Merge tag 'stable/for-linus-3.8-rc7-tag-two' of git://git.kernel.org/pub/scm/linux...
[linux-2.6/cjktty.git] / mm / memory.c
blobbb1369f7b9b4ba8af51d90a40de8f522aa2470dc
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
70 #include "internal.h"
72 #ifndef CONFIG_NEED_MULTIPLE_NODES
73 /* use the per-pgdat data instead for discontigmem - mbligh */
74 unsigned long max_mapnr;
75 struct page *mem_map;
77 EXPORT_SYMBOL(max_mapnr);
78 EXPORT_SYMBOL(mem_map);
79 #endif
81 unsigned long num_physpages;
83 * A number of key systems in x86 including ioremap() rely on the assumption
84 * that high_memory defines the upper bound on direct map memory, then end
85 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
86 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
87 * and ZONE_HIGHMEM.
89 void * high_memory;
91 EXPORT_SYMBOL(num_physpages);
92 EXPORT_SYMBOL(high_memory);
95 * Randomize the address space (stacks, mmaps, brk, etc.).
97 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
98 * as ancient (libc5 based) binaries can segfault. )
100 int randomize_va_space __read_mostly =
101 #ifdef CONFIG_COMPAT_BRK
103 #else
105 #endif
107 static int __init disable_randmaps(char *s)
109 randomize_va_space = 0;
110 return 1;
112 __setup("norandmaps", disable_randmaps);
114 unsigned long zero_pfn __read_mostly;
115 unsigned long highest_memmap_pfn __read_mostly;
118 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
120 static int __init init_zero_pfn(void)
122 zero_pfn = page_to_pfn(ZERO_PAGE(0));
123 return 0;
125 core_initcall(init_zero_pfn);
128 #if defined(SPLIT_RSS_COUNTING)
130 void sync_mm_rss(struct mm_struct *mm)
132 int i;
134 for (i = 0; i < NR_MM_COUNTERS; i++) {
135 if (current->rss_stat.count[i]) {
136 add_mm_counter(mm, i, current->rss_stat.count[i]);
137 current->rss_stat.count[i] = 0;
140 current->rss_stat.events = 0;
143 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
145 struct task_struct *task = current;
147 if (likely(task->mm == mm))
148 task->rss_stat.count[member] += val;
149 else
150 add_mm_counter(mm, member, val);
152 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
153 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
155 /* sync counter once per 64 page faults */
156 #define TASK_RSS_EVENTS_THRESH (64)
157 static void check_sync_rss_stat(struct task_struct *task)
159 if (unlikely(task != current))
160 return;
161 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
162 sync_mm_rss(task->mm);
164 #else /* SPLIT_RSS_COUNTING */
166 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
167 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
169 static void check_sync_rss_stat(struct task_struct *task)
173 #endif /* SPLIT_RSS_COUNTING */
175 #ifdef HAVE_GENERIC_MMU_GATHER
177 static int tlb_next_batch(struct mmu_gather *tlb)
179 struct mmu_gather_batch *batch;
181 batch = tlb->active;
182 if (batch->next) {
183 tlb->active = batch->next;
184 return 1;
187 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
188 return 0;
190 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
191 if (!batch)
192 return 0;
194 tlb->batch_count++;
195 batch->next = NULL;
196 batch->nr = 0;
197 batch->max = MAX_GATHER_BATCH;
199 tlb->active->next = batch;
200 tlb->active = batch;
202 return 1;
205 /* tlb_gather_mmu
206 * Called to initialize an (on-stack) mmu_gather structure for page-table
207 * tear-down from @mm. The @fullmm argument is used when @mm is without
208 * users and we're going to destroy the full address space (exit/execve).
210 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
212 tlb->mm = mm;
214 tlb->fullmm = fullmm;
215 tlb->start = -1UL;
216 tlb->end = 0;
217 tlb->need_flush = 0;
218 tlb->fast_mode = (num_possible_cpus() == 1);
219 tlb->local.next = NULL;
220 tlb->local.nr = 0;
221 tlb->local.max = ARRAY_SIZE(tlb->__pages);
222 tlb->active = &tlb->local;
223 tlb->batch_count = 0;
225 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
226 tlb->batch = NULL;
227 #endif
230 void tlb_flush_mmu(struct mmu_gather *tlb)
232 struct mmu_gather_batch *batch;
234 if (!tlb->need_flush)
235 return;
236 tlb->need_flush = 0;
237 tlb_flush(tlb);
238 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
239 tlb_table_flush(tlb);
240 #endif
242 if (tlb_fast_mode(tlb))
243 return;
245 for (batch = &tlb->local; batch; batch = batch->next) {
246 free_pages_and_swap_cache(batch->pages, batch->nr);
247 batch->nr = 0;
249 tlb->active = &tlb->local;
252 /* tlb_finish_mmu
253 * Called at the end of the shootdown operation to free up any resources
254 * that were required.
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258 struct mmu_gather_batch *batch, *next;
260 tlb->start = start;
261 tlb->end = end;
262 tlb_flush_mmu(tlb);
264 /* keep the page table cache within bounds */
265 check_pgt_cache();
267 for (batch = tlb->local.next; batch; batch = next) {
268 next = batch->next;
269 free_pages((unsigned long)batch, 0);
271 tlb->local.next = NULL;
274 /* __tlb_remove_page
275 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276 * handling the additional races in SMP caused by other CPUs caching valid
277 * mappings in their TLBs. Returns the number of free page slots left.
278 * When out of page slots we must call tlb_flush_mmu().
280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
282 struct mmu_gather_batch *batch;
284 VM_BUG_ON(!tlb->need_flush);
286 if (tlb_fast_mode(tlb)) {
287 free_page_and_swap_cache(page);
288 return 1; /* avoid calling tlb_flush_mmu() */
291 batch = tlb->active;
292 batch->pages[batch->nr++] = page;
293 if (batch->nr == batch->max) {
294 if (!tlb_next_batch(tlb))
295 return 0;
296 batch = tlb->active;
298 VM_BUG_ON(batch->nr > batch->max);
300 return batch->max - batch->nr;
303 #endif /* HAVE_GENERIC_MMU_GATHER */
305 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
308 * See the comment near struct mmu_table_batch.
311 static void tlb_remove_table_smp_sync(void *arg)
313 /* Simply deliver the interrupt */
316 static void tlb_remove_table_one(void *table)
319 * This isn't an RCU grace period and hence the page-tables cannot be
320 * assumed to be actually RCU-freed.
322 * It is however sufficient for software page-table walkers that rely on
323 * IRQ disabling. See the comment near struct mmu_table_batch.
325 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
326 __tlb_remove_table(table);
329 static void tlb_remove_table_rcu(struct rcu_head *head)
331 struct mmu_table_batch *batch;
332 int i;
334 batch = container_of(head, struct mmu_table_batch, rcu);
336 for (i = 0; i < batch->nr; i++)
337 __tlb_remove_table(batch->tables[i]);
339 free_page((unsigned long)batch);
342 void tlb_table_flush(struct mmu_gather *tlb)
344 struct mmu_table_batch **batch = &tlb->batch;
346 if (*batch) {
347 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
348 *batch = NULL;
352 void tlb_remove_table(struct mmu_gather *tlb, void *table)
354 struct mmu_table_batch **batch = &tlb->batch;
356 tlb->need_flush = 1;
359 * When there's less then two users of this mm there cannot be a
360 * concurrent page-table walk.
362 if (atomic_read(&tlb->mm->mm_users) < 2) {
363 __tlb_remove_table(table);
364 return;
367 if (*batch == NULL) {
368 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
369 if (*batch == NULL) {
370 tlb_remove_table_one(table);
371 return;
373 (*batch)->nr = 0;
375 (*batch)->tables[(*batch)->nr++] = table;
376 if ((*batch)->nr == MAX_TABLE_BATCH)
377 tlb_table_flush(tlb);
380 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
383 * If a p?d_bad entry is found while walking page tables, report
384 * the error, before resetting entry to p?d_none. Usually (but
385 * very seldom) called out from the p?d_none_or_clear_bad macros.
388 void pgd_clear_bad(pgd_t *pgd)
390 pgd_ERROR(*pgd);
391 pgd_clear(pgd);
394 void pud_clear_bad(pud_t *pud)
396 pud_ERROR(*pud);
397 pud_clear(pud);
400 void pmd_clear_bad(pmd_t *pmd)
402 pmd_ERROR(*pmd);
403 pmd_clear(pmd);
407 * Note: this doesn't free the actual pages themselves. That
408 * has been handled earlier when unmapping all the memory regions.
410 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
411 unsigned long addr)
413 pgtable_t token = pmd_pgtable(*pmd);
414 pmd_clear(pmd);
415 pte_free_tlb(tlb, token, addr);
416 tlb->mm->nr_ptes--;
419 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
420 unsigned long addr, unsigned long end,
421 unsigned long floor, unsigned long ceiling)
423 pmd_t *pmd;
424 unsigned long next;
425 unsigned long start;
427 start = addr;
428 pmd = pmd_offset(pud, addr);
429 do {
430 next = pmd_addr_end(addr, end);
431 if (pmd_none_or_clear_bad(pmd))
432 continue;
433 free_pte_range(tlb, pmd, addr);
434 } while (pmd++, addr = next, addr != end);
436 start &= PUD_MASK;
437 if (start < floor)
438 return;
439 if (ceiling) {
440 ceiling &= PUD_MASK;
441 if (!ceiling)
442 return;
444 if (end - 1 > ceiling - 1)
445 return;
447 pmd = pmd_offset(pud, start);
448 pud_clear(pud);
449 pmd_free_tlb(tlb, pmd, start);
452 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
453 unsigned long addr, unsigned long end,
454 unsigned long floor, unsigned long ceiling)
456 pud_t *pud;
457 unsigned long next;
458 unsigned long start;
460 start = addr;
461 pud = pud_offset(pgd, addr);
462 do {
463 next = pud_addr_end(addr, end);
464 if (pud_none_or_clear_bad(pud))
465 continue;
466 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
467 } while (pud++, addr = next, addr != end);
469 start &= PGDIR_MASK;
470 if (start < floor)
471 return;
472 if (ceiling) {
473 ceiling &= PGDIR_MASK;
474 if (!ceiling)
475 return;
477 if (end - 1 > ceiling - 1)
478 return;
480 pud = pud_offset(pgd, start);
481 pgd_clear(pgd);
482 pud_free_tlb(tlb, pud, start);
486 * This function frees user-level page tables of a process.
488 * Must be called with pagetable lock held.
490 void free_pgd_range(struct mmu_gather *tlb,
491 unsigned long addr, unsigned long end,
492 unsigned long floor, unsigned long ceiling)
494 pgd_t *pgd;
495 unsigned long next;
498 * The next few lines have given us lots of grief...
500 * Why are we testing PMD* at this top level? Because often
501 * there will be no work to do at all, and we'd prefer not to
502 * go all the way down to the bottom just to discover that.
504 * Why all these "- 1"s? Because 0 represents both the bottom
505 * of the address space and the top of it (using -1 for the
506 * top wouldn't help much: the masks would do the wrong thing).
507 * The rule is that addr 0 and floor 0 refer to the bottom of
508 * the address space, but end 0 and ceiling 0 refer to the top
509 * Comparisons need to use "end - 1" and "ceiling - 1" (though
510 * that end 0 case should be mythical).
512 * Wherever addr is brought up or ceiling brought down, we must
513 * be careful to reject "the opposite 0" before it confuses the
514 * subsequent tests. But what about where end is brought down
515 * by PMD_SIZE below? no, end can't go down to 0 there.
517 * Whereas we round start (addr) and ceiling down, by different
518 * masks at different levels, in order to test whether a table
519 * now has no other vmas using it, so can be freed, we don't
520 * bother to round floor or end up - the tests don't need that.
