[PATCH] Add a driver for the Technisat Skystar2 DVB card
[linux-2.6/history.git] / mm / highmem.c
blob4dfd591ea60a70c2f3448cc563c527485b4e58d1
1 /*
2 * High memory handling common code and variables.
4 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5 * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
8 * Redesigned the x86 32-bit VM architecture to deal with
9 * 64-bit physical space. With current x86 CPUs this
10 * means up to 64 Gigabytes physical RAM.
12 * Rewrote high memory support to move the page cache into
13 * high memory. Implemented permanent (schedulable) kmaps
14 * based on Linus' idea.
16 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/bio.h>
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/blkdev.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <asm/pgalloc.h>
28 #include <asm/tlbflush.h>
30 static mempool_t *page_pool, *isa_page_pool;
32 static void *page_pool_alloc(int gfp_mask, void *data)
34 int gfp = gfp_mask | (int) (long) data;
36 return alloc_page(gfp);
39 static void page_pool_free(void *page, void *data)
41 __free_page(page);
45 * Virtual_count is not a pure "count".
46 * 0 means that it is not mapped, and has not been mapped
47 * since a TLB flush - it is usable.
48 * 1 means that there are no users, but it has been mapped
49 * since the last TLB flush - so we can't use it.
50 * n means that there are (n-1) current users of it.
52 #ifdef CONFIG_HIGHMEM
53 static int pkmap_count[LAST_PKMAP];
54 static unsigned int last_pkmap_nr;
55 static spinlock_t kmap_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;
57 pte_t * pkmap_page_table;
59 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
61 static void flush_all_zero_pkmaps(void)
63 int i;
65 flush_cache_all();
67 for (i = 0; i < LAST_PKMAP; i++) {
68 struct page *page;
71 * zero means we don't have anything to do,
72 * >1 means that it is still in use. Only
73 * a count of 1 means that it is free but
74 * needs to be unmapped
76 if (pkmap_count[i] != 1)
77 continue;
78 pkmap_count[i] = 0;
80 /* sanity check */
81 if (pte_none(pkmap_page_table[i]))
82 BUG();
85 * Don't need an atomic fetch-and-clear op here;
86 * no-one has the page mapped, and cannot get at
87 * its virtual address (and hence PTE) without first
88 * getting the kmap_lock (which is held here).
89 * So no dangers, even with speculative execution.
91 page = pte_page(pkmap_page_table[i]);
92 pte_clear(&pkmap_page_table[i]);
94 set_page_address(page, NULL);
96 flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
99 static inline unsigned long map_new_virtual(struct page *page)
101 unsigned long vaddr;
102 int count;
104 start:
105 count = LAST_PKMAP;
106 /* Find an empty entry */
107 for (;;) {
108 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
109 if (!last_pkmap_nr) {
110 flush_all_zero_pkmaps();
111 count = LAST_PKMAP;
113 if (!pkmap_count[last_pkmap_nr])
114 break; /* Found a usable entry */
115 if (--count)
116 continue;
119 * Sleep for somebody else to unmap their entries
122 DECLARE_WAITQUEUE(wait, current);
124 __set_current_state(TASK_UNINTERRUPTIBLE);
125 add_wait_queue(&pkmap_map_wait, &wait);
126 spin_unlock(&kmap_lock);
127 schedule();
128 remove_wait_queue(&pkmap_map_wait, &wait);
129 spin_lock(&kmap_lock);
131 /* Somebody else might have mapped it while we slept */
132 if (page_address(page))
133 return (unsigned long)page_address(page);
135 /* Re-start */
136 goto start;
139 vaddr = PKMAP_ADDR(last_pkmap_nr);
140 set_pte(&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
142 pkmap_count[last_pkmap_nr] = 1;
143 set_page_address(page, (void *)vaddr);
145 return vaddr;
148 void *kmap_high(struct page *page)
150 unsigned long vaddr;
153 * For highmem pages, we can't trust "virtual" until
154 * after we have the lock.
