2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
36 #include <asm/irq_regs.h>
39 * Each CPU has a list of per CPU events:
41 static DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
43 int perf_max_events __read_mostly
= 1;
44 static int perf_reserved_percpu __read_mostly
;
45 static int perf_overcommit __read_mostly
= 1;
47 static atomic_t nr_events __read_mostly
;
48 static atomic_t nr_mmap_events __read_mostly
;
49 static atomic_t nr_comm_events __read_mostly
;
50 static atomic_t nr_task_events __read_mostly
;
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
59 int sysctl_perf_event_paranoid __read_mostly
= 1;
61 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
64 * max perf event sample rate
66 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
68 static atomic64_t perf_event_id
;
71 * Lock for (sysadmin-configurable) event reservations:
73 static DEFINE_SPINLOCK(perf_resource_lock
);
76 * Architecture provided APIs - weak aliases:
78 extern __weak
const struct pmu
*hw_perf_event_init(struct perf_event
*event
)
83 void __weak
hw_perf_disable(void) { barrier(); }
84 void __weak
hw_perf_enable(void) { barrier(); }
86 void __weak
perf_event_print_debug(void) { }
88 static DEFINE_PER_CPU(int, perf_disable_count
);
90 void perf_disable(void)
92 if (!__get_cpu_var(perf_disable_count
)++)
96 void perf_enable(void)
98 if (!--__get_cpu_var(perf_disable_count
))
102 static void get_ctx(struct perf_event_context
*ctx
)
104 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
107 static void free_ctx(struct rcu_head
*head
)
109 struct perf_event_context
*ctx
;
111 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
115 static void put_ctx(struct perf_event_context
*ctx
)
117 if (atomic_dec_and_test(&ctx
->refcount
)) {
119 put_ctx(ctx
->parent_ctx
);
121 put_task_struct(ctx
->task
);
122 call_rcu(&ctx
->rcu_head
, free_ctx
);
126 static void unclone_ctx(struct perf_event_context
*ctx
)
128 if (ctx
->parent_ctx
) {
129 put_ctx(ctx
->parent_ctx
);
130 ctx
->parent_ctx
= NULL
;
135 * If we inherit events we want to return the parent event id
138 static u64
primary_event_id(struct perf_event
*event
)
143 id
= event
->parent
->id
;
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
153 static struct perf_event_context
*
154 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
156 struct perf_event_context
*ctx
;
160 ctx
= rcu_dereference(task
->perf_event_ctxp
);
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
172 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
173 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
174 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
178 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
179 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
192 static struct perf_event_context
*perf_pin_task_context(struct task_struct
*task
)
194 struct perf_event_context
*ctx
;
197 ctx
= perf_lock_task_context(task
, &flags
);
200 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
205 static void perf_unpin_context(struct perf_event_context
*ctx
)
209 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
211 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
215 static inline u64
perf_clock(void)
217 return cpu_clock(raw_smp_processor_id());
221 * Update the record of the current time in a context.
223 static void update_context_time(struct perf_event_context
*ctx
)
225 u64 now
= perf_clock();
227 ctx
->time
+= now
- ctx
->timestamp
;
228 ctx
->timestamp
= now
;
232 * Update the total_time_enabled and total_time_running fields for a event.
234 static void update_event_times(struct perf_event
*event
)
236 struct perf_event_context
*ctx
= event
->ctx
;
239 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
240 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
246 run_end
= event
->tstamp_stopped
;
248 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
250 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
251 run_end
= event
->tstamp_stopped
;
255 event
->total_time_running
= run_end
- event
->tstamp_running
;
259 * Update total_time_enabled and total_time_running for all events in a group.
261 static void update_group_times(struct perf_event
*leader
)
263 struct perf_event
*event
;
265 update_event_times(leader
);
266 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
267 update_event_times(event
);
270 static struct list_head
*
271 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
273 if (event
->attr
.pinned
)
274 return &ctx
->pinned_groups
;
276 return &ctx
->flexible_groups
;
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
284 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
286 struct perf_event
*group_leader
= event
->group_leader
;
289 * Depending on whether it is a standalone or sibling event,
290 * add it straight to the context's event list, or to the group
291 * leader's sibling list:
293 if (group_leader
== event
) {
294 struct list_head
*list
;
296 if (is_software_event(event
))
297 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
299 list
= ctx_group_list(event
, ctx
);
300 list_add_tail(&event
->group_entry
, list
);
302 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
303 !is_software_event(event
))
304 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
306 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
307 group_leader
->nr_siblings
++;
310 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
312 if (event
->attr
.inherit_stat
)
317 * Remove a event from the lists for its context.
318 * Must be called with ctx->mutex and ctx->lock held.
321 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
323 if (list_empty(&event
->group_entry
))
326 if (event
->attr
.inherit_stat
)
329 list_del_init(&event
->group_entry
);
330 list_del_rcu(&event
->event_entry
);
332 if (event
->group_leader
!= event
)
333 event
->group_leader
->nr_siblings
--;
335 update_group_times(event
);
338 * If event was in error state, then keep it
339 * that way, otherwise bogus counts will be
340 * returned on read(). The only way to get out
341 * of error state is by explicit re-enabling
344 if (event
->state
> PERF_EVENT_STATE_OFF
)
345 event
->state
= PERF_EVENT_STATE_OFF
;
349 perf_destroy_group(struct perf_event
*event
, struct perf_event_context
*ctx
)
351 struct perf_event
*sibling
, *tmp
;
354 * If this was a group event with sibling events then
355 * upgrade the siblings to singleton events by adding them
356 * to the context list directly:
358 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
359 struct list_head
*list
;
361 list
= ctx_group_list(event
, ctx
);
362 list_move_tail(&sibling
->group_entry
, list
);
363 sibling
->group_leader
= sibling
;
365 /* Inherit group flags from the previous leader */
366 sibling
->group_flags
= event
->group_flags
;
371 event_sched_out(struct perf_event
*event
,
372 struct perf_cpu_context
*cpuctx
,
373 struct perf_event_context
*ctx
)
375 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
378 event
->state
= PERF_EVENT_STATE_INACTIVE
;
379 if (event
->pending_disable
) {
380 event
->pending_disable
= 0;
381 event
->state
= PERF_EVENT_STATE_OFF
;
383 event
->tstamp_stopped
= ctx
->time
;
384 event
->pmu
->disable(event
);
387 if (!is_software_event(event
))
388 cpuctx
->active_oncpu
--;
390 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
391 cpuctx
->exclusive
= 0;
395 group_sched_out(struct perf_event
*group_event
,
396 struct perf_cpu_context
*cpuctx
,
397 struct perf_event_context
*ctx
)
399 struct perf_event
*event
;
401 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
404 event_sched_out(group_event
, cpuctx
, ctx
);
407 * Schedule out siblings (if any):
409 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
410 event_sched_out(event
, cpuctx
, ctx
);
412 if (group_event
->attr
.exclusive
)
413 cpuctx
->exclusive
= 0;
417 * Cross CPU call to remove a performance event
419 * We disable the event on the hardware level first. After that we
420 * remove it from the context list.
422 static void __perf_event_remove_from_context(void *info
)
424 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
425 struct perf_event
*event
= info
;
426 struct perf_event_context
*ctx
= event
->ctx
;
429 * If this is a task context, we need to check whether it is
430 * the current task context of this cpu. If not it has been
431 * scheduled out before the smp call arrived.
433 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
436 raw_spin_lock(&ctx
->lock
);
438 * Protect the list operation against NMI by disabling the
439 * events on a global level.
443 event_sched_out(event
, cpuctx
, ctx
);
445 list_del_event(event
, ctx
);
449 * Allow more per task events with respect to the
452 cpuctx
->max_pertask
=
453 min(perf_max_events
- ctx
->nr_events
,
454 perf_max_events
- perf_reserved_percpu
);
458 raw_spin_unlock(&ctx
->lock
);
463 * Remove the event from a task's (or a CPU's) list of events.
465 * Must be called with ctx->mutex held.
467 * CPU events are removed with a smp call. For task events we only
468 * call when the task is on a CPU.
470 * If event->ctx is a cloned context, callers must make sure that
471 * every task struct that event->ctx->task could possibly point to
472 * remains valid. This is OK when called from perf_release since
473 * that only calls us on the top-level context, which can't be a clone.
474 * When called from perf_event_exit_task, it's OK because the
475 * context has been detached from its task.
477 static void perf_event_remove_from_context(struct perf_event
*event
)
479 struct perf_event_context
*ctx
= event
->ctx
;
480 struct task_struct
*task
= ctx
->task
;
484 * Per cpu events are removed via an smp call and
485 * the removal is always successful.
487 smp_call_function_single(event
->cpu
,
488 __perf_event_remove_from_context
,
494 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
497 raw_spin_lock_irq(&ctx
->lock
);
499 * If the context is active we need to retry the smp call.
501 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
502 raw_spin_unlock_irq(&ctx
->lock
);
507 * The lock prevents that this context is scheduled in so we
508 * can remove the event safely, if the call above did not
511 if (!list_empty(&event
->group_entry
))
512 list_del_event(event
, ctx
);
513 raw_spin_unlock_irq(&ctx
->lock
);
517 * Cross CPU call to disable a performance event
519 static void __perf_event_disable(void *info
)
521 struct perf_event
*event
= info
;
522 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
523 struct perf_event_context
*ctx
= event
->ctx
;
526 * If this is a per-task event, need to check whether this
527 * event's task is the current task on this cpu.
529 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
532 raw_spin_lock(&ctx
->lock
);
535 * If the event is on, turn it off.
536 * If it is in error state, leave it in error state.
538 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
539 update_context_time(ctx
);
540 update_group_times(event
);
541 if (event
== event
->group_leader
)
542 group_sched_out(event
, cpuctx
, ctx
);
544 event_sched_out(event
, cpuctx
, ctx
);
545 event
->state
= PERF_EVENT_STATE_OFF
;
548 raw_spin_unlock(&ctx
->lock
);
554 * If event->ctx is a cloned context, callers must make sure that
555 * every task struct that event->ctx->task could possibly point to
556 * remains valid. This condition is satisifed when called through
557 * perf_event_for_each_child or perf_event_for_each because they
558 * hold the top-level event's child_mutex, so any descendant that
559 * goes to exit will block in sync_child_event.
560 * When called from perf_pending_event it's OK because event->ctx
561 * is the current context on this CPU and preemption is disabled,
562 * hence we can't get into perf_event_task_sched_out for this context.
564 void perf_event_disable(struct perf_event
*event
)
566 struct perf_event_context
*ctx
= event
->ctx
;
567 struct task_struct
*task
= ctx
->task
;
571 * Disable the event on the cpu that it's on
573 smp_call_function_single(event
->cpu
, __perf_event_disable
,
579 task_oncpu_function_call(task
, __perf_event_disable
, event
);
581 raw_spin_lock_irq(&ctx
->lock
);
583 * If the event is still active, we need to retry the cross-call.
585 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
586 raw_spin_unlock_irq(&ctx
->lock
);
591 * Since we have the lock this context can't be scheduled
592 * in, so we can change the state safely.
594 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
595 update_group_times(event
);
596 event
->state
= PERF_EVENT_STATE_OFF
;
599 raw_spin_unlock_irq(&ctx
->lock
);
603 event_sched_in(struct perf_event
*event
,
604 struct perf_cpu_context
*cpuctx
,
605 struct perf_event_context
*ctx
)
607 if (event
->state
<= PERF_EVENT_STATE_OFF
)
610 event
->state
= PERF_EVENT_STATE_ACTIVE
;
611 event
->oncpu
= smp_processor_id();
613 * The new state must be visible before we turn it on in the hardware:
617 if (event
->pmu
->enable(event
)) {
618 event
->state
= PERF_EVENT_STATE_INACTIVE
;
623 event
->tstamp_running
+= ctx
->time
- event
->tstamp_stopped
;
625 if (!is_software_event(event
))
626 cpuctx
->active_oncpu
++;
629 if (event
->attr
.exclusive
)
630 cpuctx
->exclusive
= 1;
636 group_sched_in(struct perf_event
*group_event
,
637 struct perf_cpu_context
*cpuctx
,
638 struct perf_event_context
*ctx
)
640 struct perf_event
*event
, *partial_group
= NULL
;
641 const struct pmu
*pmu
= group_event
->pmu
;
645 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
648 /* Check if group transaction availabe */
655 if (event_sched_in(group_event
, cpuctx
, ctx
))
659 * Schedule in siblings as one group (if any):
661 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
662 if (event_sched_in(event
, cpuctx
, ctx
)) {
663 partial_group
= event
;
671 ret
= pmu
->commit_txn(pmu
);
673 pmu
->cancel_txn(pmu
);
679 pmu
->cancel_txn(pmu
);
682 * Groups can be scheduled in as one unit only, so undo any
683 * partial group before returning:
685 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
686 if (event
== partial_group
)
688 event_sched_out(event
, cpuctx
, ctx
);
690 event_sched_out(group_event
, cpuctx
, ctx
);
696 * Work out whether we can put this event group on the CPU now.
698 static int group_can_go_on(struct perf_event
*event
,
699 struct perf_cpu_context
*cpuctx
,
703 * Groups consisting entirely of software events can always go on.
705 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
708 * If an exclusive group is already on, no other hardware
711 if (cpuctx
->exclusive
)
714 * If this group is exclusive and there are already
715 * events on the CPU, it can't go on.
717 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
720 * Otherwise, try to add it if all previous groups were able
726 static void add_event_to_ctx(struct perf_event
*event
,
727 struct perf_event_context
*ctx
)
729 list_add_event(event
, ctx
);
730 event
->tstamp_enabled
= ctx
->time
;
731 event
->tstamp_running
= ctx
->time
;
732 event
->tstamp_stopped
= ctx
->time
;
736 * Cross CPU call to install and enable a performance event
738 * Must be called with ctx->mutex held
740 static void __perf_install_in_context(void *info
)
742 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
743 struct perf_event
*event
= info
;
744 struct perf_event_context
*ctx
= event
->ctx
;
745 struct perf_event
*leader
= event
->group_leader
;
749 * If this is a task context, we need to check whether it is
750 * the current task context of this cpu. If not it has been
751 * scheduled out before the smp call arrived.
752 * Or possibly this is the right context but it isn't
753 * on this cpu because it had no events.
755 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
756 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
758 cpuctx
->task_ctx
= ctx
;
761 raw_spin_lock(&ctx
->lock
);
763 update_context_time(ctx
);
766 * Protect the list operation against NMI by disabling the
767 * events on a global level. NOP for non NMI based events.
771 add_event_to_ctx(event
, ctx
);
773 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
777 * Don't put the event on if it is disabled or if
778 * it is in a group and the group isn't on.
780 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
781 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
785 * An exclusive event can't go on if there are already active
786 * hardware events, and no hardware event can go on if there
787 * is already an exclusive event on.
789 if (!group_can_go_on(event
, cpuctx
, 1))
792 err
= event_sched_in(event
, cpuctx
, ctx
);
796 * This event couldn't go on. If it is in a group
797 * then we have to pull the whole group off.
798 * If the event group is pinned then put it in error state.
801 group_sched_out(leader
, cpuctx
, ctx
);
802 if (leader
->attr
.pinned
) {
803 update_group_times(leader
);
804 leader
->state
= PERF_EVENT_STATE_ERROR
;
808 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
809 cpuctx
->max_pertask
--;
814 raw_spin_unlock(&ctx
->lock
);
818 * Attach a performance event to a context
820 * First we add the event to the list with the hardware enable bit
821 * in event->hw_config cleared.