523 addr &= PMD_MASK;
524 if (addr < floor) {
525 addr += PMD_SIZE;
526 if (!addr)
527 return;
529 if (ceiling) {
530 ceiling &= PMD_MASK;
531 if (!ceiling)
532 return;
534 if (end - 1 > ceiling - 1)
535 end -= PMD_SIZE;
536 if (addr > end - 1)
537 return;
539 pgd = pgd_offset(tlb->mm, addr);
540 do {
541 next = pgd_addr_end(addr, end);
542 if (pgd_none_or_clear_bad(pgd))
543 continue;
544 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
545 } while (pgd++, addr = next, addr != end);
548 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
549 unsigned long floor, unsigned long ceiling)
551 while (vma) {
552 struct vm_area_struct *next = vma->vm_next;
553 unsigned long addr = vma->vm_start;
556 * Hide vma from rmap and truncate_pagecache before freeing
557 * pgtables
559 unlink_anon_vmas(vma);
560 unlink_file_vma(vma);
562 if (is_vm_hugetlb_page(vma)) {
563 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
564 floor, next? next->vm_start: ceiling);
565 } else {
567 * Optimization: gather nearby vmas into one call down
569 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
570 && !is_vm_hugetlb_page(next)) {
571 vma = next;
572 next = vma->vm_next;
573 unlink_anon_vmas(vma);
574 unlink_file_vma(vma);
576 free_pgd_range(tlb, addr, vma->vm_end,
577 floor, next? next->vm_start: ceiling);
579 vma = next;
583 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
584 pmd_t *pmd, unsigned long address)
586 pgtable_t new = pte_alloc_one(mm, address);
587 int wait_split_huge_page;
588 if (!new)
589 return -ENOMEM;
592 * Ensure all pte setup (eg. pte page lock and page clearing) are
593 * visible before the pte is made visible to other CPUs by being
594 * put into page tables.
596 * The other side of the story is the pointer chasing in the page
597 * table walking code (when walking the page table without locking;
598 * ie. most of the time). Fortunately, these data accesses consist
599 * of a chain of data-dependent loads, meaning most CPUs (alpha
600 * being the notable exception) will already guarantee loads are
601 * seen in-order. See the alpha page table accessors for the
602 * smp_read_barrier_depends() barriers in page table walking code.
604 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
606 spin_lock(&mm->page_table_lock);
607 wait_split_huge_page = 0;
608 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
609 mm->nr_ptes++;
610 pmd_populate(mm, pmd, new);
611 new = NULL;
612 } else if (unlikely(pmd_trans_splitting(*pmd)))
613 wait_split_huge_page = 1;
614 spin_unlock(&mm->page_table_lock);
615 if (new)
616 pte_free(mm, new);
617 if (wait_split_huge_page)
618 wait_split_huge_page(vma->anon_vma, pmd);
619 return 0;
622 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
624 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
625 if (!new)
626 return -ENOMEM;
628 smp_wmb(); /* See comment in __pte_alloc */
630 spin_lock(&init_mm.page_table_lock);
631 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
632 pmd_populate_kernel(&init_mm, pmd, new);
633 new = NULL;
634 } else
635 VM_BUG_ON(pmd_trans_splitting(*pmd));
636 spin_unlock(&init_mm.page_table_lock);
637 if (new)
638 pte_free_kernel(&init_mm, new);
639 return 0;
642 static inline void init_rss_vec(int *rss)
644 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
647 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
649 int i;
651 if (current->mm == mm)
652 sync_mm_rss(mm);
653 for (i = 0; i < NR_MM_COUNTERS; i++)
654 if (rss[i])
655 add_mm_counter(mm, i, rss[i]);
659 * This function is called to print an error when a bad pte
660 * is found. For example, we might have a PFN-mapped pte in
661 * a region that doesn't allow it.
663 * The calling function must still handle the error.
665 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
666 pte_t pte, struct page *page)
668 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
669 pud_t *pud = pud_offset(pgd, addr);
670 pmd_t *pmd = pmd_offset(pud, addr);
671 struct address_space *mapping;
672 pgoff_t index;
673 static unsigned long resume;
674 static unsigned long nr_shown;
675 static unsigned long nr_unshown;
678 * Allow a burst of 60 reports, then keep quiet for that minute;
679 * or allow a steady drip of one report per second.
681 if (nr_shown == 60) {
682 if (time_before(jiffies, resume)) {
683 nr_unshown++;
684 return;
686 if (nr_unshown) {
687 printk(KERN_ALERT
688 "BUG: Bad page map: %lu messages suppressed\n",
689 nr_unshown);
690 nr_unshown = 0;
692 nr_shown = 0;
694 if (nr_shown++ == 0)
695 resume = jiffies + 60 * HZ;
697 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
698 index = linear_page_index(vma, addr);
700 printk(KERN_ALERT
701 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
702 current->comm,
703 (long long)pte_val(pte), (long long)pmd_val(*pmd));
704 if (page)
705 dump_page(page);
706 printk(KERN_ALERT
707 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
708 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
710 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
712 if (vma->vm_ops)
713 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
714 (unsigned long)vma->vm_ops->fault);
715 if (vma->vm_file && vma->vm_file->f_op)
716 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
717 (unsigned long)vma->vm_file->f_op->mmap);
718 dump_stack();
719 add_taint(TAINT_BAD_PAGE);
722 static inline bool is_cow_mapping(vm_flags_t flags)
724 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
728 * vm_normal_page -- This function gets the "struct page" associated with a pte.
730 * "Special" mappings do not wish to be associated with a "struct page" (either
731 * it doesn't exist, or it exists but they don't want to touch it). In this
732 * case, NULL is returned here. "Normal" mappings do have a struct page.
734 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
735 * pte bit, in which case this function is trivial. Secondly, an architecture
736 * may not have a spare pte bit, which requires a more complicated scheme,
737 * described below.
739 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
740 * special mapping (even if there are underlying and valid "struct pages").
741 * COWed pages of a VM_PFNMAP are always normal.
743 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
744 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
745 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
746 * mapping will always honor the rule
748 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
750 * And for normal mappings this is false.
752 * This restricts such mappings to be a linear translation from virtual address
753 * to pfn. To get around this restriction, we allow arbitrary mappings so long
754 * as the vma is not a COW mapping; in that case, we know that all ptes are
755 * special (because none can have been COWed).
758 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
760 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
761 * page" backing, however the difference is that _all_ pages with a struct
762 * page (that is, those where pfn_valid is true) are refcounted and considered
763 * normal pages by the VM. The disadvantage is that pages are refcounted
764 * (which can be slower and simply not an option for some PFNMAP users). The
765 * advantage is that we don't have to follow the strict linearity rule of
766 * PFNMAP mappings in order to support COWable mappings.
769 #ifdef __HAVE_ARCH_PTE_SPECIAL
770 # define HAVE_PTE_SPECIAL 1
771 #else
772 # define HAVE_PTE_SPECIAL 0
773 #endif
774 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
775 pte_t pte)
777 unsigned long pfn = pte_pfn(pte);
779 if (HAVE_PTE_SPECIAL) {
780 if (likely(!pte_special(pte)))
781 goto check_pfn;
782 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
783 return NULL;
784 if (!is_zero_pfn(pfn))
785 print_bad_pte(vma, addr, pte, NULL);
786 return NULL;
789 /* !HAVE_PTE_SPECIAL case follows: */
791 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
792 if (vma->vm_flags & VM_MIXEDMAP) {
793 if (!pfn_valid(pfn))
794 return NULL;
795 goto out;
796 } else {
797 unsigned long off;
798 off = (addr - vma->vm_start) >> PAGE_SHIFT;
799 if (pfn == vma->vm_pgoff + off)
800 return NULL;
801 if (!is_cow_mapping(vma->vm_flags))
802 return NULL;
806 if (is_zero_pfn(pfn))
807 return NULL;
808 check_pfn:
809 if (unlikely(pfn > highest_memmap_pfn)) {
810 print_bad_pte(vma, addr, pte, NULL);
811 return NULL;
815 * NOTE! We still have PageReserved() pages in the page tables.
816 * eg. VDSO mappings can cause them to exist.
818 out:
819 return pfn_to_page(pfn);
823 * copy one vm_area from one task to the other. Assumes the page tables
824 * already present in the new task to be cleared in the whole range
825 * covered by this vma.
828 static inline unsigned long
829 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
830 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
831 unsigned long addr, int *rss)
833 unsigned long vm_flags = vma->vm_flags;
834 pte_t pte = *src_pte;
835 struct page *page;
837 /* pte contains position in swap or file, so copy. */
838 if (unlikely(!pte_present(pte))) {
839 if (!pte_file(pte)) {
840 swp_entry_t entry = pte_to_swp_entry(pte);
842 if (swap_duplicate(entry) < 0)
843 return entry.val;
845 /* make sure dst_mm is on swapoff's mmlist. */
846 if (unlikely(list_empty(&dst_mm->mmlist))) {
847 spin_lock(&mmlist_lock);
848 if (list_empty(&dst_mm->mmlist))
849 list_add(&dst_mm->mmlist,
850 &src_mm->mmlist);
851 spin_unlock(&mmlist_lock);
853 if (likely(!non_swap_entry(entry)))
854 rss[MM_SWAPENTS]++;
855 else if (is_migration_entry(entry)) {
856 page = migration_entry_to_page(entry);
858 if (PageAnon(page))
859 rss[MM_ANONPAGES]++;
860 else
861 rss[MM_FILEPAGES]++;
863 if (is_write_migration_entry(entry) &&
864 is_cow_mapping(vm_flags)) {
866 * COW mappings require pages in both
867 * parent and child to be set to read.
869 make_migration_entry_read(&entry);
870 pte = swp_entry_to_pte(entry);
871 set_pte_at(src_mm, addr, src_pte, pte);
875 goto out_set_pte;
879 * If it's a COW mapping, write protect it both
880 * in the parent and the child
882 if (is_cow_mapping(vm_flags)) {
883 ptep_set_wrprotect(src_mm, addr, src_pte);
884 pte = pte_wrprotect(pte);
888 * If it's a shared mapping, mark it clean in
889 * the child
891 if (vm_flags & VM_SHARED)
892 pte = pte_mkclean(pte);
893 pte = pte_mkold(pte);
895 page = vm_normal_page(vma, addr, pte);
896 if (page) {
897 get_page(page);
898 page_dup_rmap(page);
899 if (PageAnon(page))
900 rss[MM_ANONPAGES]++;
901 else
902 rss[MM_FILEPAGES]++;
905 out_set_pte:
906 set_pte_at(dst_mm, addr, dst_pte, pte);
907 return 0;
910 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
911 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
912 unsigned long addr, unsigned long end)
914 pte_t *orig_src_pte, *orig_dst_pte;
915 pte_t *src_pte, *dst_pte;
916 spinlock_t *src_ptl, *dst_ptl;
917 int progress = 0;
918 int rss[NR_MM_COUNTERS];
919 swp_entry_t entry = (swp_entry_t){0};
921 again:
922 init_rss_vec(rss);
924 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
925 if (!dst_pte)
926 return -ENOMEM;
927 src_pte = pte_offset_map(src_pmd, addr);
928 src_ptl = pte_lockptr(src_mm, src_pmd);
929 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
930 orig_src_pte = src_pte;
931 orig_dst_pte = dst_pte;
932 arch_enter_lazy_mmu_mode();
934 do {
936 * We are holding two locks at this point - either of them
937 * could generate latencies in another task on another CPU.
939 if (progress >= 32) {
940 progress = 0;
941 if (need_resched() ||
942 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
943 break;
945 if (pte_none(*src_pte)) {
946 progress++;
947 continue;
949 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
950 vma, addr, rss);
951 if (entry.val)
952 break;
953 progress += 8;
954 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
956 arch_leave_lazy_mmu_mode();
957 spin_unlock(src_ptl);
958 pte_unmap(orig_src_pte);
959 add_mm_rss_vec(dst_mm, rss);
960 pte_unmap_unlock(orig_dst_pte, dst_ptl);
961 cond_resched();
963 if (entry.val) {
964 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
965 return -ENOMEM;
966 progress = 0;
968 if (addr != end)
969 goto again;
970 return 0;
973 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
974 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
975 unsigned long addr, unsigned long end)
977 pmd_t *src_pmd, *dst_pmd;
978 unsigned long next;
980 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
981 if (!dst_pmd)
982 return -ENOMEM;
983 src_pmd = pmd_offset(src_pud, addr);
984 do {
985 next = pmd_addr_end(addr, end);
986 if (pmd_trans_huge(*src_pmd)) {
987 int err;
988 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
989 err = copy_huge_pmd(dst_mm, src_mm,
990 dst_pmd, src_pmd, addr, vma);
991 if (err == -ENOMEM)
992 return -ENOMEM;
993 if (!err)
994 continue;
995 /* fall through */
997 if (pmd_none_or_clear_bad(src_pmd))
998 continue;
999 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1000 vma, addr, next))
1001 return -ENOMEM;
1002 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1003 return 0;
1006 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1008 unsigned long addr, unsigned long end)
1010 pud_t *src_pud, *dst_pud;
1011 unsigned long next;
1013 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1014 if (!dst_pud)
1015 return -ENOMEM;
1016 src_pud = pud_offset(src_pgd, addr);
1017 do {
1018 next = pud_addr_end(addr, end);
1019 if (pud_none_or_clear_bad(src_pud))
1020 continue;
1021 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1022 vma, addr, next))
1023 return -ENOMEM;
1024 } while (dst_pud++, src_pud++, addr = next, addr != end);
1025 return 0;
1028 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029 struct vm_area_struct *vma)
1031 pgd_t *src_pgd, *dst_pgd;
1032 unsigned long next;
1033 unsigned long addr = vma->vm_start;
1034 unsigned long end = vma->vm_end;
1035 unsigned long mmun_start; /* For mmu_notifiers */
1036 unsigned long mmun_end; /* For mmu_notifiers */
1037 bool is_cow;
1038 int ret;
1041 * Don't copy ptes where a page fault will fill them correctly.
