[PATCH] DVB: Documentation and Kconfig updazes
[linux-2.6/history.git] / fs / direct-io.c
blob4711d134cfd95015f7e886b4213295a90a36d35a
1 /*
2 * fs/direct-io.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * O_DIRECT
8 * 04Jul2002 akpm@zip.com.au
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 akpm@zip.com.au
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/bio.h>
31 #include <linux/wait.h>
32 #include <linux/err.h>
33 #include <linux/blkdev.h>
34 #include <linux/buffer_head.h>
35 #include <linux/rwsem.h>
36 #include <linux/uio.h>
37 #include <asm/atomic.h>
40 * How many user pages to map in one call to get_user_pages(). This determines
41 * the size of a structure on the stack.
43 #define DIO_PAGES 64
46 * This code generally works in units of "dio_blocks". A dio_block is
47 * somewhere between the hard sector size and the filesystem block size. it
48 * is determined on a per-invocation basis. When talking to the filesystem
49 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
50 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
51 * to bio_block quantities by shifting left by blkfactor.
53 * If blkfactor is zero then the user's request was aligned to the filesystem's
54 * blocksize.
57 struct dio {
58 /* BIO submission state */
59 struct bio *bio; /* bio under assembly */
60 struct inode *inode;
61 int rw;
62 unsigned blkbits; /* doesn't change */
63 unsigned blkfactor; /* When we're using an alignment which
64 is finer than the filesystem's soft
65 blocksize, this specifies how much
66 finer. blkfactor=2 means 1/4-block
67 alignment. Does not change */
68 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
69 been performed at the start of a
70 write */
71 int pages_in_io; /* approximate total IO pages */
72 sector_t block_in_file; /* Current offset into the underlying
73 file in dio_block units. */
74 unsigned blocks_available; /* At block_in_file. changes */
75 sector_t final_block_in_request;/* doesn't change */
76 unsigned first_block_in_page; /* doesn't change, Used only once */
77 int boundary; /* prev block is at a boundary */
78 int reap_counter; /* rate limit reaping */
79 get_blocks_t *get_blocks; /* block mapping function */
80 dio_iodone_t *end_io; /* IO completion function */
81 sector_t final_block_in_bio; /* current final block in bio + 1 */
82 sector_t next_block_for_io; /* next block to be put under IO,
83 in dio_blocks units */
84 struct buffer_head map_bh; /* last get_blocks() result */
87 * Deferred addition of a page to the dio. These variables are
88 * private to dio_send_cur_page(), submit_page_section() and
89 * dio_bio_add_page().
91 struct page *cur_page; /* The page */
92 unsigned cur_page_offset; /* Offset into it, in bytes */
93 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
94 sector_t cur_page_block; /* Where it starts */
97 * Page fetching state. These variables belong to dio_refill_pages().
99 int curr_page; /* changes */
100 int total_pages; /* doesn't change */
101 unsigned long curr_user_address;/* changes */
104 * Page queue. These variables belong to dio_refill_pages() and
105 * dio_get_page().
107 struct page *pages[DIO_PAGES]; /* page buffer */
108 unsigned head; /* next page to process */
109 unsigned tail; /* last valid page + 1 */
110 int page_errors; /* errno from get_user_pages() */
112 /* BIO completion state */
113 atomic_t bio_count; /* nr bios to be completed */
114 atomic_t bios_in_flight; /* nr bios in flight */
115 spinlock_t bio_list_lock; /* protects bio_list */
116 struct bio *bio_list; /* singly linked via bi_private */
117 struct task_struct *waiter; /* waiting task (NULL if none) */
119 /* AIO related stuff */
120 struct kiocb *iocb; /* kiocb */
121 int is_async; /* is IO async ? */
122 int result; /* IO result */
126 * How many pages are in the queue?
128 static inline unsigned dio_pages_present(struct dio *dio)
130 return dio->tail - dio->head;
134 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
136 static int dio_refill_pages(struct dio *dio)
138 int ret;
139 int nr_pages;
141 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
142 down_read(&current->mm->mmap_sem);
143 ret = get_user_pages(
144 current, /* Task for fault acounting */
145 current->mm, /* whose pages? */
146 dio->curr_user_address, /* Where from? */
147 nr_pages, /* How many pages? */
148 dio->rw == READ, /* Write to memory? */
149 0, /* force (?) */
150 &dio->pages[0],
151 NULL); /* vmas */
152 up_read(&current->mm->mmap_sem);
154 if (ret < 0 && dio->blocks_available && (dio->rw == WRITE)) {
156 * A memory fault, but the filesystem has some outstanding
157 * mapped blocks. We need to use those blocks up to avoid
158 * leaking stale data in the file.
