks, in centiseconds
75 * (hundredths of a second)
77 int dirty_writeback_centisecs = 5 * 100;
80 * The longest number of centiseconds for which data is allowed to remain dirty
82 int dirty_expire_centisecs = 30 * 100;
84 /* End of sysctl-exported parameters */
87 static void background_writeout(unsigned long _min_pages);
90 * Work out the current dirty-memory clamping and background writeout
91 * thresholds.
93 * The main aim here is to lower them aggressively if there is a lot of mapped
94 * memory around. To avoid stressing page reclaim with lots of unreclaimable
95 * pages. It is better to clamp down on writers than to start swapping, and
96 * performing lots of scanning.
98 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
100 * We don't permit the clamping level to fall below 5% - that is getting rather
101 * excessive.
103 * We make sure that the background writeout level is below the adjusted
104 * clamping level.
106 static void
107 get_dirty_limits(struct page_state *ps, long *pbackground, long *pdirty)
109 int background_ratio; /* Percentages */
110 int dirty_ratio;
111 int unmapped_ratio;
112 long background;
113 long dirty;
114 struct task_struct *tsk;
116 get_page_state(ps);
118 unmapped_ratio = 100 - (ps->nr_mapped * 100) / total_pages;
120 dirty_ratio = vm_dirty_ratio;
121 if (dirty_ratio > unmapped_ratio / 2)
122 dirty_ratio = unmapped_ratio / 2;
124 if (dirty_ratio < 5)
125 dirty_ratio = 5;
127 background_ratio = dirty_background_ratio;
128 if (background_ratio >= dirty_ratio)
129 background_ratio = dirty_ratio / 2;
131 background = (background_ratio * total_pages) / 100;
132 dirty = (dirty_ratio * total_pages) / 100;
133 tsk = current;
134 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
135 background += background / 4;
136 dirty += dirty / 4;
138 *pbackground = background;
139 *pdirty = dirty;
143 * balance_dirty_pages() must be called by processes which are generating dirty
144 * data. It looks at the number of dirty pages in the machine and will force
145 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
146 * If we're over `background_thresh' then pdflush is woken to perform some
147 * writeout.
149 static void balance_dirty_pages(struct address_space *mapping)
151 struct page_state ps;
152 long nr_reclaimable;
153 long background_thresh;
154 long dirty_thresh;
155 unsigned long pages_written = 0;
156 unsigned long write_chunk = sync_writeback_pages();
158 struct backing_dev_info *bdi = mapping->backing_dev_info;
160 for (;;) {
161 struct writeback_control wbc = {
162 .bdi = bdi,
163 .sync_mode = WB_SYNC_NONE,
164 .older_than_this = NULL,
165 .nr_to_write = write_chunk,
168 get_dirty_limits(&ps, &background_thresh, &dirty_thresh);
169 nr_reclaimable = ps.nr_dirty + ps.nr_unstable;
170 if (nr_reclaimable + ps.nr_writeback <= dirty_thresh)
171 break;
173 dirty_exceeded = 1;
175 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
176 * Unstable writes are a feature of certain networked
177 * filesystems (i.e. NFS) in which data may have been
178 * written to the server's write cache, but has not yet
179 * been flushed to permanent storage.
181 if (nr_reclaimable) {
182 writeback_inodes(&wbc);
183 get_dirty_limits(&ps, &background_thresh,
184 &dirty_thresh);
185 nr_reclaimable = ps.nr_dirty + ps.nr_unstable;
186 if (nr_reclaimable + ps.nr_writeback <= dirty_thresh)
187 break;
188 pages_written += write_chunk - wbc.nr_to_write;
189 if (pages_written >= write_chunk)
190 break; /* We've done our duty */
192 blk_congestion_wait(WRITE, HZ/10);
195 if (nr_reclaimable + ps.nr_writeback <= dirty_thresh)
196 dirty_exceeded = 0;
198 if (!writeback_in_progress(bdi) && nr_reclaimable > background_thresh)
199 pdflush_operation(background_writeout, 0);
203 * balance_dirty_pages_ratelimited - balance dirty memory state
204 * @mapping - address_space which was dirtied
206 * Processes which are dirtying memory should call in here once for each page
207 * which was newly dirtied. The function will periodically check the system's
208 * dirty state and will initiate writeback if needed.
210 * On really big machines, get_page_state is expensive, so try to avoid calling
211 * it too often (ratelimiting). But once we're over the dirty memory limit we
212 * decrease the ratelimiting by a lot, to prevent individual processes from
213 * overshooting the limit by (ratelimit_pages) each.
215 void balance_dirty_pages_ratelimited(struct address_space *mapping)
217 static DEFINE_PER_CPU(int, ratelimits) = 0;
218 long ratelimit;
220 ratelimit = ratelimit_pages;
221 if (dirty_exceeded)
222 ratelimit = 8;
225 * Check the rate limiting. Also, we do not want to throttle real-time
226 * tasks in balance_dirty_pages(). Period.
