[PATCH] DVB: Documentation and Kconfig updazes
[linux-2.6/history.git] / fs / bio.c
blob6284147b20dc77f2c2ff9ed9f9829666aac767d6
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
29 #define BIO_POOL_SIZE 256
31 static mempool_t *bio_pool;
32 static kmem_cache_t *bio_slab;
34 #define BIOVEC_NR_POOLS 6
37 * a small number of entries is fine, not going to be performance critical.
38 * basically we just need to survive
40 #define BIO_SPLIT_ENTRIES 8
41 mempool_t *bio_split_pool;
43 struct biovec_pool {
44 int nr_vecs;
45 char *name;
46 kmem_cache_t *slab;
47 mempool_t *pool;
51 * if you change this list, also change bvec_alloc or things will
52 * break badly! cannot be bigger than what you can fit into an
53 * unsigned short
56 #define BV(x) { .nr_vecs = x, .name = "biovec-" #x }
57 static struct biovec_pool bvec_array[BIOVEC_NR_POOLS] = {
58 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
60 #undef BV
62 static inline struct bio_vec *bvec_alloc(int gfp_mask, int nr, unsigned long *idx)
64 struct biovec_pool *bp;
65 struct bio_vec *bvl;
68 * see comment near bvec_array define!
70 switch (nr) {
71 case 1 : *idx = 0; break;
72 case 2 ... 4: *idx = 1; break;
73 case 5 ... 16: *idx = 2; break;
74 case 17 ... 64: *idx = 3; break;
75 case 65 ... 128: *idx = 4; break;
76 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
77 default:
78 return NULL;
81 * idx now points to the pool we want to allocate from
83 bp = bvec_array + *idx;
85 bvl = mempool_alloc(bp->pool, gfp_mask);
86 if (bvl)
87 memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
88 return bvl;
92 * default destructor for a bio allocated with bio_alloc()
94 void bio_destructor(struct bio *bio)
96 const int pool_idx = BIO_POOL_IDX(bio);
97 struct biovec_pool *bp = bvec_array + pool_idx;
99 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
102 * cloned bio doesn't own the veclist
104 if (!bio_flagged(bio, BIO_CLONED))
105 mempool_free(bio->bi_io_vec, bp->pool);
107 mempool_free(bio, bio_pool);
110 inline void bio_init(struct bio *bio)
112 bio->bi_next = NULL;
113 bio->bi_flags = 1 << BIO_UPTODATE;
114 bio->bi_rw = 0;
115 bio->bi_vcnt = 0;
116 bio->bi_idx = 0;
117 bio->bi_phys_segments = 0;
118 bio->bi_hw_segments = 0;
119 bio->bi_size = 0;
120 bio->bi_max_vecs = 0;
121 bio->bi_end_io = NULL;
122 atomic_set(&bio->bi_cnt, 1);
123 bio->bi_private = NULL;
127 * bio_alloc - allocate a bio for I/O
128 * @gfp_mask: the GFP_ mask given to the slab allocator
129 * @nr_iovecs: number of iovecs to pre-allocate
131 * Description:
132 * bio_alloc will first try it's on mempool to satisfy the allocation.
133 * If %__GFP_WAIT is set then we will block on the internal pool waiting
134 * for a &struct bio to become free.
136 struct bio *bio_alloc(int gfp_mask, int nr_iovecs)
138 struct bio_vec *bvl = NULL;
139 unsigned long idx;
140 struct bio *bio;
142 bio = mempool_alloc(bio_pool, gfp_mask);
143 if (unlikely(!bio))
144 goto out;
146 bio_init(bio);
148 if (unlikely(!nr_iovecs))
149 goto noiovec;
151 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx);
152 if (bvl) {
153 bio->bi_flags |= idx << BIO_POOL_OFFSET;
154 bio->bi_max_vecs = bvec_array[idx].nr_vecs;
155 noiovec:
156 bio->bi_io_vec = bvl;
157 bio->bi_destructor = bio_destructor;
158 out:
159 return bio;
162 mempool_free(bio, bio_pool);
163 bio = NULL;
164 goto out;
168 * bio_put - release a reference to a bio
169 * @bio: bio to release reference to
171 * Description:
172 * Put a reference to a &struct bio, either one you have gotten with
173 * bio_alloc or bio_get. The last put of a bio will free it.