156 * We cannot call this from interrupts, as it may block
158 spin_lock(&kmap_lock);
159 vaddr = (unsigned long)page_address(page);
160 if (!vaddr)
161 vaddr = map_new_virtual(page);
162 pkmap_count[PKMAP_NR(vaddr)]++;
163 if (pkmap_count[PKMAP_NR(vaddr)] < 2)
164 BUG();
165 spin_unlock(&kmap_lock);
166 return (void*) vaddr;
169 void kunmap_high(struct page *page)
171 unsigned long vaddr;
172 unsigned long nr;
173 int need_wakeup;
175 spin_lock(&kmap_lock);
176 vaddr = (unsigned long)page_address(page);
177 if (!vaddr)
178 BUG();
179 nr = PKMAP_NR(vaddr);
182 * A count must never go down to zero
183 * without a TLB flush!
185 need_wakeup = 0;
186 switch (--pkmap_count[nr]) {
187 case 0:
188 BUG();
189 case 1:
191 * Avoid an unnecessary wake_up() function call.
192 * The common case is pkmap_count[] == 1, but
193 * no waiters.
194 * The tasks queued in the wait-queue are guarded
195 * by both the lock in the wait-queue-head and by
196 * the kmap_lock. As the kmap_lock is held here,
197 * no need for the wait-queue-head's lock. Simply
198 * test if the queue is empty.
200 need_wakeup = waitqueue_active(&pkmap_map_wait);
202 spin_unlock(&kmap_lock);
204 /* do wake-up, if needed, race-free outside of the spin lock */
205 if (need_wakeup)
206 wake_up(&pkmap_map_wait);
209 #define POOL_SIZE 64
211 static __init int init_emergency_pool(void)
213 struct sysinfo i;
214 si_meminfo(&i);
215 si_swapinfo(&i);
217 if (!i.totalhigh)
218 return 0;
220 page_pool = mempool_create(POOL_SIZE, page_pool_alloc, page_pool_free, NULL);
221 if (!page_pool)
222 BUG();
223 printk("highmem bounce pool size: %d pages\n", POOL_SIZE);
225 return 0;
228 __initcall(init_emergency_pool);
231 * highmem version, map in to vec
233 static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom)
235 unsigned long flags;
236 unsigned char *vto;
238 local_irq_save(flags);
239 vto = kmap_atomic(to->bv_page, KM_BOUNCE_READ);
240 memcpy(vto + to->bv_offset, vfrom, to->bv_len);
241 kunmap_atomic(vto, KM_BOUNCE_READ);
242 local_irq_restore(flags);
245 #else /* CONFIG_HIGHMEM */
247 #define bounce_copy_vec(to, vfrom) \
248 memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len)
250 #endif
252 #define ISA_POOL_SIZE 16
255 * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA
256 * as the max address, so check if the pool has already been created.