160 if (dio->page_errors == 0)
161 dio->page_errors = ret;
162 dio->pages[0] = ZERO_PAGE(dio->curr_user_address);
163 dio->head = 0;
164 dio->tail = 1;
165 ret = 0;
166 goto out;
169 if (ret >= 0) {
170 dio->curr_user_address += ret * PAGE_SIZE;
171 dio->curr_page += ret;
172 dio->head = 0;
173 dio->tail = ret;
174 ret = 0;
176 out:
177 return ret;
181 * Get another userspace page. Returns an ERR_PTR on error. Pages are
182 * buffered inside the dio so that we can call get_user_pages() against a
183 * decent number of pages, less frequently. To provide nicer use of the
184 * L1 cache.
186 static struct page *dio_get_page(struct dio *dio)
188 if (dio_pages_present(dio) == 0) {
189 int ret;
191 ret = dio_refill_pages(dio);
192 if (ret)
193 return ERR_PTR(ret);
194 BUG_ON(dio_pages_present(dio) == 0);
196 return dio->pages[dio->head++];
200 * Called when all DIO BIO I/O has been completed - let the filesystem
201 * know, if it registered an interest earlier via get_blocks. Pass the
202 * private field of the map buffer_head so that filesystems can use it
203 * to hold additional state between get_blocks calls and dio_complete.
205 static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes)
207 if (dio->end_io)
208 dio->end_io(dio->inode, offset, bytes, dio->map_bh.b_private);
212 * Called when a BIO has been processed. If the count goes to zero then IO is
213 * complete and we can signal this to the AIO layer.
215 static void finished_one_bio(struct dio *dio)
217 if (atomic_dec_and_test(&dio->bio_count)) {
218 if (dio->is_async) {
219 dio_complete(dio, dio->block_in_file << dio->blkbits,
220 dio->result);
221 aio_complete(dio->iocb, dio->result, 0);
222 kfree(dio);
227 static int dio_bio_complete(struct dio *dio, struct bio *bio);
229 * Asynchronous IO callback.
231 static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error)
233 struct dio *dio = bio->bi_private;
235 if (bio->bi_size)
236 return 1;
238 /* cleanup the bio */
239 dio_bio_complete(dio, bio);
240 return 0;
244 * The BIO completion handler simply queues the BIO up for the process-context
245 * handler.
247 * During I/O bi_private points at the dio. After I/O, bi_private is used to
248 * implement a singly-linked list of completed BIOs, at dio->bio_list.
250 static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error)
252 struct dio *dio = bio->bi_private;
253 unsigned long flags;
255 if (bio->bi_size)
256 return 1;
258 spin_lock_irqsave(&dio->bio_list_lock, flags);
259 bio->bi_private = dio->bio_list;
260 dio->bio_list = bio;
261 atomic_dec(&dio->bios_in_flight);
262 if (dio->waiter && atomic_read(&dio->bios_in_flight) == 0)
263 wake_up_process(dio->waiter);
264 spin_unlock_irqrestore(&dio->bio_list_lock, flags);
265 return 0;
268 static int
269 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
270 sector_t first_sector, int nr_vecs)
272 struct bio *bio;
274 bio = bio_alloc(GFP_KERNEL, nr_vecs);
275 if (bio == NULL)
276 return -ENOMEM;
278 bio->bi_bdev = bdev;
279 bio->bi_sector = first_sector;
280 if (dio->is_async)
281 bio->bi_end_io = dio_bio_end_aio;
282 else
283 bio->bi_end_io = dio_bio_end_io;
285 dio->bio = bio;
286 return 0;
290 * In the AIO read case we speculatively dirty the pages before starting IO.
291 * During IO completion, any of these pages which happen to have been written
292 * back will be redirtied by bio_check_pages_dirty().