823 * If the event is attached to a task which is on a CPU we use a smp
824 * call to enable it in the task context. The task might have been
825 * scheduled away, but we check this in the smp call again.
827 * Must be called with ctx->mutex held.
830 perf_install_in_context(struct perf_event_context
*ctx
,
831 struct perf_event
*event
,
834 struct task_struct
*task
= ctx
->task
;
838 * Per cpu events are installed via an smp call and
839 * the install is always successful.
841 smp_call_function_single(cpu
, __perf_install_in_context
,
847 task_oncpu_function_call(task
, __perf_install_in_context
,
850 raw_spin_lock_irq(&ctx
->lock
);
852 * we need to retry the smp call.
854 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
855 raw_spin_unlock_irq(&ctx
->lock
);
860 * The lock prevents that this context is scheduled in so we
861 * can add the event safely, if it the call above did not
864 if (list_empty(&event
->group_entry
))
865 add_event_to_ctx(event
, ctx
);
866 raw_spin_unlock_irq(&ctx
->lock
);
870 * Put a event into inactive state and update time fields.
871 * Enabling the leader of a group effectively enables all
872 * the group members that aren't explicitly disabled, so we
873 * have to update their ->tstamp_enabled also.
874 * Note: this works for group members as well as group leaders
875 * since the non-leader members' sibling_lists will be empty.
877 static void __perf_event_mark_enabled(struct perf_event
*event
,
878 struct perf_event_context
*ctx
)
880 struct perf_event
*sub
;
882 event
->state
= PERF_EVENT_STATE_INACTIVE
;
883 event
->tstamp_enabled
= ctx
->time
- event
->total_time_enabled
;
884 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
)
885 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
886 sub
->tstamp_enabled
=
887 ctx
->time
- sub
->total_time_enabled
;
891 * Cross CPU call to enable a performance event
893 static void __perf_event_enable(void *info
)
895 struct perf_event
*event
= info
;
896 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
897 struct perf_event_context
*ctx
= event
->ctx
;
898 struct perf_event
*leader
= event
->group_leader
;
902 * If this is a per-task event, need to check whether this
903 * event's task is the current task on this cpu.
905 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
906 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
908 cpuctx
->task_ctx
= ctx
;
911 raw_spin_lock(&ctx
->lock
);
913 update_context_time(ctx
);
915 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
917 __perf_event_mark_enabled(event
, ctx
);
919 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
923 * If the event is in a group and isn't the group leader,
924 * then don't put it on unless the group is on.
926 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
929 if (!group_can_go_on(event
, cpuctx
, 1)) {
934 err
= group_sched_in(event
, cpuctx
, ctx
);
936 err
= event_sched_in(event
, cpuctx
, ctx
);
942 * If this event can't go on and it's part of a
943 * group, then the whole group has to come off.
946 group_sched_out(leader
, cpuctx
, ctx
);
947 if (leader
->attr
.pinned
) {
948 update_group_times(leader
);
949 leader
->state
= PERF_EVENT_STATE_ERROR
;
954 raw_spin_unlock(&ctx
->lock
);
960 * If event->ctx is a cloned context, callers must make sure that
961 * every task struct that event->ctx->task could possibly point to
962 * remains valid. This condition is satisfied when called through
963 * perf_event_for_each_child or perf_event_for_each as described
964 * for perf_event_disable.
966 void perf_event_enable(struct perf_event
*event
)
968 struct perf_event_context
*ctx
= event
->ctx
;
969 struct task_struct
*task
= ctx
->task
;
973 * Enable the event on the cpu that it's on
975 smp_call_function_single(event
->cpu
, __perf_event_enable
,
980 raw_spin_lock_irq(&ctx
->lock
);
981 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
985 * If the event is in error state, clear that first.
986 * That way, if we see the event in error state below, we
987 * know that it has gone back into error state, as distinct
988 * from the task having been scheduled away before the
989 * cross-call arrived.
991 if (event
->state
== PERF_EVENT_STATE_ERROR
)
992 event
->state
= PERF_EVENT_STATE_OFF
;
995 raw_spin_unlock_irq(&ctx
->lock
);
996 task_oncpu_function_call(task
, __perf_event_enable
, event
);
998 raw_spin_lock_irq(&ctx
->lock
);
1001 * If the context is active and the event is still off,
1002 * we need to retry the cross-call.
1004 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
1008 * Since we have the lock this context can't be scheduled
1009 * in, so we can change the state safely.
1011 if (event
->state
== PERF_EVENT_STATE_OFF
)
1012 __perf_event_mark_enabled(event
, ctx
);
1015 raw_spin_unlock_irq(&ctx
->lock
);
1018 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1021 * not supported on inherited events
1023 if (event
->attr
.inherit
)
1026 atomic_add(refresh
, &event
->event_limit
);
1027 perf_event_enable(event
);
1033 EVENT_FLEXIBLE
= 0x1,
1035 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
1038 static void ctx_sched_out(struct perf_event_context
*ctx
,
1039 struct perf_cpu_context
*cpuctx
,
1040 enum event_type_t event_type
)
1042 struct perf_event
*event
;
1044 raw_spin_lock(&ctx
->lock
);
1046 if (likely(!ctx
->nr_events
))
1048 update_context_time(ctx
);
1051 if (!ctx
->nr_active
)
1054 if (event_type
& EVENT_PINNED
)
1055 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1056 group_sched_out(event
, cpuctx
, ctx
);
1058 if (event_type
& EVENT_FLEXIBLE
)
1059 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1060 group_sched_out(event
, cpuctx
, ctx
);
1065 raw_spin_unlock(&ctx
->lock
);
1069 * Test whether two contexts are equivalent, i.e. whether they
1070 * have both been cloned from the same version of the same context
1071 * and they both have the same number of enabled events.
1072 * If the number of enabled events is the same, then the set
1073 * of enabled events should be the same, because these are both
1074 * inherited contexts, therefore we can't access individual events
1075 * in them directly with an fd; we can only enable/disable all
1076 * events via prctl, or enable/disable all events in a family
1077 * via ioctl, which will have the same effect on both contexts.
1079 static int context_equiv(struct perf_event_context
*ctx1
,
1080 struct perf_event_context
*ctx2
)
1082 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1083 && ctx1
->parent_gen
== ctx2
->parent_gen
1084 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1087 static void __perf_event_sync_stat(struct perf_event
*event
,
1088 struct perf_event
*next_event
)
1092 if (!event
->attr
.inherit_stat
)
1096 * Update the event value, we cannot use perf_event_read()
1097 * because we're in the middle of a context switch and have IRQs
1098 * disabled, which upsets smp_call_function_single(), however
1099 * we know the event must be on the current CPU, therefore we
1100 * don't need to use it.
1102 switch (event
->state
) {
1103 case PERF_EVENT_STATE_ACTIVE
:
1104 event
->pmu
->read(event
);
1107 case PERF_EVENT_STATE_INACTIVE
:
1108 update_event_times(event
);
1116 * In order to keep per-task stats reliable we need to flip the event
1117 * values when we flip the contexts.
1119 value
= atomic64_read(&next_event
->count
);
1120 value
= atomic64_xchg(&event
->count
, value
);
1121 atomic64_set(&next_event
->count
, value
);
1123 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1124 swap(event
->total_time_running
, next_event
->total_time_running
);
1127 * Since we swizzled the values, update the user visible data too.
1129 perf_event_update_userpage(event
);
1130 perf_event_update_userpage(next_event
);
1133 #define list_next_entry(pos, member) \
1134 list_entry(pos->member.next, typeof(*pos), member)
1136 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1137 struct perf_event_context
*next_ctx
)
1139 struct perf_event
*event
, *next_event
;
1144 update_context_time(ctx
);
1146 event
= list_first_entry(&ctx
->event_list
,
1147 struct perf_event
, event_entry
);
1149 next_event
= list_first_entry(&next_ctx
->event_list
,
1150 struct perf_event
, event_entry
);
1152 while (&event
->event_entry
!= &ctx
->event_list
&&
1153 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1155 __perf_event_sync_stat(event
, next_event
);
1157 event
= list_next_entry(event
, event_entry
);
1158 next_event
= list_next_entry(next_event
, event_entry
);
1163 * Called from scheduler to remove the events of the current task,
1164 * with interrupts disabled.
1166 * We stop each event and update the event value in event->count.
1168 * This does not protect us against NMI, but disable()
1169 * sets the disabled bit in the control field of event _before_
1170 * accessing the event control register. If a NMI hits, then it will
1171 * not restart the event.
1173 void perf_event_task_sched_out(struct task_struct
*task
,
1174 struct task_struct
*next
)
1176 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1177 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1178 struct perf_event_context
*next_ctx
;
1179 struct perf_event_context
*parent
;
1182 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, NULL
, 0);
1184 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1188 parent
= rcu_dereference(ctx
->parent_ctx
);
1189 next_ctx
= next
->perf_event_ctxp
;
1190 if (parent
&& next_ctx
&&
1191 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1193 * Looks like the two contexts are clones, so we might be
1194 * able to optimize the context switch. We lock both
1195 * contexts and check that they are clones under the
1196 * lock (including re-checking that neither has been
1197 * uncloned in the meantime). It doesn't matter which
1198 * order we take the locks because no other cpu could
1199 * be trying to lock both of these tasks.
1201 raw_spin_lock(&ctx
->lock
);
1202 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1203 if (context_equiv(ctx
, next_ctx
)) {
1205 * XXX do we need a memory barrier of sorts
1206 * wrt to rcu_dereference() of perf_event_ctxp
1208 task
->perf_event_ctxp
= next_ctx
;
1209 next
->perf_event_ctxp
= ctx
;
1211 next_ctx
->task
= task
;
1214 perf_event_sync_stat(ctx
, next_ctx
);
1216 raw_spin_unlock(&next_ctx
->lock
);
1217 raw_spin_unlock(&ctx
->lock
);
1222 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
1223 cpuctx
->task_ctx
= NULL
;
1227 static void task_ctx_sched_out(struct perf_event_context
*ctx
,
1228 enum event_type_t event_type
)
1230 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1232 if (!cpuctx
->task_ctx
)
1235 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1238 ctx_sched_out(ctx
, cpuctx
, event_type
);
1239 cpuctx
->task_ctx
= NULL
;
1243 * Called with IRQs disabled
1245 static void __perf_event_task_sched_out(struct perf_event_context
*ctx
)
1247 task_ctx_sched_out(ctx
, EVENT_ALL
);
1251 * Called with IRQs disabled
1253 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
1254 enum event_type_t event_type
)
1256 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
1260 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
1261 struct perf_cpu_context
*cpuctx
)
1263 struct perf_event
*event
;
1265 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1266 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1268 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1271 if (group_can_go_on(event
, cpuctx
, 1))
1272 group_sched_in(event
, cpuctx
, ctx
);
1275 * If this pinned group hasn't been scheduled,
1276 * put it in error state.
1278 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1279 update_group_times(event
);
1280 event
->state
= PERF_EVENT_STATE_ERROR
;
1286 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
1287 struct perf_cpu_context
*cpuctx
)
1289 struct perf_event
*event
;
1292 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1293 /* Ignore events in OFF or ERROR state */
1294 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1297 * Listen to the 'cpu' scheduling filter constraint
1300 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1303 if (group_can_go_on(event
, cpuctx
, can_add_hw
))
1304 if (group_sched_in(event
, cpuctx
, ctx
))
1310 ctx_sched_in(struct perf_event_context
*ctx
,
1311 struct perf_cpu_context
*cpuctx
,
1312 enum event_type_t event_type
)
1314 raw_spin_lock(&ctx
->lock
);
1316 if (likely(!ctx
->nr_events
))
1319 ctx
->timestamp
= perf_clock();
1324 * First go through the list and put on any pinned groups
1325 * in order to give them the best chance of going on.
1327 if (event_type
& EVENT_PINNED
)
1328 ctx_pinned_sched_in(ctx
, cpuctx
);
1330 /* Then walk through the lower prio flexible groups */
1331 if (event_type
& EVENT_FLEXIBLE
)
1332 ctx_flexible_sched_in(ctx
, cpuctx
);
1336 raw_spin_unlock(&ctx
->lock
);
1339 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
1340 enum event_type_t event_type
)
1342 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1344 ctx_sched_in(ctx
, cpuctx
, event_type
);
1347 static void task_ctx_sched_in(struct task_struct
*task
,
1348 enum event_type_t event_type
)
1350 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1351 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1355 if (cpuctx
->task_ctx
== ctx
)
1357 ctx_sched_in(ctx
, cpuctx
, event_type
);
1358 cpuctx
->task_ctx
= ctx
;
1361 * Called from scheduler to add the events of the current task
1362 * with interrupts disabled.
1364 * We restore the event value and then enable it.
1366 * This does not protect us against NMI, but enable()
1367 * sets the enabled bit in the control field of event _before_
1368 * accessing the event control register. If a NMI hits, then it will
1369 * keep the event running.
1371 void perf_event_task_sched_in(struct task_struct
*task
)
1373 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1374 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
1379 if (cpuctx
->task_ctx
== ctx
)
1385 * We want to keep the following priority order:
1386 * cpu pinned (that don't need to move), task pinned,
1387 * cpu flexible, task flexible.
1389 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1391 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
);
1392 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1393 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
);
1395 cpuctx
->task_ctx
= ctx
;
1400 #define MAX_INTERRUPTS (~0ULL)
1402 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1404 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1406 u64 frequency
= event
->attr
.sample_freq
;
1407 u64 sec
= NSEC_PER_SEC
;
1408 u64 divisor
, dividend
;
1410 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
1412 count_fls
= fls64(count
);
1413 nsec_fls
= fls64(nsec
);
1414 frequency_fls
= fls64(frequency
);
1418 * We got @count in @nsec, with a target of sample_freq HZ
1419 * the target period becomes:
1422 * period = -------------------
1423 * @nsec * sample_freq
1428 * Reduce accuracy by one bit such that @a and @b converge
1429 * to a similar magnitude.
1431 #define REDUCE_FLS(a, b) \
1433 if (a##_fls > b##_fls) { \
1443 * Reduce accuracy until either term fits in a u64, then proceed with
1444 * the other, so that finally we can do a u64/u64 division.