1042 * Fork becomes much lighter when there are big shared or private
1043 * readonly mappings. The tradeoff is that copy_page_range is more
1044 * efficient than faulting.
1046 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1047 VM_PFNMAP | VM_MIXEDMAP))) {
1048 if (!vma->anon_vma)
1049 return 0;
1052 if (is_vm_hugetlb_page(vma))
1053 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1055 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1057 * We do not free on error cases below as remove_vma
1058 * gets called on error from higher level routine
1060 ret = track_pfn_copy(vma);
1061 if (ret)
1062 return ret;
1066 * We need to invalidate the secondary MMU mappings only when
1067 * there could be a permission downgrade on the ptes of the
1068 * parent mm. And a permission downgrade will only happen if
1069 * is_cow_mapping() returns true.
1071 is_cow = is_cow_mapping(vma->vm_flags);
1072 mmun_start = addr;
1073 mmun_end = end;
1074 if (is_cow)
1075 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1076 mmun_end);
1078 ret = 0;
1079 dst_pgd = pgd_offset(dst_mm, addr);
1080 src_pgd = pgd_offset(src_mm, addr);
1081 do {
1082 next = pgd_addr_end(addr, end);
1083 if (pgd_none_or_clear_bad(src_pgd))
1084 continue;
1085 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1086 vma, addr, next))) {
1087 ret = -ENOMEM;
1088 break;
1090 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1092 if (is_cow)
1093 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1094 return ret;
1097 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1098 struct vm_area_struct *vma, pmd_t *pmd,
1099 unsigned long addr, unsigned long end,
1100 struct zap_details *details)
1102 struct mm_struct *mm = tlb->mm;
1103 int force_flush = 0;
1104 int rss[NR_MM_COUNTERS];
1105 spinlock_t *ptl;
1106 pte_t *start_pte;
1107 pte_t *pte;
1109 again:
1110 init_rss_vec(rss);
1111 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1112 pte = start_pte;
1113 arch_enter_lazy_mmu_mode();
1114 do {
1115 pte_t ptent = *pte;
1116 if (pte_none(ptent)) {
1117 continue;
1120 if (pte_present(ptent)) {
1121 struct page *page;
1123 page = vm_normal_page(vma, addr, ptent);
1124 if (unlikely(details) && page) {
1126 * unmap_shared_mapping_pages() wants to
1127 * invalidate cache without truncating:
1128 * unmap shared but keep private pages.
1130 if (details->check_mapping &&
1131 details->check_mapping != page->mapping)
1132 continue;
1134 * Each page->index must be checked when
1135 * invalidating or truncating nonlinear.
1137 if (details->nonlinear_vma &&
1138 (page->index < details->first_index ||
1139 page->index > details->last_index))
1140 continue;
1142 ptent = ptep_get_and_clear_full(mm, addr, pte,
1143 tlb->fullmm);
1144 tlb_remove_tlb_entry(tlb, pte, addr);
1145 if (unlikely(!page))
1146 continue;
1147 if (unlikely(details) && details->nonlinear_vma
1148 && linear_page_index(details->nonlinear_vma,
1149 addr) != page->index)
1150 set_pte_at(mm, addr, pte,
1151 pgoff_to_pte(page->index));
1152 if (PageAnon(page))
1153 rss[MM_ANONPAGES]--;
1154 else {
1155 if (pte_dirty(ptent))
1156 set_page_dirty(page);
1157 if (pte_young(ptent) &&
1158 likely(!VM_SequentialReadHint(vma)))
1159 mark_page_accessed(page);
1160 rss[MM_FILEPAGES]--;
1162 page_remove_rmap(page);
1163 if (unlikely(page_mapcount(page) < 0))
1164 print_bad_pte(vma, addr, ptent, page);
1165 force_flush = !__tlb_remove_page(tlb, page);
1166 if (force_flush)
1167 break;
1168 continue;
1171 * If details->check_mapping, we leave swap entries;
1172 * if details->nonlinear_vma, we leave file entries.
1174 if (unlikely(details))
1175 continue;
1176 if (pte_file(ptent)) {
1177 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1178 print_bad_pte(vma, addr, ptent, NULL);
1179 } else {
1180 swp_entry_t entry = pte_to_swp_entry(ptent);
1182 if (!non_swap_entry(entry))
1183 rss[MM_SWAPENTS]--;
1184 else if (is_migration_entry(entry)) {
1185 struct page *page;
1187 page = migration_entry_to_page(entry);
1189 if (PageAnon(page))
1190 rss[MM_ANONPAGES]--;
1191 else
1192 rss[MM_FILEPAGES]--;
1194 if (unlikely(!free_swap_and_cache(entry)))
1195 print_bad_pte(vma, addr, ptent, NULL);
1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198 } while (pte++, addr += PAGE_SIZE, addr != end);
1200 add_mm_rss_vec(mm, rss);
1201 arch_leave_lazy_mmu_mode();
1202 pte_unmap_unlock(start_pte, ptl);
1205 * mmu_gather ran out of room to batch pages, we break out of
1206 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 * and page-free while holding it.
1209 if (force_flush) {
1210 force_flush = 0;
1212 #ifdef HAVE_GENERIC_MMU_GATHER
1213 tlb->start = addr;
1214 tlb->end = end;
1215 #endif
1216 tlb_flush_mmu(tlb);
1217 if (addr != end)
1218 goto again;
1221 return addr;
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225 struct vm_area_struct *vma, pud_t *pud,
1226 unsigned long addr, unsigned long end,
1227 struct zap_details *details)
1229 pmd_t *pmd;
1230 unsigned long next;
1232 pmd = pmd_offset(pud, addr);
1233 do {
1234 next = pmd_addr_end(addr, end);
1235 if (pmd_trans_huge(*pmd)) {
1236 if (next - addr != HPAGE_PMD_SIZE) {
1237 #ifdef CONFIG_DEBUG_VM
1238 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240 __func__, addr, end,
1241 vma->vm_start,
1242 vma->vm_end);
1243 BUG();
1245 #endif
1246 split_huge_page_pmd(vma, addr, pmd);
1247 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248 goto next;
1249 /* fall through */
1252 * Here there can be other concurrent MADV_DONTNEED or
1253 * trans huge page faults running, and if the pmd is
1254 * none or trans huge it can change under us. This is
1255 * because MADV_DONTNEED holds the mmap_sem in read
1256 * mode.
1258 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259 goto next;
1260 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261 next:
1262 cond_resched();
1263 } while (pmd++, addr = next, addr != end);
1265 return addr;
1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269 struct vm_area_struct *vma, pgd_t *pgd,
1270 unsigned long addr, unsigned long end,
1271 struct zap_details *details)
1273 pud_t *pud;
1274 unsigned long next;
1276 pud = pud_offset(pgd, addr);
1277 do {
1278 next = pud_addr_end(addr, end);
1279 if (pud_none_or_clear_bad(pud))
1280 continue;
1281 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282 } while (pud++, addr = next, addr != end);
1284 return addr;
1287 static void unmap_page_range(struct mmu_gather *tlb,
1288 struct vm_area_struct *vma,
1289 unsigned long addr, unsigned long end,
1290 struct zap_details *details)
1292 pgd_t *pgd;
1293 unsigned long next;
1295 if (details && !details->check_mapping && !details->nonlinear_vma)
1296 details = NULL;
1298 BUG_ON(addr >= end);
1299 mem_cgroup_uncharge_start();
1300 tlb_start_vma(tlb, vma);
1301 pgd = pgd_offset(vma->vm_mm, addr);
1302 do {
1303 next = pgd_addr_end(addr, end);
1304 if (pgd_none_or_clear_bad(pgd))
1305 continue;
1306 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307 } while (pgd++, addr = next, addr != end);
1308 tlb_end_vma(tlb, vma);
1309 mem_cgroup_uncharge_end();
1313 static void unmap_single_vma(struct mmu_gather *tlb,
1314 struct vm_area_struct *vma, unsigned long start_addr,
1315 unsigned long end_addr,
1316 struct zap_details *details)
1318 unsigned long start = max(vma->vm_start, start_addr);
1319 unsigned long end;
1321 if (start >= vma->vm_end)
1322 return;
1323 end = min(vma->vm_end, end_addr);
1324 if (end <= vma->vm_start)
1325 return;
1327 if (vma->vm_file)
1328 uprobe_munmap(vma, start, end);
1330 if (unlikely(vma->vm_flags & VM_PFNMAP))
1331 untrack_pfn(vma, 0, 0);
1333 if (start != end) {
1334 if (unlikely(is_vm_hugetlb_page(vma))) {
1336 * It is undesirable to test vma->vm_file as it
1337 * should be non-null for valid hugetlb area.
1338 * However, vm_file will be NULL in the error
1339 * cleanup path of do_mmap_pgoff. When
1340 * hugetlbfs ->mmap method fails,
1341 * do_mmap_pgoff() nullifies vma->vm_file
1342 * before calling this function to clean up.
1343 * Since no pte has actually been setup, it is
1344 * safe to do nothing in this case.
1346 if (vma->vm_file) {
1347 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1348 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1351 } else
1352 unmap_page_range(tlb, vma, start, end, details);
1357 * unmap_vmas - unmap a range of memory covered by a list of vma's
1358 * @tlb: address of the caller's struct mmu_gather
1359 * @vma: the starting vma
1360 * @start_addr: virtual address at which to start unmapping
1361 * @end_addr: virtual address at which to end unmapping
1363 * Unmap all pages in the vma list.
1365 * Only addresses between `start' and `end' will be unmapped.
1367 * The VMA list must be sorted in ascending virtual address order.
1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370 * range after unmap_vmas() returns. So the only responsibility here is to
1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372 * drops the lock and schedules.
1374 void unmap_vmas(struct mmu_gather *tlb,
1375 struct vm_area_struct *vma, unsigned long start_addr,
1376 unsigned long end_addr)
1378 struct mm_struct *mm = vma->vm_mm;
1380 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1387 * zap_page_range - remove user pages in a given range
1388 * @vma: vm_area_struct holding the applicable pages
1389 * @start: starting address of pages to zap
1390 * @size: number of bytes to zap
1391 * @details: details of nonlinear truncation or shared cache invalidation
1393 * Caller must protect the VMA list
1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396 unsigned long size, struct zap_details *details)
1398 struct mm_struct *mm = vma->vm_mm;
1399 struct mmu_gather tlb;
1400 unsigned long end = start + size;
1402 lru_add_drain();
1403 tlb_gather_mmu(&tlb, mm, 0);
1404 update_hiwater_rss(mm);
1405 mmu_notifier_invalidate_range_start(mm, start, end);
1406 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407 unmap_single_vma(&tlb, vma, start, end, details);
1408 mmu_notifier_invalidate_range_end(mm, start, end);
1409 tlb_finish_mmu(&tlb, start, end);
1413 * zap_page_range_single - remove user pages in a given range
1414 * @vma: vm_area_struct holding the applicable pages
1415 * @address: starting address of pages to zap
1416 * @size: number of bytes to zap
1417 * @details: details of nonlinear truncation or shared cache invalidation
1419 * The range must fit into one VMA.
1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422 unsigned long size, struct zap_details *details)
1424 struct mm_struct *mm = vma->vm_mm;
1425 struct mmu_gather tlb;
1426 unsigned long end = address + size;
1428 lru_add_drain();
1429 tlb_gather_mmu(&tlb, mm, 0);
1430 update_hiwater_rss(mm);
1431 mmu_notifier_invalidate_range_start(mm, address, end);
1432 unmap_single_vma(&tlb, vma, address, end, details);
1433 mmu_notifier_invalidate_range_end(mm, address, end);
1434 tlb_finish_mmu(&tlb, address, end);
1438 * zap_vma_ptes - remove ptes mapping the vma
1439 * @vma: vm_area_struct holding ptes to be zapped
1440 * @address: starting address of pages to zap
1441 * @size: number of bytes to zap
1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1445 * The entire address range must be fully contained within the vma.