175 void bio_put(struct bio *bio)
177 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
180 * last put frees it
182 if (atomic_dec_and_test(&bio->bi_cnt)) {
183 bio->bi_next = NULL;
184 bio->bi_destructor(bio);
188 inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
190 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
191 blk_recount_segments(q, bio);
193 return bio->bi_phys_segments;
196 inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
198 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
199 blk_recount_segments(q, bio);
201 return bio->bi_hw_segments;
205 * __bio_clone - clone a bio
206 * @bio: destination bio
207 * @bio_src: bio to clone
209 * Clone a &bio. Caller will own the returned bio, but not
210 * the actual data it points to. Reference count of returned
211 * bio will be one.
213 inline void __bio_clone(struct bio *bio, struct bio *bio_src)
215 bio->bi_io_vec = bio_src->bi_io_vec;
217 bio->bi_sector = bio_src->bi_sector;
218 bio->bi_bdev = bio_src->bi_bdev;
219 bio->bi_flags |= 1 << BIO_CLONED;
220 bio->bi_rw = bio_src->bi_rw;
223 * notes -- maybe just leave bi_idx alone. assume identical mapping
224 * for the clone
226 bio->bi_vcnt = bio_src->bi_vcnt;
227 bio->bi_idx = bio_src->bi_idx;
228 if (bio_flagged(bio, BIO_SEG_VALID)) {
229 bio->bi_phys_segments = bio_src->bi_phys_segments;
230 bio->bi_hw_segments = bio_src->bi_hw_segments;
231 bio->bi_flags |= (1 << BIO_SEG_VALID);
233 bio->bi_size = bio_src->bi_size;
236 * cloned bio does not own the bio_vec, so users cannot fiddle with
237 * it. clear bi_max_vecs and clear the BIO_POOL_BITS to make this
238 * apparent
240 bio->bi_max_vecs = 0;
241 bio->bi_flags &= (BIO_POOL_MASK - 1);
245 * bio_clone - clone a bio
246 * @bio: bio to clone
247 * @gfp_mask: allocation priority
249 * Like __bio_clone, only also allocates the returned bio
251 struct bio *bio_clone(struct bio *bio, int gfp_mask)
253 struct bio *b = bio_alloc(gfp_mask, 0);
255 if (b)
256 __bio_clone(b, bio);
258 return b;
262 * bio_get_nr_vecs - return approx number of vecs
263 * @bdev: I/O target
265 * Return the approximate number of pages we can send to this target.
266 * There's no guarantee that you will be able to fit this number of pages
267 * into a bio, it does not account for dynamic restrictions that vary
268 * on offset.
270 int bio_get_nr_vecs(struct block_device *bdev)
272 request_queue_t *q = bdev_get_queue(bdev);
273 int nr_pages;
275 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
276 if (nr_pages > q->max_phys_segments)
277 nr_pages = q->max_phys_segments;
278 if (nr_pages > q->max_hw_segments)
279 nr_pages = q->max_hw_segments;
281 return nr_pages;
284 static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page
285 *page, unsigned int len, unsigned int offset)
287 int retried_segments = 0;
288 struct bio_vec *bvec;
291 * cloned bio must not modify vec list
293 if (unlikely(bio_flagged(bio, BIO_CLONED)))
294 return 0;
296 if (bio->bi_vcnt >= bio->bi_max_vecs)
297 return 0;
299 if (((bio->bi_size + len) >> 9) > q->max_sectors)
300 return 0;
303 * we might lose a segment or two here, but rather that than
304 * make this too complex.
307 while (bio_phys_segments(q, bio) >= q->max_phys_segments
308 || bio_hw_segments(q, bio) >= q->max_hw_segments) {
310 if (retried_segments)
311 return 0;
313 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
314 retried_segments = 1;
318 * setup the new entry, we might clear it again later if we
319 * cannot add the page
321 bvec = &bio->bi_io_vec[bio->bi_vcnt];
322 bvec->bv_page = page;
323 bvec->bv_len = len;
324 bvec->bv_offset = offset;
327 * if queue has other restrictions (eg varying max sector size
328 * depending on offset), it can specify a merge_bvec_fn in the
329 * queue to get further control
331 if (q->merge_bvec_fn) {
333 * merge_bvec_fn() returns number of bytes it can accept
334 * at this offset
336 if (q->merge_bvec_fn(q, bio, bvec) < len) {
337 bvec->bv_page = NULL;
338 bvec->bv_len = 0;
339 bvec->bv_offset = 0;
340 return 0;
344 bio->bi_vcnt++;
345 bio->bi_phys_segments++;
346 bio->bi_hw_segments++;
347 bio->bi_size += len;
348 return len;
352 * bio_add_page - attempt to add page to bio
353 * @bio: destination bio
354 * @page: page to add
355 * @len: vec entry length
356 * @offset: vec entry offset
358 * Attempt to add a page to the bio_vec maplist. This can fail for a
359 * number of reasons, such as the bio being full or target block
360 * device limitations. The target block device must allow bio's
361 * smaller than PAGE_SIZE, so it is always possible to add a single
362 * page to an empty bio.
364 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
365 unsigned int offset)
367 return __bio_add_page(bdev_get_queue(bio->bi_bdev), bio, page,
368 len, offset);
371 static struct bio *__bio_map_user(request_queue_t *q, struct block_device *bdev,
372 unsigned long uaddr, unsigned int len,
373 int write_to_vm)
375 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
376 unsigned long start = uaddr >> PAGE_SHIFT;
377 const int nr_pages = end - start;
378 int ret, offset, i;
379 struct page **pages;
380 struct bio *bio;
383 * transfer and buffer must be aligned to at least hardsector
384 * size for now, in the future we can relax this restriction
386 if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
387 return NULL;
389 bio = bio_alloc(GFP_KERNEL, nr_pages);
390 if (!bio)
391 return NULL;
393 pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
394 if (!pages)
395 goto out;
397 down_read(&current->mm->mmap_sem);
398 ret = get_user_pages(current, current->mm, uaddr, nr_pages,
399 write_to_vm, 0, pages, NULL);
400 up_read(&current->mm->mmap_sem);
402 if (ret < nr_pages)
403 goto out;
405 bio->bi_bdev = bdev;
407 offset = uaddr & ~PAGE_MASK;
408 for (i = 0; i < nr_pages; i++) {
409 unsigned int bytes = PAGE_SIZE - offset;
411 if (len <= 0)
412 break;
414 if (bytes > len)
415 bytes = len;
418 * sorry...
420 if (__bio_add_page(q, bio, pages[i], bytes, offset) < bytes)
421 break;
423 len -= bytes;
424 offset = 0;
428 * release the pages we didn't map into the bio, if any
430 while (i < nr_pages)
431 page_cache_release(pages[i++]);
433 kfree(pages);
436 * set data direction, and check if mapped pages need bouncing
438 if (!write_to_vm)
439 bio->bi_rw |= (1 << BIO_RW);
441 blk_queue_bounce(q, &bio);
442 return bio;
443 out:
444 kfree(pages);
445 bio_put(bio);
446 return NULL;
450 * bio_map_user - map user address into bio
451 * @bdev: destination block device
452 * @uaddr: start of user address
453 * @len: length in bytes
454 * @write_to_vm: bool indicating writing to pages or not
456 * Map the user space address into a bio suitable for io to a block
457 * device.
459 struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev,
460 unsigned long uaddr, unsigned int len, int write_to_vm)
462 struct bio *bio;
464 bio = __bio_map_user(q, bdev, uaddr, len, write_to_vm);
466 if (bio) {
468 * subtle -- if __bio_map_user() ended up bouncing a bio,
469 * it would normally disappear when its bi_end_io is run.
470 * however, we need it for the unmap, so grab an extra
471 * reference to it
473 bio_get(bio);
475 if (bio->bi_size < len) {
476 bio_endio(bio, bio->bi_size, 0);
477 bio_unmap_user(bio, 0);
478 return NULL;
482 return bio;
485 static void __bio_unmap_user(struct bio *bio, int write_to_vm)
487 struct bio_vec *bvec;
488 int i;
491 * find original bio if it was bounced
493 if (bio->bi_private) {
495 * someone stole our bio, must not happen
497 BUG_ON(!bio_flagged(bio, BIO_BOUNCED));
499 bio = bio->bi_private;
503 * make sure we dirty pages we wrote to
505 __bio_for_each_segment(bvec, bio, i, 0) {
506 if (write_to_vm)
507 set_page_dirty_lock(bvec->bv_page);
509 page_cache_release(bvec->bv_page);
512 bio_put(bio);
516 * bio_unmap_user - unmap a bio
517 * @bio: the bio being unmapped
518 * @write_to_vm: bool indicating whether pages were written to
520 * Unmap a bio previously mapped by bio_map_user(). The @write_to_vm
521 * must be the same as passed into bio_map_user(). Must be called with
522 * a process context.
524 * bio_unmap_user() may sleep.
526 void bio_unmap_user(struct bio *bio, int write_to_vm)
528 __bio_unmap_user(bio, write_to_vm);
529 bio_put(bio);
533 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
534 * for performing direct-IO in BIOs.
536 * The problem is that we cannot run set_page_dirty() from interrupt context
537 * because the required locks are not interrupt-safe. So what we can do is to
538 * mark the pages dirty _before_ performing IO. And in interrupt context,
539 * check that the pages are still dirty. If so, fine. If not, redirty them
540 * in process context.
542 * We special-case compound pages here: normally this means reads into hugetlb
543 * pages. The logic in here doesn't really work right for compound pages
544 * because the VM does not uniformly chase down the head page in all cases.
545 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
546 * handle them at all. So we skip compound pages here at an early stage.
548 * Note that this code is very hard to test under normal circumstances because
549 * direct-io pins the pages with get_user_pages(). This makes
550 * is_page_cache_freeable return false, and the VM will not clean the pages.
551 * But other code (eg, pdflush) could clean the pages if they are mapped
552 * pagecache.
554 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
555 * deferred bio dirtying paths.
559 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
561 void bio_set_pages_dirty(struct bio *bio)
563 struct bio_vec *bvec = bio->bi_io_vec;
564 int i;
566 for (i = 0; i < bio->bi_vcnt; i++) {
567 struct page *page = bvec[i].bv_page;
569 if (page && !PageCompound(page))
570 set_page_dirty_lock(page);
574 static void bio_release_pages(struct bio *bio)
576 struct bio_vec *bvec = bio->bi_io_vec;
577 int i;
579 for (i = 0; i < bio->bi_vcnt; i++) {
580 struct page *page = bvec[i].bv_page;
582 if (page)
583 put_page(page);
588 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
589 * If they are, then fine. If, however, some pages are clean then they must
590 * have been written out during the direct-IO read. So we take another ref on
591 * the BIO and the offending pages and re-dirty the pages in process context.
593 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
594 * here on. It will run one page_cache_release() against each page and will
595 * run one bio_put() against the BIO.
598 static void bio_dirty_fn(void *data);
600 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
601 static spinlock_t bio_dirty_lock = SPIN_LOCK_UNLOCKED;
602 static struct bio *bio_dirty_list;
605 * This runs in process context
607 static void bio_dirty_fn(void *data)
609 unsigned long flags;
610 struct bio *bio;
612 spin_lock_irqsave(&bio_dirty_lock, flags);
613 bio = bio_dirty_list;
614 bio_dirty_list = NULL;
615 spin_unlock_irqrestore(&bio_dirty_lock, flags);
617 while (bio) {
618 struct bio *next = bio->bi_private;
620 bio_set_pages_dirty(bio);
621 bio_release_pages(bio);
622 bio_put(bio);
623 bio = next;
627 void bio_check_pages_dirty(struct bio *bio)
629 struct bio_vec *bvec = bio->bi_io_vec;
630 int nr_clean_pages = 0;
631 int i;
633 for (i = 0; i < bio->bi_vcnt; i++) {
634 struct page *page = bvec[i].bv_page;
636 if (PageDirty(page) || PageCompound(page)) {
637 page_cache_release(page);
638 bvec[i].bv_page = NULL;
639 } else {
640 nr_clean_pages++;
644 if (nr_clean_pages) {
645 unsigned long flags;
647 spin_lock_irqsave(&bio_dirty_lock, flags);
648 bio->bi_private = bio_dirty_list;
649 bio_dirty_list = bio;
650 spin_unlock_irqrestore(&bio_dirty_lock, flags);
651 schedule_work(&bio_dirty_work);
652 } else {
653 bio_put(bio);
658 * bio_endio - end I/O on a bio
659 * @bio: bio
660 * @bytes_done: number of bytes completed
661 * @error: error, if any
663 * Description:
664 * bio_endio() will end I/O on @bytes_done number of bytes. This may be
665 * just a partial part of the bio, or it may be the whole bio. bio_endio()
666 * is the preferred way to end I/O on a bio, it takes care of decrementing
667 * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
668 * and one of the established -Exxxx (-EIO, for instance) error values in
669 * case something went wrong. Noone should call bi_end_io() directly on
670 * a bio unless they own it and thus know that it has an end_io function.