1446 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
1447 REDUCE_FLS(nsec
, frequency
);
1448 REDUCE_FLS(sec
, count
);
1451 if (count_fls
+ sec_fls
> 64) {
1452 divisor
= nsec
* frequency
;
1454 while (count_fls
+ sec_fls
> 64) {
1455 REDUCE_FLS(count
, sec
);
1459 dividend
= count
* sec
;
1461 dividend
= count
* sec
;
1463 while (nsec_fls
+ frequency_fls
> 64) {
1464 REDUCE_FLS(nsec
, frequency
);
1468 divisor
= nsec
* frequency
;
1471 return div64_u64(dividend
, divisor
);
1474 static void perf_event_stop(struct perf_event
*event
)
1476 if (!event
->pmu
->stop
)
1477 return event
->pmu
->disable(event
);
1479 return event
->pmu
->stop(event
);
1482 static int perf_event_start(struct perf_event
*event
)
1484 if (!event
->pmu
->start
)
1485 return event
->pmu
->enable(event
);
1487 return event
->pmu
->start(event
);
1490 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1492 struct hw_perf_event
*hwc
= &event
->hw
;
1493 u64 period
, sample_period
;
1496 period
= perf_calculate_period(event
, nsec
, count
);
1498 delta
= (s64
)(period
- hwc
->sample_period
);
1499 delta
= (delta
+ 7) / 8; /* low pass filter */
1501 sample_period
= hwc
->sample_period
+ delta
;
1506 hwc
->sample_period
= sample_period
;
1508 if (atomic64_read(&hwc
->period_left
) > 8*sample_period
) {
1510 perf_event_stop(event
);
1511 atomic64_set(&hwc
->period_left
, 0);
1512 perf_event_start(event
);
1517 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
)
1519 struct perf_event
*event
;
1520 struct hw_perf_event
*hwc
;
1521 u64 interrupts
, now
;
1524 raw_spin_lock(&ctx
->lock
);
1525 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1526 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1529 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
1534 interrupts
= hwc
->interrupts
;
1535 hwc
->interrupts
= 0;
1538 * unthrottle events on the tick
1540 if (interrupts
== MAX_INTERRUPTS
) {
1541 perf_log_throttle(event
, 1);
1543 event
->pmu
->unthrottle(event
);
1547 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1551 event
->pmu
->read(event
);
1552 now
= atomic64_read(&event
->count
);
1553 delta
= now
- hwc
->freq_count_stamp
;
1554 hwc
->freq_count_stamp
= now
;
1557 perf_adjust_period(event
, TICK_NSEC
, delta
);
1560 raw_spin_unlock(&ctx
->lock
);
1564 * Round-robin a context's events:
1566 static void rotate_ctx(struct perf_event_context
*ctx
)
1568 raw_spin_lock(&ctx
->lock
);
1570 /* Rotate the first entry last of non-pinned groups */
1571 list_rotate_left(&ctx
->flexible_groups
);
1573 raw_spin_unlock(&ctx
->lock
);
1576 void perf_event_task_tick(struct task_struct
*curr
)
1578 struct perf_cpu_context
*cpuctx
;
1579 struct perf_event_context
*ctx
;
1582 if (!atomic_read(&nr_events
))
1585 cpuctx
= &__get_cpu_var(perf_cpu_context
);
1586 if (cpuctx
->ctx
.nr_events
&&
1587 cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
1590 ctx
= curr
->perf_event_ctxp
;
1591 if (ctx
&& ctx
->nr_events
&& ctx
->nr_events
!= ctx
->nr_active
)
1594 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1596 perf_ctx_adjust_freq(ctx
);
1602 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1604 task_ctx_sched_out(ctx
, EVENT_FLEXIBLE
);
1606 rotate_ctx(&cpuctx
->ctx
);
1610 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1612 task_ctx_sched_in(curr
, EVENT_FLEXIBLE
);
1616 static int event_enable_on_exec(struct perf_event
*event
,
1617 struct perf_event_context
*ctx
)
1619 if (!event
->attr
.enable_on_exec
)
1622 event
->attr
.enable_on_exec
= 0;
1623 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1626 __perf_event_mark_enabled(event
, ctx
);
1632 * Enable all of a task's events that have been marked enable-on-exec.
1633 * This expects task == current.
1635 static void perf_event_enable_on_exec(struct task_struct
*task
)
1637 struct perf_event_context
*ctx
;
1638 struct perf_event
*event
;
1639 unsigned long flags
;
1643 local_irq_save(flags
);
1644 ctx
= task
->perf_event_ctxp
;
1645 if (!ctx
|| !ctx
->nr_events
)
1648 __perf_event_task_sched_out(ctx
);
1650 raw_spin_lock(&ctx
->lock
);
1652 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1653 ret
= event_enable_on_exec(event
, ctx
);
1658 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1659 ret
= event_enable_on_exec(event
, ctx
);
1665 * Unclone this context if we enabled any event.
1670 raw_spin_unlock(&ctx
->lock
);
1672 perf_event_task_sched_in(task
);
1674 local_irq_restore(flags
);
1678 * Cross CPU call to read the hardware event
1680 static void __perf_event_read(void *info
)
1682 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1683 struct perf_event
*event
= info
;
1684 struct perf_event_context
*ctx
= event
->ctx
;
1687 * If this is a task context, we need to check whether it is
1688 * the current task context of this cpu. If not it has been
1689 * scheduled out before the smp call arrived. In that case
1690 * event->count would have been updated to a recent sample
1691 * when the event was scheduled out.
1693 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1696 raw_spin_lock(&ctx
->lock
);
1697 update_context_time(ctx
);
1698 update_event_times(event
);
1699 raw_spin_unlock(&ctx
->lock
);
1701 event
->pmu
->read(event
);
1704 static u64
perf_event_read(struct perf_event
*event
)
1707 * If event is enabled and currently active on a CPU, update the
1708 * value in the event structure:
1710 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1711 smp_call_function_single(event
->oncpu
,
1712 __perf_event_read
, event
, 1);
1713 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1714 struct perf_event_context
*ctx
= event
->ctx
;
1715 unsigned long flags
;
1717 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1718 update_context_time(ctx
);
1719 update_event_times(event
);
1720 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1723 return atomic64_read(&event
->count
);
1727 * Initialize the perf_event context in a task_struct:
1730 __perf_event_init_context(struct perf_event_context
*ctx
,
1731 struct task_struct
*task
)
1733 raw_spin_lock_init(&ctx
->lock
);
1734 mutex_init(&ctx
->mutex
);
1735 INIT_LIST_HEAD(&ctx
->pinned_groups
);
1736 INIT_LIST_HEAD(&ctx
->flexible_groups
);
1737 INIT_LIST_HEAD(&ctx
->event_list
);
1738 atomic_set(&ctx
->refcount
, 1);
1742 static struct perf_event_context
*find_get_context(pid_t pid
, int cpu
)
1744 struct perf_event_context
*ctx
;
1745 struct perf_cpu_context
*cpuctx
;
1746 struct task_struct
*task
;
1747 unsigned long flags
;
1750 if (pid
== -1 && cpu
!= -1) {
1751 /* Must be root to operate on a CPU event: */
1752 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1753 return ERR_PTR(-EACCES
);
1755 if (cpu
< 0 || cpu
>= nr_cpumask_bits
)
1756 return ERR_PTR(-EINVAL
);
1759 * We could be clever and allow to attach a event to an
1760 * offline CPU and activate it when the CPU comes up, but
1763 if (!cpu_online(cpu
))
1764 return ERR_PTR(-ENODEV
);
1766 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1777 task
= find_task_by_vpid(pid
);
1779 get_task_struct(task
);
1783 return ERR_PTR(-ESRCH
);
1786 * Can't attach events to a dying task.
1789 if (task
->flags
& PF_EXITING
)
1792 /* Reuse ptrace permission checks for now. */
1794 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1798 ctx
= perf_lock_task_context(task
, &flags
);
1801 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1805 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
1809 __perf_event_init_context(ctx
, task
);
1811 if (cmpxchg(&task
->perf_event_ctxp
, NULL
, ctx
)) {
1813 * We raced with some other task; use
1814 * the context they set.
1819 get_task_struct(task
);
1822 put_task_struct(task
);
1826 put_task_struct(task
);
1827 return ERR_PTR(err
);
1830 static void perf_event_free_filter(struct perf_event
*event
);
1832 static void free_event_rcu(struct rcu_head
*head
)
1834 struct perf_event
*event
;
1836 event
= container_of(head
, struct perf_event
, rcu_head
);
1838 put_pid_ns(event
->ns
);
1839 perf_event_free_filter(event
);
1843 static void perf_pending_sync(struct perf_event
*event
);
1845 static void free_event(struct perf_event
*event
)
1847 perf_pending_sync(event
);
1849 if (!event
->parent
) {
1850 atomic_dec(&nr_events
);
1851 if (event
->attr
.mmap
)
1852 atomic_dec(&nr_mmap_events
);
1853 if (event
->attr
.comm
)
1854 atomic_dec(&nr_comm_events
);
1855 if (event
->attr
.task
)
1856 atomic_dec(&nr_task_events
);
1859 if (event
->output
) {
1860 fput(event
->output
->filp
);
1861 event
->output
= NULL
;
1865 event
->destroy(event
);
1867 put_ctx(event
->ctx
);
1868 call_rcu(&event
->rcu_head
, free_event_rcu
);
1871 int perf_event_release_kernel(struct perf_event
*event
)
1873 struct perf_event_context
*ctx
= event
->ctx
;
1876 * Remove from the PMU, can't get re-enabled since we got
1877 * here because the last ref went.
1879 perf_event_disable(event
);
1881 WARN_ON_ONCE(ctx
->parent_ctx
);
1883 * There are two ways this annotation is useful:
1885 * 1) there is a lock recursion from perf_event_exit_task
1886 * see the comment there.
1888 * 2) there is a lock-inversion with mmap_sem through
1889 * perf_event_read_group(), which takes faults while
1890 * holding ctx->mutex, however this is called after
1891 * the last filedesc died, so there is no possibility
1892 * to trigger the AB-BA case.
1894 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
1895 raw_spin_lock_irq(&ctx
->lock
);
1896 list_del_event(event
, ctx
);
1897 perf_destroy_group(event
, ctx
);
1898 raw_spin_unlock_irq(&ctx
->lock
);
1899 mutex_unlock(&ctx
->mutex
);
1901 mutex_lock(&event
->owner
->perf_event_mutex
);
1902 list_del_init(&event
->owner_entry
);
1903 mutex_unlock(&event
->owner
->perf_event_mutex
);
1904 put_task_struct(event
->owner
);
1910 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
1913 * Called when the last reference to the file is gone.
1915 static int perf_release(struct inode
*inode
, struct file
*file
)
1917 struct perf_event
*event
= file
->private_data
;
1919 file
->private_data
= NULL
;
1921 return perf_event_release_kernel(event
);
1924 static int perf_event_read_size(struct perf_event
*event
)
1926 int entry
= sizeof(u64
); /* value */
1930 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1931 size
+= sizeof(u64
);
1933 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1934 size
+= sizeof(u64
);
1936 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1937 entry
+= sizeof(u64
);
1939 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1940 nr
+= event
->group_leader
->nr_siblings
;
1941 size
+= sizeof(u64
);
1949 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
1951 struct perf_event
*child
;
1957 mutex_lock(&event
->child_mutex
);
1958 total
+= perf_event_read(event
);
1959 *enabled
+= event
->total_time_enabled
+
1960 atomic64_read(&event
->child_total_time_enabled
);
1961 *running
+= event
->total_time_running
+
1962 atomic64_read(&event
->child_total_time_running
);
1964 list_for_each_entry(child
, &event
->child_list
, child_list
) {
1965 total
+= perf_event_read(child
);
1966 *enabled
+= child
->total_time_enabled
;
1967 *running
+= child
->total_time_running
;
1969 mutex_unlock(&event
->child_mutex
);
1973 EXPORT_SYMBOL_GPL(perf_event_read_value
);
1975 static int perf_event_read_group(struct perf_event
*event
,
1976 u64 read_format
, char __user
*buf
)
1978 struct perf_event
*leader
= event
->group_leader
, *sub
;
1979 int n
= 0, size
= 0, ret
= -EFAULT
;
1980 struct perf_event_context
*ctx
= leader
->ctx
;
1982 u64 count
, enabled
, running
;
1984 mutex_lock(&ctx
->mutex
);
1985 count
= perf_event_read_value(leader
, &enabled
, &running
);
1987 values
[n
++] = 1 + leader
->nr_siblings
;
1988 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1989 values
[n
++] = enabled
;
1990 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1991 values
[n
++] = running
;
1992 values
[n
++] = count
;
1993 if (read_format
& PERF_FORMAT_ID
)
1994 values
[n
++] = primary_event_id(leader
);
1996 size
= n
* sizeof(u64
);
1998 if (copy_to_user(buf
, values
, size
))
2003 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2006 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
2007 if (read_format
& PERF_FORMAT_ID
)
2008 values
[n
++] = primary_event_id(sub
);
2010 size
= n
* sizeof(u64
);
2012 if (copy_to_user(buf
+ ret
, values
, size
)) {
2020 mutex_unlock(&ctx
->mutex
);
2025 static int perf_event_read_one(struct perf_event
*event
,
2026 u64 read_format
, char __user
*buf
)
2028 u64 enabled
, running
;
2032 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
2033 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2034 values
[n
++] = enabled
;
2035 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2036 values
[n
++] = running
;
2037 if (read_format
& PERF_FORMAT_ID
)
2038 values
[n
++] = primary_event_id(event
);
2040 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
2043 return n
* sizeof(u64
);
2047 * Read the performance event - simple non blocking version for now
2050 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
2052 u64 read_format
= event
->attr
.read_format
;
2056 * Return end-of-file for a read on a event that is in
2057 * error state (i.e. because it was pinned but it couldn't be
2058 * scheduled on to the CPU at some point).
2060 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2063 if (count
< perf_event_read_size(event
))
2066 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2067 if (read_format
& PERF_FORMAT_GROUP
)
2068 ret
= perf_event_read_group(event
, read_format
, buf
);
2070 ret
= perf_event_read_one(event
, read_format
, buf
);
2076 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
2078 struct perf_event
*event
= file
->private_data
;
2080 return perf_read_hw(event
, buf
, count
);
2083 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
2085 struct perf_event
*event
= file
->private_data
;
2086 struct perf_mmap_data
*data
;
2087 unsigned int events
= POLL_HUP
;
2090 data
= rcu_dereference(event
->data
);
2092 events
= atomic_xchg(&data
->poll
, 0);
2095 poll_wait(file
, &event
->waitq
, wait
);
2100 static void perf_event_reset(struct perf_event
*event
)
2102 (void)perf_event_read(event
);
2103 atomic64_set(&event
->count
, 0);
2104 perf_event_update_userpage(event
);
2108 * Holding the top-level event's child_mutex means that any
2109 * descendant process that has inherited this event will block
2110 * in sync_child_event if it goes to exit, thus satisfying the
2111 * task existence requirements of perf_event_enable/disable.