1447 * Returns 0 if successful.
1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450 unsigned long size)
1452 if (address < vma->vm_start || address + size > vma->vm_end ||
1453 !(vma->vm_flags & VM_PFNMAP))
1454 return -1;
1455 zap_page_range_single(vma, address, size, NULL);
1456 return 0;
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1461 * follow_page - look up a page descriptor from a user-virtual address
1462 * @vma: vm_area_struct mapping @address
1463 * @address: virtual address to look up
1464 * @flags: flags modifying lookup behaviour
1466 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1468 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1469 * an error pointer if there is a mapping to something not represented
1470 * by a page descriptor (see also vm_normal_page()).
1472 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1473 unsigned int flags)
1475 pgd_t *pgd;
1476 pud_t *pud;
1477 pmd_t *pmd;
1478 pte_t *ptep, pte;
1479 spinlock_t *ptl;
1480 struct page *page;
1481 struct mm_struct *mm = vma->vm_mm;
1483 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1484 if (!IS_ERR(page)) {
1485 BUG_ON(flags & FOLL_GET);
1486 goto out;
1489 page = NULL;
1490 pgd = pgd_offset(mm, address);
1491 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1492 goto no_page_table;
1494 pud = pud_offset(pgd, address);
1495 if (pud_none(*pud))
1496 goto no_page_table;
1497 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1498 BUG_ON(flags & FOLL_GET);
1499 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1500 goto out;
1502 if (unlikely(pud_bad(*pud)))
1503 goto no_page_table;
1505 pmd = pmd_offset(pud, address);
1506 if (pmd_none(*pmd))
1507 goto no_page_table;
1508 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1509 BUG_ON(flags & FOLL_GET);
1510 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1511 goto out;
1513 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1514 goto no_page_table;
1515 if (pmd_trans_huge(*pmd)) {
1516 if (flags & FOLL_SPLIT) {
1517 split_huge_page_pmd(vma, address, pmd);
1518 goto split_fallthrough;
1520 spin_lock(&mm->page_table_lock);
1521 if (likely(pmd_trans_huge(*pmd))) {
1522 if (unlikely(pmd_trans_splitting(*pmd))) {
1523 spin_unlock(&mm->page_table_lock);
1524 wait_split_huge_page(vma->anon_vma, pmd);
1525 } else {
1526 page = follow_trans_huge_pmd(vma, address,
1527 pmd, flags);
1528 spin_unlock(&mm->page_table_lock);
1529 goto out;
1531 } else
1532 spin_unlock(&mm->page_table_lock);
1533 /* fall through */
1535 split_fallthrough:
1536 if (unlikely(pmd_bad(*pmd)))
1537 goto no_page_table;
1539 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1541 pte = *ptep;
1542 if (!pte_present(pte))
1543 goto no_page;
1544 if ((flags & FOLL_NUMA) && pte_numa(pte))
1545 goto no_page;
1546 if ((flags & FOLL_WRITE) && !pte_write(pte))
1547 goto unlock;
1549 page = vm_normal_page(vma, address, pte);
1550 if (unlikely(!page)) {
1551 if ((flags & FOLL_DUMP) ||
1552 !is_zero_pfn(pte_pfn(pte)))
1553 goto bad_page;
1554 page = pte_page(pte);
1557 if (flags & FOLL_GET)
1558 get_page_foll(page);
1559 if (flags & FOLL_TOUCH) {
1560 if ((flags & FOLL_WRITE) &&
1561 !pte_dirty(pte) && !PageDirty(page))
1562 set_page_dirty(page);
1564 * pte_mkyoung() would be more correct here, but atomic care
1565 * is needed to avoid losing the dirty bit: it is easier to use
1566 * mark_page_accessed().
1568 mark_page_accessed(page);
1570 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1572 * The preliminary mapping check is mainly to avoid the
1573 * pointless overhead of lock_page on the ZERO_PAGE
1574 * which might bounce very badly if there is contention.
1576 * If the page is already locked, we don't need to
1577 * handle it now - vmscan will handle it later if and
1578 * when it attempts to reclaim the page.
1580 if (page->mapping && trylock_page(page)) {
1581 lru_add_drain(); /* push cached pages to LRU */
1583 * Because we lock page here, and migration is
1584 * blocked by the pte's page reference, and we
1585 * know the page is still mapped, we don't even
1586 * need to check for file-cache page truncation.
1588 mlock_vma_page(page);
1589 unlock_page(page);
1592 unlock:
1593 pte_unmap_unlock(ptep, ptl);
1594 out:
1595 return page;
1597 bad_page:
1598 pte_unmap_unlock(ptep, ptl);
1599 return ERR_PTR(-EFAULT);
1601 no_page:
1602 pte_unmap_unlock(ptep, ptl);
1603 if (!pte_none(pte))
1604 return page;
1606 no_page_table:
1608 * When core dumping an enormous anonymous area that nobody
1609 * has touched so far, we don't want to allocate unnecessary pages or
1610 * page tables. Return error instead of NULL to skip handle_mm_fault,
1611 * then get_dump_page() will return NULL to leave a hole in the dump.
1612 * But we can only make this optimization where a hole would surely
1613 * be zero-filled if handle_mm_fault() actually did handle it.
1615 if ((flags & FOLL_DUMP) &&
1616 (!vma->vm_ops || !vma->vm_ops->fault))
1617 return ERR_PTR(-EFAULT);
1618 return page;
1621 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1623 return stack_guard_page_start(vma, addr) ||
1624 stack_guard_page_end(vma, addr+PAGE_SIZE);
1628 * __get_user_pages() - pin user pages in memory
1629 * @tsk: task_struct of target task
1630 * @mm: mm_struct of target mm
1631 * @start: starting user address
1632 * @nr_pages: number of pages from start to pin
1633 * @gup_flags: flags modifying pin behaviour
1634 * @pages: array that receives pointers to the pages pinned.
1635 * Should be at least nr_pages long. Or NULL, if caller
1636 * only intends to ensure the pages are faulted in.
1637 * @vmas: array of pointers to vmas corresponding to each page.
1638 * Or NULL if the caller does not require them.
1639 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1641 * Returns number of pages pinned. This may be fewer than the number
1642 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1643 * were pinned, returns -errno. Each page returned must be released
1644 * with a put_page() call when it is finished with. vmas will only
1645 * remain valid while mmap_sem is held.
1647 * Must be called with mmap_sem held for read or write.
1649 * __get_user_pages walks a process's page tables and takes a reference to
1650 * each struct page that each user address corresponds to at a given
1651 * instant. That is, it takes the page that would be accessed if a user
1652 * thread accesses the given user virtual address at that instant.
1654 * This does not guarantee that the page exists in the user mappings when
1655 * __get_user_pages returns, and there may even be a completely different
1656 * page there in some cases (eg. if mmapped pagecache has been invalidated
1657 * and subsequently re faulted). However it does guarantee that the page
1658 * won't be freed completely. And mostly callers simply care that the page
1659 * contains data that was valid *at some point in time*. Typically, an IO
1660 * or similar operation cannot guarantee anything stronger anyway because
1661 * locks can't be held over the syscall boundary.
1663 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1664 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1665 * appropriate) must be called after the page is finished with, and
1666 * before put_page is called.
1668 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1669 * or mmap_sem contention, and if waiting is needed to pin all pages,
1670 * *@nonblocking will be set to 0.
1672 * In most cases, get_user_pages or get_user_pages_fast should be used
1673 * instead of __get_user_pages. __get_user_pages should be used only if
1674 * you need some special @gup_flags.
1676 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1677 unsigned long start, int nr_pages, unsigned int gup_flags,
1678 struct page **pages, struct vm_area_struct **vmas,
1679 int *nonblocking)
1681 int i;
1682 unsigned long vm_flags;
1684 if (nr_pages <= 0)
1685 return 0;
1687 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1690 * Require read or write permissions.
1691 * If FOLL_FORCE is set, we only require the "MAY" flags.
1693 vm_flags = (gup_flags & FOLL_WRITE) ?
1694 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1695 vm_flags &= (gup_flags & FOLL_FORCE) ?
1696 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1699 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1700 * would be called on PROT_NONE ranges. We must never invoke
1701 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1702 * page faults would unprotect the PROT_NONE ranges if
1703 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1704 * bitflag. So to avoid that, don't set FOLL_NUMA if
1705 * FOLL_FORCE is set.
1707 if (!(gup_flags & FOLL_FORCE))
1708 gup_flags |= FOLL_NUMA;
1710 i = 0;
1712 do {
1713 struct vm_area_struct *vma;
1715 vma = find_extend_vma(mm, start);
1716 if (!vma && in_gate_area(mm, start)) {
1717 unsigned long pg = start & PAGE_MASK;
1718 pgd_t *pgd;
1719 pud_t *pud;
1720 pmd_t *pmd;
1721 pte_t *pte;
1723 /* user gate pages are read-only */
1724 if (gup_flags & FOLL_WRITE)
1725 return i ? : -EFAULT;
1726 if (pg > TASK_SIZE)
1727 pgd = pgd_offset_k(pg);
1728 else
1729 pgd = pgd_offset_gate(mm, pg);
1730 BUG_ON(pgd_none(*pgd));
1731 pud = pud_offset(pgd, pg);
1732 BUG_ON(pud_none(*pud));
1733 pmd = pmd_offset(pud, pg);
1734 if (pmd_none(*pmd))
1735 return i ? : -EFAULT;
1736 VM_BUG_ON(pmd_trans_huge(*pmd));
1737 pte = pte_offset_map(pmd, pg);
1738 if (pte_none(*pte)) {
1739 pte_unmap(pte);
1740 return i ? : -EFAULT;
1742 vma = get_gate_vma(mm);
1743 if (pages) {
1744 struct page *page;
1746 page = vm_normal_page(vma, start, *pte);
1747 if (!page) {
1748 if (!(gup_flags & FOLL_DUMP) &&
1749 is_zero_pfn(pte_pfn(*pte)))
1750 page = pte_page(*pte);
1751 else {
1752 pte_unmap(pte);
1753 return i ? : -EFAULT;
1756 pages[i] = page;
1757 get_page(page);
1759 pte_unmap(pte);
1760 goto next_page;
1763 if (!vma ||
1764 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1765 !(vm_flags & vma->vm_flags))
1766 return i ? : -EFAULT;
1768 if (is_vm_hugetlb_page(vma)) {
1769 i = follow_hugetlb_page(mm, vma, pages, vmas,
1770 &start, &nr_pages, i, gup_flags);
1771 continue;
1774 do {
1775 struct page *page;
1776 unsigned int foll_flags = gup_flags;
1779 * If we have a pending SIGKILL, don't keep faulting
1780 * pages and potentially allocating memory.
1782 if (unlikely(fatal_signal_pending(current)))
1783 return i ? i : -ERESTARTSYS;
1785 cond_resched();
1786 while (!(page = follow_page(vma, start, foll_flags))) {
1787 int ret;
1788 unsigned int fault_flags = 0;
1790 /* For mlock, just skip the stack guard page. */
1791 if (foll_flags & FOLL_MLOCK) {
1792 if (stack_guard_page(vma, start))
1793 goto next_page;
1795 if (foll_flags & FOLL_WRITE)
1796 fault_flags |= FAULT_FLAG_WRITE;
1797 if (nonblocking)
1798 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1799 if (foll_flags & FOLL_NOWAIT)
1800 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1802 ret = handle_mm_fault(mm, vma, start,
1803 fault_flags);
1805 if (ret & VM_FAULT_ERROR) {
1806 if (ret & VM_FAULT_OOM)
1807 return i ? i : -ENOMEM;
1808 if (ret & (VM_FAULT_HWPOISON |
1809 VM_FAULT_HWPOISON_LARGE)) {
1810 if (i)
1811 return i;
1812 else if (gup_flags & FOLL_HWPOISON)
1813 return -EHWPOISON;
1814 else
1815 return -EFAULT;
1817 if (ret & VM_FAULT_SIGBUS)
1818 return i ? i : -EFAULT;
1819 BUG();
1822 if (tsk) {
1823 if (ret & VM_FAULT_MAJOR)
1824 tsk->maj_flt++;
1825 else
1826 tsk->min_flt++;
1829 if (ret & VM_FAULT_RETRY) {
1830 if (nonblocking)
1831 *nonblocking = 0;
1832 return i;
1836 * The VM_FAULT_WRITE bit tells us that
1837 * do_wp_page has broken COW when necessary,
1838 * even if maybe_mkwrite decided not to set
1839 * pte_write. We can thus safely do subsequent
1840 * page lookups as if they were reads. But only
1841 * do so when looping for pte_write is futile:
1842 * in some cases userspace may also be wanting
1843 * to write to the gotten user page, which a
1844 * read fault here might prevent (a readonly
1845 * page might get reCOWed by userspace write).