228 if (get_cpu_var(ratelimits)++ >= ratelimit) {
229 __get_cpu_var(ratelimits) = 0;
230 put_cpu_var(ratelimits);
231 balance_dirty_pages(mapping);
232 return;
234 put_cpu_var(ratelimits);
236 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
239 * writeback at least _min_pages, and keep writing until the amount of dirty
240 * memory is less than the background threshold, or until we're all clean.
242 static void background_writeout(unsigned long _min_pages)
244 long min_pages = _min_pages;
245 struct writeback_control wbc = {
246 .bdi = NULL,
247 .sync_mode = WB_SYNC_NONE,
248 .older_than_this = NULL,
249 .nr_to_write = 0,
250 .nonblocking = 1,
253 for ( ; ; ) {
254 struct page_state ps;
255 long background_thresh;
256 long dirty_thresh;
258 get_dirty_limits(&ps, &background_thresh, &dirty_thresh);
259 if (ps.nr_dirty + ps.nr_unstable < background_thresh
260 && min_pages <= 0)
261 break;
262 wbc.encountered_congestion = 0;
263 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
264 writeback_inodes(&wbc);
265 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
266 if (wbc.nr_to_write > 0) {
267 /* Wrote less than expected */
268 if (wbc.encountered_congestion)
269 blk_congestion_wait(WRITE, HZ/10);
270 else
271 break;
277 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
278 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
279 * -1 if all pdflush threads were busy.
281 int wakeup_bdflush(long nr_pages)
283 if (nr_pages == 0) {
284 struct page_state ps;
286 get_page_state(&ps);
287 nr_pages = ps.nr_dirty + ps.nr_unstable;
289 return pdflush_operation(background_writeout, nr_pages);
292 static struct timer_list wb_timer;
295 * Periodic writeback of "old" data.
297 * Define "old": the first time one of an inode's pages is dirtied, we mark the
298 * dirtying-time in the inode's address_space. So this periodic writeback code
299 * just walks the superblock inode list, writing back any inodes which are
300 * older than a specific point in time.
302 * Try to run once per dirty_writeback_centisecs. But if a writeback event
303 * takes longer than a dirty_writeback_centisecs interval, then leave a
304 * one-second gap.
306 * older_than_this takes precedence over nr_to_write. So we'll only write back
307 * all dirty pages if they are all attached to "old" mappings.
309 static void wb_kupdate(unsigned long arg)
311 unsigned long oldest_jif;
312 unsigned long start_jif;
313 unsigned long next_jif;
314 long nr_to_write;
315 struct page_state ps;
316 struct writeback_control wbc = {
317 .bdi = NULL,
318 .sync_mode = WB_SYNC_NONE,
319 .older_than_this = &oldest_jif,
320 .nr_to_write = 0,
321 .nonblocking = 1,
322 .for_kupdate = 1,
325 sync_supers();
327 get_page_state(&ps);
328 oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100;
329 start_jif = jiffies;
330 next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100;
331 nr_to_write = ps.nr_dirty + ps.nr_unstable +
332 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
333 while (nr_to_write > 0) {
334 wbc.encountered_congestion = 0;
335 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
336 writeback_inodes(&wbc);
337 if (wbc.nr_to_write > 0) {
338 if (wbc.encountered_congestion)
339 blk_congestion_wait(WRITE, HZ/10);
340 else
341 break; /* All the old data is written */
343 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
345 if (time_before(next_jif, jiffies + HZ))
346 next_jif = jiffies + HZ;
347 if (dirty_writeback_centisecs)
348 mod_timer(&wb_timer, next_jif);
352 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
354 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
355 struct file *file, void __user *buffer, size_t *length)
357 proc_dointvec(table, write, file, buffer, length);
358 if (dirty_writeback_centisecs) {
359 mod_timer(&wb_timer,
360 jiffies + (dirty_writeback_centisecs * HZ) / 100);
361 } else {
362 del_timer(&wb_timer);
364 return 0;
367 static void wb_timer_fn(unsigned long unused)
369 if (pdflush_operation(wb_kupdate, 0) < 0)
370 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
375 * If ratelimit_pages is too high then we can get into dirty-data overload
376 * if a large number of processes all perform writes at the same time.
377 * If it is too low then SMP machines will call the (expensive) get_page_state
378 * too often.
380 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
381 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
382 * thresholds before writeback cuts in.
384 * But the limit should not be set too high. Because it also controls the
385 * amount of memory which the balance_dirty_pages() caller has to write back.
386 * If this is too large then the caller will block on the IO queue all the
387 * time. So limit it to four megabytes - the balance_dirty_pages() caller
388 * will write six megabyte chunks, max.