2113 static void perf_event_for_each_child(struct perf_event
*event
,
2114 void (*func
)(struct perf_event
*))
2116 struct perf_event
*child
;
2118 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2119 mutex_lock(&event
->child_mutex
);
2121 list_for_each_entry(child
, &event
->child_list
, child_list
)
2123 mutex_unlock(&event
->child_mutex
);
2126 static void perf_event_for_each(struct perf_event
*event
,
2127 void (*func
)(struct perf_event
*))
2129 struct perf_event_context
*ctx
= event
->ctx
;
2130 struct perf_event
*sibling
;
2132 WARN_ON_ONCE(ctx
->parent_ctx
);
2133 mutex_lock(&ctx
->mutex
);
2134 event
= event
->group_leader
;
2136 perf_event_for_each_child(event
, func
);
2138 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
2139 perf_event_for_each_child(event
, func
);
2140 mutex_unlock(&ctx
->mutex
);
2143 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
2145 struct perf_event_context
*ctx
= event
->ctx
;
2150 if (!event
->attr
.sample_period
)
2153 size
= copy_from_user(&value
, arg
, sizeof(value
));
2154 if (size
!= sizeof(value
))
2160 raw_spin_lock_irq(&ctx
->lock
);
2161 if (event
->attr
.freq
) {
2162 if (value
> sysctl_perf_event_sample_rate
) {
2167 event
->attr
.sample_freq
= value
;
2169 event
->attr
.sample_period
= value
;
2170 event
->hw
.sample_period
= value
;
2173 raw_spin_unlock_irq(&ctx
->lock
);
2178 static int perf_event_set_output(struct perf_event
*event
, int output_fd
);
2179 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2181 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2183 struct perf_event
*event
= file
->private_data
;
2184 void (*func
)(struct perf_event
*);
2188 case PERF_EVENT_IOC_ENABLE
:
2189 func
= perf_event_enable
;
2191 case PERF_EVENT_IOC_DISABLE
:
2192 func
= perf_event_disable
;
2194 case PERF_EVENT_IOC_RESET
:
2195 func
= perf_event_reset
;
2198 case PERF_EVENT_IOC_REFRESH
:
2199 return perf_event_refresh(event
, arg
);
2201 case PERF_EVENT_IOC_PERIOD
:
2202 return perf_event_period(event
, (u64 __user
*)arg
);
2204 case PERF_EVENT_IOC_SET_OUTPUT
:
2205 return perf_event_set_output(event
, arg
);
2207 case PERF_EVENT_IOC_SET_FILTER
:
2208 return perf_event_set_filter(event
, (void __user
*)arg
);
2214 if (flags
& PERF_IOC_FLAG_GROUP
)
2215 perf_event_for_each(event
, func
);
2217 perf_event_for_each_child(event
, func
);
2222 int perf_event_task_enable(void)
2224 struct perf_event
*event
;
2226 mutex_lock(¤t
->perf_event_mutex
);
2227 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2228 perf_event_for_each_child(event
, perf_event_enable
);
2229 mutex_unlock(¤t
->perf_event_mutex
);
2234 int perf_event_task_disable(void)
2236 struct perf_event
*event
;
2238 mutex_lock(¤t
->perf_event_mutex
);
2239 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2240 perf_event_for_each_child(event
, perf_event_disable
);
2241 mutex_unlock(¤t
->perf_event_mutex
);
2246 #ifndef PERF_EVENT_INDEX_OFFSET
2247 # define PERF_EVENT_INDEX_OFFSET 0
2250 static int perf_event_index(struct perf_event
*event
)
2252 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2255 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2259 * Callers need to ensure there can be no nesting of this function, otherwise
2260 * the seqlock logic goes bad. We can not serialize this because the arch
2261 * code calls this from NMI context.
2263 void perf_event_update_userpage(struct perf_event
*event
)
2265 struct perf_event_mmap_page
*userpg
;
2266 struct perf_mmap_data
*data
;
2269 data
= rcu_dereference(event
->data
);
2273 userpg
= data
->user_page
;
2276 * Disable preemption so as to not let the corresponding user-space
2277 * spin too long if we get preempted.
2282 userpg
->index
= perf_event_index(event
);
2283 userpg
->offset
= atomic64_read(&event
->count
);
2284 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2285 userpg
->offset
-= atomic64_read(&event
->hw
.prev_count
);
2287 userpg
->time_enabled
= event
->total_time_enabled
+
2288 atomic64_read(&event
->child_total_time_enabled
);
2290 userpg
->time_running
= event
->total_time_running
+
2291 atomic64_read(&event
->child_total_time_running
);
2300 static unsigned long perf_data_size(struct perf_mmap_data
*data
)
2302 return data
->nr_pages
<< (PAGE_SHIFT
+ data
->data_order
);
2305 #ifndef CONFIG_PERF_USE_VMALLOC
2308 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2311 static struct page
*
2312 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2314 if (pgoff
> data
->nr_pages
)
2318 return virt_to_page(data
->user_page
);
2320 return virt_to_page(data
->data_pages
[pgoff
- 1]);
2323 static struct perf_mmap_data
*
2324 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2326 struct perf_mmap_data
*data
;
2330 WARN_ON(atomic_read(&event
->mmap_count
));
2332 size
= sizeof(struct perf_mmap_data
);
2333 size
+= nr_pages
* sizeof(void *);
2335 data
= kzalloc(size
, GFP_KERNEL
);
2339 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
2340 if (!data
->user_page
)
2341 goto fail_user_page
;
2343 for (i
= 0; i
< nr_pages
; i
++) {
2344 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
2345 if (!data
->data_pages
[i
])
2346 goto fail_data_pages
;
2349 data
->data_order
= 0;
2350 data
->nr_pages
= nr_pages
;
2355 for (i
--; i
>= 0; i
--)
2356 free_page((unsigned long)data
->data_pages
[i
]);
2358 free_page((unsigned long)data
->user_page
);
2367 static void perf_mmap_free_page(unsigned long addr
)
2369 struct page
*page
= virt_to_page((void *)addr
);
2371 page
->mapping
= NULL
;
2375 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2379 perf_mmap_free_page((unsigned long)data
->user_page
);
2380 for (i
= 0; i
< data
->nr_pages
; i
++)
2381 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2388 * Back perf_mmap() with vmalloc memory.
2390 * Required for architectures that have d-cache aliasing issues.
2393 static struct page
*
2394 perf_mmap_to_page(struct perf_mmap_data
*data
, unsigned long pgoff
)
2396 if (pgoff
> (1UL << data
->data_order
))
2399 return vmalloc_to_page((void *)data
->user_page
+ pgoff
* PAGE_SIZE
);
2402 static void perf_mmap_unmark_page(void *addr
)
2404 struct page
*page
= vmalloc_to_page(addr
);
2406 page
->mapping
= NULL
;
2409 static void perf_mmap_data_free_work(struct work_struct
*work
)
2411 struct perf_mmap_data
*data
;
2415 data
= container_of(work
, struct perf_mmap_data
, work
);
2416 nr
= 1 << data
->data_order
;
2418 base
= data
->user_page
;
2419 for (i
= 0; i
< nr
+ 1; i
++)
2420 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2426 static void perf_mmap_data_free(struct perf_mmap_data
*data
)
2428 schedule_work(&data
->work
);
2431 static struct perf_mmap_data
*
2432 perf_mmap_data_alloc(struct perf_event
*event
, int nr_pages
)
2434 struct perf_mmap_data
*data
;
2438 WARN_ON(atomic_read(&event
->mmap_count
));
2440 size
= sizeof(struct perf_mmap_data
);
2441 size
+= sizeof(void *);
2443 data
= kzalloc(size
, GFP_KERNEL
);
2447 INIT_WORK(&data
->work
, perf_mmap_data_free_work
);
2449 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
2453 data
->user_page
= all_buf
;
2454 data
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
2455 data
->data_order
= ilog2(nr_pages
);
2469 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2471 struct perf_event
*event
= vma
->vm_file
->private_data
;
2472 struct perf_mmap_data
*data
;
2473 int ret
= VM_FAULT_SIGBUS
;
2475 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2476 if (vmf
->pgoff
== 0)
2482 data
= rcu_dereference(event
->data
);
2486 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
2489 vmf
->page
= perf_mmap_to_page(data
, vmf
->pgoff
);
2493 get_page(vmf
->page
);
2494 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2495 vmf
->page
->index
= vmf
->pgoff
;
2505 perf_mmap_data_init(struct perf_event
*event
, struct perf_mmap_data
*data
)
2507 long max_size
= perf_data_size(data
);
2509 atomic_set(&data
->lock
, -1);
2511 if (event
->attr
.watermark
) {
2512 data
->watermark
= min_t(long, max_size
,
2513 event
->attr
.wakeup_watermark
);
2516 if (!data
->watermark
)
2517 data
->watermark
= max_size
/ 2;
2520 rcu_assign_pointer(event
->data
, data
);
2523 static void perf_mmap_data_free_rcu(struct rcu_head
*rcu_head
)
2525 struct perf_mmap_data
*data
;
2527 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2528 perf_mmap_data_free(data
);
2531 static void perf_mmap_data_release(struct perf_event
*event
)
2533 struct perf_mmap_data
*data
= event
->data
;
2535 WARN_ON(atomic_read(&event
->mmap_count
));
2537 rcu_assign_pointer(event
->data
, NULL
);
2538 call_rcu(&data
->rcu_head
, perf_mmap_data_free_rcu
);
2541 static void perf_mmap_open(struct vm_area_struct
*vma
)
2543 struct perf_event
*event
= vma
->vm_file
->private_data
;
2545 atomic_inc(&event
->mmap_count
);
2548 static void perf_mmap_close(struct vm_area_struct
*vma
)
2550 struct perf_event
*event
= vma
->vm_file
->private_data
;
2552 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2553 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
2554 unsigned long size
= perf_data_size(event
->data
);
2555 struct user_struct
*user
= current_user();
2557 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
2558 vma
->vm_mm
->locked_vm
-= event
->data
->nr_locked
;
2559 perf_mmap_data_release(event
);
2560 mutex_unlock(&event
->mmap_mutex
);
2564 static const struct vm_operations_struct perf_mmap_vmops
= {
2565 .open
= perf_mmap_open
,
2566 .close
= perf_mmap_close
,
2567 .fault
= perf_mmap_fault
,
2568 .page_mkwrite
= perf_mmap_fault
,
2571 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2573 struct perf_event
*event
= file
->private_data
;
2574 unsigned long user_locked
, user_lock_limit
;
2575 struct user_struct
*user
= current_user();
2576 unsigned long locked
, lock_limit
;
2577 struct perf_mmap_data
*data
;
2578 unsigned long vma_size
;
2579 unsigned long nr_pages
;
2580 long user_extra
, extra
;
2583 if (!(vma
->vm_flags
& VM_SHARED
))
2586 vma_size
= vma
->vm_end
- vma
->vm_start
;
2587 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2590 * If we have data pages ensure they're a power-of-two number, so we
2591 * can do bitmasks instead of modulo.
2593 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2596 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2599 if (vma
->vm_pgoff
!= 0)
2602 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2603 mutex_lock(&event
->mmap_mutex
);
2604 if (event
->output
) {
2609 if (atomic_inc_not_zero(&event
->mmap_count
)) {
2610 if (nr_pages
!= event
->data
->nr_pages
)
2615 user_extra
= nr_pages
+ 1;
2616 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
2619 * Increase the limit linearly with more CPUs:
2621 user_lock_limit
*= num_online_cpus();
2623 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2626 if (user_locked
> user_lock_limit
)
2627 extra
= user_locked
- user_lock_limit
;
2629 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
2630 lock_limit
>>= PAGE_SHIFT
;
2631 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2633 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
2634 !capable(CAP_IPC_LOCK
)) {
2639 WARN_ON(event
->data
);
2641 data
= perf_mmap_data_alloc(event
, nr_pages
);
2647 perf_mmap_data_init(event
, data
);
2649 atomic_set(&event
->mmap_count
, 1);
2650 atomic_long_add(user_extra
, &user
->locked_vm
);
2651 vma
->vm_mm
->locked_vm
+= extra
;
2652 event
->data
->nr_locked
= extra
;
2653 if (vma
->vm_flags
& VM_WRITE
)
2654 event
->data
->writable
= 1;
2657 mutex_unlock(&event
->mmap_mutex
);
2659 vma
->vm_flags
|= VM_RESERVED
;
2660 vma
->vm_ops
= &perf_mmap_vmops
;
2665 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2667 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2668 struct perf_event
*event
= filp
->private_data
;
2671 mutex_lock(&inode
->i_mutex
);
2672 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
2673 mutex_unlock(&inode
->i_mutex
);
2681 static const struct file_operations perf_fops
= {
2682 .llseek
= no_llseek
,
2683 .release
= perf_release
,
2686 .unlocked_ioctl
= perf_ioctl
,
2687 .compat_ioctl
= perf_ioctl
,
2689 .fasync
= perf_fasync
,
2695 * If there's data, ensure we set the poll() state and publish everything
2696 * to user-space before waking everybody up.
2699 void perf_event_wakeup(struct perf_event
*event
)
2701 wake_up_all(&event
->waitq
);
2703 if (event
->pending_kill
) {
2704 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
2705 event
->pending_kill
= 0;
2712 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2714 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2715 * single linked list and use cmpxchg() to add entries lockless.
2718 static void perf_pending_event(struct perf_pending_entry
*entry
)
2720 struct perf_event
*event
= container_of(entry
,
2721 struct perf_event
, pending
);
2723 if (event
->pending_disable
) {
2724 event
->pending_disable
= 0;
2725 __perf_event_disable(event
);
2728 if (event
->pending_wakeup
) {
2729 event
->pending_wakeup
= 0;
2730 perf_event_wakeup(event
);
2734 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2736 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2740 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2741 void (*func
)(struct perf_pending_entry
*))
2743 struct perf_pending_entry
**head
;
2745 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2750 head
= &get_cpu_var(perf_pending_head
);
2753 entry
->next
= *head
;
2754 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2756 set_perf_event_pending();
2758 put_cpu_var(perf_pending_head
);
2761 static int __perf_pending_run(void)
2763 struct perf_pending_entry
*list
;
2766 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2767 while (list
!= PENDING_TAIL
) {
2768 void (*func
)(struct perf_pending_entry
*);
2769 struct perf_pending_entry
*entry
= list
;
2776 * Ensure we observe the unqueue before we issue the wakeup,
2777 * so that we won't be waiting forever.
2778 * -- see perf_not_pending().
2789 static inline int perf_not_pending(struct perf_event
*event
)
2792 * If we flush on whatever cpu we run, there is a chance we don't
2796 __perf_pending_run();
2800 * Ensure we see the proper queue state before going to sleep
2801 * so that we do not miss the wakeup. -- see perf_pending_handle()
2804 return event
->pending
.next
== NULL
;
2807 static void perf_pending_sync(struct perf_event
*event
)
2809 wait_event(event
->waitq
, perf_not_pending(event
));
2812 void perf_event_do_pending(void)
2814 __perf_pending_run();
2818 * Callchain support -- arch specific
2821 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2827 void perf_arch_fetch_caller_regs(struct pt_regs
*regs
, unsigned long ip
, int skip
)
2833 * We assume there is only KVM supporting the callbacks.
2834 * Later on, we might change it to a list if there is
2835 * another virtualization implementation supporting the callbacks.
2837 struct perf_guest_info_callbacks
*perf_guest_cbs
;
2839 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
2841 perf_guest_cbs
= cbs
;
2844 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
2846 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
2848 perf_guest_cbs
= NULL
;
2851 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
2856 static bool perf_output_space(struct perf_mmap_data
*data
, unsigned long tail
,
2857 unsigned long offset
, unsigned long head
)
2861 if (!data
->writable
)
2864 mask
= perf_data_size(data
) - 1;
2866 offset
= (offset
- tail
) & mask
;
2867 head
= (head
- tail
) & mask
;
2869 if ((int)(head
- offset
) < 0)
2875 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2877 atomic_set(&handle
->data
->poll
, POLL_IN
);
2880 handle
->event
->pending_wakeup
= 1;
2881 perf_pending_queue(&handle
->event
->pending
,
2882 perf_pending_event
);
2884 perf_event_wakeup(handle
->event
);
2888 * Curious locking construct.
2890 * We need to ensure a later event_id doesn't publish a head when a former
2891 * event_id isn't done writing. However since we need to deal with NMIs we
2892 * cannot fully serialize things.
2894 * What we do is serialize between CPUs so we only have to deal with NMI
2895 * nesting on a single CPU.
2897 * We only publish the head (and generate a wakeup) when the outer-most
2898 * event_id completes.
2900 static void perf_output_lock(struct perf_output_handle
*handle
)
2902 struct perf_mmap_data
*data
= handle
->data
;
2903 int cur
, cpu
= get_cpu();
2908 cur
= atomic_cmpxchg(&data
->lock
, -1, cpu
);
2920 static void perf_output_unlock(struct perf_output_handle
*handle
)
2922 struct perf_mmap_data
*data
= handle
->data
;
2926 data
->done_head
= data
->head
;
2928 if (!handle
->locked
)
2933 * The xchg implies a full barrier that ensures all writes are done
2934 * before we publish the new head, matched by a rmb() in userspace when
2935 * reading this position.