1847 if ((ret & VM_FAULT_WRITE) &&
1848 !(vma->vm_flags & VM_WRITE))
1849 foll_flags &= ~FOLL_WRITE;
1851 cond_resched();
1853 if (IS_ERR(page))
1854 return i ? i : PTR_ERR(page);
1855 if (pages) {
1856 pages[i] = page;
1858 flush_anon_page(vma, page, start);
1859 flush_dcache_page(page);
1861 next_page:
1862 if (vmas)
1863 vmas[i] = vma;
1864 i++;
1865 start += PAGE_SIZE;
1866 nr_pages--;
1867 } while (nr_pages && start < vma->vm_end);
1868 } while (nr_pages);
1869 return i;
1871 EXPORT_SYMBOL(__get_user_pages);
1874 * fixup_user_fault() - manually resolve a user page fault
1875 * @tsk: the task_struct to use for page fault accounting, or
1876 * NULL if faults are not to be recorded.
1877 * @mm: mm_struct of target mm
1878 * @address: user address
1879 * @fault_flags:flags to pass down to handle_mm_fault()
1881 * This is meant to be called in the specific scenario where for locking reasons
1882 * we try to access user memory in atomic context (within a pagefault_disable()
1883 * section), this returns -EFAULT, and we want to resolve the user fault before
1884 * trying again.
1886 * Typically this is meant to be used by the futex code.
1888 * The main difference with get_user_pages() is that this function will
1889 * unconditionally call handle_mm_fault() which will in turn perform all the
1890 * necessary SW fixup of the dirty and young bits in the PTE, while
1891 * handle_mm_fault() only guarantees to update these in the struct page.
1893 * This is important for some architectures where those bits also gate the
1894 * access permission to the page because they are maintained in software. On
1895 * such architectures, gup() will not be enough to make a subsequent access
1896 * succeed.
1898 * This should be called with the mm_sem held for read.
1900 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1901 unsigned long address, unsigned int fault_flags)
1903 struct vm_area_struct *vma;
1904 int ret;
1906 vma = find_extend_vma(mm, address);
1907 if (!vma || address < vma->vm_start)
1908 return -EFAULT;
1910 ret = handle_mm_fault(mm, vma, address, fault_flags);
1911 if (ret & VM_FAULT_ERROR) {
1912 if (ret & VM_FAULT_OOM)
1913 return -ENOMEM;
1914 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1915 return -EHWPOISON;
1916 if (ret & VM_FAULT_SIGBUS)
1917 return -EFAULT;
1918 BUG();
1920 if (tsk) {
1921 if (ret & VM_FAULT_MAJOR)
1922 tsk->maj_flt++;
1923 else
1924 tsk->min_flt++;
1926 return 0;
1930 * get_user_pages() - pin user pages in memory
1931 * @tsk: the task_struct to use for page fault accounting, or
1932 * NULL if faults are not to be recorded.
1933 * @mm: mm_struct of target mm
1934 * @start: starting user address
1935 * @nr_pages: number of pages from start to pin
1936 * @write: whether pages will be written to by the caller
1937 * @force: whether to force write access even if user mapping is
1938 * readonly. This will result in the page being COWed even
1939 * in MAP_SHARED mappings. You do not want this.
1940 * @pages: array that receives pointers to the pages pinned.
1941 * Should be at least nr_pages long. Or NULL, if caller
1942 * only intends to ensure the pages are faulted in.
1943 * @vmas: array of pointers to vmas corresponding to each page.
1944 * Or NULL if the caller does not require them.
1946 * Returns number of pages pinned. This may be fewer than the number
1947 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1948 * were pinned, returns -errno. Each page returned must be released
1949 * with a put_page() call when it is finished with. vmas will only
1950 * remain valid while mmap_sem is held.
1952 * Must be called with mmap_sem held for read or write.
1954 * get_user_pages walks a process's page tables and takes a reference to
1955 * each struct page that each user address corresponds to at a given
1956 * instant. That is, it takes the page that would be accessed if a user
1957 * thread accesses the given user virtual address at that instant.
1959 * This does not guarantee that the page exists in the user mappings when
1960 * get_user_pages returns, and there may even be a completely different
1961 * page there in some cases (eg. if mmapped pagecache has been invalidated
1962 * and subsequently re faulted). However it does guarantee that the page
1963 * won't be freed completely. And mostly callers simply care that the page
1964 * contains data that was valid *at some point in time*. Typically, an IO
1965 * or similar operation cannot guarantee anything stronger anyway because
1966 * locks can't be held over the syscall boundary.
1968 * If write=0, the page must not be written to. If the page is written to,
1969 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1970 * after the page is finished with, and before put_page is called.
1972 * get_user_pages is typically used for fewer-copy IO operations, to get a
1973 * handle on the memory by some means other than accesses via the user virtual
1974 * addresses. The pages may be submitted for DMA to devices or accessed via
1975 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1976 * use the correct cache flushing APIs.
1978 * See also get_user_pages_fast, for performance critical applications.
1980 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1981 unsigned long start, int nr_pages, int write, int force,
1982 struct page **pages, struct vm_area_struct **vmas)
1984 int flags = FOLL_TOUCH;
1986 if (pages)
1987 flags |= FOLL_GET;
1988 if (write)
1989 flags |= FOLL_WRITE;
1990 if (force)
1991 flags |= FOLL_FORCE;
1993 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1994 NULL);
1996 EXPORT_SYMBOL(get_user_pages);
1999 * get_dump_page() - pin user page in memory while writing it to core dump
2000 * @addr: user address
2002 * Returns struct page pointer of user page pinned for dump,
2003 * to be freed afterwards by page_cache_release() or put_page().
2005 * Returns NULL on any kind of failure - a hole must then be inserted into
2006 * the corefile, to preserve alignment with its headers; and also returns
2007 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2008 * allowing a hole to be left in the corefile to save diskspace.
2010 * Called without mmap_sem, but after all other threads have been killed.
2012 #ifdef CONFIG_ELF_CORE
2013 struct page *get_dump_page(unsigned long addr)
2015 struct vm_area_struct *vma;
2016 struct page *page;
2018 if (__get_user_pages(current, current->mm, addr, 1,
2019 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2020 NULL) < 1)
2021 return NULL;
2022 flush_cache_page(vma, addr, page_to_pfn(page));
2023 return page;
2025 #endif /* CONFIG_ELF_CORE */
2027 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2028 spinlock_t **ptl)
2030 pgd_t * pgd = pgd_offset(mm, addr);
2031 pud_t * pud = pud_alloc(mm, pgd, addr);
2032 if (pud) {
2033 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2034 if (pmd) {
2035 VM_BUG_ON(pmd_trans_huge(*pmd));
2036 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2039 return NULL;
2043 * This is the old fallback for page remapping.
2045 * For historical reasons, it only allows reserved pages. Only
2046 * old drivers should use this, and they needed to mark their
2047 * pages reserved for the old functions anyway.
2049 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2050 struct page *page, pgprot_t prot)
2052 struct mm_struct *mm = vma->vm_mm;
2053 int retval;
2054 pte_t *pte;
2055 spinlock_t *ptl;
2057 retval = -EINVAL;
2058 if (PageAnon(page))
2059 goto out;
2060 retval = -ENOMEM;
2061 flush_dcache_page(page);
2062 pte = get_locked_pte(mm, addr, &ptl);
2063 if (!pte)
2064 goto out;
2065 retval = -EBUSY;
2066 if (!pte_none(*pte))
2067 goto out_unlock;
2069 /* Ok, finally just insert the thing.. */
2070 get_page(page);
2071 inc_mm_counter_fast(mm, MM_FILEPAGES);
2072 page_add_file_rmap(page);
2073 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2075 retval = 0;
2076 pte_unmap_unlock(pte, ptl);
2077 return retval;
2078 out_unlock:
2079 pte_unmap_unlock(pte, ptl);
2080 out:
2081 return retval;
2085 * vm_insert_page - insert single page into user vma
2086 * @vma: user vma to map to
2087 * @addr: target user address of this page
2088 * @page: source kernel page
2090 * This allows drivers to insert individual pages they've allocated
2091 * into a user vma.
2093 * The page has to be a nice clean _individual_ kernel allocation.
2094 * If you allocate a compound page, you need to have marked it as
2095 * such (__GFP_COMP), or manually just split the page up yourself
2096 * (see split_page()).
2098 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2099 * took an arbitrary page protection parameter. This doesn't allow
2100 * that. Your vma protection will have to be set up correctly, which
2101 * means that if you want a shared writable mapping, you'd better
2102 * ask for a shared writable mapping!
2104 * The page does not need to be reserved.
2106 * Usually this function is called from f_op->mmap() handler
2107 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2108 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2109 * function from other places, for example from page-fault handler.
2111 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2112 struct page *page)
2114 if (addr < vma->vm_start || addr >= vma->vm_end)
2115 return -EFAULT;
2116 if (!page_count(page))
2117 return -EINVAL;
2118 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2119 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2120 BUG_ON(vma->vm_flags & VM_PFNMAP);
2121 vma->vm_flags |= VM_MIXEDMAP;
2123 return insert_page(vma, addr, page, vma->vm_page_prot);
2125 EXPORT_SYMBOL(vm_insert_page);
2127 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2128 unsigned long pfn, pgprot_t prot)
2130 struct mm_struct *mm = vma->vm_mm;
2131 int retval;
2132 pte_t *pte, entry;
2133 spinlock_t *ptl;
2135 retval = -ENOMEM;
2136 pte = get_locked_pte(mm, addr, &ptl);
2137 if (!pte)
2138 goto out;
2139 retval = -EBUSY;
2140 if (!pte_none(*pte))
2141 goto out_unlock;
2143 /* Ok, finally just insert the thing.. */
2144 entry = pte_mkspecial(pfn_pte(pfn, prot));
2145 set_pte_at(mm, addr, pte, entry);
2146 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2148 retval = 0;
2149 out_unlock:
2150 pte_unmap_unlock(pte, ptl);
2151 out:
2152 return retval;
2156 * vm_insert_pfn - insert single pfn into user vma
2157 * @vma: user vma to map to
2158 * @addr: target user address of this page
2159 * @pfn: source kernel pfn
2161 * Similar to vm_insert_page, this allows drivers to insert individual pages
2162 * they've allocated into a user vma. Same comments apply.
2164 * This function should only be called from a vm_ops->fault handler, and
2165 * in that case the handler should return NULL.
2167 * vma cannot be a COW mapping.
2169 * As this is called only for pages that do not currently exist, we
2170 * do not need to flush old virtual caches or the TLB.
2172 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2173 unsigned long pfn)
2175 int ret;
2176 pgprot_t pgprot = vma->vm_page_prot;
2178 * Technically, architectures with pte_special can avoid all these
2179 * restrictions (same for remap_pfn_range). However we would like
2180 * consistency in testing and feature parity among all, so we should
2181 * try to keep these invariants in place for everybody.
2183 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2184 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2185 (VM_PFNMAP|VM_MIXEDMAP));
2186 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2187 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2189 if (addr < vma->vm_start || addr >= vma->vm_end)
2190 return -EFAULT;
2191 if (track_pfn_insert(vma, &pgprot, pfn))
2192 return -EINVAL;
2194 ret = insert_pfn(vma, addr, pfn, pgprot);
2196 return ret;
2198 EXPORT_SYMBOL(vm_insert_pfn);
2200 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2201 unsigned long pfn)
2203 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2205 if (addr < vma->vm_start || addr >= vma->vm_end)
2206 return -EFAULT;
2209 * If we don't have pte special, then we have to use the pfn_valid()
2210 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2211 * refcount the page if pfn_valid is true (hence insert_page rather
2212 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2213 * without pte special, it would there be refcounted as a normal page.
