[PATCH] Add a driver for the Technisat Skystar2 DVB card
[linux-2.6/history.git] / fs / bio.c
blob6be1cb1e568c87521fd36d793a186438753b1965
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blk.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
29 #define BIO_POOL_SIZE 256
31 static mempool_t *bio_pool;
32 static kmem_cache_t *bio_slab;
34 #define BIOVEC_NR_POOLS 6
37 * a small number of entries is fine, not going to be performance critical.
38 * basically we just need to survive
40 #define BIO_SPLIT_ENTRIES 8
41 mempool_t *bio_split_pool;
43 struct biovec_pool {
44 int nr_vecs;
45 char *name;
46 kmem_cache_t *slab;
47 mempool_t *pool;
51 * if you change this list, also change bvec_alloc or things will
52 * break badly! cannot be bigger than what you can fit into an
53 * unsigned short
56 #define BV(x) { .nr_vecs = x, .name = "biovec-" #x }
57 static struct biovec_pool bvec_array[BIOVEC_NR_POOLS] = {
58 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
60 #undef BV
62 static inline struct bio_vec *bvec_alloc(int gfp_mask, int nr, unsigned long *idx)
64 struct biovec_pool *bp;
65 struct bio_vec *bvl;
68 * see comment near bvec_array define!
70 switch (nr) {
71 case 1 : *idx = 0; break;
72 case 2 ... 4: *idx = 1; break;
73 case 5 ... 16: *idx = 2; break;
74 case 17 ... 64: *idx = 3; break;
75 case 65 ... 128: *idx = 4; break;
76 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
77 default:
78 return NULL;
81 * idx now points to the pool we want to allocate from
83 bp = bvec_array + *idx;
85 bvl = mempool_alloc(bp->pool, gfp_mask);
86 if (bvl)
87 memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
88 return bvl;
92 * default destructor for a bio allocated with bio_alloc()
94 void bio_destructor(struct bio *bio)
96 const int pool_idx = BIO_POOL_IDX(bio);
97 struct biovec_pool *bp = bvec_array + pool_idx;
99 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
102 * cloned bio doesn't own the veclist
104 if (!bio_flagged(bio, BIO_CLONED))
105 mempool_free(bio->bi_io_vec, bp->pool);
107 mempool_free(bio, bio_pool);
110 inline void bio_init(struct bio *bio)
112 bio->bi_next = NULL;
113 bio->bi_flags = 1 << BIO_UPTODATE;
114 bio->bi_rw = 0;
115 bio->bi_vcnt = 0;
116 bio->bi_idx = 0;
117 bio->bi_phys_segments = 0;
118 bio->bi_hw_segments = 0;
119 bio->bi_size = 0;
120 bio->bi_max_vecs = 0;
121 bio->bi_end_io = NULL;
122 atomic_set(&bio->bi_cnt, 1);
123 bio->bi_private = NULL;
127 * bio_alloc - allocate a bio for I/O
128 * @gfp_mask: the GFP_ mask given to the slab allocator
129 * @nr_iovecs: number of iovecs to pre-allocate
131 * Description:
132 * bio_alloc will first try it's on mempool to satisfy the allocation.
133 * If %__GFP_WAIT is set then we will block on the internal pool waiting
134 * for a &struct bio to become free.
136 struct bio *bio_alloc(int gfp_mask, int nr_iovecs)
138 struct bio_vec *bvl = NULL;
139 unsigned long idx;
140 struct bio *bio;
142 bio = mempool_alloc(bio_pool, gfp_mask);
143 if (unlikely(!bio))
144 goto out;
146 bio_init(bio);
148 if (unlikely(!nr_iovecs))
149 goto noiovec;
151 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx);
152 if (bvl) {
153 bio->bi_flags |= idx << BIO_POOL_OFFSET;
154 bio->bi_max_vecs = bvec_array[idx].nr_vecs;
155 noiovec:
156 bio->bi_io_vec = bvl;
157 bio->bi_destructor = bio_destructor;
158 out:
159 return bio;
162 mempool_free(bio, bio_pool);
163 bio = NULL;
164 goto out;
168 * bio_put - release a reference to a bio
169 * @bio: bio to release reference to
171 * Description:
172 * Put a reference to a &struct bio, either one you have gotten with
173 * bio_alloc or bio_get. The last put of a bio will free it.