258 int init_emergency_isa_pool(void)
260 if (isa_page_pool)
261 return 0;
263 isa_page_pool = mempool_create(ISA_POOL_SIZE, page_pool_alloc, page_pool_free, (void *) __GFP_DMA);
264 if (!isa_page_pool)
265 BUG();
267 printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE);
268 return 0;
272 * Simple bounce buffer support for highmem pages. Depending on the
273 * queue gfp mask set, *to may or may not be a highmem page. kmap it
274 * always, it will do the Right Thing
276 static void copy_to_high_bio_irq(struct bio *to, struct bio *from)
278 unsigned char *vfrom;
279 struct bio_vec *tovec, *fromvec;
280 int i;
282 __bio_for_each_segment(tovec, to, i, 0) {
283 fromvec = from->bi_io_vec + i;
286 * not bounced
288 if (tovec->bv_page == fromvec->bv_page)
289 continue;
291 vfrom = page_address(fromvec->bv_page) + fromvec->bv_offset;
293 bounce_copy_vec(tovec, vfrom);
297 static void bounce_end_io(struct bio *bio, mempool_t *pool)
299 struct bio *bio_orig = bio->bi_private;
300 struct bio_vec *bvec, *org_vec;
301 int i;
303 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
304 goto out_eio;
306 set_bit(BIO_UPTODATE, &bio_orig->bi_flags);
309 * free up bounce indirect pages used
311 __bio_for_each_segment(bvec, bio, i, 0) {
312 org_vec = bio_orig->bi_io_vec + i;
313 if (bvec->bv_page == org_vec->bv_page)
314 continue;
316 mempool_free(bvec->bv_page, pool);
319 out_eio:
320 bio_endio(bio_orig, bio_orig->bi_size, 0);
321 bio_put(bio);
324 static int bounce_end_io_write(struct bio *bio, unsigned int bytes_done,int err)
326 if (bio->bi_size)
327 return 1;
329 bounce_end_io(bio, page_pool);
330 return 0;
333 static int bounce_end_io_write_isa(struct bio *bio, unsigned int bytes_done, int err)
335 if (bio->bi_size)
336 return 1;
338 bounce_end_io(bio, isa_page_pool);
339 return 0;
342 static void __bounce_end_io_read(struct bio *bio, mempool_t *pool)
344 struct bio *bio_orig = bio->bi_private;
346 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
347 copy_to_high_bio_irq(bio_orig, bio);
349 bounce_end_io(bio, pool);
352 static int bounce_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
354 if (bio->bi_size)
355 return 1;
357 __bounce_end_io_read(bio, page_pool);
358 return 0;
361 static int bounce_end_io_read_isa(struct bio *bio, unsigned int bytes_done, int err)
363 if (bio->bi_size)
364 return 1;
366 __bounce_end_io_read(bio, isa_page_pool);
367 return 0;
370 static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig,
371 mempool_t *pool)
373 struct page *page;
374 struct bio *bio = NULL;
375 int i, rw = bio_data_dir(*bio_orig);
376 struct bio_vec *to, *from;
378 bio_for_each_segment(from, *bio_orig, i) {
379 page = from->bv_page;
382 * is destination page below bounce pfn?
384 if (page_to_pfn(page) < q->bounce_pfn)
385 continue;
388 * irk, bounce it
390 if (!bio)
391 bio = bio_alloc(GFP_NOIO, (*bio_orig)->bi_vcnt);
393 to = bio->bi_io_vec + i;
395 to->bv_page = mempool_alloc(pool, q->bounce_gfp);
396 to->bv_len = from->bv_len;
397 to->bv_offset = from->bv_offset;
399 if (rw == WRITE) {
400 char *vto, *vfrom;
402 vto = page_address(to->bv_page) + to->bv_offset;
403 vfrom = kmap(from->bv_page) + from->bv_offset;
404 memcpy(vto, vfrom, to->bv_len);
405 kunmap(from->bv_page);
410 * no pages bounced
412 if (!bio)
413 return;
416 * at least one page was bounced, fill in possible non-highmem
417 * pages
419 bio_for_each_segment(from, *bio_orig, i) {
420 to = bio_iovec_idx(bio, i);
421 if (!to->bv_page) {
422 to->bv_page = from->bv_page;
423 to->bv_len = from->bv_len;
424 to->bv_offset = from->bv_offset;
428 bio->bi_bdev = (*bio_orig)->bi_bdev;
429 bio->bi_flags |= (1 << BIO_BOUNCED);
430 bio->bi_sector = (*bio_orig)->bi_sector;
431 bio->bi_rw = (*bio_orig)->bi_rw;
433 bio->bi_vcnt = (*bio_orig)->bi_vcnt;
434 bio->bi_idx = 0;
435 bio->bi_size = (*bio_orig)->bi_size;
437 if (pool == page_pool) {
438 bio->bi_end_io = bounce_end_io_write;
439 if (rw == READ)
440 bio->bi_end_io = bounce_end_io_read;
441 } else {
442 bio->bi_end_io = bounce_end_io_write_isa;
443 if (rw == READ)
444 bio->bi_end_io = bounce_end_io_read_isa;
447 bio->bi_private = *bio_orig;
448 *bio_orig = bio;
451 void blk_queue_bounce(request_queue_t *q, struct bio **bio_orig)
453 mempool_t *pool;
456 * for non-isa bounce case, just check if the bounce pfn is equal
457 * to or bigger than the highest pfn in the system -- in that case,
458 * don't waste time iterating over bio segments
460 if (!(q->bounce_gfp & GFP_DMA)) {
461 if (q->bounce_pfn >= blk_max_pfn)
462 return;
463 pool = page_pool;
464 } else {
465 BUG_ON(!isa_page_pool);
466 pool = isa_page_pool;
470 * slow path
472 __blk_queue_bounce(q, bio_orig, pool);
475 #if defined(HASHED_PAGE_VIRTUAL)
477 #define PA_HASH_ORDER 7
480 * Describes one page->virtual association
482 struct page_address_map {
483 struct page *page;
484 void *virtual;
485 struct list_head list;
489 * page_address_map freelist, allocated from page_address_maps.