672 void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
674 if (error)
675 clear_bit(BIO_UPTODATE, &bio->bi_flags);
677 if (unlikely(bytes_done > bio->bi_size)) {
678 printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
679 bytes_done, bio->bi_size);
680 bytes_done = bio->bi_size;
683 bio->bi_size -= bytes_done;
684 bio->bi_sector += (bytes_done >> 9);
686 if (bio->bi_end_io)
687 bio->bi_end_io(bio, bytes_done, error);
690 void bio_pair_release(struct bio_pair *bp)
692 if (atomic_dec_and_test(&bp->cnt)) {
693 struct bio *master = bp->bio1.bi_private;
695 bio_endio(master, master->bi_size, bp->error);
696 mempool_free(bp, bp->bio2.bi_private);
700 static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
702 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
704 if (err)
705 bp->error = err;
707 if (bi->bi_size)
708 return 1;
710 bio_pair_release(bp);
711 return 0;
714 static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
716 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
718 if (err)
719 bp->error = err;
721 if (bi->bi_size)
722 return 1;
724 bio_pair_release(bp);
725 return 0;
729 * split a bio - only worry about a bio with a single page
730 * in it's iovec
732 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
734 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
736 if (!bp)
737 return bp;
739 BUG_ON(bi->bi_vcnt != 1);
740 BUG_ON(bi->bi_idx != 0);
741 atomic_set(&bp->cnt, 3);
742 bp->error = 0;
743 bp->bio1 = *bi;
744 bp->bio2 = *bi;
745 bp->bio2.bi_sector += first_sectors;
746 bp->bio2.bi_size -= first_sectors << 9;
747 bp->bio1.bi_size = first_sectors << 9;
749 bp->bv1 = bi->bi_io_vec[0];
750 bp->bv2 = bi->bi_io_vec[0];
751 bp->bv2.bv_offset += first_sectors << 9;
752 bp->bv2.bv_len -= first_sectors << 9;
753 bp->bv1.bv_len = first_sectors << 9;
755 bp->bio1.bi_io_vec = &bp->bv1;
756 bp->bio2.bi_io_vec = &bp->bv2;
758 bp->bio1.bi_end_io = bio_pair_end_1;
759 bp->bio2.bi_end_io = bio_pair_end_2;
761 bp->bio1.bi_private = bi;
762 bp->bio2.bi_private = pool;
764 return bp;
767 static void *bio_pair_alloc(int gfp_flags, void *data)
769 return kmalloc(sizeof(struct bio_pair), gfp_flags);
772 static void bio_pair_free(void *bp, void *data)
774 kfree(bp);
777 static void __init biovec_init_pools(void)
779 int i, size, megabytes, pool_entries = BIO_POOL_SIZE;
780 int scale = BIOVEC_NR_POOLS;
782 megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
785 * find out where to start scaling
787 if (megabytes <= 16)
788 scale = 0;
789 else if (megabytes <= 32)
790 scale = 1;
791 else if (megabytes <= 64)
792 scale = 2;
793 else if (megabytes <= 96)
794 scale = 3;
795 else if (megabytes <= 128)
796 scale = 4;
799 * scale number of entries
801 pool_entries = megabytes * 2;
802 if (pool_entries > 256)
803 pool_entries = 256;
805 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
806 struct biovec_pool *bp = bvec_array + i;
808 size = bp->nr_vecs * sizeof(struct bio_vec);
810 bp->slab = kmem_cache_create(bp->name, size, 0,
811 SLAB_HWCACHE_ALIGN, NULL, NULL);
812 if (!bp->slab)
813 panic("biovec: can't init slab cache\n");
815 if (i >= scale)
816 pool_entries >>= 1;
818 bp->pool = mempool_create(pool_entries, mempool_alloc_slab,
819 mempool_free_slab, bp->slab);
820 if (!bp->pool)
821 panic("biovec: can't init mempool\n");
825 static int __init init_bio(void)
827 bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
828 SLAB_HWCACHE_ALIGN, NULL, NULL);
829 if (!bio_slab)
830 panic("bio: can't create slab cache\n");
831 bio_pool = mempool_create(BIO_POOL_SIZE, mempool_alloc_slab, mempool_free_slab, bio_slab);
832 if (!bio_pool)
833 panic("bio: can't create mempool\n");
835 biovec_init_pools();
837 bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES, bio_pair_alloc, bio_pair_free, NULL);
838 if (!bio_split_pool)
839 panic("bio: can't create split pool\n");
841 return 0;
844 subsys_initcall(init_bio);
846 EXPORT_SYMBOL(bio_alloc);
847 EXPORT_SYMBOL(bio_put);
848 EXPORT_SYMBOL(bio_endio);
849 EXPORT_SYMBOL(bio_init);
850 EXPORT_SYMBOL(__bio_clone);
851 EXPORT_SYMBOL(bio_clone);
852 EXPORT_SYMBOL(bio_phys_segments);
853 EXPORT_SYMBOL(bio_hw_segments);
854 EXPORT_SYMBOL(bio_add_page);
855 EXPORT_SYMBOL(bio_get_nr_vecs);
856 EXPORT_SYMBOL(bio_map_user);
857 EXPORT_SYMBOL(bio_unmap_user);
858 EXPORT_SYMBOL(bio_pair_release);
859 EXPORT_SYMBOL(bio_split);
860 EXPORT_SYMBOL(bio_split_pool);