175 void bio_put(struct bio *bio)
177 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
180 * last put frees it
182 if (atomic_dec_and_test(&bio->bi_cnt)) {
183 bio->bi_next = NULL;
184 bio->bi_destructor(bio);
188 inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
190 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
191 blk_recount_segments(q, bio);
193 return bio->bi_phys_segments;
196 inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
198 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
199 blk_recount_segments(q, bio);
201 return bio->bi_hw_segments;
205 * __bio_clone - clone a bio
206 * @bio: destination bio
207 * @bio_src: bio to clone
209 * Clone a &bio. Caller will own the returned bio, but not
210 * the actual data it points to. Reference count of returned
211 * bio will be one.
213 inline void __bio_clone(struct bio *bio, struct bio *bio_src)
215 bio->bi_io_vec = bio_src->bi_io_vec;
217 bio->bi_sector = bio_src->bi_sector;
218 bio->bi_bdev = bio_src->bi_bdev;
219 bio->bi_flags |= 1 << BIO_CLONED;
220 bio->bi_rw = bio_src->bi_rw;
223 * notes -- maybe just leave bi_idx alone. assume identical mapping
224 * for the clone
226 bio->bi_vcnt = bio_src->bi_vcnt;
227 bio->bi_idx = bio_src->bi_idx;
228 if (bio_flagged(bio, BIO_SEG_VALID)) {
229 bio->bi_phys_segments = bio_src->bi_phys_segments;
230 bio->bi_hw_segments = bio_src->bi_hw_segments;
231 bio->bi_flags |= (1 << BIO_SEG_VALID);
233 bio->bi_size = bio_src->bi_size;
236 * cloned bio does not own the bio_vec, so users cannot fiddle with
237 * it. clear bi_max_vecs and clear the BIO_POOL_BITS to make this
238 * apparent
240 bio->bi_max_vecs = 0;
241 bio->bi_flags &= (BIO_POOL_MASK - 1);
245 * bio_clone - clone a bio
246 * @bio: bio to clone
247 * @gfp_mask: allocation priority
249 * Like __bio_clone, only also allocates the returned bio
251 struct bio *bio_clone(struct bio *bio, int gfp_mask)
253 struct bio *b = bio_alloc(gfp_mask, 0);
255 if (b)
256 __bio_clone(b, bio);
258 return b;
262 * bio_get_nr_vecs - return approx number of vecs
263 * @bdev: I/O target
265 * Return the approximate number of pages we can send to this target.
266 * There's no guarantee that you will be able to fit this number of pages
267 * into a bio, it does not account for dynamic restrictions that vary
268 * on offset.
270 int bio_get_nr_vecs(struct block_device *bdev)
272 request_queue_t *q = bdev_get_queue(bdev);
273 int nr_pages;
275 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
276 if (nr_pages > q->max_phys_segments)
277 nr_pages = q->max_phys_segments;
278 if (nr_pages > q->max_hw_segments)
279 nr_pages = q->max_hw_segments;
281 return nr_pages;
285 * bio_add_page - attempt to add page to bio
286 * @bio: destination bio
287 * @page: page to add
288 * @len: vec entry length
289 * @offset: vec entry offset
291 * Attempt to add a page to the bio_vec maplist. This can fail for a
292 * number of reasons, such as the bio being full or target block
293 * device limitations.
295 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
296 unsigned int offset)
298 request_queue_t *q = bdev_get_queue(bio->bi_bdev);
299 int fail_segments = 0, retried_segments = 0;
300 struct bio_vec *bvec;
303 * cloned bio must not modify vec list
305 if (unlikely(bio_flagged(bio, BIO_CLONED)))
306 return 0;
308 if (bio->bi_vcnt >= bio->bi_max_vecs)
309 return 0;
311 if (((bio->bi_size + len) >> 9) > q->max_sectors)
312 return 0;
315 * we might lose a segment or two here, but rather that than
316 * make this too complex.
318 retry_segments:
319 if (bio_phys_segments(q, bio) >= q->max_phys_segments
320 || bio_hw_segments(q, bio) >= q->max_hw_segments)
321 fail_segments = 1;
323 if (fail_segments) {
324 if (retried_segments)
325 return 0;
327 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
328 retried_segments = 1;
329 goto retry_segments;
333 * setup the new entry, we might clear it again later if we
334 * cannot add the page
336 bvec = &bio->bi_io_vec[bio->bi_vcnt];
337 bvec->bv_page = page;
338 bvec->bv_len = len;
339 bvec->bv_offset = offset;
342 * if queue has other restrictions (eg varying max sector size
343 * depending on offset), it can specify a merge_bvec_fn in the
344 * queue to get further control
346 if (q->merge_bvec_fn) {
348 * merge_bvec_fn() returns number of bytes it can accept
349 * at this offset
351 if (q->merge_bvec_fn(q, bio, bvec) < len) {
352 bvec->bv_page = NULL;
353 bvec->bv_len = 0;
354 bvec->bv_offset = 0;
355 return 0;
359 bio->bi_vcnt++;
360 bio->bi_phys_segments++;
361 bio->bi_hw_segments++;
362 bio->bi_size += len;
363 return len;
366 static struct bio *__bio_map_user(struct block_device *bdev,
367 unsigned long uaddr, unsigned int len,
368 int write_to_vm)
370 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
371 unsigned long start = uaddr >> PAGE_SHIFT;
372 const int nr_pages = end - start;
373 request_queue_t *q = bdev_get_queue(bdev);
374 int ret, offset, i;
375 struct page **pages;
376 struct bio *bio;
379 * transfer and buffer must be aligned to at least hardsector
380 * size for now, in the future we can relax this restriction
382 if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
383 return NULL;
385 bio = bio_alloc(GFP_KERNEL, nr_pages);
386 if (!bio)
387 return NULL;
389 pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
390 if (!pages)
391 goto out;
393 down_read(&current->mm->mmap_sem);
394 ret = get_user_pages(current, current->mm, uaddr, nr_pages,
395 write_to_vm, 0, pages, NULL);
396 up_read(&current->mm->mmap_sem);
398 if (ret < nr_pages)
399 goto out;
401 bio->bi_bdev = bdev;
403 offset = uaddr & ~PAGE_MASK;
404 for (i = 0; i < nr_pages; i++) {
405 unsigned int bytes = PAGE_SIZE - offset;
407 if (len <= 0)
408 break;
410 if (bytes > len)
411 bytes = len;
414 * sorry...
416 if (bio_add_page(bio, pages[i], bytes, offset) < bytes)
417 break;
419 len -= bytes;
420 offset = 0;
424 * release the pages we didn't map into the bio, if any
426 while (i < nr_pages)
427 page_cache_release(pages[i++]);
429 kfree(pages);
432 * set data direction, and check if mapped pages need bouncing
434 if (!write_to_vm)
435 bio->bi_rw |= (1 << BIO_RW);
437 blk_queue_bounce(q, &bio);
438 return bio;
439 out:
440 kfree(pages);
441 bio_put(bio);
442 return NULL;
446 * bio_map_user - map user address into bio
447 * @bdev: destination block device
448 * @uaddr: start of user address
449 * @len: length in bytes
450 * @write_to_vm: bool indicating writing to pages or not
452 * Map the user space address into a bio suitable for io to a block
453 * device.
455 struct bio *bio_map_user(struct block_device *bdev, unsigned long uaddr,
456 unsigned int len, int write_to_vm)
458 struct bio *bio;
460 bio = __bio_map_user(bdev, uaddr, len, write_to_vm);
462 if (bio) {
464 * subtle -- if __bio_map_user() ended up bouncing a bio,
465 * it would normally disappear when its bi_end_io is run.
466 * however, we need it for the unmap, so grab an extra
467 * reference to it
469 bio_get(bio);
471 if (bio->bi_size < len) {
472 bio_endio(bio, bio->bi_size, 0);
473 bio_unmap_user(bio, 0);
474 return NULL;
478 return bio;
481 static void __bio_unmap_user(struct bio *bio, int write_to_vm)
483 struct bio_vec *bvec;
484 int i;
487 * find original bio if it was bounced
489 if (bio->bi_private) {
491 * someone stole our bio, must not happen
493 BUG_ON(!bio_flagged(bio, BIO_BOUNCED));
495 bio = bio->bi_private;
499 * make sure we dirty pages we wrote to
501 __bio_for_each_segment(bvec, bio, i, 0) {
502 if (write_to_vm)
503 set_page_dirty_lock(bvec->bv_page);
505 page_cache_release(bvec->bv_page);
508 bio_put(bio);
512 * bio_unmap_user - unmap a bio
513 * @bio: the bio being unmapped
514 * @write_to_vm: bool indicating whether pages were written to
516 * Unmap a bio previously mapped by bio_map_user(). The @write_to_vm
517 * must be the same as passed into bio_map_user(). Must be called with
518 * a process context.
520 * bio_unmap_user() may sleep.
522 void bio_unmap_user(struct bio *bio, int write_to_vm)
524 __bio_unmap_user(bio, write_to_vm);
525 bio_put(bio);
529 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
530 * for performing direct-IO in BIOs.
532 * The problem is that we cannot run set_page_dirty() from interrupt context
533 * because the required locks are not interrupt-safe. So what we can do is to
534 * mark the pages dirty _before_ performing IO. And in interrupt context,
535 * check that the pages are still dirty. If so, fine. If not, redirty them
536 * in process context.
538 * Note that this code is very hard to test under normal circumstances because
539 * direct-io pins the pages with get_user_pages(). This makes
540 * is_page_cache_freeable return false, and the VM will not clean the pages.
541 * But other code (eg, pdflush) could clean the pages if they are mapped
542 * pagecache.
544 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
545 * deferred bio dirtying paths.
549 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
551 void bio_set_pages_dirty(struct bio *bio)
553 struct bio_vec *bvec = bio->bi_io_vec;
554 int i;
556 for (i = 0; i < bio->bi_vcnt; i++) {
557 struct page *page = bvec[i].bv_page;
559 if (page)
560 set_page_dirty_lock(bvec[i].bv_page);
565 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
566 * If they are, then fine. If, however, some pages are clean then they must
567 * have been written out during the direct-IO read. So we take another ref on
568 * the BIO and the offending pages and re-dirty the pages in process context.
570 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
571 * here on. It will run one page_cache_release() against each page and will
572 * run one bio_put() against the BIO.
575 static void bio_dirty_fn(void *data);
577 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
578 static spinlock_t bio_dirty_lock = SPIN_LOCK_UNLOCKED;
579 static struct bio *bio_dirty_list = NULL;
582 * This runs in process context
584 static void bio_dirty_fn(void *data)
586 unsigned long flags;
587 struct bio *bio;
589 spin_lock_irqsave(&bio_dirty_lock, flags);
590 bio = bio_dirty_list;
591 bio_dirty_list = NULL;
592 spin_unlock_irqrestore(&bio_dirty_lock, flags);
594 while (bio) {
595 struct bio *next = bio->bi_private;
597 bio_set_pages_dirty(bio);
598 bio_put(bio);
599 bio = next;
603 void bio_check_pages_dirty(struct bio *bio)
605 struct bio_vec *bvec = bio->bi_io_vec;
606 int nr_clean_pages = 0;
607 int i;
609 for (i = 0; i < bio->bi_vcnt; i++) {
610 struct page *page = bvec[i].bv_page;
612 if (PageDirty(page)) {
613 page_cache_release(page);
614 bvec[i].bv_page = NULL;
615 } else {
616 nr_clean_pages++;
620 if (nr_clean_pages) {
621 unsigned long flags;
623 spin_lock_irqsave(&bio_dirty_lock, flags);
624 bio->bi_private = bio_dirty_list;
625 bio_dirty_list = bio;
626 spin_unlock_irqrestore(&bio_dirty_lock, flags);
627 schedule_work(&bio_dirty_work);
628 } else {
629 bio_put(bio);
634 * bio_endio - end I/O on a bio
635 * @bio: bio
636 * @bytes_done: number of bytes completed
637 * @error: error, if any
639 * Description:
640 * bio_endio() will end I/O on @bytes_done number of bytes. This may be
641 * just a partial part of the bio, or it may be the whole bio. bio_endio()
642 * is the preferred way to end I/O on a bio, it takes care of decrementing
643 * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
644 * and one of the established -Exxxx (-EIO, for instance) error values in
645 * case something went wrong. Noone should call bi_end_io() directly on
646 * a bio unless they own it and thus know that it has an end_io function.
648 void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
650 if (error)
651 clear_bit(BIO_UPTODATE, &bio->bi_flags);
653 if (unlikely(bytes_done > bio->bi_size)) {
654 printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
655 bytes_done, bio->bi_size);
656 bytes_done = bio->bi_size;
659 bio->bi_size -= bytes_done;
660 bio->bi_sector += (bytes_done >> 9);
662 if (bio->bi_end_io)
663 bio->bi_end_io(bio, bytes_done, error);
666 void bio_pair_release(struct bio_pair *bp)
668 if (atomic_dec_and_test(&bp->cnt)) {
669 struct bio *master = bp->bio1.bi_private;
671 bio_endio(master, master->bi_size, bp->error);
672 mempool_free(bp, bp->bio2.bi_private);
676 static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
678 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
680 if (bi->bi_size)
681 return 1;
682 if (err)
683 bp->error = err;
685 bio_pair_release(bp);
686 return 0;
689 static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
691 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
693 if (bi->bi_size)
694 return 1;
695 if (err)
696 bp->error = err;
698 bio_pair_release(bp);
699 return 0;
703 * split a bio - only worry about a bio with a single page
704 * in it's iovec
706 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
708 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
710 if (!bp)
711 return bp;
713 BUG_ON(bi->bi_vcnt != 1);
714 BUG_ON(bi->bi_idx != 0);
715 atomic_set(&bp->cnt, 3);
716 bp->error = 0;
717 bp->bio1 = *bi;
718 bp->bio2 = *bi;
719 bp->bio2.bi_sector += first_sectors;
720 bp->bio2.bi_size -= first_sectors << 9;
721 bp->bio1.bi_size = first_sectors << 9;
723 bp->bv1 = bi->bi_io_vec[0];
724 bp->bv2 = bi->bi_io_vec[0];
725 bp->bv2.bv_offset += first_sectors << 9;
726 bp->bv2.bv_len -= first_sectors << 9;
727 bp->bv1.bv_len = first_sectors << 9;
729 bp->bio1.bi_io_vec = &bp->bv1;
730 bp->bio2.bi_io_vec = &bp->bv2;
732 bp->bio1.bi_end_io = bio_pair_end_1;
733 bp->bio2.bi_end_io = bio_pair_end_2;
735 bp->bio1.bi_private = bi;
736 bp->bio2.bi_private = pool;
738 return bp;
741 static void *bio_pair_alloc(int gfp_flags, void *data)
743 return kmalloc(sizeof(struct bio_pair), gfp_flags);
746 static void bio_pair_free(void *bp, void *data)
748 kfree(bp);
751 static void __init biovec_init_pools(void)
753 int i, size, megabytes, pool_entries = BIO_POOL_SIZE;
754 int scale = BIOVEC_NR_POOLS;
756 megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
759 * find out where to start scaling
761 if (megabytes <= 16)
762 scale = 0;
763 else if (megabytes <= 32)
764 scale = 1;
765 else if (megabytes <= 64)
766 scale = 2;
767 else if (megabytes <= 96)
768 scale = 3;
769 else if (megabytes <= 128)
770 scale = 4;
773 * scale number of entries
775 pool_entries = megabytes * 2;
776 if (pool_entries > 256)
777 pool_entries = 256;
779 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
780 struct biovec_pool *bp = bvec_array + i;
782 size = bp->nr_vecs * sizeof(struct bio_vec);
784 bp->slab = kmem_cache_create(bp->name, size, 0,
785 SLAB_HWCACHE_ALIGN, NULL, NULL);
786 if (!bp->slab)
787 panic("biovec: can't init slab cache\n");
789 if (i >= scale)
790 pool_entries >>= 1;
792 bp->pool = mempool_create(pool_entries, mempool_alloc_slab,
793 mempool_free_slab, bp->slab);
794 if (!bp->pool)
795 panic("biovec: can't init mempool\n");
797 printk("biovec pool[%d]: %3d bvecs: %3d entries (%d bytes)\n",
798 i, bp->nr_vecs, pool_entries,
799 size);
803 static int __init init_bio(void)
805 bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
806 SLAB_HWCACHE_ALIGN, NULL, NULL);
807 if (!bio_slab)
808 panic("bio: can't create slab cache\n");
809 bio_pool = mempool_create(BIO_POOL_SIZE, mempool_alloc_slab, mempool_free_slab, bio_slab);
810 if (!bio_pool)
811 panic("bio: can't create mempool\n");
813 printk("BIO: pool of %d setup, %ZuKb (%Zd bytes/bio)\n", BIO_POOL_SIZE, BIO_POOL_SIZE * sizeof(struct bio) >> 10, sizeof(struct bio));
815 biovec_init_pools();
817 bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES, bio_pair_alloc, bio_pair_free, NULL);
818 if (!bio_split_pool)
819 panic("bio: can't create split pool\n");
821 return 0;
824 subsys_initcall(init_bio);
826 EXPORT_SYMBOL(bio_alloc);
827 EXPORT_SYMBOL(bio_put);
828 EXPORT_SYMBOL(bio_endio);
829 EXPORT_SYMBOL(bio_init);
830 EXPORT_SYMBOL(__bio_clone);
831 EXPORT_SYMBOL(bio_clone);
832 EXPORT_SYMBOL(bio_phys_segments);
833 EXPORT_SYMBOL(bio_hw_segments);
834 EXPORT_SYMBOL(bio_add_page);
835 EXPORT_SYMBOL(bio_get_nr_vecs);
836 EXPORT_SYMBOL(bio_map_user);
837 EXPORT_SYMBOL(bio_unmap_user);
838 EXPORT_SYMBOL(bio_pair_release);
839 EXPORT_SYMBOL(bio_split);
840 EXPORT_SYMBOL(bio_split_pool);