491 static struct list_head page_address_pool; /* freelist */
492 static spinlock_t pool_lock; /* protects page_address_pool */
495 * Hash table bucket
497 static struct page_address_slot {
498 struct list_head lh; /* List of page_address_maps */
499 spinlock_t lock; /* Protect this bucket's list */
500 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
502 static struct page_address_slot *page_slot(struct page *page)
504 return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
507 void *page_address(struct page *page)
509 unsigned long flags;
510 void *ret;
511 struct page_address_slot *pas;
513 if (!PageHighMem(page))
514 return lowmem_page_address(page);
516 pas = page_slot(page);
517 ret = NULL;
518 spin_lock_irqsave(&pas->lock, flags);
519 if (!list_empty(&pas->lh)) {
520 struct page_address_map *pam;
522 list_for_each_entry(pam, &pas->lh, list) {
523 if (pam->page == page) {
524 ret = pam->virtual;
525 goto done;
529 done:
530 spin_unlock_irqrestore(&pas->lock, flags);
531 return ret;
534 void set_page_address(struct page *page, void *virtual)
536 unsigned long flags;
537 struct page_address_slot *pas;
538 struct page_address_map *pam;
540 BUG_ON(!PageHighMem(page));
542 pas = page_slot(page);
543 if (virtual) { /* Add */
544 BUG_ON(list_empty(&page_address_pool));
546 spin_lock_irqsave(&pool_lock, flags);
547 pam = list_entry(page_address_pool.next,
548 struct page_address_map, list);
549 list_del(&pam->list);
550 spin_unlock_irqrestore(&pool_lock, flags);
552 pam->page = page;
553 pam->virtual = virtual;
555 spin_lock_irqsave(&pas->lock, flags);
556 list_add_tail(&pam->list, &pas->lh);
557 spin_unlock_irqrestore(&pas->lock, flags);
558 } else { /* Remove */
559 spin_lock_irqsave(&pas->lock, flags);
560 list_for_each_entry(pam, &pas->lh, list) {
561 if (pam->page == page) {
562 list_del(&pam->list);
563 spin_unlock_irqrestore(&pas->lock, flags);
564 spin_lock_irqsave(&pool_lock, flags);
565 list_add_tail(&pam->list, &page_address_pool);
566 spin_unlock_irqrestore(&pool_lock, flags);
567 goto done;
570 spin_unlock_irqrestore(&pas->lock, flags);
572 done:
573 return;
576 static struct page_address_map page_address_maps[LAST_PKMAP];
578 void __init page_address_init(void)
580 int i;
582 INIT_LIST_HEAD(&page_address_pool);
583 for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
584 list_add(&page_address_maps[i].list, &page_address_pool);
585 for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
586 INIT_LIST_HEAD(&page_address_htable[i].lh);
587 spin_lock_init(&page_address_htable[i].lock);
589 spin_lock_init(&pool_lock);
592 #endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */