i386: Clean up duplicate includes in arch/i386/xen/
[linux-2.6/cjktty.git] / arch / x86 / xen / enlighten.c
blob265f7dd3234b53641cdbee2d41ffe8b58c2633d6
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
29 #include <xen/interface/xen.h>
30 #include <xen/interface/physdev.h>
31 #include <xen/interface/vcpu.h>
32 #include <xen/interface/sched.h>
33 #include <xen/features.h>
34 #include <xen/page.h>
36 #include <asm/paravirt.h>
37 #include <asm/page.h>
38 #include <asm/xen/hypercall.h>
39 #include <asm/xen/hypervisor.h>
40 #include <asm/fixmap.h>
41 #include <asm/processor.h>
42 #include <asm/setup.h>
43 #include <asm/desc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46 #include <asm/reboot.h>
48 #include "xen-ops.h"
49 #include "mmu.h"
50 #include "multicalls.h"
52 EXPORT_SYMBOL_GPL(hypercall_page);
54 DEFINE_PER_CPU(enum paravirt_lazy_mode, xen_lazy_mode);
56 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
57 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
58 DEFINE_PER_CPU(unsigned long, xen_cr3);
60 struct start_info *xen_start_info;
61 EXPORT_SYMBOL_GPL(xen_start_info);
63 static /* __initdata */ struct shared_info dummy_shared_info;
66 * Point at some empty memory to start with. We map the real shared_info
67 * page as soon as fixmap is up and running.
69 struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
72 * Flag to determine whether vcpu info placement is available on all
73 * VCPUs. We assume it is to start with, and then set it to zero on
74 * the first failure. This is because it can succeed on some VCPUs
75 * and not others, since it can involve hypervisor memory allocation,
76 * or because the guest failed to guarantee all the appropriate
77 * constraints on all VCPUs (ie buffer can't cross a page boundary).
79 * Note that any particular CPU may be using a placed vcpu structure,
80 * but we can only optimise if the all are.
82 * 0: not available, 1: available
84 static int have_vcpu_info_placement = 1;
86 static void __init xen_vcpu_setup(int cpu)
88 struct vcpu_register_vcpu_info info;
89 int err;
90 struct vcpu_info *vcpup;
92 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
94 if (!have_vcpu_info_placement)
95 return; /* already tested, not available */
97 vcpup = &per_cpu(xen_vcpu_info, cpu);
99 info.mfn = virt_to_mfn(vcpup);
100 info.offset = offset_in_page(vcpup);
102 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %x, offset %d\n",
103 cpu, vcpup, info.mfn, info.offset);
105 /* Check to see if the hypervisor will put the vcpu_info
106 structure where we want it, which allows direct access via
107 a percpu-variable. */
108 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
110 if (err) {
111 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
112 have_vcpu_info_placement = 0;
113 } else {
114 /* This cpu is using the registered vcpu info, even if
115 later ones fail to. */
116 per_cpu(xen_vcpu, cpu) = vcpup;
118 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
119 cpu, vcpup);
123 static void __init xen_banner(void)
125 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
126 paravirt_ops.name);
127 printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
130 static void xen_cpuid(unsigned int *eax, unsigned int *ebx,
131 unsigned int *ecx, unsigned int *edx)
133 unsigned maskedx = ~0;
136 * Mask out inconvenient features, to try and disable as many
137 * unsupported kernel subsystems as possible.
139 if (*eax == 1)
140 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
141 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
142 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
144 asm(XEN_EMULATE_PREFIX "cpuid"
145 : "=a" (*eax),
146 "=b" (*ebx),
147 "=c" (*ecx),
148 "=d" (*edx)
149 : "0" (*eax), "2" (*ecx));
150 *edx &= maskedx;
153 static void xen_set_debugreg(int reg, unsigned long val)
155 HYPERVISOR_set_debugreg(reg, val);
158 static unsigned long xen_get_debugreg(int reg)
160 return HYPERVISOR_get_debugreg(reg);
163 static unsigned long xen_save_fl(void)
165 struct vcpu_info *vcpu;
166 unsigned long flags;
168 vcpu = x86_read_percpu(xen_vcpu);
170 /* flag has opposite sense of mask */
171 flags = !vcpu->evtchn_upcall_mask;
173 /* convert to IF type flag
174 -0 -> 0x00000000
175 -1 -> 0xffffffff
177 return (-flags) & X86_EFLAGS_IF;
180 static void xen_restore_fl(unsigned long flags)
182 struct vcpu_info *vcpu;
184 /* convert from IF type flag */
185 flags = !(flags & X86_EFLAGS_IF);
187 /* There's a one instruction preempt window here. We need to
188 make sure we're don't switch CPUs between getting the vcpu
189 pointer and updating the mask. */
190 preempt_disable();
191 vcpu = x86_read_percpu(xen_vcpu);
192 vcpu->evtchn_upcall_mask = flags;
193 preempt_enable_no_resched();
195 /* Doesn't matter if we get preempted here, because any
196 pending event will get dealt with anyway. */
198 if (flags == 0) {
199 preempt_check_resched();
200 barrier(); /* unmask then check (avoid races) */
201 if (unlikely(vcpu->evtchn_upcall_pending))
202 force_evtchn_callback();
206 static void xen_irq_disable(void)
208 /* There's a one instruction preempt window here. We need to
209 make sure we're don't switch CPUs between getting the vcpu
210 pointer and updating the mask. */
211 preempt_disable();
212 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
213 preempt_enable_no_resched();
216 static void xen_irq_enable(void)
218 struct vcpu_info *vcpu;
220 /* There's a one instruction preempt window here. We need to
221 make sure we're don't switch CPUs between getting the vcpu
222 pointer and updating the mask. */
223 preempt_disable();
224 vcpu = x86_read_percpu(xen_vcpu);
225 vcpu->evtchn_upcall_mask = 0;
226 preempt_enable_no_resched();
228 /* Doesn't matter if we get preempted here, because any
229 pending event will get dealt with anyway. */
231 barrier(); /* unmask then check (avoid races) */
232 if (unlikely(vcpu->evtchn_upcall_pending))
233 force_evtchn_callback();
236 static void xen_safe_halt(void)
238 /* Blocking includes an implicit local_irq_enable(). */
239 if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
240 BUG();
243 static void xen_halt(void)
245 if (irqs_disabled())
246 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
247 else
248 xen_safe_halt();
251 static void xen_set_lazy_mode(enum paravirt_lazy_mode mode)
253 BUG_ON(preemptible());
255 switch (mode) {
256 case PARAVIRT_LAZY_NONE:
257 BUG_ON(x86_read_percpu(xen_lazy_mode) == PARAVIRT_LAZY_NONE);
258 break;
260 case PARAVIRT_LAZY_MMU:
261 case PARAVIRT_LAZY_CPU:
262 BUG_ON(x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE);
263 break;
265 case PARAVIRT_LAZY_FLUSH:
266 /* flush if necessary, but don't change state */
267 if (x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE)
268 xen_mc_flush();
269 return;
272 xen_mc_flush();
273 x86_write_percpu(xen_lazy_mode, mode);
276 static unsigned long xen_store_tr(void)
278 return 0;
281 static void xen_set_ldt(const void *addr, unsigned entries)
283 unsigned long linear_addr = (unsigned long)addr;
284 struct mmuext_op *op;
285 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
287 op = mcs.args;
288 op->cmd = MMUEXT_SET_LDT;
289 if (linear_addr) {
290 /* ldt my be vmalloced, use arbitrary_virt_to_machine */
291 xmaddr_t maddr;
292 maddr = arbitrary_virt_to_machine((unsigned long)addr);
293 linear_addr = (unsigned long)maddr.maddr;
295 op->arg1.linear_addr = linear_addr;
296 op->arg2.nr_ents = entries;
298 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
300 xen_mc_issue(PARAVIRT_LAZY_CPU);
303 static void xen_load_gdt(const struct Xgt_desc_struct *dtr)
305 unsigned long *frames;
306 unsigned long va = dtr->address;
307 unsigned int size = dtr->size + 1;
308 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
309 int f;
310 struct multicall_space mcs;
312 /* A GDT can be up to 64k in size, which corresponds to 8192
313 8-byte entries, or 16 4k pages.. */
315 BUG_ON(size > 65536);
316 BUG_ON(va & ~PAGE_MASK);
318 mcs = xen_mc_entry(sizeof(*frames) * pages);
319 frames = mcs.args;
321 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
322 frames[f] = virt_to_mfn(va);
323 make_lowmem_page_readonly((void *)va);
326 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
328 xen_mc_issue(PARAVIRT_LAZY_CPU);
331 static void load_TLS_descriptor(struct thread_struct *t,
332 unsigned int cpu, unsigned int i)
334 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
335 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
336 struct multicall_space mc = __xen_mc_entry(0);
338 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
341 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
343 xen_mc_batch();
345 load_TLS_descriptor(t, cpu, 0);
346 load_TLS_descriptor(t, cpu, 1);
347 load_TLS_descriptor(t, cpu, 2);
349 xen_mc_issue(PARAVIRT_LAZY_CPU);
352 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
353 * it means we're in a context switch, and %gs has just been
354 * saved. This means we can zero it out to prevent faults on
355 * exit from the hypervisor if the next process has no %gs.
356 * Either way, it has been saved, and the new value will get
357 * loaded properly. This will go away as soon as Xen has been
358 * modified to not save/restore %gs for normal hypercalls.
360 if (xen_get_lazy_mode() == PARAVIRT_LAZY_CPU)
361 loadsegment(gs, 0);
364 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
365 u32 low, u32 high)
367 unsigned long lp = (unsigned long)&dt[entrynum];
368 xmaddr_t mach_lp = virt_to_machine(lp);
369 u64 entry = (u64)high << 32 | low;
371 preempt_disable();
373 xen_mc_flush();
374 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
375 BUG();
377 preempt_enable();
380 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
381 struct trap_info *info)
383 u8 type, dpl;
385 type = (high >> 8) & 0x1f;
386 dpl = (high >> 13) & 3;
388 if (type != 0xf && type != 0xe)
389 return 0;
391 info->vector = vector;
392 info->address = (high & 0xffff0000) | (low & 0x0000ffff);
393 info->cs = low >> 16;
394 info->flags = dpl;
395 /* interrupt gates clear IF */
396 if (type == 0xe)
397 info->flags |= 4;
399 return 1;
402 /* Locations of each CPU's IDT */
403 static DEFINE_PER_CPU(struct Xgt_desc_struct, idt_desc);
405 /* Set an IDT entry. If the entry is part of the current IDT, then
406 also update Xen. */
407 static void xen_write_idt_entry(struct desc_struct *dt, int entrynum,
408 u32 low, u32 high)
410 unsigned long p = (unsigned long)&dt[entrynum];
411 unsigned long start, end;
413 preempt_disable();
415 start = __get_cpu_var(idt_desc).address;
416 end = start + __get_cpu_var(idt_desc).size + 1;
418 xen_mc_flush();
420 write_dt_entry(dt, entrynum, low, high);
422 if (p >= start && (p + 8) <= end) {
423 struct trap_info info[2];
425 info[1].address = 0;
427 if (cvt_gate_to_trap(entrynum, low, high, &info[0]))
428 if (HYPERVISOR_set_trap_table(info))
429 BUG();
432 preempt_enable();
435 static void xen_convert_trap_info(const struct Xgt_desc_struct *desc,
436 struct trap_info *traps)
438 unsigned in, out, count;
440 count = (desc->size+1) / 8;
441 BUG_ON(count > 256);
443 for (in = out = 0; in < count; in++) {
444 const u32 *entry = (u32 *)(desc->address + in * 8);
446 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
447 out++;
449 traps[out].address = 0;