2215 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2216 struct page *page;
2218 page = pfn_to_page(pfn);
2219 return insert_page(vma, addr, page, vma->vm_page_prot);
2221 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2223 EXPORT_SYMBOL(vm_insert_mixed);
2226 * maps a range of physical memory into the requested pages. the old
2227 * mappings are removed. any references to nonexistent pages results
2228 * in null mappings (currently treated as "copy-on-access")
2230 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2231 unsigned long addr, unsigned long end,
2232 unsigned long pfn, pgprot_t prot)
2234 pte_t *pte;
2235 spinlock_t *ptl;
2237 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2238 if (!pte)
2239 return -ENOMEM;
2240 arch_enter_lazy_mmu_mode();
2241 do {
2242 BUG_ON(!pte_none(*pte));
2243 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2244 pfn++;
2245 } while (pte++, addr += PAGE_SIZE, addr != end);
2246 arch_leave_lazy_mmu_mode();
2247 pte_unmap_unlock(pte - 1, ptl);
2248 return 0;
2251 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2252 unsigned long addr, unsigned long end,
2253 unsigned long pfn, pgprot_t prot)
2255 pmd_t *pmd;
2256 unsigned long next;
2258 pfn -= addr >> PAGE_SHIFT;
2259 pmd = pmd_alloc(mm, pud, addr);
2260 if (!pmd)
2261 return -ENOMEM;
2262 VM_BUG_ON(pmd_trans_huge(*pmd));
2263 do {
2264 next = pmd_addr_end(addr, end);
2265 if (remap_pte_range(mm, pmd, addr, next,
2266 pfn + (addr >> PAGE_SHIFT), prot))
2267 return -ENOMEM;
2268 } while (pmd++, addr = next, addr != end);
2269 return 0;
2272 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2273 unsigned long addr, unsigned long end,
2274 unsigned long pfn, pgprot_t prot)
2276 pud_t *pud;
2277 unsigned long next;
2279 pfn -= addr >> PAGE_SHIFT;
2280 pud = pud_alloc(mm, pgd, addr);
2281 if (!pud)
2282 return -ENOMEM;
2283 do {
2284 next = pud_addr_end(addr, end);
2285 if (remap_pmd_range(mm, pud, addr, next,
2286 pfn + (addr >> PAGE_SHIFT), prot))
2287 return -ENOMEM;
2288 } while (pud++, addr = next, addr != end);
2289 return 0;
2293 * remap_pfn_range - remap kernel memory to userspace
2294 * @vma: user vma to map to
2295 * @addr: target user address to start at
2296 * @pfn: physical address of kernel memory
2297 * @size: size of map area
2298 * @prot: page protection flags for this mapping
2300 * Note: this is only safe if the mm semaphore is held when called.
2302 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2303 unsigned long pfn, unsigned long size, pgprot_t prot)
2305 pgd_t *pgd;
2306 unsigned long next;
2307 unsigned long end = addr + PAGE_ALIGN(size);
2308 struct mm_struct *mm = vma->vm_mm;
2309 int err;
2312 * Physically remapped pages are special. Tell the
2313 * rest of the world about it:
2314 * VM_IO tells people not to look at these pages
2315 * (accesses can have side effects).
2316 * VM_PFNMAP tells the core MM that the base pages are just
2317 * raw PFN mappings, and do not have a "struct page" associated
2318 * with them.
2319 * VM_DONTEXPAND
2320 * Disable vma merging and expanding with mremap().
2321 * VM_DONTDUMP
2322 * Omit vma from core dump, even when VM_IO turned off.
2324 * There's a horrible special case to handle copy-on-write
2325 * behaviour that some programs depend on. We mark the "original"
2326 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2327 * See vm_normal_page() for details.
2329 if (is_cow_mapping(vma->vm_flags)) {
2330 if (addr != vma->vm_start || end != vma->vm_end)
2331 return -EINVAL;
2332 vma->vm_pgoff = pfn;
2335 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2336 if (err)
2337 return -EINVAL;
2339 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2341 BUG_ON(addr >= end);
2342 pfn -= addr >> PAGE_SHIFT;
2343 pgd = pgd_offset(mm, addr);
2344 flush_cache_range(vma, addr, end);
2345 do {
2346 next = pgd_addr_end(addr, end);
2347 err = remap_pud_range(mm, pgd, addr, next,
2348 pfn + (addr >> PAGE_SHIFT), prot);
2349 if (err)
2350 break;
2351 } while (pgd++, addr = next, addr != end);
2353 if (err)
2354 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2356 return err;
2358 EXPORT_SYMBOL(remap_pfn_range);
2360 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2361 unsigned long addr, unsigned long end,
2362 pte_fn_t fn, void *data)
2364 pte_t *pte;
2365 int err;
2366 pgtable_t token;
2367 spinlock_t *uninitialized_var(ptl);
2369 pte = (mm == &init_mm) ?
2370 pte_alloc_kernel(pmd, addr) :
2371 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2372 if (!pte)
2373 return -ENOMEM;
2375 BUG_ON(pmd_huge(*pmd));
2377 arch_enter_lazy_mmu_mode();
2379 token = pmd_pgtable(*pmd);
2381 do {
2382 err = fn(pte++, token, addr, data);
2383 if (err)
2384 break;
2385 } while (addr += PAGE_SIZE, addr != end);
2387 arch_leave_lazy_mmu_mode();
2389 if (mm != &init_mm)
2390 pte_unmap_unlock(pte-1, ptl);
2391 return err;
2394 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2395 unsigned long addr, unsigned long end,
2396 pte_fn_t fn, void *data)
2398 pmd_t *pmd;
2399 unsigned long next;
2400 int err;
2402 BUG_ON(pud_huge(*pud));
2404 pmd = pmd_alloc(mm, pud, addr);
2405 if (!pmd)
2406 return -ENOMEM;
2407 do {
2408 next = pmd_addr_end(addr, end);
2409 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2410 if (err)
2411 break;
2412 } while (pmd++, addr = next, addr != end);
2413 return err;
2416 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2417 unsigned long addr, unsigned long end,
2418 pte_fn_t fn, void *data)
2420 pud_t *pud;
2421 unsigned long next;
2422 int err;
2424 pud = pud_alloc(mm, pgd, addr);
2425 if (!pud)
2426 return -ENOMEM;
2427 do {
2428 next = pud_addr_end(addr, end);
2429 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2430 if (err)
2431 break;
2432 } while (pud++, addr = next, addr != end);
2433 return err;
2437 * Scan a region of virtual memory, filling in page tables as necessary
2438 * and calling a provided function on each leaf page table.
2440 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2441 unsigned long size, pte_fn_t fn, void *data)
2443 pgd_t *pgd;
2444 unsigned long next;
2445 unsigned long end = addr + size;
2446 int err;
2448 BUG_ON(addr >= end);
2449 pgd = pgd_offset(mm, addr);
2450 do {
2451 next = pgd_addr_end(addr, end);
2452 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2453 if (err)
2454 break;
2455 } while (pgd++, addr = next, addr != end);
2457 return err;
2459 EXPORT_SYMBOL_GPL(apply_to_page_range);
2462 * handle_pte_fault chooses page fault handler according to an entry
2463 * which was read non-atomically. Before making any commitment, on
2464 * those architectures or configurations (e.g. i386 with PAE) which
2465 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2466 * must check under lock before unmapping the pte and proceeding
2467 * (but do_wp_page is only called after already making such a check;
2468 * and do_anonymous_page can safely check later on).
2470 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2471 pte_t *page_table, pte_t orig_pte)
2473 int same = 1;
2474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2475 if (sizeof(pte_t) > sizeof(unsigned long)) {
2476 spinlock_t *ptl = pte_lockptr(mm, pmd);
2477 spin_lock(ptl);
2478 same = pte_same(*page_table, orig_pte);
2479 spin_unlock(ptl);
2481 #endif
2482 pte_unmap(page_table);
2483 return same;
2486 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2489 * If the source page was a PFN mapping, we don't have
2490 * a "struct page" for it. We do a best-effort copy by
2491 * just copying from the original user address. If that
2492 * fails, we just zero-fill it. Live with it.
2494 if (unlikely(!src)) {
2495 void *kaddr = kmap_atomic(dst);
2496 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2499 * This really shouldn't fail, because the page is there
2500 * in the page tables. But it might just be unreadable,
2501 * in which case we just give up and fill the result with
2502 * zeroes.
2504 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2505 clear_page(kaddr);
2506 kunmap_atomic(kaddr);
2507 flush_dcache_page(dst);
2508 } else
2509 copy_user_highpage(dst, src, va, vma);
2513 * This routine handles present pages, when users try to write
2514 * to a shared page. It is done by copying the page to a new address
2515 * and decrementing the shared-page counter for the old page.
2517 * Note that this routine assumes that the protection checks have been
2518 * done by the caller (the low-level page fault routine in most cases).
2519 * Thus we can safely just mark it writable once we've done any necessary
2520 * COW.
2522 * We also mark the page dirty at this point even though the page will
2523 * change only once the write actually happens. This avoids a few races,
2524 * and potentially makes it more efficient.
2526 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2527 * but allow concurrent faults), with pte both mapped and locked.
2528 * We return with mmap_sem still held, but pte unmapped and unlocked.
2530 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2531 unsigned long address, pte_t *page_table, pmd_t *pmd,
2532 spinlock_t *ptl, pte_t orig_pte)
2533 __releases(ptl)
2535 struct page *old_page, *new_page = NULL;
2536 pte_t entry;
2537 int ret = 0;
2538 int page_mkwrite = 0;
2539 struct page *dirty_page = NULL;
2540 unsigned long mmun_start = 0; /* For mmu_notifiers */
2541 unsigned long mmun_end = 0; /* For mmu_notifiers */
2543 old_page = vm_normal_page(vma, address, orig_pte);
2544 if (!old_page) {
2546 * VM_MIXEDMAP !pfn_valid() case
2548 * We should not cow pages in a shared writeable mapping.
2549 * Just mark the pages writable as we can't do any dirty
2550 * accounting on raw pfn maps.
2552 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2553 (VM_WRITE|VM_SHARED))
2554 goto reuse;
2555 goto gotten;
2559 * Take out anonymous pages first, anonymous shared vmas are
2560 * not dirty accountable.
2562 if (PageAnon(old_page) && !PageKsm(old_page)) {
2563 if (!trylock_page(old_page)) {
2564 page_cache_get(old_page);
2565 pte_unmap_unlock(page_table, ptl);
2566 lock_page(old_page);
2567 page_table = pte_offset_map_lock(mm, pmd, address,
2568 &ptl);
2569 if (!pte_same(*page_table, orig_pte)) {
2570 unlock_page(old_page);
2571 goto unlock;
2573 page_cache_release(old_page);
2575 if (reuse_swap_page(old_page)) {
2577 * The page is all ours. Move it to our anon_vma so
2578 * the rmap code will not search our parent or siblings.
2579 * Protected against the rmap code by the page lock.
2581 page_move_anon_rmap(old_page, vma, address);
2582 unlock_page(old_page);
2583 goto reuse;
2585 unlock_page(old_page);
2586 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2587 (VM_WRITE|VM_SHARED))) {
2589 * Only catch write-faults on shared writable pages,
2590 * read-only shared pages can get COWed by
2591 * get_user_pages(.write=1, .force=1).
2593 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2594 struct vm_fault vmf;
2595 int tmp;
2597 vmf.virtual_address = (void __user *)(address &
2598 PAGE_MASK);
2599 vmf.pgoff = old_page->index;
2600 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2601 vmf.page = old_page;
2604 * Notify the address space that the page is about to
2605 * become writable so that it can prohibit this or wait
2606 * for the page to get into an appropriate state.
2608 * We do this without the lock held, so that it can
2609 * sleep if it needs to.
2611 page_cache_get(old_page);
2612 pte_unmap_unlock(page_table, ptl);
2614 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2615 if (unlikely(tmp &
2616 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2617 ret = tmp;
2618 goto unwritable_page;
2620 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2621 lock_page(old_page);
2622 if (!old_page->mapping) {
2623 ret = 0; /* retry the fault */
2624 unlock_page(old_page);
2625 goto unwritable_page;
2627 } else
2628 VM_BUG_ON(!PageLocked(old_page));
2631 * Since we dropped the lock we need to revalidate
2632 * the PTE as someone else may have changed it. If
2633 * they did, we just return, as we can count on the
2634 * MMU to tell us if they didn't also make it writable.