294 static void dio_bio_submit(struct dio *dio)
296 struct bio *bio = dio->bio;
298 bio->bi_private = dio;
299 atomic_inc(&dio->bio_count);
300 atomic_inc(&dio->bios_in_flight);
301 if (dio->is_async && dio->rw == READ)
302 bio_set_pages_dirty(bio);
303 submit_bio(dio->rw, bio);
305 dio->bio = NULL;
306 dio->boundary = 0;
310 * Release any resources in case of a failure
312 static void dio_cleanup(struct dio *dio)
314 while (dio_pages_present(dio))
315 page_cache_release(dio_get_page(dio));
319 * Wait for the next BIO to complete. Remove it and return it.
321 static struct bio *dio_await_one(struct dio *dio)
323 unsigned long flags;
324 struct bio *bio;
326 spin_lock_irqsave(&dio->bio_list_lock, flags);
327 while (dio->bio_list == NULL) {
328 set_current_state(TASK_UNINTERRUPTIBLE);
329 if (dio->bio_list == NULL) {
330 dio->waiter = current;
331 spin_unlock_irqrestore(&dio->bio_list_lock, flags);
332 blk_run_queues();
333 io_schedule();
334 spin_lock_irqsave(&dio->bio_list_lock, flags);
335 dio->waiter = NULL;
337 set_current_state(TASK_RUNNING);
339 bio = dio->bio_list;
340 dio->bio_list = bio->bi_private;
341 spin_unlock_irqrestore(&dio->bio_list_lock, flags);
342 return bio;
346 * Process one completed BIO. No locks are held.
348 static int dio_bio_complete(struct dio *dio, struct bio *bio)
350 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
351 struct bio_vec *bvec = bio->bi_io_vec;
352 int page_no;
354 if (!uptodate)
355 dio->result = -EIO;
357 if (dio->is_async && dio->rw == READ) {
358 bio_check_pages_dirty(bio); /* transfers ownership */
359 } else {
360 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
361 struct page *page = bvec[page_no].bv_page;
363 if (dio->rw == READ)
364 set_page_dirty_lock(page);
365 page_cache_release(page);
367 bio_put(bio);
369 finished_one_bio(dio);
370 return uptodate ? 0 : -EIO;
374 * Wait on and process all in-flight BIOs.
376 static int dio_await_completion(struct dio *dio)
378 int ret = 0;
380 if (dio->bio)
381 dio_bio_submit(dio);
383 while (atomic_read(&dio->bio_count)) {
384 struct bio *bio = dio_await_one(dio);
385 int ret2;
387 ret2 = dio_bio_complete(dio, bio);
388 if (ret == 0)
389 ret = ret2;
391 return ret;
395 * A really large O_DIRECT read or write can generate a lot of BIOs. So
396 * to keep the memory consumption sane we periodically reap any completed BIOs
397 * during the BIO generation phase.
399 * This also helps to limit the peak amount of pinned userspace memory.
401 static int dio_bio_reap(struct dio *dio)
403 int ret = 0;
405 if (dio->reap_counter++ >= 64) {
406 while (dio->bio_list) {
407 unsigned long flags;
408 struct bio *bio;
410 spin_lock_irqsave(&dio->bio_list_lock, flags);
411 bio = dio->bio_list;
412 dio->bio_list = bio->bi_private;
413 spin_unlock_irqrestore(&dio->bio_list_lock, flags);
414 ret = dio_bio_complete(dio, bio);
416 dio->reap_counter = 0;
418 return ret;
422 * Call into the fs to map some more disk blocks. We record the current number
423 * of available blocks at dio->blocks_available. These are in units of the
424 * fs blocksize, (1 << inode->i_blkbits).
426 * The fs is allowed to map lots of blocks at once. If it wants to do that,
427 * it uses the passed inode-relative block number as the file offset, as usual.
429 * get_blocks() is passed the number of i_blkbits-sized blocks which direct_io
430 * has remaining to do. The fs should not map more than this number of blocks.
432 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
433 * indicate how much contiguous disk space has been made available at
434 * bh->b_blocknr.
436 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
437 * This isn't very efficient...
439 * In the case of filesystem holes: the fs may return an arbitrarily-large
440 * hole by returning an appropriate value in b_size and by clearing
441 * buffer_mapped(). However the direct-io code will only process holes one
442 * block at a time - it will repeatedly call get_blocks() as it walks the hole.