452 void xen_copy_trap_info(struct trap_info *traps)
454 const struct Xgt_desc_struct *desc = &__get_cpu_var(idt_desc);
456 xen_convert_trap_info(desc, traps);
459 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
460 hold a spinlock to protect the static traps[] array (static because
461 it avoids allocation, and saves stack space). */
462 static void xen_load_idt(const struct Xgt_desc_struct *desc)
464 static DEFINE_SPINLOCK(lock);
465 static struct trap_info traps[257];
467 spin_lock(&lock);
469 __get_cpu_var(idt_desc) = *desc;
471 xen_convert_trap_info(desc, traps);
473 xen_mc_flush();
474 if (HYPERVISOR_set_trap_table(traps))
475 BUG();
477 spin_unlock(&lock);
480 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
481 they're handled differently. */
482 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
483 u32 low, u32 high)
485 preempt_disable();
487 switch ((high >> 8) & 0xff) {
488 case DESCTYPE_LDT:
489 case DESCTYPE_TSS:
490 /* ignore */
491 break;
493 default: {
494 xmaddr_t maddr = virt_to_machine(&dt[entry]);
495 u64 desc = (u64)high << 32 | low;
497 xen_mc_flush();
498 if (HYPERVISOR_update_descriptor(maddr.maddr, desc))
499 BUG();
504 preempt_enable();
507 static void xen_load_esp0(struct tss_struct *tss,
508 struct thread_struct *thread)
510 struct multicall_space mcs = xen_mc_entry(0);
511 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->esp0);
512 xen_mc_issue(PARAVIRT_LAZY_CPU);
515 static void xen_set_iopl_mask(unsigned mask)
517 struct physdev_set_iopl set_iopl;
519 /* Force the change at ring 0. */
520 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
521 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
524 static void xen_io_delay(void)
528 #ifdef CONFIG_X86_LOCAL_APIC
529 static unsigned long xen_apic_read(unsigned long reg)
531 return 0;
534 static void xen_apic_write(unsigned long reg, unsigned long val)
536 /* Warn to see if there's any stray references */
537 WARN_ON(1);
539 #endif
541 static void xen_flush_tlb(void)
543 struct mmuext_op *op;
544 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
546 op = mcs.args;
547 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
548 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
550 xen_mc_issue(PARAVIRT_LAZY_MMU);
553 static void xen_flush_tlb_single(unsigned long addr)
555 struct mmuext_op *op;
556 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
558 op = mcs.args;
559 op->cmd = MMUEXT_INVLPG_LOCAL;
560 op->arg1.linear_addr = addr & PAGE_MASK;
561 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
563 xen_mc_issue(PARAVIRT_LAZY_MMU);
566 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
567 unsigned long va)
569 struct {
570 struct mmuext_op op;
571 cpumask_t mask;
572 } *args;
573 cpumask_t cpumask = *cpus;
574 struct multicall_space mcs;
577 * A couple of (to be removed) sanity checks:
579 * - current CPU must not be in mask
580 * - mask must exist :)
582 BUG_ON(cpus_empty(cpumask));
583 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
584 BUG_ON(!mm);
586 /* If a CPU which we ran on has gone down, OK. */
587 cpus_and(cpumask, cpumask, cpu_online_map);
588 if (cpus_empty(cpumask))
589 return;
591 mcs = xen_mc_entry(sizeof(*args));
592 args = mcs.args;
593 args->mask = cpumask;
594 args->op.arg2.vcpumask = &args->mask;
596 if (va == TLB_FLUSH_ALL) {
597 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
598 } else {
599 args->op.cmd = MMUEXT_INVLPG_MULTI;
600 args->op.arg1.linear_addr = va;
603 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
605 xen_mc_issue(PARAVIRT_LAZY_MMU);
608 static void xen_write_cr2(unsigned long cr2)
610 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
613 static unsigned long xen_read_cr2(void)
615 return x86_read_percpu(xen_vcpu)->arch.cr2;
618 static unsigned long xen_read_cr2_direct(void)
620 return x86_read_percpu(xen_vcpu_info.arch.cr2);
623 static void xen_write_cr4(unsigned long cr4)
625 /* Just ignore cr4 changes; Xen doesn't allow us to do
626 anything anyway. */
629 static unsigned long xen_read_cr3(void)
631 return x86_read_percpu(xen_cr3);
634 static void xen_write_cr3(unsigned long cr3)
636 BUG_ON(preemptible());
638 if (cr3 == x86_read_percpu(xen_cr3)) {
639 /* just a simple tlb flush */
640 xen_flush_tlb();
641 return;
644 x86_write_percpu(xen_cr3, cr3);
648 struct mmuext_op *op;
649 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
650 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
652 op = mcs.args;
653 op->cmd = MMUEXT_NEW_BASEPTR;
654 op->arg1.mfn = mfn;
656 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
658 xen_mc_issue(PARAVIRT_LAZY_CPU);
662 /* Early in boot, while setting up the initial pagetable, assume
663 everything is pinned. */
664 static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
666 BUG_ON(mem_map); /* should only be used early */
667 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
670 /* This needs to make sure the new pte page is pinned iff its being
671 attached to a pinned pagetable. */
672 static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
674 struct page *page = pfn_to_page(pfn);
676 if (PagePinned(virt_to_page(mm->pgd))) {
677 SetPagePinned(page);
679 if (!PageHighMem(page))
680 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
681 else
682 /* make sure there are no stray mappings of
683 this page */
684 kmap_flush_unused();
688 /* This should never happen until we're OK to use struct page */
689 static void xen_release_pt(u32 pfn)
691 struct page *page = pfn_to_page(pfn);
693 if (PagePinned(page)) {
694 if (!PageHighMem(page))
695 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
699 #ifdef CONFIG_HIGHPTE
700 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
702 pgprot_t prot = PAGE_KERNEL;
704 if (PagePinned(page))
705 prot = PAGE_KERNEL_RO;
707 if (0 && PageHighMem(page))
708 printk("mapping highpte %lx type %d prot %s\n",
709 page_to_pfn(page), type,
710 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
712 return kmap_atomic_prot(page, type, prot);
714 #endif
716 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
718 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
719 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
720 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
721 pte_val_ma(pte));
723 return pte;
726 /* Init-time set_pte while constructing initial pagetables, which
727 doesn't allow RO pagetable pages to be remapped RW */
728 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
730 pte = mask_rw_pte(ptep, pte);
732 xen_set_pte(ptep, pte);
735 static __init void xen_pagetable_setup_start(pgd_t *base)
737 pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
739 /* special set_pte for pagetable initialization */
740 paravirt_ops.set_pte = xen_set_pte_init;
742 init_mm.pgd = base;
744 * copy top-level of Xen-supplied pagetable into place. For
745 * !PAE we can use this as-is, but for PAE it is a stand-in
746 * while we copy the pmd pages.
748 memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
750 if (PTRS_PER_PMD > 1) {
751 int i;
753 * For PAE, need to allocate new pmds, rather than
754 * share Xen's, since Xen doesn't like pmd's being
755 * shared between address spaces.
757 for (i = 0; i < PTRS_PER_PGD; i++) {
758 if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
759 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
761 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
762 PAGE_SIZE);
764 make_lowmem_page_readonly(pmd);
766 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
767 } else
768 pgd_clear(&base[i]);
772 /* make sure zero_page is mapped RO so we can use it in pagetables */
773 make_lowmem_page_readonly(empty_zero_page);
774 make_lowmem_page_readonly(base);
776 * Switch to new pagetable. This is done before
777 * pagetable_init has done anything so that the new pages
778 * added to the table can be prepared properly for Xen.