2636 page_table = pte_offset_map_lock(mm, pmd, address,
2637 &ptl);
2638 if (!pte_same(*page_table, orig_pte)) {
2639 unlock_page(old_page);
2640 goto unlock;
2643 page_mkwrite = 1;
2645 dirty_page = old_page;
2646 get_page(dirty_page);
2648 reuse:
2649 flush_cache_page(vma, address, pte_pfn(orig_pte));
2650 entry = pte_mkyoung(orig_pte);
2651 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2652 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2653 update_mmu_cache(vma, address, page_table);
2654 pte_unmap_unlock(page_table, ptl);
2655 ret |= VM_FAULT_WRITE;
2657 if (!dirty_page)
2658 return ret;
2661 * Yes, Virginia, this is actually required to prevent a race
2662 * with clear_page_dirty_for_io() from clearing the page dirty
2663 * bit after it clear all dirty ptes, but before a racing
2664 * do_wp_page installs a dirty pte.
2666 * __do_fault is protected similarly.
2668 if (!page_mkwrite) {
2669 wait_on_page_locked(dirty_page);
2670 set_page_dirty_balance(dirty_page, page_mkwrite);
2671 /* file_update_time outside page_lock */
2672 if (vma->vm_file)
2673 file_update_time(vma->vm_file);
2675 put_page(dirty_page);
2676 if (page_mkwrite) {
2677 struct address_space *mapping = dirty_page->mapping;
2679 set_page_dirty(dirty_page);
2680 unlock_page(dirty_page);
2681 page_cache_release(dirty_page);
2682 if (mapping) {
2684 * Some device drivers do not set page.mapping
2685 * but still dirty their pages
2687 balance_dirty_pages_ratelimited(mapping);
2691 return ret;
2695 * Ok, we need to copy. Oh, well..
2697 page_cache_get(old_page);
2698 gotten:
2699 pte_unmap_unlock(page_table, ptl);
2701 if (unlikely(anon_vma_prepare(vma)))
2702 goto oom;
2704 if (is_zero_pfn(pte_pfn(orig_pte))) {
2705 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2706 if (!new_page)
2707 goto oom;
2708 } else {
2709 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2710 if (!new_page)
2711 goto oom;
2712 cow_user_page(new_page, old_page, address, vma);
2714 __SetPageUptodate(new_page);
2716 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2717 goto oom_free_new;
2719 mmun_start = address & PAGE_MASK;
2720 mmun_end = mmun_start + PAGE_SIZE;
2721 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2724 * Re-check the pte - we dropped the lock
2726 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2727 if (likely(pte_same(*page_table, orig_pte))) {
2728 if (old_page) {
2729 if (!PageAnon(old_page)) {
2730 dec_mm_counter_fast(mm, MM_FILEPAGES);
2731 inc_mm_counter_fast(mm, MM_ANONPAGES);
2733 } else
2734 inc_mm_counter_fast(mm, MM_ANONPAGES);
2735 flush_cache_page(vma, address, pte_pfn(orig_pte));
2736 entry = mk_pte(new_page, vma->vm_page_prot);
2737 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2739 * Clear the pte entry and flush it first, before updating the
2740 * pte with the new entry. This will avoid a race condition
2741 * seen in the presence of one thread doing SMC and another
2742 * thread doing COW.
2744 ptep_clear_flush(vma, address, page_table);
2745 page_add_new_anon_rmap(new_page, vma, address);
2747 * We call the notify macro here because, when using secondary
2748 * mmu page tables (such as kvm shadow page tables), we want the
2749 * new page to be mapped directly into the secondary page table.
2751 set_pte_at_notify(mm, address, page_table, entry);
2752 update_mmu_cache(vma, address, page_table);
2753 if (old_page) {
2755 * Only after switching the pte to the new page may
2756 * we remove the mapcount here. Otherwise another
2757 * process may come and find the rmap count decremented
2758 * before the pte is switched to the new page, and
2759 * "reuse" the old page writing into it while our pte
2760 * here still points into it and can be read by other
2761 * threads.
2763 * The critical issue is to order this
2764 * page_remove_rmap with the ptp_clear_flush above.
2765 * Those stores are ordered by (if nothing else,)
2766 * the barrier present in the atomic_add_negative
2767 * in page_remove_rmap.
2769 * Then the TLB flush in ptep_clear_flush ensures that
2770 * no process can access the old page before the
2771 * decremented mapcount is visible. And the old page
2772 * cannot be reused until after the decremented
2773 * mapcount is visible. So transitively, TLBs to
2774 * old page will be flushed before it can be reused.
2776 page_remove_rmap(old_page);
2779 /* Free the old page.. */
2780 new_page = old_page;
2781 ret |= VM_FAULT_WRITE;
2782 } else
2783 mem_cgroup_uncharge_page(new_page);
2785 if (new_page)
2786 page_cache_release(new_page);
2787 unlock:
2788 pte_unmap_unlock(page_table, ptl);
2789 if (mmun_end > mmun_start)
2790 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2791 if (old_page) {
2793 * Don't let another task, with possibly unlocked vma,
2794 * keep the mlocked page.
2796 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2797 lock_page(old_page); /* LRU manipulation */
2798 munlock_vma_page(old_page);
2799 unlock_page(old_page);
2801 page_cache_release(old_page);
2803 return ret;
2804 oom_free_new:
2805 page_cache_release(new_page);
2806 oom:
2807 if (old_page)
2808 page_cache_release(old_page);
2809 return VM_FAULT_OOM;
2811 unwritable_page:
2812 page_cache_release(old_page);
2813 return ret;
2816 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2817 unsigned long start_addr, unsigned long end_addr,
2818 struct zap_details *details)
2820 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2823 static inline void unmap_mapping_range_tree(struct rb_root *root,
2824 struct zap_details *details)
2826 struct vm_area_struct *vma;
2827 pgoff_t vba, vea, zba, zea;
2829 vma_interval_tree_foreach(vma, root,
2830 details->first_index, details->last_index) {
2832 vba = vma->vm_pgoff;
2833 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2834 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2835 zba = details->first_index;
2836 if (zba < vba)
2837 zba = vba;
2838 zea = details->last_index;
2839 if (zea > vea)
2840 zea = vea;
2842 unmap_mapping_range_vma(vma,
2843 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2844 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2845 details);
2849 static inline void unmap_mapping_range_list(struct list_head *head,
2850 struct zap_details *details)
2852 struct vm_area_struct *vma;
2855 * In nonlinear VMAs there is no correspondence between virtual address
2856 * offset and file offset. So we must perform an exhaustive search
2857 * across *all* the pages in each nonlinear VMA, not just the pages
2858 * whose virtual address lies outside the file truncation point.
2860 list_for_each_entry(vma, head, shared.nonlinear) {
2861 details->nonlinear_vma = vma;
2862 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2867 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2868 * @mapping: the address space containing mmaps to be unmapped.
2869 * @holebegin: byte in first page to unmap, relative to the start of
2870 * the underlying file. This will be rounded down to a PAGE_SIZE
2871 * boundary. Note that this is different from truncate_pagecache(), which
2872 * must keep the partial page. In contrast, we must get rid of
2873 * partial pages.
2874 * @holelen: size of prospective hole in bytes. This will be rounded
2875 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2876 * end of the file.
2877 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2878 * but 0 when invalidating pagecache, don't throw away private data.
2880 void unmap_mapping_range(struct address_space *mapping,
2881 loff_t const holebegin, loff_t const holelen, int even_cows)
2883 struct zap_details details;
2884 pgoff_t hba = holebegin >> PAGE_SHIFT;
2885 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2887 /* Check for overflow. */
2888 if (sizeof(holelen) > sizeof(hlen)) {
2889 long long holeend =
2890 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2891 if (holeend & ~(long long)ULONG_MAX)
2892 hlen = ULONG_MAX - hba + 1;
2895 details.check_mapping = even_cows? NULL: mapping;
2896 details.nonlinear_vma = NULL;
2897 details.first_index = hba;
2898 details.last_index = hba + hlen - 1;
2899 if (details.last_index < details.first_index)
2900 details.last_index = ULONG_MAX;
2903 mutex_lock(&mapping->i_mmap_mutex);
2904 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2905 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2906 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2907 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2908 mutex_unlock(&mapping->i_mmap_mutex);
2910 EXPORT_SYMBOL(unmap_mapping_range);
2913 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2914 * but allow concurrent faults), and pte mapped but not yet locked.
2915 * We return with mmap_sem still held, but pte unmapped and unlocked.
2917 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2918 unsigned long address, pte_t *page_table, pmd_t *pmd,
2919 unsigned int flags, pte_t orig_pte)
2921 spinlock_t *ptl;
2922 struct page *page, *swapcache = NULL;
2923 swp_entry_t entry;
2924 pte_t pte;
2925 int locked;
2926 struct mem_cgroup *ptr;
2927 int exclusive = 0;
2928 int ret = 0;
2930 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2931 goto out;
2933 entry = pte_to_swp_entry(orig_pte);
2934 if (unlikely(non_swap_entry(entry))) {
2935 if (is_migration_entry(entry)) {
2936 migration_entry_wait(mm, pmd, address);
2937 } else if (is_hwpoison_entry(entry)) {
2938 ret = VM_FAULT_HWPOISON;
2939 } else {
2940 print_bad_pte(vma, address, orig_pte, NULL);
2941 ret = VM_FAULT_SIGBUS;
2943 goto out;
2945 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2946 page = lookup_swap_cache(entry);
2947 if (!page) {
2948 page = swapin_readahead(entry,
2949 GFP_HIGHUSER_MOVABLE, vma, address);
2950 if (!page) {
2952 * Back out if somebody else faulted in this pte
2953 * while we released the pte lock.
2955 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2956 if (likely(pte_same(*page_table, orig_pte)))
2957 ret = VM_FAULT_OOM;
2958 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2959 goto unlock;
2962 /* Had to read the page from swap area: Major fault */
2963 ret = VM_FAULT_MAJOR;
2964 count_vm_event(PGMAJFAULT);
2965 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2966 } else if (PageHWPoison(page)) {
2968 * hwpoisoned dirty swapcache pages are kept for killing
2969 * owner processes (which may be unknown at hwpoison time)
2971 ret = VM_FAULT_HWPOISON;
2972 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2973 goto out_release;
2976 locked = lock_page_or_retry(page, mm, flags);
2978 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2979 if (!locked) {
2980 ret |= VM_FAULT_RETRY;
2981 goto out_release;
2985 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2986 * release the swapcache from under us. The page pin, and pte_same
2987 * test below, are not enough to exclude that. Even if it is still
2988 * swapcache, we need to check that the page's swap has not changed.
2990 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2991 goto out_page;
2993 if (ksm_might_need_to_copy(page, vma, address)) {
2994 swapcache = page;
2995 page = ksm_does_need_to_copy(page, vma, address);
2997 if (unlikely(!page)) {
2998 ret = VM_FAULT_OOM;
2999 page = swapcache;
3000 swapcache = NULL;
3001 goto out_page;
3005 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3006 ret = VM_FAULT_OOM;
3007 goto out_page;
3011 * Back out if somebody else already faulted in this pte.
3013 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3014 if (unlikely(!pte_same(*page_table, orig_pte)))
3015 goto out_nomap;
3017 if (unlikely(!PageUptodate(page))) {
3018 ret = VM_FAULT_SIGBUS;
3019 goto out_nomap;
3023 * The page isn't present yet, go ahead with the fault.
3025 * Be careful about the sequence of operations here.
3026 * To get its accounting right, reuse_swap_page() must be called
3027 * while the page is counted on swap but not yet in mapcount i.e.
3028 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3029 * must be called after the swap_free(), or it will never succeed.
3030 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3031 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3032 * in page->private. In this case, a record in swap_cgroup is silently
3033 * discarded at swap_free().
3036 inc_mm_counter_fast(mm, MM_ANONPAGES);
3037 dec_mm_counter_fast(mm, MM_SWAPENTS);
3038 pte = mk_pte(page, vma->vm_page_prot);
3039 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3040 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3041 flags &= ~FAULT_FLAG_WRITE;
3042 ret |= VM_FAULT_WRITE;
3043 exclusive = 1;
3045 flush_icache_page(vma, page);
3046 set_pte_at(mm, address, page_table, pte);
3047 do_page_add_anon_rmap(page, vma, address, exclusive);
3048 /* It's better to call commit-charge after rmap is established */
3049 mem_cgroup_commit_charge_swapin(page, ptr);
3051 swap_free(entry);
3052 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3053 try_to_free_swap(page);
3054 unlock_page(page);
3055 if (swapcache) {
3057 * Hold the lock to avoid the swap entry to be reused
3058 * until we take the PT lock for the pte_same() check
3059 * (to avoid false positives from pte_same). For
3060 * further safety release the lock after the swap_free
3061 * so that the swap count won't change under a
3062 * parallel locked swapcache.