444 static int get_more_blocks(struct dio *dio)
446 int ret;
447 struct buffer_head *map_bh = &dio->map_bh;
448 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
449 unsigned long fs_count; /* Number of filesystem-sized blocks */
450 unsigned long dio_count;/* Number of dio_block-sized blocks */
451 unsigned long blkmask;
454 * If there was a memory error and we've overwritten all the
455 * mapped blocks then we can now return that memory error
457 ret = dio->page_errors;
458 if (ret == 0) {
459 map_bh->b_state = 0;
460 map_bh->b_size = 0;
461 BUG_ON(dio->block_in_file >= dio->final_block_in_request);
462 fs_startblk = dio->block_in_file >> dio->blkfactor;
463 dio_count = dio->final_block_in_request - dio->block_in_file;
464 fs_count = dio_count >> dio->blkfactor;
465 blkmask = (1 << dio->blkfactor) - 1;
466 if (dio_count & blkmask)
467 fs_count++;
469 ret = (*dio->get_blocks)(dio->inode, fs_startblk, fs_count,
470 map_bh, dio->rw == WRITE);
472 return ret;
476 * There is no bio. Make one now.
478 static int dio_new_bio(struct dio *dio, sector_t start_sector)
480 sector_t sector;
481 int ret, nr_pages;
483 ret = dio_bio_reap(dio);
484 if (ret)
485 goto out;
486 sector = start_sector << (dio->blkbits - 9);
487 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
488 BUG_ON(nr_pages <= 0);
489 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
490 dio->boundary = 0;
491 out:
492 return ret;
496 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
497 * that was successful then update final_block_in_bio and take a ref against
498 * the just-added page.
500 * Return zero on success. Non-zero means the caller needs to start a new BIO.
502 static int dio_bio_add_page(struct dio *dio)
504 int ret;
506 ret = bio_add_page(dio->bio, dio->cur_page,
507 dio->cur_page_len, dio->cur_page_offset);
508 if (ret == dio->cur_page_len) {
509 dio->pages_in_io--;
510 page_cache_get(dio->cur_page);
511 dio->final_block_in_bio = dio->cur_page_block +
512 (dio->cur_page_len >> dio->blkbits);
513 ret = 0;
514 } else {
515 ret = 1;
517 return ret;
521 * Put cur_page under IO. The section of cur_page which is described by
522 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
523 * starts on-disk at cur_page_block.
525 * We take a ref against the page here (on behalf of its presence in the bio).
527 * The caller of this function is responsible for removing cur_page from the
528 * dio, and for dropping the refcount which came from that presence.
530 static int dio_send_cur_page(struct dio *dio)
532 int ret = 0;
534 if (dio->bio) {
536 * See whether this new request is contiguous with the old
538 if (dio->final_block_in_bio != dio->cur_page_block)
539 dio_bio_submit(dio);
541 * Submit now if the underlying fs is about to perform a
542 * metadata read
544 if (dio->boundary)
545 dio_bio_submit(dio);
548 if (dio->bio == NULL) {
549 ret = dio_new_bio(dio, dio->cur_page_block);
550 if (ret)
551 goto out;
554 if (dio_bio_add_page(dio) != 0) {
555 dio_bio_submit(dio);
556 ret = dio_new_bio(dio, dio->cur_page_block);
557 if (ret == 0) {
558 ret = dio_bio_add_page(dio);
559 BUG_ON(ret != 0);
562 out:
563 return ret;
567 * An autonomous function to put a chunk of a page under deferred IO.
569 * The caller doesn't actually know (or care) whether this piece of page is in
570 * a BIO, or is under IO or whatever. We just take care of all possible
571 * situations here. The separation between the logic of do_direct_IO() and
572 * that of submit_page_section() is important for clarity. Please don't break.
574 * The chunk of page starts on-disk at blocknr.
576 * We perform deferred IO, by recording the last-submitted page inside our
577 * private part of the dio structure. If possible, we just expand the IO
578 * across that page here.
580 * If that doesn't work out then we put the old page into the bio and add this
581 * page to the dio instead.
583 static int
584 submit_page_section(struct dio *dio, struct page *page,
585 unsigned offset, unsigned len, sector_t blocknr)
587 int ret = 0;
590 * Can we just grow the current page's presence in the dio?
592 if ( (dio->cur_page == page) &&
593 (dio->cur_page_offset + dio->cur_page_len == offset) &&
594 (dio->cur_page_block +
595 (dio->cur_page_len >> dio->blkbits) == blocknr)) {
596 dio->cur_page_len += len;
599 * If dio->boundary then we want to schedule the IO now to
600 * avoid metadata seeks.