780 xen_write_cr3(__pa(base));
783 static __init void xen_pagetable_setup_done(pgd_t *base)
785 /* This will work as long as patching hasn't happened yet
786 (which it hasn't) */
787 paravirt_ops.alloc_pt = xen_alloc_pt;
788 paravirt_ops.set_pte = xen_set_pte;
790 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
792 * Create a mapping for the shared info page.
793 * Should be set_fixmap(), but shared_info is a machine
794 * address with no corresponding pseudo-phys address.
796 set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
797 PFN_DOWN(xen_start_info->shared_info),
798 PAGE_KERNEL);
800 HYPERVISOR_shared_info =
801 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
803 } else
804 HYPERVISOR_shared_info =
805 (struct shared_info *)__va(xen_start_info->shared_info);
807 /* Actually pin the pagetable down, but we can't set PG_pinned
808 yet because the page structures don't exist yet. */
810 struct mmuext_op op;
811 #ifdef CONFIG_X86_PAE
812 op.cmd = MMUEXT_PIN_L3_TABLE;
813 #else
814 op.cmd = MMUEXT_PIN_L3_TABLE;
815 #endif
816 op.arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(base)));
817 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
818 BUG();
822 /* This is called once we have the cpu_possible_map */
823 void __init xen_setup_vcpu_info_placement(void)
825 int cpu;
827 for_each_possible_cpu(cpu)
828 xen_vcpu_setup(cpu);
830 /* xen_vcpu_setup managed to place the vcpu_info within the
831 percpu area for all cpus, so make use of it */
832 if (have_vcpu_info_placement) {
833 printk(KERN_INFO "Xen: using vcpu_info placement\n");
835 paravirt_ops.save_fl = xen_save_fl_direct;
836 paravirt_ops.restore_fl = xen_restore_fl_direct;
837 paravirt_ops.irq_disable = xen_irq_disable_direct;
838 paravirt_ops.irq_enable = xen_irq_enable_direct;
839 paravirt_ops.read_cr2 = xen_read_cr2_direct;
840 paravirt_ops.iret = xen_iret_direct;
844 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
845 unsigned long addr, unsigned len)
847 char *start, *end, *reloc;
848 unsigned ret;
850 start = end = reloc = NULL;
852 #define SITE(x) \
853 case PARAVIRT_PATCH(x): \
854 if (have_vcpu_info_placement) { \
855 start = (char *)xen_##x##_direct; \
856 end = xen_##x##_direct_end; \
857 reloc = xen_##x##_direct_reloc; \
859 goto patch_site
861 switch (type) {
862 SITE(irq_enable);
863 SITE(irq_disable);
864 SITE(save_fl);
865 SITE(restore_fl);
866 #undef SITE
868 patch_site:
869 if (start == NULL || (end-start) > len)
870 goto default_patch;
872 ret = paravirt_patch_insns(insnbuf, len, start, end);
874 /* Note: because reloc is assigned from something that
875 appears to be an array, gcc assumes it's non-null,
876 but doesn't know its relationship with start and
877 end. */
878 if (reloc > start && reloc < end) {
879 int reloc_off = reloc - start;
880 long *relocp = (long *)(insnbuf + reloc_off);
881 long delta = start - (char *)addr;
883 *relocp += delta;
885 break;
887 default_patch:
888 default:
889 ret = paravirt_patch_default(type, clobbers, insnbuf,
890 addr, len);
891 break;
894 return ret;
897 static const struct paravirt_ops xen_paravirt_ops __initdata = {
898 .paravirt_enabled = 1,
899 .shared_kernel_pmd = 0,
901 .name = "Xen",