2937 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2938 data
->user_page
->data_head
= head
;
2941 * NMI can happen here, which means we can miss a done_head update.
2944 cpu
= atomic_xchg(&data
->lock
, -1);
2945 WARN_ON_ONCE(cpu
!= smp_processor_id());
2948 * Therefore we have to validate we did not indeed do so.
2950 if (unlikely(atomic_long_read(&data
->done_head
))) {
2952 * Since we had it locked, we can lock it again.
2954 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2960 if (atomic_xchg(&data
->wakeup
, 0))
2961 perf_output_wakeup(handle
);
2966 void perf_output_copy(struct perf_output_handle
*handle
,
2967 const void *buf
, unsigned int len
)
2969 unsigned int pages_mask
;
2970 unsigned long offset
;
2974 offset
= handle
->offset
;
2975 pages_mask
= handle
->data
->nr_pages
- 1;
2976 pages
= handle
->data
->data_pages
;
2979 unsigned long page_offset
;
2980 unsigned long page_size
;
2983 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2984 page_size
= 1UL << (handle
->data
->data_order
+ PAGE_SHIFT
);
2985 page_offset
= offset
& (page_size
- 1);
2986 size
= min_t(unsigned int, page_size
- page_offset
, len
);
2988 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2995 handle
->offset
= offset
;
2998 * Check we didn't copy past our reservation window, taking the
2999 * possible unsigned int wrap into account.
3001 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
3004 int perf_output_begin(struct perf_output_handle
*handle
,
3005 struct perf_event
*event
, unsigned int size
,
3006 int nmi
, int sample
)
3008 struct perf_event
*output_event
;
3009 struct perf_mmap_data
*data
;
3010 unsigned long tail
, offset
, head
;
3013 struct perf_event_header header
;
3020 * For inherited events we send all the output towards the parent.
3023 event
= event
->parent
;
3025 output_event
= rcu_dereference(event
->output
);
3027 event
= output_event
;
3029 data
= rcu_dereference(event
->data
);
3033 handle
->data
= data
;
3034 handle
->event
= event
;
3036 handle
->sample
= sample
;
3038 if (!data
->nr_pages
)
3041 have_lost
= atomic_read(&data
->lost
);
3043 size
+= sizeof(lost_event
);
3045 perf_output_lock(handle
);
3049 * Userspace could choose to issue a mb() before updating the
3050 * tail pointer. So that all reads will be completed before the
3053 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
3055 offset
= head
= atomic_long_read(&data
->head
);
3057 if (unlikely(!perf_output_space(data
, tail
, offset
, head
)))
3059 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
3061 handle
->offset
= offset
;
3062 handle
->head
= head
;
3064 if (head
- tail
> data
->watermark
)
3065 atomic_set(&data
->wakeup
, 1);
3068 lost_event
.header
.type
= PERF_RECORD_LOST
;
3069 lost_event
.header
.misc
= 0;
3070 lost_event
.header
.size
= sizeof(lost_event
);
3071 lost_event
.id
= event
->id
;
3072 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
3074 perf_output_put(handle
, lost_event
);
3080 atomic_inc(&data
->lost
);
3081 perf_output_unlock(handle
);
3088 void perf_output_end(struct perf_output_handle
*handle
)
3090 struct perf_event
*event
= handle
->event
;
3091 struct perf_mmap_data
*data
= handle
->data
;
3093 int wakeup_events
= event
->attr
.wakeup_events
;
3095 if (handle
->sample
&& wakeup_events
) {
3096 int events
= atomic_inc_return(&data
->events
);
3097 if (events
>= wakeup_events
) {
3098 atomic_sub(wakeup_events
, &data
->events
);
3099 atomic_set(&data
->wakeup
, 1);
3103 perf_output_unlock(handle
);
3107 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
3110 * only top level events have the pid namespace they were created in
3113 event
= event
->parent
;
3115 return task_tgid_nr_ns(p
, event
->ns
);
3118 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
3121 * only top level events have the pid namespace they were created in
3124 event
= event
->parent
;
3126 return task_pid_nr_ns(p
, event
->ns
);
3129 static void perf_output_read_one(struct perf_output_handle
*handle
,
3130 struct perf_event
*event
)
3132 u64 read_format
= event
->attr
.read_format
;
3136 values
[n
++] = atomic64_read(&event
->count
);
3137 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3138 values
[n
++] = event
->total_time_enabled
+
3139 atomic64_read(&event
->child_total_time_enabled
);
3141 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3142 values
[n
++] = event
->total_time_running
+
3143 atomic64_read(&event
->child_total_time_running
);
3145 if (read_format
& PERF_FORMAT_ID
)
3146 values
[n
++] = primary_event_id(event
);
3148 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3152 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3154 static void perf_output_read_group(struct perf_output_handle
*handle
,
3155 struct perf_event
*event
)
3157 struct perf_event
*leader
= event
->group_leader
, *sub
;
3158 u64 read_format
= event
->attr
.read_format
;
3162 values
[n
++] = 1 + leader
->nr_siblings
;
3164 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3165 values
[n
++] = leader
->total_time_enabled
;
3167 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3168 values
[n
++] = leader
->total_time_running
;
3170 if (leader
!= event
)
3171 leader
->pmu
->read(leader
);
3173 values
[n
++] = atomic64_read(&leader
->count
);
3174 if (read_format
& PERF_FORMAT_ID
)
3175 values
[n
++] = primary_event_id(leader
);
3177 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3179 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3183 sub
->pmu
->read(sub
);
3185 values
[n
++] = atomic64_read(&sub
->count
);
3186 if (read_format
& PERF_FORMAT_ID
)
3187 values
[n
++] = primary_event_id(sub
);
3189 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3193 static void perf_output_read(struct perf_output_handle
*handle
,
3194 struct perf_event
*event
)
3196 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3197 perf_output_read_group(handle
, event
);
3199 perf_output_read_one(handle
, event
);
3202 void perf_output_sample(struct perf_output_handle
*handle
,
3203 struct perf_event_header
*header
,
3204 struct perf_sample_data
*data
,
3205 struct perf_event
*event
)
3207 u64 sample_type
= data
->type
;
3209 perf_output_put(handle
, *header
);
3211 if (sample_type
& PERF_SAMPLE_IP
)
3212 perf_output_put(handle
, data
->ip
);
3214 if (sample_type
& PERF_SAMPLE_TID
)
3215 perf_output_put(handle
, data
->tid_entry
);
3217 if (sample_type
& PERF_SAMPLE_TIME
)
3218 perf_output_put(handle
, data
->time
);
3220 if (sample_type
& PERF_SAMPLE_ADDR
)
3221 perf_output_put(handle
, data
->addr
);
3223 if (sample_type
& PERF_SAMPLE_ID
)
3224 perf_output_put(handle
, data
->id
);
3226 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3227 perf_output_put(handle
, data
->stream_id
);
3229 if (sample_type
& PERF_SAMPLE_CPU
)
3230 perf_output_put(handle
, data
->cpu_entry
);
3232 if (sample_type
& PERF_SAMPLE_PERIOD
)
3233 perf_output_put(handle
, data
->period
);
3235 if (sample_type
& PERF_SAMPLE_READ
)
3236 perf_output_read(handle
, event
);
3238 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3239 if (data
->callchain
) {
3242 if (data
->callchain
)
3243 size
+= data
->callchain
->nr
;
3245 size
*= sizeof(u64
);
3247 perf_output_copy(handle
, data
->callchain
, size
);
3250 perf_output_put(handle
, nr
);
3254 if (sample_type
& PERF_SAMPLE_RAW
) {
3256 perf_output_put(handle
, data
->raw
->size
);
3257 perf_output_copy(handle
, data
->raw
->data
,
3264 .size
= sizeof(u32
),
3267 perf_output_put(handle
, raw
);
3272 void perf_prepare_sample(struct perf_event_header
*header
,
3273 struct perf_sample_data
*data
,
3274 struct perf_event
*event
,
3275 struct pt_regs
*regs
)
3277 u64 sample_type
= event
->attr
.sample_type
;
3279 data
->type
= sample_type
;
3281 header
->type
= PERF_RECORD_SAMPLE
;
3282 header
->size
= sizeof(*header
);
3285 header
->misc
|= perf_misc_flags(regs
);
3287 if (sample_type
& PERF_SAMPLE_IP
) {
3288 data
->ip
= perf_instruction_pointer(regs
);
3290 header
->size
+= sizeof(data
->ip
);
3293 if (sample_type
& PERF_SAMPLE_TID
) {
3294 /* namespace issues */
3295 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3296 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3298 header
->size
+= sizeof(data
->tid_entry
);
3301 if (sample_type
& PERF_SAMPLE_TIME
) {
3302 data
->time
= perf_clock();
3304 header
->size
+= sizeof(data
->time
);
3307 if (sample_type
& PERF_SAMPLE_ADDR
)
3308 header
->size
+= sizeof(data
->addr
);
3310 if (sample_type
& PERF_SAMPLE_ID
) {
3311 data
->id
= primary_event_id(event
);
3313 header
->size
+= sizeof(data
->id
);
3316 if (sample_type
& PERF_SAMPLE_STREAM_ID
) {
3317 data
->stream_id
= event
->id
;
3319 header
->size
+= sizeof(data
->stream_id
);
3322 if (sample_type
& PERF_SAMPLE_CPU
) {
3323 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3324 data
->cpu_entry
.reserved
= 0;
3326 header
->size
+= sizeof(data
->cpu_entry
);
3329 if (sample_type
& PERF_SAMPLE_PERIOD
)
3330 header
->size
+= sizeof(data
->period
);
3332 if (sample_type
& PERF_SAMPLE_READ
)
3333 header
->size
+= perf_event_read_size(event
);
3335 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3338 data
->callchain
= perf_callchain(regs
);
3340 if (data
->callchain
)
3341 size
+= data
->callchain
->nr
;
3343 header
->size
+= size
* sizeof(u64
);
3346 if (sample_type
& PERF_SAMPLE_RAW
) {
3347 int size
= sizeof(u32
);
3350 size
+= data
->raw
->size
;
3352 size
+= sizeof(u32
);
3354 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3355 header
->size
+= size
;
3359 static void perf_event_output(struct perf_event
*event
, int nmi
,
3360 struct perf_sample_data
*data
,
3361 struct pt_regs
*regs
)
3363 struct perf_output_handle handle
;
3364 struct perf_event_header header
;
3366 perf_prepare_sample(&header
, data
, event
, regs
);
3368 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3371 perf_output_sample(&handle
, &header
, data
, event
);
3373 perf_output_end(&handle
);
3380 struct perf_read_event
{
3381 struct perf_event_header header
;
3388 perf_event_read_event(struct perf_event
*event
,
3389 struct task_struct
*task
)
3391 struct perf_output_handle handle
;
3392 struct perf_read_event read_event
= {
3394 .type
= PERF_RECORD_READ
,
3396 .size
= sizeof(read_event
) + perf_event_read_size(event
),
3398 .pid
= perf_event_pid(event
, task
),
3399 .tid
= perf_event_tid(event
, task
),
3403 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3407 perf_output_put(&handle
, read_event
);
3408 perf_output_read(&handle
, event
);
3410 perf_output_end(&handle
);
3414 * task tracking -- fork/exit
3416 * enabled by: attr.comm | attr.mmap | attr.task
3419 struct perf_task_event
{
3420 struct task_struct
*task
;
3421 struct perf_event_context
*task_ctx
;
3424 struct perf_event_header header
;
3434 static void perf_event_task_output(struct perf_event
*event
,
3435 struct perf_task_event
*task_event
)
3437 struct perf_output_handle handle
;
3438 struct task_struct
*task
= task_event
->task
;
3439 unsigned long flags
;
3443 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3444 * in perf_output_lock() from interrupt context, it's game over.
3446 local_irq_save(flags
);
3448 size
= task_event
->event_id
.header
.size
;
3449 ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3452 local_irq_restore(flags
);
3456 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3457 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3459 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3460 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3462 perf_output_put(&handle
, task_event
->event_id
);
3464 perf_output_end(&handle
);
3465 local_irq_restore(flags
);
3468 static int perf_event_task_match(struct perf_event
*event
)
3470 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3473 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3476 if (event
->attr
.comm
|| event
->attr
.mmap
|| event
->attr
.task
)
3482 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3483 struct perf_task_event
*task_event
)
3485 struct perf_event
*event
;
3487 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3488 if (perf_event_task_match(event
))
3489 perf_event_task_output(event
, task_event
);
3493 static void perf_event_task_event(struct perf_task_event
*task_event
)
3495 struct perf_cpu_context
*cpuctx
;
3496 struct perf_event_context
*ctx
= task_event
->task_ctx
;
3499 cpuctx
= &get_cpu_var(perf_cpu_context
);
3500 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3502 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3504 perf_event_task_ctx(ctx
, task_event
);
3505 put_cpu_var(perf_cpu_context
);
3509 static void perf_event_task(struct task_struct
*task
,
3510 struct perf_event_context
*task_ctx
,
3513 struct perf_task_event task_event
;
3515 if (!atomic_read(&nr_comm_events
) &&
3516 !atomic_read(&nr_mmap_events
) &&
3517 !atomic_read(&nr_task_events
))
3520 task_event
= (struct perf_task_event
){
3522 .task_ctx
= task_ctx
,
3525 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3527 .size
= sizeof(task_event
.event_id
),
3533 .time
= perf_clock(),
3537 perf_event_task_event(&task_event
);
3540 void perf_event_fork(struct task_struct
*task
)
3542 perf_event_task(task
, NULL
, 1);
3549 struct perf_comm_event
{
3550 struct task_struct
*task
;
3555 struct perf_event_header header
;
3562 static void perf_event_comm_output(struct perf_event
*event
,
3563 struct perf_comm_event
*comm_event
)
3565 struct perf_output_handle handle
;
3566 int size
= comm_event
->event_id
.header
.size
;
3567 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3572 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
3573 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
3575 perf_output_put(&handle
, comm_event
->event_id
);
3576 perf_output_copy(&handle
, comm_event
->comm
,
3577 comm_event
->comm_size
);
3578 perf_output_end(&handle
);
3581 static int perf_event_comm_match(struct perf_event
*event
)
3583 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3586 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3589 if (event
->attr
.comm
)
3595 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
3596 struct perf_comm_event
*comm_event
)
3598 struct perf_event
*event
;
3600 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3601 if (perf_event_comm_match(event
))
3602 perf_event_comm_output(event
, comm_event
);
3606 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
3608 struct perf_cpu_context
*cpuctx
;
3609 struct perf_event_context
*ctx
;
3611 char comm
[TASK_COMM_LEN
];
3613 memset(comm
, 0, sizeof(comm
));
3614 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3615 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3617 comm_event
->comm
= comm
;
3618 comm_event
->comm_size
= size
;
3620 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
3623 cpuctx
= &get_cpu_var(perf_cpu_context
);
3624 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
3625 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3627 perf_event_comm_ctx(ctx
, comm_event
);
3628 put_cpu_var(perf_cpu_context
);
3632 void perf_event_comm(struct task_struct
*task
)
3634 struct perf_comm_event comm_event
;
3636 if (task
->perf_event_ctxp
)
3637 perf_event_enable_on_exec(task
);
3639 if (!atomic_read(&nr_comm_events
))
3642 comm_event
= (struct perf_comm_event
){
3648 .type
= PERF_RECORD_COMM
,
3657 perf_event_comm_event(&comm_event
);
3664 struct perf_mmap_event
{
3665 struct vm_area_struct
*vma
;
3667 const char *file_name
;
3671 struct perf_event_header header
;
3681 static void perf_event_mmap_output(struct perf_event
*event
,
3682 struct perf_mmap_event
*mmap_event
)
3684 struct perf_output_handle handle
;
3685 int size
= mmap_event
->event_id
.header
.size
;
3686 int ret
= perf_output_begin(&handle
, event
, size
, 0, 0);
3691 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
3692 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
3694 perf_output_put(&handle
, mmap_event
->event_id
);
3695 perf_output_copy(&handle
, mmap_event
->file_name
,
3696 mmap_event
->file_size
);
3697 perf_output_end(&handle
);
3700 static int perf_event_mmap_match(struct perf_event
*event
,
3701 struct perf_mmap_event
*mmap_event
)
3703 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3706 if (event
->cpu
!= -1 && event
->cpu
!= smp_processor_id())
3709 if (event
->attr
.mmap
)
3715 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
3716 struct perf_mmap_event
*mmap_event
)
3718 struct perf_event
*event
;
3720 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3721 if (perf_event_mmap_match(event
, mmap_event
))
3722 perf_event_mmap_output(event
, mmap_event
);
3726 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
3728 struct perf_cpu_context
*cpuctx
;
3729 struct perf_event_context
*ctx
;
3730 struct vm_area_struct
*vma
= mmap_event
->vma
;
3731 struct file
*file
= vma
->vm_file
;
3737 memset(tmp
, 0, sizeof(tmp
));
3741 * d_path works from the end of the buffer backwards, so we
3742 * need to add enough zero bytes after the string to handle
3743 * the 64bit alignment we do later.