602 if (dio->boundary) {
603 ret = dio_send_cur_page(dio);
604 page_cache_release(dio->cur_page);
605 dio->cur_page = NULL;
607 goto out;
611 * If there's a deferred page already there then send it.
613 if (dio->cur_page) {
614 ret = dio_send_cur_page(dio);
615 page_cache_release(dio->cur_page);
616 dio->cur_page = NULL;
617 if (ret)
618 goto out;
621 page_cache_get(page); /* It is in dio */
622 dio->cur_page = page;
623 dio->cur_page_offset = offset;
624 dio->cur_page_len = len;
625 dio->cur_page_block = blocknr;
626 out:
627 return ret;
631 * Clean any dirty buffers in the blockdev mapping which alias newly-created
632 * file blocks. Only called for S_ISREG files - blockdevs do not set
633 * buffer_new
635 static void clean_blockdev_aliases(struct dio *dio)
637 unsigned i;
639 for (i = 0; i < dio->blocks_available; i++) {
640 unmap_underlying_metadata(dio->map_bh.b_bdev,
641 dio->map_bh.b_blocknr + i);
646 * If we are not writing the entire block and get_block() allocated
647 * the block for us, we need to fill-in the unused portion of the
648 * block with zeros. This happens only if user-buffer, fileoffset or
649 * io length is not filesystem block-size multiple.
651 * `end' is zero if we're doing the start of the IO, 1 at the end of the
652 * IO.
654 static void dio_zero_block(struct dio *dio, int end)
656 unsigned dio_blocks_per_fs_block;
657 unsigned this_chunk_blocks; /* In dio_blocks */
658 unsigned this_chunk_bytes;
659 struct page *page;
661 dio->start_zero_done = 1;
662 if (!dio->blkfactor || !buffer_new(&dio->map_bh))
663 return;
665 dio_blocks_per_fs_block = 1 << dio->blkfactor;
666 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
668 if (!this_chunk_blocks)
669 return;
672 * We need to zero out part of an fs block. It is either at the
673 * beginning or the end of the fs block.
675 if (end)
676 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
678 this_chunk_bytes = this_chunk_blocks << dio->blkbits;
680 page = ZERO_PAGE(dio->curr_user_address);
681 if (submit_page_section(dio, page, 0, this_chunk_bytes,
682 dio->next_block_for_io))
683 return;
685 dio->next_block_for_io += this_chunk_blocks;
689 * Walk the user pages, and the file, mapping blocks to disk and generating
690 * a sequence of (page,offset,len,block) mappings. These mappings are injected
691 * into submit_page_section(), which takes care of the next stage of submission
693 * Direct IO against a blockdev is different from a file. Because we can
694 * happily perform page-sized but 512-byte aligned IOs. It is important that
695 * blockdev IO be able to have fine alignment and large sizes.
697 * So what we do is to permit the ->get_blocks function to populate bh.b_size
698 * with the size of IO which is permitted at this offset and this i_blkbits.
700 * For best results, the blockdev should be set up with 512-byte i_blkbits and
701 * it should set b_size to PAGE_SIZE or more inside get_blocks(). This gives
702 * fine alignment but still allows this function to work in PAGE_SIZE units.
704 static int do_direct_IO(struct dio *dio)
706 const unsigned blkbits = dio->blkbits;
707 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
708 struct page *page;
709 unsigned block_in_page;
710 struct buffer_head *map_bh = &dio->map_bh;
711 int ret = 0;
713 /* The I/O can start at any block offset within the first page */
714 block_in_page = dio->first_block_in_page;
716 while (dio->block_in_file < dio->final_block_in_request) {
717 page = dio_get_page(dio);
718 if (IS_ERR(page)) {
719 ret = PTR_ERR(page);
720 goto out;
723 while (block_in_page < blocks_per_page) {
724 unsigned offset_in_page = block_in_page << blkbits;
725 unsigned this_chunk_bytes; /* # of bytes mapped */
726 unsigned this_chunk_blocks; /* # of blocks */
727 unsigned u;
729 if (dio->blocks_available == 0) {
731 * Need to go and map some more disk
733 unsigned long blkmask;
734 unsigned long dio_remainder;
736 ret = get_more_blocks(dio);
737 if (ret) {
738 page_cache_release(page);
739 goto out;
741 if (!buffer_mapped(map_bh))
742 goto do_holes;
744 dio->blocks_available =
745 map_bh->b_size >> dio->blkbits;
746 dio->next_block_for_io =
747 map_bh->b_blocknr << dio->blkfactor;
748 if (buffer_new(map_bh))
749 clean_blockdev_aliases(dio);
751 if (!dio->blkfactor)
752 goto do_holes;
754 blkmask = (1 << dio->blkfactor) - 1;
755 dio_remainder = (dio->block_in_file & blkmask);
758 * If we are at the start of IO and that IO
759 * starts partway into a fs-block,
760 * dio_remainder will be non-zero. If the IO
761 * is a read then we can simply advance the IO
762 * cursor to the first block which is to be
763 * read. But if the IO is a write and the
764 * block was newly allocated we cannot do that;
765 * the start of the fs block must be zeroed out
766 * on-disk
768 if (!buffer_new(map_bh))
769 dio->next_block_for_io += dio_remainder;
770 dio->blocks_available -= dio_remainder;
772 do_holes:
773 /* Handle holes */
774 if (!buffer_mapped(map_bh)) {
775 char *kaddr;
777 if (dio->block_in_file >=
778 i_size_read(dio->inode)>>blkbits) {
779 /* We hit eof */
780 page_cache_release(page);
781 goto out;
783 kaddr = kmap_atomic(page, KM_USER0);
784 memset(kaddr + (block_in_page << blkbits),
785 0, 1 << blkbits);
786 flush_dcache_page(page);
787 kunmap_atomic(kaddr, KM_USER0);
788 dio->block_in_file++;
789 block_in_page++;
790 goto next_block;
794 * If we're performing IO which has an alignment which
795 * is finer than the underlying fs, go check to see if
796 * we must zero out the start of this block.
798 if (unlikely(dio->blkfactor && !dio->start_zero_done))
799 dio_zero_block(dio, 0);
802 * Work out, in this_chunk_blocks, how much disk we
803 * can add to this page
805 this_chunk_blocks = dio->blocks_available;
806 u = (PAGE_SIZE - offset_in_page) >> blkbits;
807 if (this_chunk_blocks > u)
808 this_chunk_blocks = u;
809 u = dio->final_block_in_request - dio->block_in_file;
810 if (this_chunk_blocks > u)
811 this_chunk_blocks = u;
812 this_chunk_bytes = this_chunk_blocks << blkbits;
813 BUG_ON(this_chunk_bytes == 0);
815 dio->boundary = buffer_boundary(map_bh);
816 ret = submit_page_section(dio, page, offset_in_page,
817 this_chunk_bytes, dio->next_block_for_io);
818 if (ret) {
819 page_cache_release(page);
820 goto out;
822 dio->next_block_for_io += this_chunk_blocks;
824 dio->block_in_file += this_chunk_blocks;
825 block_in_page += this_chunk_blocks;
826 dio->blocks_available -= this_chunk_blocks;
827 next_block:
828 if (dio->block_in_file > dio->final_block_in_request)
829 BUG();
830 if (dio->block_in_file == dio->final_block_in_request)
831 break;
834 /* Drop the ref which was taken in get_user_pages() */
835 page_cache_release(page);
836 block_in_page = 0;
838 out:
839 return ret;
842 static int
843 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
844 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
845 unsigned blkbits, get_blocks_t get_blocks, dio_iodone_t end_io)
847 unsigned long user_addr;
848 int seg;
849 int ret = 0;
850 int ret2;
851 struct dio *dio;
852 size_t bytes;
854 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
855 if (!dio)
856 return -ENOMEM;
857 dio->is_async = !is_sync_kiocb(iocb);
859 dio->bio = NULL;
860 dio->inode = inode;
861 dio->rw = rw;
862 dio->blkbits = blkbits;
863 dio->blkfactor = inode->i_blkbits - blkbits;
864 dio->start_zero_done = 0;
865 dio->block_in_file = offset >> blkbits;
866 dio->blocks_available = 0;
868 dio->cur_page = NULL;
870 dio->boundary = 0;
871 dio->reap_counter = 0;
872 dio->get_blocks = get_blocks;
873 dio->end_io = end_io;
874 dio->map_bh.b_private = NULL;
875 dio->final_block_in_bio = -1;
876 dio->next_block_for_io = -1;
878 dio->page_errors = 0;
879 dio->result = 0;
880 dio->iocb = iocb;
883 * BIO completion state.
885 * ->bio_count starts out at one, and we decrement it to zero after all
886 * BIOs are submitted. This to avoid the situation where a really fast
887 * (or synchronous) device could take the count to zero while we're
888 * still submitting BIOs.