902 .banner = xen_banner,
904 .patch = xen_patch,
906 .memory_setup = xen_memory_setup,
907 .arch_setup = xen_arch_setup,
908 .init_IRQ = xen_init_IRQ,
909 .post_allocator_init = xen_mark_init_mm_pinned,
911 .time_init = xen_time_init,
912 .set_wallclock = xen_set_wallclock,
913 .get_wallclock = xen_get_wallclock,
914 .get_cpu_khz = xen_cpu_khz,
915 .sched_clock = xen_sched_clock,
917 .cpuid = xen_cpuid,
919 .set_debugreg = xen_set_debugreg,
920 .get_debugreg = xen_get_debugreg,
922 .clts = native_clts,
924 .read_cr0 = native_read_cr0,
925 .write_cr0 = native_write_cr0,
927 .read_cr2 = xen_read_cr2,
928 .write_cr2 = xen_write_cr2,
930 .read_cr3 = xen_read_cr3,
931 .write_cr3 = xen_write_cr3,
933 .read_cr4 = native_read_cr4,
934 .read_cr4_safe = native_read_cr4_safe,
935 .write_cr4 = xen_write_cr4,
937 .save_fl = xen_save_fl,
938 .restore_fl = xen_restore_fl,
939 .irq_disable = xen_irq_disable,
940 .irq_enable = xen_irq_enable,
941 .safe_halt = xen_safe_halt,
942 .halt = xen_halt,
943 .wbinvd = native_wbinvd,
945 .read_msr = native_read_msr_safe,
946 .write_msr = native_write_msr_safe,
947 .read_tsc = native_read_tsc,
948 .read_pmc = native_read_pmc,
950 .iret = (void *)&hypercall_page[__HYPERVISOR_iret],
951 .irq_enable_sysexit = NULL, /* never called */
953 .load_tr_desc = paravirt_nop,
954 .set_ldt = xen_set_ldt,
955 .load_gdt = xen_load_gdt,
956 .load_idt = xen_load_idt,
957 .load_tls = xen_load_tls,
959 .store_gdt = native_store_gdt,
960 .store_idt = native_store_idt,
961 .store_tr = xen_store_tr,
963 .write_ldt_entry = xen_write_ldt_entry,
964 .write_gdt_entry = xen_write_gdt_entry,
965 .write_idt_entry = xen_write_idt_entry,
966 .load_esp0 = xen_load_esp0,
968 .set_iopl_mask = xen_set_iopl_mask,
969 .io_delay = xen_io_delay,
971 #ifdef CONFIG_X86_LOCAL_APIC
972 .apic_write = xen_apic_write,
973 .apic_write_atomic = xen_apic_write,
974 .apic_read = xen_apic_read,
975 .setup_boot_clock = paravirt_nop,
976 .setup_secondary_clock = paravirt_nop,
977 .startup_ipi_hook = paravirt_nop,
978 #endif
980 .flush_tlb_user = xen_flush_tlb,
981 .flush_tlb_kernel = xen_flush_tlb,
982 .flush_tlb_single = xen_flush_tlb_single,
983 .flush_tlb_others = xen_flush_tlb_others,
985 .pte_update = paravirt_nop,
986 .pte_update_defer = paravirt_nop,
988 .pagetable_setup_start = xen_pagetable_setup_start,
989 .pagetable_setup_done = xen_pagetable_setup_done,
991 .alloc_pt = xen_alloc_pt_init,
992 .release_pt = xen_release_pt,
993 .alloc_pd = paravirt_nop,
994 .alloc_pd_clone = paravirt_nop,
995 .release_pd = paravirt_nop,
997 #ifdef CONFIG_HIGHPTE
998 .kmap_atomic_pte = xen_kmap_atomic_pte,
999 #endif
1001 .set_pte = NULL, /* see xen_pagetable_setup_* */
1002 .set_pte_at = xen_set_pte_at,
1003 .set_pmd = xen_set_pmd,
1005 .pte_val = xen_pte_val,
1006 .pgd_val = xen_pgd_val,
1008 .make_pte = xen_make_pte,
1009 .make_pgd = xen_make_pgd,
1011 #ifdef CONFIG_X86_PAE
1012 .set_pte_atomic = xen_set_pte_atomic,
1013 .set_pte_present = xen_set_pte_at,
1014 .set_pud = xen_set_pud,
1015 .pte_clear = xen_pte_clear,
1016 .pmd_clear = xen_pmd_clear,
1018 .make_pmd = xen_make_pmd,
1019 .pmd_val = xen_pmd_val,
1020 #endif /* PAE */
1022 .activate_mm = xen_activate_mm,