3745 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3747 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3750 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3752 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3756 if (arch_vma_name(mmap_event
->vma
)) {
3757 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3763 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3767 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3772 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3774 mmap_event
->file_name
= name
;
3775 mmap_event
->file_size
= size
;
3777 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
3780 cpuctx
= &get_cpu_var(perf_cpu_context
);
3781 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3782 ctx
= rcu_dereference(current
->perf_event_ctxp
);
3784 perf_event_mmap_ctx(ctx
, mmap_event
);
3785 put_cpu_var(perf_cpu_context
);
3791 void __perf_event_mmap(struct vm_area_struct
*vma
)
3793 struct perf_mmap_event mmap_event
;
3795 if (!atomic_read(&nr_mmap_events
))
3798 mmap_event
= (struct perf_mmap_event
){
3804 .type
= PERF_RECORD_MMAP
,
3805 .misc
= PERF_RECORD_MISC_USER
,
3810 .start
= vma
->vm_start
,
3811 .len
= vma
->vm_end
- vma
->vm_start
,
3812 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
3816 perf_event_mmap_event(&mmap_event
);
3820 * IRQ throttle logging
3823 static void perf_log_throttle(struct perf_event
*event
, int enable
)
3825 struct perf_output_handle handle
;
3829 struct perf_event_header header
;
3833 } throttle_event
= {
3835 .type
= PERF_RECORD_THROTTLE
,
3837 .size
= sizeof(throttle_event
),
3839 .time
= perf_clock(),
3840 .id
= primary_event_id(event
),
3841 .stream_id
= event
->id
,
3845 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
3847 ret
= perf_output_begin(&handle
, event
, sizeof(throttle_event
), 1, 0);
3851 perf_output_put(&handle
, throttle_event
);
3852 perf_output_end(&handle
);
3856 * Generic event overflow handling, sampling.
3859 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
3860 int throttle
, struct perf_sample_data
*data
,
3861 struct pt_regs
*regs
)
3863 int events
= atomic_read(&event
->event_limit
);
3864 struct hw_perf_event
*hwc
= &event
->hw
;
3867 throttle
= (throttle
&& event
->pmu
->unthrottle
!= NULL
);
3872 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3874 if (HZ
* hwc
->interrupts
>
3875 (u64
)sysctl_perf_event_sample_rate
) {
3876 hwc
->interrupts
= MAX_INTERRUPTS
;
3877 perf_log_throttle(event
, 0);
3882 * Keep re-disabling events even though on the previous
3883 * pass we disabled it - just in case we raced with a
3884 * sched-in and the event got enabled again:
3890 if (event
->attr
.freq
) {
3891 u64 now
= perf_clock();
3892 s64 delta
= now
- hwc
->freq_time_stamp
;
3894 hwc
->freq_time_stamp
= now
;
3896 if (delta
> 0 && delta
< 2*TICK_NSEC
)
3897 perf_adjust_period(event
, delta
, hwc
->last_period
);
3901 * XXX event_limit might not quite work as expected on inherited
3905 event
->pending_kill
= POLL_IN
;
3906 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
3908 event
->pending_kill
= POLL_HUP
;
3910 event
->pending_disable
= 1;
3911 perf_pending_queue(&event
->pending
,
3912 perf_pending_event
);
3914 perf_event_disable(event
);
3917 if (event
->overflow_handler
)
3918 event
->overflow_handler(event
, nmi
, data
, regs
);
3920 perf_event_output(event
, nmi
, data
, regs
);
3925 int perf_event_overflow(struct perf_event
*event
, int nmi
,
3926 struct perf_sample_data
*data
,
3927 struct pt_regs
*regs
)
3929 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
3933 * Generic software event infrastructure
3937 * We directly increment event->count and keep a second value in
3938 * event->hw.period_left to count intervals. This period event
3939 * is kept in the range [-sample_period, 0] so that we can use the
3943 static u64
perf_swevent_set_period(struct perf_event
*event
)
3945 struct hw_perf_event
*hwc
= &event
->hw
;
3946 u64 period
= hwc
->last_period
;
3950 hwc
->last_period
= hwc
->sample_period
;
3953 old
= val
= atomic64_read(&hwc
->period_left
);
3957 nr
= div64_u64(period
+ val
, period
);
3958 offset
= nr
* period
;
3960 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
3966 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
3967 int nmi
, struct perf_sample_data
*data
,
3968 struct pt_regs
*regs
)
3970 struct hw_perf_event
*hwc
= &event
->hw
;
3973 data
->period
= event
->hw
.last_period
;
3975 overflow
= perf_swevent_set_period(event
);
3977 if (hwc
->interrupts
== MAX_INTERRUPTS
)
3980 for (; overflow
; overflow
--) {
3981 if (__perf_event_overflow(event
, nmi
, throttle
,
3984 * We inhibit the overflow from happening when
3985 * hwc->interrupts == MAX_INTERRUPTS.
3993 static void perf_swevent_unthrottle(struct perf_event
*event
)
3996 * Nothing to do, we already reset hwc->interrupts.
4000 static void perf_swevent_add(struct perf_event
*event
, u64 nr
,
4001 int nmi
, struct perf_sample_data
*data
,
4002 struct pt_regs
*regs
)
4004 struct hw_perf_event
*hwc
= &event
->hw
;
4006 atomic64_add(nr
, &event
->count
);
4011 if (!hwc
->sample_period
)
4014 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
4015 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
4017 if (atomic64_add_negative(nr
, &hwc
->period_left
))
4020 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
4023 static int perf_tp_event_match(struct perf_event
*event
,
4024 struct perf_sample_data
*data
);
4026 static int perf_exclude_event(struct perf_event
*event
,
4027 struct pt_regs
*regs
)
4030 if (event
->attr
.exclude_user
&& user_mode(regs
))
4033 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4040 static int perf_swevent_match(struct perf_event
*event
,
4041 enum perf_type_id type
,
4043 struct perf_sample_data
*data
,
4044 struct pt_regs
*regs
)
4046 if (event
->attr
.type
!= type
)
4049 if (event
->attr
.config
!= event_id
)
4052 if (perf_exclude_event(event
, regs
))
4055 if (event
->attr
.type
== PERF_TYPE_TRACEPOINT
&&
4056 !perf_tp_event_match(event
, data
))
4062 static inline u64
swevent_hash(u64 type
, u32 event_id
)
4064 u64 val
= event_id
| (type
<< 32);
4066 return hash_64(val
, SWEVENT_HLIST_BITS
);
4069 static struct hlist_head
*
4070 find_swevent_head(struct perf_cpu_context
*ctx
, u64 type
, u32 event_id
)
4073 struct swevent_hlist
*hlist
;
4075 hash
= swevent_hash(type
, event_id
);
4077 hlist
= rcu_dereference(ctx
->swevent_hlist
);
4081 return &hlist
->heads
[hash
];
4084 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4086 struct perf_sample_data
*data
,
4087 struct pt_regs
*regs
)
4089 struct perf_cpu_context
*cpuctx
;
4090 struct perf_event
*event
;
4091 struct hlist_node
*node
;
4092 struct hlist_head
*head
;
4094 cpuctx
= &__get_cpu_var(perf_cpu_context
);
4098 head
= find_swevent_head(cpuctx
, type
, event_id
);
4103 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4104 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4105 perf_swevent_add(event
, nr
, nmi
, data
, regs
);
4111 int perf_swevent_get_recursion_context(void)
4113 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
4120 else if (in_softirq())
4125 if (cpuctx
->recursion
[rctx
]) {
4126 put_cpu_var(perf_cpu_context
);
4130 cpuctx
->recursion
[rctx
]++;
4135 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4137 void perf_swevent_put_recursion_context(int rctx
)
4139 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
4141 cpuctx
->recursion
[rctx
]--;
4142 put_cpu_var(perf_cpu_context
);
4144 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context
);
4147 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
4148 struct pt_regs
*regs
, u64 addr
)
4150 struct perf_sample_data data
;
4153 rctx
= perf_swevent_get_recursion_context();
4157 perf_sample_data_init(&data
, addr
);
4159 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
4161 perf_swevent_put_recursion_context(rctx
);
4164 static void perf_swevent_read(struct perf_event
*event
)
4168 static int perf_swevent_enable(struct perf_event
*event
)
4170 struct hw_perf_event
*hwc
= &event
->hw
;
4171 struct perf_cpu_context
*cpuctx
;
4172 struct hlist_head
*head
;
4174 cpuctx
= &__get_cpu_var(perf_cpu_context
);
4176 if (hwc
->sample_period
) {
4177 hwc
->last_period
= hwc
->sample_period
;
4178 perf_swevent_set_period(event
);
4181 head
= find_swevent_head(cpuctx
, event
->attr
.type
, event
->attr
.config
);
4182 if (WARN_ON_ONCE(!head
))
4185 hlist_add_head_rcu(&event
->hlist_entry
, head
);
4190 static void perf_swevent_disable(struct perf_event
*event
)
4192 hlist_del_rcu(&event
->hlist_entry
);
4195 static const struct pmu perf_ops_generic
= {
4196 .enable
= perf_swevent_enable
,
4197 .disable
= perf_swevent_disable
,
4198 .read
= perf_swevent_read
,
4199 .unthrottle
= perf_swevent_unthrottle
,
4203 * hrtimer based swevent callback
4206 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
4208 enum hrtimer_restart ret
= HRTIMER_RESTART
;
4209 struct perf_sample_data data
;
4210 struct pt_regs
*regs
;
4211 struct perf_event
*event
;
4214 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
4215 event
->pmu
->read(event
);
4217 perf_sample_data_init(&data
, 0);
4218 data
.period
= event
->hw
.last_period
;
4219 regs
= get_irq_regs();
4221 if (regs
&& !perf_exclude_event(event
, regs
)) {
4222 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
4223 if (perf_event_overflow(event
, 0, &data
, regs
))
4224 ret
= HRTIMER_NORESTART
;
4227 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
4228 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
4233 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
4235 struct hw_perf_event
*hwc
= &event
->hw
;
4237 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
4238 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
4239 if (hwc
->sample_period
) {
4242 if (hwc
->remaining
) {
4243 if (hwc
->remaining
< 0)
4246 period
= hwc
->remaining
;
4249 period
= max_t(u64
, 10000, hwc
->sample_period
);
4251 __hrtimer_start_range_ns(&hwc
->hrtimer
,
4252 ns_to_ktime(period
), 0,
4253 HRTIMER_MODE_REL
, 0);
4257 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
4259 struct hw_perf_event
*hwc
= &event
->hw
;
4261 if (hwc
->sample_period
) {
4262 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
4263 hwc
->remaining
= ktime_to_ns(remaining
);
4265 hrtimer_cancel(&hwc
->hrtimer
);
4270 * Software event: cpu wall time clock
4273 static void cpu_clock_perf_event_update(struct perf_event
*event
)
4275 int cpu
= raw_smp_processor_id();
4279 now
= cpu_clock(cpu
);
4280 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4281 atomic64_add(now
- prev
, &event
->count
);
4284 static int cpu_clock_perf_event_enable(struct perf_event
*event
)
4286 struct hw_perf_event
*hwc
= &event
->hw
;
4287 int cpu
= raw_smp_processor_id();
4289 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
4290 perf_swevent_start_hrtimer(event
);
4295 static void cpu_clock_perf_event_disable(struct perf_event
*event
)
4297 perf_swevent_cancel_hrtimer(event
);
4298 cpu_clock_perf_event_update(event
);
4301 static void cpu_clock_perf_event_read(struct perf_event
*event
)
4303 cpu_clock_perf_event_update(event
);
4306 static const struct pmu perf_ops_cpu_clock
= {
4307 .enable
= cpu_clock_perf_event_enable
,
4308 .disable
= cpu_clock_perf_event_disable
,
4309 .read
= cpu_clock_perf_event_read
,
4313 * Software event: task time clock
4316 static void task_clock_perf_event_update(struct perf_event
*event
, u64 now
)
4321 prev
= atomic64_xchg(&event
->hw
.prev_count
, now
);
4323 atomic64_add(delta
, &event
->count
);
4326 static int task_clock_perf_event_enable(struct perf_event
*event
)
4328 struct hw_perf_event
*hwc
= &event
->hw
;
4331 now
= event
->ctx
->time
;
4333 atomic64_set(&hwc
->prev_count
, now
);
4335 perf_swevent_start_hrtimer(event
);
4340 static void task_clock_perf_event_disable(struct perf_event
*event
)
4342 perf_swevent_cancel_hrtimer(event
);
4343 task_clock_perf_event_update(event
, event
->ctx
->time
);
4347 static void task_clock_perf_event_read(struct perf_event
*event
)
4352 update_context_time(event
->ctx
);
4353 time
= event
->ctx
->time
;
4355 u64 now
= perf_clock();
4356 u64 delta
= now
- event
->ctx
->timestamp
;
4357 time
= event
->ctx
->time
+ delta
;
4360 task_clock_perf_event_update(event
, time
);
4363 static const struct pmu perf_ops_task_clock
= {
4364 .enable
= task_clock_perf_event_enable
,
4365 .disable
= task_clock_perf_event_disable
,
4366 .read
= task_clock_perf_event_read
,
4369 static void swevent_hlist_release_rcu(struct rcu_head
*rcu_head
)
4371 struct swevent_hlist
*hlist
;
4373 hlist
= container_of(rcu_head
, struct swevent_hlist
, rcu_head
);
4377 static void swevent_hlist_release(struct perf_cpu_context
*cpuctx
)
4379 struct swevent_hlist
*hlist
;
4381 if (!cpuctx
->swevent_hlist
)
4384 hlist
= cpuctx
->swevent_hlist
;
4385 rcu_assign_pointer(cpuctx
->swevent_hlist
, NULL
);
4386 call_rcu(&hlist
->rcu_head
, swevent_hlist_release_rcu
);
4389 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
4391 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4393 mutex_lock(&cpuctx
->hlist_mutex
);
4395 if (!--cpuctx
->hlist_refcount
)
4396 swevent_hlist_release(cpuctx
);
4398 mutex_unlock(&cpuctx
->hlist_mutex
);
4401 static void swevent_hlist_put(struct perf_event
*event
)
4405 if (event
->cpu
!= -1) {
4406 swevent_hlist_put_cpu(event
, event
->cpu
);
4410 for_each_possible_cpu(cpu
)
4411 swevent_hlist_put_cpu(event
, cpu
);
4414 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
4416 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4419 mutex_lock(&cpuctx
->hlist_mutex
);
4421 if (!cpuctx
->swevent_hlist
&& cpu_online(cpu
)) {
4422 struct swevent_hlist
*hlist
;
4424 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
4429 rcu_assign_pointer(cpuctx
->swevent_hlist
, hlist
);
4431 cpuctx
->hlist_refcount
++;
4433 mutex_unlock(&cpuctx
->hlist_mutex
);
4438 static int swevent_hlist_get(struct perf_event
*event
)
4441 int cpu
, failed_cpu
;
4443 if (event
->cpu
!= -1)
4444 return swevent_hlist_get_cpu(event
, event
->cpu
);