391 static void set_ratelimit(void)
393 ratelimit_pages = total_pages / (num_online_cpus() * 32);
394 if (ratelimit_pages < 16)
395 ratelimit_pages = 16;
396 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
397 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
400 static int
401 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
403 set_ratelimit();
404 return 0;
407 static struct notifier_block ratelimit_nb = {
408 .notifier_call = ratelimit_handler,
409 .next = NULL,
413 * If the machine has a large highmem:lowmem ratio then scale back the default
414 * dirty memory thresholds: allowing too much dirty highmem pins an excessive
415 * number of buffer_heads.
417 void __init page_writeback_init(void)
419 long buffer_pages = nr_free_buffer_pages();
420 long correction;
422 total_pages = nr_free_pagecache_pages();
424 correction = (100 * 4 * buffer_pages) / total_pages;
426 if (correction < 100) {
427 dirty_background_ratio *= correction;
428 dirty_background_ratio /= 100;
429 vm_dirty_ratio *= correction;
430 vm_dirty_ratio /= 100;
433 init_timer(&wb_timer);
434 wb_timer.expires = jiffies + (dirty_writeback_centisecs * HZ) / 100;
435 wb_timer.data = 0;
436 wb_timer.function = wb_timer_fn;
437 add_timer(&wb_timer);
438 set_ratelimit();
439 register_cpu_notifier(&ratelimit_nb);
442 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
444 if (mapping->a_ops->writepages)
445 return mapping->a_ops->writepages(mapping, wbc);
446 return generic_writepages(mapping, wbc);
450 * write_one_page - write out a single page and optionally wait on I/O
452 * @page - the page to write
453 * @wait - if true, wait on writeout
455 * The page must be locked by the caller and will be unlocked upon return.
457 * write_one_page() returns a negative error code if I/O failed.
459 int write_one_page(struct page *page, int wait)
461 struct address_space *mapping = page->mapping;
462 int ret = 0;
463 struct writeback_control wbc = {
464 .sync_mode = WB_SYNC_ALL,
465 .nr_to_write = 1,
468 BUG_ON(!PageLocked(page));
470 if (wait)
471 wait_on_page_writeback(page);
473 spin_lock(&mapping->page_lock);
474 list_del(&page->list);
475 if (test_clear_page_dirty(page)) {
476 list_add(&page->list, &mapping->locked_pages);
477 page_cache_get(page);
478 spin_unlock(&mapping->page_lock);
479 ret = mapping->a_ops->writepage(page, &wbc);
480 if (ret == 0 && wait) {
481 wait_on_page_writeback(page);
482 if (PageError(page))
483 ret = -EIO;
485 page_cache_release(page);
486 } else {
487 list_add(&page->list, &mapping->clean_pages);
488 spin_unlock(&mapping->page_lock);
489 unlock_page(page);
491 return ret;
493 EXPORT_SYMBOL(write_one_page);
496 * For address_spaces which do not use buffers. Just set the page's dirty bit
497 * and move it to the dirty_pages list. Also perform space reservation if
498 * required.
500 * __set_page_dirty_nobuffers() may return -ENOSPC. But if it does, the page
501 * is still safe, as long as it actually manages to find some blocks at
502 * writeback time.
504 * This is also used when a single buffer is being dirtied: we want to set the
505 * page dirty in that case, but not all the buffers. This is a "bottom-up"
506 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
508 int __set_page_dirty_nobuffers(struct page *page)
510 int ret = 0;
512 if (!TestSetPageDirty(page)) {
513 struct address_space *mapping = page->mapping;
515 if (mapping) {
516 spin_lock(&mapping->page_lock);
517 if (page->mapping) { /* Race with truncate? */
518 BUG_ON(page->mapping != mapping);
519 if (!mapping->backing_dev_info->memory_backed)
520 inc_page_state(nr_dirty);
521 list_del(&page->list);
522 list_add(&page->list, &mapping->dirty_pages);
524 spin_unlock(&mapping->page_lock);
525 if (!PageSwapCache(page))
526 __mark_inode_dirty(mapping->host,
527 I_DIRTY_PAGES);
530 return ret;
532 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
535 * set_page_dirty() is racy if the caller has no reference against
536 * page->mapping->host, and if the page is unlocked. This is because another
537 * CPU could truncate the page off the mapping and then free the mapping.
539 * Usually, the page _is_ locked, or the caller is a user-space process which
540 * holds a reference on the inode by having an open file.
542 * In other cases, the page should be locked before running set_page_dirty().
544 int set_page_dirty_lock(struct page *page)
546 int ret;
548 lock_page(page);
549 ret = set_page_dirty(page);
550 unlock_page(page);
551 return ret;
553 EXPORT_SYMBOL(set_page_dirty_lock);
556 * Clear a page's dirty flag, while caring for dirty memory accounting.
557 * Returns true if the page was previously dirty.
559 int test_clear_page_dirty(struct page *page)
561 if (TestClearPageDirty(page)) {
562 struct address_space *mapping = page->mapping;
564 if (mapping && !mapping->backing_dev_info->memory_backed)
565 dec_page_state(nr_dirty);
566 return 1;
568 return 0;
570 EXPORT_SYMBOL(test_clear_page_dirty);