1023 .dup_mmap = xen_dup_mmap,
1024 .exit_mmap = xen_exit_mmap,
1026 .set_lazy_mode = xen_set_lazy_mode,
1029 #ifdef CONFIG_SMP
1030 static const struct smp_ops xen_smp_ops __initdata = {
1031 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1032 .smp_prepare_cpus = xen_smp_prepare_cpus,
1033 .cpu_up = xen_cpu_up,
1034 .smp_cpus_done = xen_smp_cpus_done,
1036 .smp_send_stop = xen_smp_send_stop,
1037 .smp_send_reschedule = xen_smp_send_reschedule,
1038 .smp_call_function_mask = xen_smp_call_function_mask,
1040 #endif /* CONFIG_SMP */
1042 static void xen_reboot(int reason)
1044 #ifdef CONFIG_SMP
1045 smp_send_stop();
1046 #endif
1048 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
1049 BUG();
1052 static void xen_restart(char *msg)
1054 xen_reboot(SHUTDOWN_reboot);
1057 static void xen_emergency_restart(void)
1059 xen_reboot(SHUTDOWN_reboot);
1062 static void xen_machine_halt(void)
1064 xen_reboot(SHUTDOWN_poweroff);
1067 static void xen_crash_shutdown(struct pt_regs *regs)
1069 xen_reboot(SHUTDOWN_crash);
1072 static const struct machine_ops __initdata xen_machine_ops = {
1073 .restart = xen_restart,
1074 .halt = xen_machine_halt,
1075 .power_off = xen_machine_halt,
1076 .shutdown = xen_machine_halt,
1077 .crash_shutdown = xen_crash_shutdown,
1078 .emergency_restart = xen_emergency_restart,
1082 /* First C function to be called on Xen boot */
1083 asmlinkage void __init xen_start_kernel(void)
1085 pgd_t *pgd;
1087 if (!xen_start_info)
1088 return;
1090 BUG_ON(memcmp(xen_start_info->magic, "xen-3.0", 7) != 0);
1092 /* Install Xen paravirt ops */
1093 paravirt_ops = xen_paravirt_ops;
1094 machine_ops = xen_machine_ops;
1096 #ifdef CONFIG_SMP
1097 smp_ops = xen_smp_ops;
1098 #endif
1100 xen_setup_features();
1102 /* Get mfn list */
1103 if (!xen_feature(XENFEAT_auto_translated_physmap))
1104 phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
1106 pgd = (pgd_t *)xen_start_info->pt_base;
1108 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1110 init_mm.pgd = pgd; /* use the Xen pagetables to start */
1112 /* keep using Xen gdt for now; no urgent need to change it */
1114 x86_write_percpu(xen_cr3, __pa(pgd));
1116 #ifdef CONFIG_SMP
1117 /* Don't do the full vcpu_info placement stuff until we have a
1118 possible map. */
1119 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1120 #else
1121 /* May as well do it now, since there's no good time to call
1122 it later on UP. */
1123 xen_setup_vcpu_info_placement();
1124 #endif
1126 paravirt_ops.kernel_rpl = 1;
1127 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1128 paravirt_ops.kernel_rpl = 0;
1130 /* set the limit of our address space */
1131 reserve_top_address(-HYPERVISOR_VIRT_START + 2 * PAGE_SIZE);
1133 /* set up basic CPUID stuff */
1134 cpu_detect(&new_cpu_data);
1135 new_cpu_data.hard_math = 1;
1136 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1138 /* Poke various useful things into boot_params */
1139 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1140 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1141 ? __pa(xen_start_info->mod_start) : 0;
1142 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1144 /* Start the world */
1145 start_kernel();