4447 for_each_possible_cpu(cpu
) {
4448 err
= swevent_hlist_get_cpu(event
, cpu
);
4458 for_each_possible_cpu(cpu
) {
4459 if (cpu
== failed_cpu
)
4461 swevent_hlist_put_cpu(event
, cpu
);
4468 #ifdef CONFIG_EVENT_TRACING
4470 void perf_tp_event(int event_id
, u64 addr
, u64 count
, void *record
,
4471 int entry_size
, struct pt_regs
*regs
)
4473 struct perf_sample_data data
;
4474 struct perf_raw_record raw
= {
4479 perf_sample_data_init(&data
, addr
);
4482 /* Trace events already protected against recursion */
4483 do_perf_sw_event(PERF_TYPE_TRACEPOINT
, event_id
, count
, 1,
4486 EXPORT_SYMBOL_GPL(perf_tp_event
);
4488 static int perf_tp_event_match(struct perf_event
*event
,
4489 struct perf_sample_data
*data
)
4491 void *record
= data
->raw
->data
;
4493 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4498 static void tp_perf_event_destroy(struct perf_event
*event
)
4500 perf_trace_disable(event
->attr
.config
);
4501 swevent_hlist_put(event
);
4504 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4509 * Raw tracepoint data is a severe data leak, only allow root to
4512 if ((event
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
4513 perf_paranoid_tracepoint_raw() &&
4514 !capable(CAP_SYS_ADMIN
))
4515 return ERR_PTR(-EPERM
);
4517 if (perf_trace_enable(event
->attr
.config
))
4520 event
->destroy
= tp_perf_event_destroy
;
4521 err
= swevent_hlist_get(event
);
4523 perf_trace_disable(event
->attr
.config
);
4524 return ERR_PTR(err
);
4527 return &perf_ops_generic
;
4530 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4535 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4538 filter_str
= strndup_user(arg
, PAGE_SIZE
);
4539 if (IS_ERR(filter_str
))
4540 return PTR_ERR(filter_str
);
4542 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
4548 static void perf_event_free_filter(struct perf_event
*event
)
4550 ftrace_profile_free_filter(event
);
4555 static int perf_tp_event_match(struct perf_event
*event
,
4556 struct perf_sample_data
*data
)
4561 static const struct pmu
*tp_perf_event_init(struct perf_event
*event
)
4566 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
4571 static void perf_event_free_filter(struct perf_event
*event
)
4575 #endif /* CONFIG_EVENT_TRACING */
4577 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4578 static void bp_perf_event_destroy(struct perf_event
*event
)
4580 release_bp_slot(event
);
4583 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4587 err
= register_perf_hw_breakpoint(bp
);
4589 return ERR_PTR(err
);
4591 bp
->destroy
= bp_perf_event_destroy
;
4593 return &perf_ops_bp
;
4596 void perf_bp_event(struct perf_event
*bp
, void *data
)
4598 struct perf_sample_data sample
;
4599 struct pt_regs
*regs
= data
;
4601 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
4603 if (!perf_exclude_event(bp
, regs
))
4604 perf_swevent_add(bp
, 1, 1, &sample
, regs
);
4607 static const struct pmu
*bp_perf_event_init(struct perf_event
*bp
)
4612 void perf_bp_event(struct perf_event
*bp
, void *regs
)
4617 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4619 static void sw_perf_event_destroy(struct perf_event
*event
)
4621 u64 event_id
= event
->attr
.config
;
4623 WARN_ON(event
->parent
);
4625 atomic_dec(&perf_swevent_enabled
[event_id
]);
4626 swevent_hlist_put(event
);
4629 static const struct pmu
*sw_perf_event_init(struct perf_event
*event
)
4631 const struct pmu
*pmu
= NULL
;
4632 u64 event_id
= event
->attr
.config
;
4635 * Software events (currently) can't in general distinguish
4636 * between user, kernel and hypervisor events.
4637 * However, context switches and cpu migrations are considered
4638 * to be kernel events, and page faults are never hypervisor
4642 case PERF_COUNT_SW_CPU_CLOCK
:
4643 pmu
= &perf_ops_cpu_clock
;
4646 case PERF_COUNT_SW_TASK_CLOCK
:
4648 * If the user instantiates this as a per-cpu event,
4649 * use the cpu_clock event instead.
4651 if (event
->ctx
->task
)
4652 pmu
= &perf_ops_task_clock
;
4654 pmu
= &perf_ops_cpu_clock
;
4657 case PERF_COUNT_SW_PAGE_FAULTS
:
4658 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4659 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4660 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4661 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4662 case PERF_COUNT_SW_ALIGNMENT_FAULTS
:
4663 case PERF_COUNT_SW_EMULATION_FAULTS
:
4664 if (!event
->parent
) {
4667 err
= swevent_hlist_get(event
);
4669 return ERR_PTR(err
);
4671 atomic_inc(&perf_swevent_enabled
[event_id
]);
4672 event
->destroy
= sw_perf_event_destroy
;
4674 pmu
= &perf_ops_generic
;
4682 * Allocate and initialize a event structure
4684 static struct perf_event
*
4685 perf_event_alloc(struct perf_event_attr
*attr
,
4687 struct perf_event_context
*ctx
,
4688 struct perf_event
*group_leader
,
4689 struct perf_event
*parent_event
,
4690 perf_overflow_handler_t overflow_handler
,
4693 const struct pmu
*pmu
;
4694 struct perf_event
*event
;
4695 struct hw_perf_event
*hwc
;
4698 event
= kzalloc(sizeof(*event
), gfpflags
);
4700 return ERR_PTR(-ENOMEM
);
4703 * Single events are their own group leaders, with an
4704 * empty sibling list:
4707 group_leader
= event
;
4709 mutex_init(&event
->child_mutex
);
4710 INIT_LIST_HEAD(&event
->child_list
);
4712 INIT_LIST_HEAD(&event
->group_entry
);
4713 INIT_LIST_HEAD(&event
->event_entry
);
4714 INIT_LIST_HEAD(&event
->sibling_list
);
4715 init_waitqueue_head(&event
->waitq
);
4717 mutex_init(&event
->mmap_mutex
);
4720 event
->attr
= *attr
;
4721 event
->group_leader
= group_leader
;
4726 event
->parent
= parent_event
;
4728 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4729 event
->id
= atomic64_inc_return(&perf_event_id
);
4731 event
->state
= PERF_EVENT_STATE_INACTIVE
;
4733 if (!overflow_handler
&& parent_event
)
4734 overflow_handler
= parent_event
->overflow_handler
;
4736 event
->overflow_handler
= overflow_handler
;
4739 event
->state
= PERF_EVENT_STATE_OFF
;
4744 hwc
->sample_period
= attr
->sample_period
;
4745 if (attr
->freq
&& attr
->sample_freq
)
4746 hwc
->sample_period
= 1;
4747 hwc
->last_period
= hwc
->sample_period
;
4749 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4752 * we currently do not support PERF_FORMAT_GROUP on inherited events
4754 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4757 switch (attr
->type
) {
4759 case PERF_TYPE_HARDWARE
:
4760 case PERF_TYPE_HW_CACHE
:
4761 pmu
= hw_perf_event_init(event
);
4764 case PERF_TYPE_SOFTWARE
:
4765 pmu
= sw_perf_event_init(event
);
4768 case PERF_TYPE_TRACEPOINT
:
4769 pmu
= tp_perf_event_init(event
);
4772 case PERF_TYPE_BREAKPOINT
:
4773 pmu
= bp_perf_event_init(event
);
4784 else if (IS_ERR(pmu
))
4789 put_pid_ns(event
->ns
);
4791 return ERR_PTR(err
);
4796 if (!event
->parent
) {
4797 atomic_inc(&nr_events
);
4798 if (event
->attr
.mmap
)
4799 atomic_inc(&nr_mmap_events
);
4800 if (event
->attr
.comm
)
4801 atomic_inc(&nr_comm_events
);
4802 if (event
->attr
.task
)
4803 atomic_inc(&nr_task_events
);
4809 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
4810 struct perf_event_attr
*attr
)
4815 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4819 * zero the full structure, so that a short copy will be nice.
4821 memset(attr
, 0, sizeof(*attr
));
4823 ret
= get_user(size
, &uattr
->size
);
4827 if (size
> PAGE_SIZE
) /* silly large */
4830 if (!size
) /* abi compat */
4831 size
= PERF_ATTR_SIZE_VER0
;
4833 if (size
< PERF_ATTR_SIZE_VER0
)
4837 * If we're handed a bigger struct than we know of,
4838 * ensure all the unknown bits are 0 - i.e. new
4839 * user-space does not rely on any kernel feature
4840 * extensions we dont know about yet.
4842 if (size
> sizeof(*attr
)) {
4843 unsigned char __user
*addr
;
4844 unsigned char __user
*end
;
4847 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4848 end
= (void __user
*)uattr
+ size
;
4850 for (; addr
< end
; addr
++) {
4851 ret
= get_user(val
, addr
);
4857 size
= sizeof(*attr
);
4860 ret
= copy_from_user(attr
, uattr
, size
);
4865 * If the type exists, the corresponding creation will verify
4868 if (attr
->type
>= PERF_TYPE_MAX
)
4871 if (attr
->__reserved_1
)
4874 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4877 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
4884 put_user(sizeof(*attr
), &uattr
->size
);
4889 static int perf_event_set_output(struct perf_event
*event
, int output_fd
)
4891 struct perf_event
*output_event
= NULL
;
4892 struct file
*output_file
= NULL
;
4893 struct perf_event
*old_output
;
4894 int fput_needed
= 0;
4900 output_file
= fget_light(output_fd
, &fput_needed
);
4904 if (output_file
->f_op
!= &perf_fops
)
4907 output_event
= output_file
->private_data
;
4909 /* Don't chain output fds */
4910 if (output_event
->output
)
4913 /* Don't set an output fd when we already have an output channel */
4917 atomic_long_inc(&output_file
->f_count
);
4920 mutex_lock(&event
->mmap_mutex
);
4921 old_output
= event
->output
;
4922 rcu_assign_pointer(event
->output
, output_event
);
4923 mutex_unlock(&event
->mmap_mutex
);
4927 * we need to make sure no existing perf_output_*()
4928 * is still referencing this event.
4931 fput(old_output
->filp
);
4936 fput_light(output_file
, fput_needed
);
4941 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4943 * @attr_uptr: event_id type attributes for monitoring/sampling
4946 * @group_fd: group leader event fd
4948 SYSCALL_DEFINE5(perf_event_open
,
4949 struct perf_event_attr __user
*, attr_uptr
,
4950 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
4952 struct perf_event
*event
, *group_leader
;
4953 struct perf_event_attr attr
;
4954 struct perf_event_context
*ctx
;
4955 struct file
*event_file
= NULL
;
4956 struct file
*group_file
= NULL
;
4957 int fput_needed
= 0;
4958 int fput_needed2
= 0;
4961 /* for future expandability... */
4962 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
4965 err
= perf_copy_attr(attr_uptr
, &attr
);
4969 if (!attr
.exclude_kernel
) {
4970 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
4975 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
4980 * Get the target context (task or percpu):
4982 ctx
= find_get_context(pid
, cpu
);
4984 return PTR_ERR(ctx
);
4987 * Look up the group leader (we will attach this event to it):
4989 group_leader
= NULL
;
4990 if (group_fd
!= -1 && !(flags
& PERF_FLAG_FD_NO_GROUP
)) {
4992 group_file
= fget_light(group_fd
, &fput_needed
);
4994 goto err_put_context
;
4995 if (group_file
->f_op
!= &perf_fops
)
4996 goto err_put_context
;
4998 group_leader
= group_file
->private_data
;
5000 * Do not allow a recursive hierarchy (this new sibling
5001 * becoming part of another group-sibling):
5003 if (group_leader
->group_leader
!= group_leader
)
5004 goto err_put_context
;
5006 * Do not allow to attach to a group in a different
5007 * task or CPU context:
5009 if (group_leader
->ctx
!= ctx
)
5010 goto err_put_context
;
5012 * Only a group leader can be exclusive or pinned
5014 if (attr
.exclusive
|| attr
.pinned
)
5015 goto err_put_context
;
5018 event
= perf_event_alloc(&attr
, cpu
, ctx
, group_leader
,
5019 NULL
, NULL
, GFP_KERNEL
);
5020 err
= PTR_ERR(event
);
5022 goto err_put_context
;
5024 err
= anon_inode_getfd("[perf_event]", &perf_fops
, event
, O_RDWR
);
5026 goto err_free_put_context
;
5028 event_file
= fget_light(err
, &fput_needed2
);
5030 goto err_free_put_context
;
5032 if (flags
& PERF_FLAG_FD_OUTPUT
) {
5033 err
= perf_event_set_output(event
, group_fd
);
5035 goto err_fput_free_put_context
;
5038 event
->filp
= event_file
;
5039 WARN_ON_ONCE(ctx
->parent_ctx
);
5040 mutex_lock(&ctx
->mutex
);
5041 perf_install_in_context(ctx
, event
, cpu
);
5043 mutex_unlock(&ctx
->mutex
);
5045 event
->owner
= current
;
5046 get_task_struct(current
);
5047 mutex_lock(¤t
->perf_event_mutex
);
5048 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
5049 mutex_unlock(¤t
->perf_event_mutex
);
5051 err_fput_free_put_context
:
5052 fput_light(event_file
, fput_needed2
);
5054 err_free_put_context
:
5062 fput_light(group_file
, fput_needed
);
5068 * perf_event_create_kernel_counter
5070 * @attr: attributes of the counter to create
5071 * @cpu: cpu in which the counter is bound
5072 * @pid: task to profile
5075 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
5077 perf_overflow_handler_t overflow_handler
)
5079 struct perf_event
*event
;
5080 struct perf_event_context
*ctx
;
5084 * Get the target context (task or percpu):
5087 ctx
= find_get_context(pid
, cpu
);
5093 event
= perf_event_alloc(attr
, cpu
, ctx
, NULL
,
5094 NULL
, overflow_handler
, GFP_KERNEL
);
5095 if (IS_ERR(event
)) {
5096 err
= PTR_ERR(event
);
5097 goto err_put_context
;
5101 WARN_ON_ONCE(ctx
->parent_ctx
);
5102 mutex_lock(&ctx
->mutex
);
5103 perf_install_in_context(ctx
, event
, cpu
);
5105 mutex_unlock(&ctx
->mutex
);
5107 event
->owner
= current
;
5108 get_task_struct(current
);
5109 mutex_lock(¤t
->perf_event_mutex
);
5110 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
5111 mutex_unlock(¤t
->perf_event_mutex
);
5118 return ERR_PTR(err
);
5120 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
5123 * inherit a event from parent task to child task:
5125 static struct perf_event
*
5126 inherit_event(struct perf_event
*parent_event
,
5127 struct task_struct
*parent
,
5128 struct perf_event_context
*parent_ctx
,
5129 struct task_struct
*child
,
5130 struct perf_event
*group_leader
,
5131 struct perf_event_context
*child_ctx
)
5133 struct perf_event
*child_event
;
5136 * Instead of creating recursive hierarchies of events,
5137 * we link inherited events back to the original parent,
5138 * which has a filp for sure, which we use as the reference
5141 if (parent_event
->parent
)
5142 parent_event
= parent_event
->parent
;
5144 child_event
= perf_event_alloc(&parent_event
->attr
,
5145 parent_event
->cpu
, child_ctx
,
5146 group_leader
, parent_event
,
5148 if (IS_ERR(child_event
))
5153 * Make the child state follow the state of the parent event,
5154 * not its attr.disabled bit. We hold the parent's mutex,
5155 * so we won't race with perf_event_{en, dis}able_family.