890 atomic_set(&dio->bio_count, 1);
891 atomic_set(&dio->bios_in_flight, 0);
892 spin_lock_init(&dio->bio_list_lock);
893 dio->bio_list = NULL;
894 dio->waiter = NULL;
896 dio->pages_in_io = 0;
897 for (seg = 0; seg < nr_segs; seg++)
898 dio->pages_in_io += (iov[seg].iov_len >> blkbits) + 2;
900 for (seg = 0; seg < nr_segs; seg++) {
901 user_addr = (unsigned long)iov[seg].iov_base;
902 bytes = iov[seg].iov_len;
904 /* Index into the first page of the first block */
905 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
906 dio->final_block_in_request = dio->block_in_file +
907 (bytes >> blkbits);
908 /* Page fetching state */
909 dio->head = 0;
910 dio->tail = 0;
911 dio->curr_page = 0;
913 dio->total_pages = 0;
914 if (user_addr & (PAGE_SIZE-1)) {
915 dio->total_pages++;
916 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
918 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
919 dio->curr_user_address = user_addr;
921 ret = do_direct_IO(dio);
923 dio->result += iov[seg].iov_len -
924 ((dio->final_block_in_request - dio->block_in_file) <<
925 blkbits);
927 if (ret) {
928 dio_cleanup(dio);
929 break;
931 } /* end iovec loop */
934 * There may be some unwritten disk at the end of a part-written
935 * fs-block-sized block. Go zero that now.
937 dio_zero_block(dio, 1);
939 if (dio->cur_page) {
940 ret2 = dio_send_cur_page(dio);
941 if (ret == 0)
942 ret = ret2;
943 page_cache_release(dio->cur_page);
944 dio->cur_page = NULL;
946 if (dio->bio)
947 dio_bio_submit(dio);
950 * It is possible that, we return short IO due to end of file.
951 * In that case, we need to release all the pages we got hold on.
953 dio_cleanup(dio);
956 * OK, all BIOs are submitted, so we can decrement bio_count to truly
957 * reflect the number of to-be-processed BIOs.
959 if (dio->is_async) {
960 if (ret == 0)
961 ret = dio->result; /* Bytes written */
962 finished_one_bio(dio); /* This can free the dio */
963 blk_run_queues();
964 } else {
965 finished_one_bio(dio);
966 ret2 = dio_await_completion(dio);
967 if (ret == 0)
968 ret = ret2;
969 if (ret == 0)
970 ret = dio->page_errors;
971 if (ret == 0 && dio->result) {
972 loff_t i_size = i_size_read(inode);
974 ret = dio->result;
976 * Adjust the return value if the read crossed a
977 * non-block-aligned EOF.
979 if (rw == READ && (offset + ret > i_size))
980 ret = i_size - offset;
982 dio_complete(dio, offset, ret);
983 kfree(dio);
985 return ret;
989 * This is a library function for use by filesystem drivers.
992 blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
993 struct block_device *bdev, const struct iovec *iov, loff_t offset,
994 unsigned long nr_segs, get_blocks_t get_blocks, dio_iodone_t end_io)
996 int seg;
997 size_t size;
998 unsigned long addr;
999 unsigned blkbits = inode->i_blkbits;
1000 unsigned bdev_blkbits = 0;
1001 unsigned blocksize_mask = (1 << blkbits) - 1;
1002 ssize_t retval = -EINVAL;
1004 if (bdev)
1005 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1007 if (offset & blocksize_mask) {
1008 if (bdev)
1009 blkbits = bdev_blkbits;
1010 blocksize_mask = (1 << blkbits) - 1;
1011 if (offset & blocksize_mask)
1012 goto out;
1015 /* Check the memory alignment. Blocks cannot straddle pages */
1016 for (seg = 0; seg < nr_segs; seg++) {
1017 addr = (unsigned long)iov[seg].iov_base;
1018 size = iov[seg].iov_len;
1019 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1020 if (bdev)
1021 blkbits = bdev_blkbits;
1022 blocksize_mask = (1 << blkbits) - 1;
1023 if ((addr & blocksize_mask) || (size & blocksize_mask))
1024 goto out;
1028 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1029 nr_segs, blkbits, get_blocks, end_io);
1030 out:
1031 return retval;
1034 EXPORT_SYMBOL(blockdev_direct_IO);