5157 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
5158 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
5160 child_event
->state
= PERF_EVENT_STATE_OFF
;
5162 if (parent_event
->attr
.freq
) {
5163 u64 sample_period
= parent_event
->hw
.sample_period
;
5164 struct hw_perf_event
*hwc
= &child_event
->hw
;
5166 hwc
->sample_period
= sample_period
;
5167 hwc
->last_period
= sample_period
;
5169 atomic64_set(&hwc
->period_left
, sample_period
);
5172 child_event
->overflow_handler
= parent_event
->overflow_handler
;
5175 * Link it up in the child's context:
5177 add_event_to_ctx(child_event
, child_ctx
);
5180 * Get a reference to the parent filp - we will fput it
5181 * when the child event exits. This is safe to do because
5182 * we are in the parent and we know that the filp still
5183 * exists and has a nonzero count:
5185 atomic_long_inc(&parent_event
->filp
->f_count
);
5188 * Link this into the parent event's child list
5190 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
5191 mutex_lock(&parent_event
->child_mutex
);
5192 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
5193 mutex_unlock(&parent_event
->child_mutex
);
5198 static int inherit_group(struct perf_event
*parent_event
,
5199 struct task_struct
*parent
,
5200 struct perf_event_context
*parent_ctx
,
5201 struct task_struct
*child
,
5202 struct perf_event_context
*child_ctx
)
5204 struct perf_event
*leader
;
5205 struct perf_event
*sub
;
5206 struct perf_event
*child_ctr
;
5208 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
5209 child
, NULL
, child_ctx
);
5211 return PTR_ERR(leader
);
5212 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
5213 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
5214 child
, leader
, child_ctx
);
5215 if (IS_ERR(child_ctr
))
5216 return PTR_ERR(child_ctr
);
5221 static void sync_child_event(struct perf_event
*child_event
,
5222 struct task_struct
*child
)
5224 struct perf_event
*parent_event
= child_event
->parent
;
5227 if (child_event
->attr
.inherit_stat
)
5228 perf_event_read_event(child_event
, child
);
5230 child_val
= atomic64_read(&child_event
->count
);
5233 * Add back the child's count to the parent's count:
5235 atomic64_add(child_val
, &parent_event
->count
);
5236 atomic64_add(child_event
->total_time_enabled
,
5237 &parent_event
->child_total_time_enabled
);
5238 atomic64_add(child_event
->total_time_running
,
5239 &parent_event
->child_total_time_running
);
5242 * Remove this event from the parent's list
5244 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
5245 mutex_lock(&parent_event
->child_mutex
);
5246 list_del_init(&child_event
->child_list
);
5247 mutex_unlock(&parent_event
->child_mutex
);
5250 * Release the parent event, if this was the last
5253 fput(parent_event
->filp
);
5257 __perf_event_exit_task(struct perf_event
*child_event
,
5258 struct perf_event_context
*child_ctx
,
5259 struct task_struct
*child
)
5261 struct perf_event
*parent_event
;
5263 perf_event_remove_from_context(child_event
);
5265 parent_event
= child_event
->parent
;
5267 * It can happen that parent exits first, and has events
5268 * that are still around due to the child reference. These
5269 * events need to be zapped - but otherwise linger.
5272 sync_child_event(child_event
, child
);
5273 free_event(child_event
);
5278 * When a child task exits, feed back event values to parent events.
5280 void perf_event_exit_task(struct task_struct
*child
)
5282 struct perf_event
*child_event
, *tmp
;
5283 struct perf_event_context
*child_ctx
;
5284 unsigned long flags
;
5286 if (likely(!child
->perf_event_ctxp
)) {
5287 perf_event_task(child
, NULL
, 0);
5291 local_irq_save(flags
);
5293 * We can't reschedule here because interrupts are disabled,
5294 * and either child is current or it is a task that can't be
5295 * scheduled, so we are now safe from rescheduling changing
5298 child_ctx
= child
->perf_event_ctxp
;
5299 __perf_event_task_sched_out(child_ctx
);
5302 * Take the context lock here so that if find_get_context is
5303 * reading child->perf_event_ctxp, we wait until it has
5304 * incremented the context's refcount before we do put_ctx below.
5306 raw_spin_lock(&child_ctx
->lock
);
5307 child
->perf_event_ctxp
= NULL
;
5309 * If this context is a clone; unclone it so it can't get
5310 * swapped to another process while we're removing all
5311 * the events from it.
5313 unclone_ctx(child_ctx
);
5314 update_context_time(child_ctx
);
5315 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
5318 * Report the task dead after unscheduling the events so that we
5319 * won't get any samples after PERF_RECORD_EXIT. We can however still
5320 * get a few PERF_RECORD_READ events.
5322 perf_event_task(child
, child_ctx
, 0);
5325 * We can recurse on the same lock type through:
5327 * __perf_event_exit_task()
5328 * sync_child_event()
5329 * fput(parent_event->filp)
5331 * mutex_lock(&ctx->mutex)
5333 * But since its the parent context it won't be the same instance.
5335 mutex_lock(&child_ctx
->mutex
);
5338 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
5340 __perf_event_exit_task(child_event
, child_ctx
, child
);
5342 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
5344 __perf_event_exit_task(child_event
, child_ctx
, child
);
5347 * If the last event was a group event, it will have appended all
5348 * its siblings to the list, but we obtained 'tmp' before that which
5349 * will still point to the list head terminating the iteration.
5351 if (!list_empty(&child_ctx
->pinned_groups
) ||
5352 !list_empty(&child_ctx
->flexible_groups
))
5355 mutex_unlock(&child_ctx
->mutex
);
5360 static void perf_free_event(struct perf_event
*event
,
5361 struct perf_event_context
*ctx
)
5363 struct perf_event
*parent
= event
->parent
;
5365 if (WARN_ON_ONCE(!parent
))
5368 mutex_lock(&parent
->child_mutex
);
5369 list_del_init(&event
->child_list
);
5370 mutex_unlock(&parent
->child_mutex
);
5374 list_del_event(event
, ctx
);
5379 * free an unexposed, unused context as created by inheritance by
5380 * init_task below, used by fork() in case of fail.
5382 void perf_event_free_task(struct task_struct
*task
)
5384 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
5385 struct perf_event
*event
, *tmp
;
5390 mutex_lock(&ctx
->mutex
);
5392 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
5393 perf_free_event(event
, ctx
);
5395 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
5397 perf_free_event(event
, ctx
);
5399 if (!list_empty(&ctx
->pinned_groups
) ||
5400 !list_empty(&ctx
->flexible_groups
))
5403 mutex_unlock(&ctx
->mutex
);
5409 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
5410 struct perf_event_context
*parent_ctx
,
5411 struct task_struct
*child
,
5415 struct perf_event_context
*child_ctx
= child
->perf_event_ctxp
;
5417 if (!event
->attr
.inherit
) {
5424 * This is executed from the parent task context, so
5425 * inherit events that have been marked for cloning.
5426 * First allocate and initialize a context for the
5430 child_ctx
= kzalloc(sizeof(struct perf_event_context
),
5435 __perf_event_init_context(child_ctx
, child
);
5436 child
->perf_event_ctxp
= child_ctx
;
5437 get_task_struct(child
);
5440 ret
= inherit_group(event
, parent
, parent_ctx
,
5451 * Initialize the perf_event context in task_struct
5453 int perf_event_init_task(struct task_struct
*child
)
5455 struct perf_event_context
*child_ctx
, *parent_ctx
;
5456 struct perf_event_context
*cloned_ctx
;
5457 struct perf_event
*event
;
5458 struct task_struct
*parent
= current
;
5459 int inherited_all
= 1;
5462 child
->perf_event_ctxp
= NULL
;
5464 mutex_init(&child
->perf_event_mutex
);
5465 INIT_LIST_HEAD(&child
->perf_event_list
);
5467 if (likely(!parent
->perf_event_ctxp
))
5471 * If the parent's context is a clone, pin it so it won't get
5474 parent_ctx
= perf_pin_task_context(parent
);
5477 * No need to check if parent_ctx != NULL here; since we saw
5478 * it non-NULL earlier, the only reason for it to become NULL
5479 * is if we exit, and since we're currently in the middle of
5480 * a fork we can't be exiting at the same time.
5484 * Lock the parent list. No need to lock the child - not PID
5485 * hashed yet and not running, so nobody can access it.
5487 mutex_lock(&parent_ctx
->mutex
);
5490 * We dont have to disable NMIs - we are only looking at
5491 * the list, not manipulating it:
5493 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
5494 ret
= inherit_task_group(event
, parent
, parent_ctx
, child
,
5500 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
5501 ret
= inherit_task_group(event
, parent
, parent_ctx
, child
,
5507 child_ctx
= child
->perf_event_ctxp
;
5509 if (child_ctx
&& inherited_all
) {
5511 * Mark the child context as a clone of the parent
5512 * context, or of whatever the parent is a clone of.
5513 * Note that if the parent is a clone, it could get
5514 * uncloned at any point, but that doesn't matter
5515 * because the list of events and the generation
5516 * count can't have changed since we took the mutex.
5518 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
5520 child_ctx
->parent_ctx
= cloned_ctx
;
5521 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
5523 child_ctx
->parent_ctx
= parent_ctx
;
5524 child_ctx
->parent_gen
= parent_ctx
->generation
;
5526 get_ctx(child_ctx
->parent_ctx
);
5529 mutex_unlock(&parent_ctx
->mutex
);
5531 perf_unpin_context(parent_ctx
);
5536 static void __init
perf_event_init_all_cpus(void)
5539 struct perf_cpu_context
*cpuctx
;
5541 for_each_possible_cpu(cpu
) {
5542 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5543 mutex_init(&cpuctx
->hlist_mutex
);
5544 __perf_event_init_context(&cpuctx
->ctx
, NULL
);
5548 static void __cpuinit
perf_event_init_cpu(int cpu
)
5550 struct perf_cpu_context
*cpuctx
;
5552 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5554 spin_lock(&perf_resource_lock
);
5555 cpuctx
->max_pertask
= perf_max_events
- perf_reserved_percpu
;
5556 spin_unlock(&perf_resource_lock
);
5558 mutex_lock(&cpuctx
->hlist_mutex
);
5559 if (cpuctx
->hlist_refcount
> 0) {
5560 struct swevent_hlist
*hlist
;
5562 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
5563 WARN_ON_ONCE(!hlist
);
5564 rcu_assign_pointer(cpuctx
->swevent_hlist
, hlist
);
5566 mutex_unlock(&cpuctx
->hlist_mutex
);
5569 #ifdef CONFIG_HOTPLUG_CPU
5570 static void __perf_event_exit_cpu(void *info
)
5572 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
5573 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5574 struct perf_event
*event
, *tmp
;
5576 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
5577 __perf_event_remove_from_context(event
);
5578 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
5579 __perf_event_remove_from_context(event
);
5581 static void perf_event_exit_cpu(int cpu
)
5583 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5584 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
5586 mutex_lock(&cpuctx
->hlist_mutex
);
5587 swevent_hlist_release(cpuctx
);
5588 mutex_unlock(&cpuctx
->hlist_mutex
);
5590 mutex_lock(&ctx
->mutex
);
5591 smp_call_function_single(cpu
, __perf_event_exit_cpu
, NULL
, 1);
5592 mutex_unlock(&ctx
->mutex
);
5595 static inline void perf_event_exit_cpu(int cpu
) { }
5598 static int __cpuinit
5599 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
5601 unsigned int cpu
= (long)hcpu
;
5605 case CPU_UP_PREPARE
:
5606 case CPU_UP_PREPARE_FROZEN
:
5607 perf_event_init_cpu(cpu
);
5610 case CPU_DOWN_PREPARE
:
5611 case CPU_DOWN_PREPARE_FROZEN
:
5612 perf_event_exit_cpu(cpu
);
5623 * This has to have a higher priority than migration_notifier in sched.c.
5625 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
5626 .notifier_call
= perf_cpu_notify
,
5630 void __init
perf_event_init(void)
5632 perf_event_init_all_cpus();
5633 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
5634 (void *)(long)smp_processor_id());
5635 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
5636 (void *)(long)smp_processor_id());
5637 register_cpu_notifier(&perf_cpu_nb
);
5640 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class,
5641 struct sysdev_class_attribute
*attr
,
5644 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
5648 perf_set_reserve_percpu(struct sysdev_class
*class,
5649 struct sysdev_class_attribute
*attr
,
5653 struct perf_cpu_context
*cpuctx
;
5657 err
= strict_strtoul(buf
, 10, &val
);
5660 if (val
> perf_max_events
)
5663 spin_lock(&perf_resource_lock
);
5664 perf_reserved_percpu
= val
;
5665 for_each_online_cpu(cpu
) {
5666 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
5667 raw_spin_lock_irq(&cpuctx
->ctx
.lock
);
5668 mpt
= min(perf_max_events
- cpuctx
->ctx
.nr_events
,
5669 perf_max_events
- perf_reserved_percpu
);
5670 cpuctx
->max_pertask
= mpt
;
5671 raw_spin_unlock_irq(&cpuctx
->ctx
.lock
);
5673 spin_unlock(&perf_resource_lock
);
5678 static ssize_t
perf_show_overcommit(struct sysdev_class
*class,
5679 struct sysdev_class_attribute
*attr
,
5682 return sprintf(buf
, "%d\n", perf_overcommit
);
5686 perf_set_overcommit(struct sysdev_class
*class,
5687 struct sysdev_class_attribute
*attr
,
5688 const char *buf
, size_t count
)
5693 err
= strict_strtoul(buf
, 10, &val
);
5699 spin_lock(&perf_resource_lock
);
5700 perf_overcommit
= val
;
5701 spin_unlock(&perf_resource_lock
);
5706 static SYSDEV_CLASS_ATTR(
5709 perf_show_reserve_percpu
,
5710 perf_set_reserve_percpu
5713 static SYSDEV_CLASS_ATTR(
5716 perf_show_overcommit
,
5720 static struct attribute
*perfclass_attrs
[] = {
5721 &attr_reserve_percpu
.attr
,
5722 &attr_overcommit
.attr
,
5726 static struct attribute_group perfclass_attr_group
= {
5727 .attrs
= perfclass_attrs
,
5728 .name
= "perf_events",
5731 static int __init
perf_event_sysfs_init(void)
5733 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
5734 &perfclass_attr_group
);
5736 device_initcall(perf_event_sysfs_init
);