3064 unlock_page(swapcache);
3065 page_cache_release(swapcache);
3068 if (flags & FAULT_FLAG_WRITE) {
3069 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3070 if (ret & VM_FAULT_ERROR)
3071 ret &= VM_FAULT_ERROR;
3072 goto out;
3075 /* No need to invalidate - it was non-present before */
3076 update_mmu_cache(vma, address, page_table);
3077 unlock:
3078 pte_unmap_unlock(page_table, ptl);
3079 out:
3080 return ret;
3081 out_nomap:
3082 mem_cgroup_cancel_charge_swapin(ptr);
3083 pte_unmap_unlock(page_table, ptl);
3084 out_page:
3085 unlock_page(page);
3086 out_release:
3087 page_cache_release(page);
3088 if (swapcache) {
3089 unlock_page(swapcache);
3090 page_cache_release(swapcache);
3092 return ret;
3096 * This is like a special single-page "expand_{down|up}wards()",
3097 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3098 * doesn't hit another vma.
3100 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3102 address &= PAGE_MASK;
3103 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3104 struct vm_area_struct *prev = vma->vm_prev;
3107 * Is there a mapping abutting this one below?
3109 * That's only ok if it's the same stack mapping
3110 * that has gotten split..
3112 if (prev && prev->vm_end == address)
3113 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3115 expand_downwards(vma, address - PAGE_SIZE);
3117 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3118 struct vm_area_struct *next = vma->vm_next;
3120 /* As VM_GROWSDOWN but s/below/above/ */
3121 if (next && next->vm_start == address + PAGE_SIZE)
3122 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3124 expand_upwards(vma, address + PAGE_SIZE);
3126 return 0;
3130 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3131 * but allow concurrent faults), and pte mapped but not yet locked.
3132 * We return with mmap_sem still held, but pte unmapped and unlocked.
3134 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3135 unsigned long address, pte_t *page_table, pmd_t *pmd,
3136 unsigned int flags)
3138 struct page *page;
3139 spinlock_t *ptl;
3140 pte_t entry;
3142 pte_unmap(page_table);
3144 /* Check if we need to add a guard page to the stack */
3145 if (check_stack_guard_page(vma, address) < 0)
3146 return VM_FAULT_SIGBUS;
3148 /* Use the zero-page for reads */
3149 if (!(flags & FAULT_FLAG_WRITE)) {
3150 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3151 vma->vm_page_prot));
3152 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3153 if (!pte_none(*page_table))
3154 goto unlock;
3155 goto setpte;
3158 /* Allocate our own private page. */
3159 if (unlikely(anon_vma_prepare(vma)))
3160 goto oom;
3161 page = alloc_zeroed_user_highpage_movable(vma, address);
3162 if (!page)
3163 goto oom;
3164 __SetPageUptodate(page);
3166 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3167 goto oom_free_page;
3169 entry = mk_pte(page, vma->vm_page_prot);
3170 if (vma->vm_flags & VM_WRITE)
3171 entry = pte_mkwrite(pte_mkdirty(entry));
3173 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3174 if (!pte_none(*page_table))
3175 goto release;
3177 inc_mm_counter_fast(mm, MM_ANONPAGES);
3178 page_add_new_anon_rmap(page, vma, address);
3179 setpte:
3180 set_pte_at(mm, address, page_table, entry);
3182 /* No need to invalidate - it was non-present before */
3183 update_mmu_cache(vma, address, page_table);
3184 unlock:
3185 pte_unmap_unlock(page_table, ptl);
3186 return 0;
3187 release:
3188 mem_cgroup_uncharge_page(page);
3189 page_cache_release(page);
3190 goto unlock;
3191 oom_free_page:
3192 page_cache_release(page);
3193 oom:
3194 return VM_FAULT_OOM;
3198 * __do_fault() tries to create a new page mapping. It aggressively
3199 * tries to share with existing pages, but makes a separate copy if
3200 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3201 * the next page fault.
3203 * As this is called only for pages that do not currently exist, we
3204 * do not need to flush old virtual caches or the TLB.
3206 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3207 * but allow concurrent faults), and pte neither mapped nor locked.
3208 * We return with mmap_sem still held, but pte unmapped and unlocked.
3210 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3211 unsigned long address, pmd_t *pmd,
3212 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3214 pte_t *page_table;
3215 spinlock_t *ptl;
3216 struct page *page;
3217 struct page *cow_page;
3218 pte_t entry;
3219 int anon = 0;
3220 struct page *dirty_page = NULL;
3221 struct vm_fault vmf;
3222 int ret;
3223 int page_mkwrite = 0;
3226 * If we do COW later, allocate page befor taking lock_page()
3227 * on the file cache page. This will reduce lock holding time.
3229 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3231 if (unlikely(anon_vma_prepare(vma)))
3232 return VM_FAULT_OOM;
3234 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3235 if (!cow_page)
3236 return VM_FAULT_OOM;
3238 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3239 page_cache_release(cow_page);
3240 return VM_FAULT_OOM;
3242 } else
3243 cow_page = NULL;
3245 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3246 vmf.pgoff = pgoff;
3247 vmf.flags = flags;
3248 vmf.page = NULL;
3250 ret = vma->vm_ops->fault(vma, &vmf);
3251 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3252 VM_FAULT_RETRY)))
3253 goto uncharge_out;
3255 if (unlikely(PageHWPoison(vmf.page))) {
3256 if (ret & VM_FAULT_LOCKED)
3257 unlock_page(vmf.page);
3258 ret = VM_FAULT_HWPOISON;
3259 goto uncharge_out;
3263 * For consistency in subsequent calls, make the faulted page always
3264 * locked.
3266 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3267 lock_page(vmf.page);
3268 else
3269 VM_BUG_ON(!PageLocked(vmf.page));
3272 * Should we do an early C-O-W break?
3274 page = vmf.page;
3275 if (flags & FAULT_FLAG_WRITE) {
3276 if (!(vma->vm_flags & VM_SHARED)) {
3277 page = cow_page;
3278 anon = 1;
3279 copy_user_highpage(page, vmf.page, address, vma);
3280 __SetPageUptodate(page);
3281 } else {
3283 * If the page will be shareable, see if the backing
3284 * address space wants to know that the page is about
3285 * to become writable
3287 if (vma->vm_ops->page_mkwrite) {
3288 int tmp;
3290 unlock_page(page);
3291 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3292 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3293 if (unlikely(tmp &
3294 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3295 ret = tmp;
3296 goto unwritable_page;
3298 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3299 lock_page(page);
3300 if (!page->mapping) {
3301 ret = 0; /* retry the fault */
3302 unlock_page(page);
3303 goto unwritable_page;
3305 } else
3306 VM_BUG_ON(!PageLocked(page));
3307 page_mkwrite = 1;
3313 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3316 * This silly early PAGE_DIRTY setting removes a race
3317 * due to the bad i386 page protection. But it's valid
3318 * for other architectures too.
3320 * Note that if FAULT_FLAG_WRITE is set, we either now have
3321 * an exclusive copy of the page, or this is a shared mapping,
3322 * so we can make it writable and dirty to avoid having to
3323 * handle that later.
3325 /* Only go through if we didn't race with anybody else... */
3326 if (likely(pte_same(*page_table, orig_pte))) {
3327 flush_icache_page(vma, page);
3328 entry = mk_pte(page, vma->vm_page_prot);
3329 if (flags & FAULT_FLAG_WRITE)
3330 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3331 if (anon) {
3332 inc_mm_counter_fast(mm, MM_ANONPAGES);
3333 page_add_new_anon_rmap(page, vma, address);
3334 } else {
3335 inc_mm_counter_fast(mm, MM_FILEPAGES);
3336 page_add_file_rmap(page);
3337 if (flags & FAULT_FLAG_WRITE) {
3338 dirty_page = page;
3339 get_page(dirty_page);
3342 set_pte_at(mm, address, page_table, entry);
3344 /* no need to invalidate: a not-present page won't be cached */
3345 update_mmu_cache(vma, address, page_table);
3346 } else {
3347 if (cow_page)
3348 mem_cgroup_uncharge_page(cow_page);
3349 if (anon)
3350 page_cache_release(page);
3351 else
3352 anon = 1; /* no anon but release faulted_page */
3355 pte_unmap_unlock(page_table, ptl);
3357 if (dirty_page) {
3358 struct address_space *mapping = page->mapping;
3359 int dirtied = 0;
3361 if (set_page_dirty(dirty_page))
3362 dirtied = 1;
3363 unlock_page(dirty_page);
3364 put_page(dirty_page);
3365 if ((dirtied || page_mkwrite) && mapping) {
3367 * Some device drivers do not set page.mapping but still
3368 * dirty their pages
3370 balance_dirty_pages_ratelimited(mapping);
3373 /* file_update_time outside page_lock */
3374 if (vma->vm_file && !page_mkwrite)
3375 file_update_time(vma->vm_file);
3376 } else {
3377 unlock_page(vmf.page);
3378 if (anon)
3379 page_cache_release(vmf.page);
3382 return ret;
3384 unwritable_page:
3385 page_cache_release(page);
3386 return ret;
3387 uncharge_out:
3388 /* fs's fault handler get error */
3389 if (cow_page) {
3390 mem_cgroup_uncharge_page(cow_page);
3391 page_cache_release(cow_page);
3393 return ret;
3396 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3397 unsigned long address, pte_t *page_table, pmd_t *pmd,
3398 unsigned int flags, pte_t orig_pte)
3400 pgoff_t pgoff = (((address & PAGE_MASK)
3401 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3403 pte_unmap(page_table);
3404 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3408 * Fault of a previously existing named mapping. Repopulate the pte
3409 * from the encoded file_pte if possible. This enables swappable
3410 * nonlinear vmas.
3412 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3413 * but allow concurrent faults), and pte mapped but not yet locked.
3414 * We return with mmap_sem still held, but pte unmapped and unlocked.
3416 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3417 unsigned long address, pte_t *page_table, pmd_t *pmd,
3418 unsigned int flags, pte_t orig_pte)
3420 pgoff_t pgoff;
3422 flags |= FAULT_FLAG_NONLINEAR;
3424 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3425 return 0;
3427 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3429 * Page table corrupted: show pte and kill process.
3431 print_bad_pte(vma, address, orig_pte, NULL);
3432 return VM_FAULT_SIGBUS;
3435 pgoff = pte_to_pgoff(orig_pte);
3436 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3439 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3440 unsigned long addr, int current_nid)
3442 get_page(page);
3444 count_vm_numa_event(NUMA_HINT_FAULTS);
3445 if (current_nid == numa_node_id())
3446 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3448 return mpol_misplaced(page, vma, addr);
3451 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3452 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3454 struct page *page = NULL;
3455 spinlock_t *ptl;
3456 int current_nid = -1;
3457 int target_nid;
3458 bool migrated = false;
3461 * The "pte" at this point cannot be used safely without
3462 * validation through pte_unmap_same(). It's of NUMA type but
3463 * the pfn may be screwed if the read is non atomic.
3465 * ptep_modify_prot_start is not called as this is clearing
3466 * the _PAGE_NUMA bit and it is not really expected that there
3467 * would be concurrent hardware modifications to the PTE.
3469 ptl = pte_lockptr(mm, pmd);
3470 spin_lock(ptl);
3471 if (unlikely(!pte_same(*ptep, pte))) {
3472 pte_unmap_unlock(ptep, ptl);
3473 goto out;
3476 pte = pte_mknonnuma(pte);
3477 set_pte_at(mm, addr, ptep, pte);
3478 update_mmu_cache(vma, addr, ptep);
3480 page = vm_normal_page(vma, addr, pte);
3481 if (!page) {
3482 pte_unmap_unlock(ptep, ptl);
3483 return 0;
3486 current_nid = page_to_nid(page);
3487 target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3488 pte_unmap_unlock(ptep, ptl);
3489 if (target_nid == -1) {
3491 * Account for the fault against the current node if it not
3492 * being replaced regardless of where the page is located.
3494 current_nid = numa_node_id();
3495 put_page(page);
3496 goto out;
3499 /* Migrate to the requested node */
3500 migrated = migrate_misplaced_page(page, target_nid);
3501 if (migrated)
3502 current_nid = target_nid;
3504 out:
3505 if (current_nid != -1)
3506 task_numa_fault(current_nid, 1, migrated);
3507 return 0;
3510 /* NUMA hinting page fault entry point for regular pmds */
3511 #ifdef CONFIG_NUMA_BALANCING
3512 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3513 unsigned long addr, pmd_t *pmdp)
3515 pmd_t pmd;
3516 pte_t *pte, *orig_pte;
3517 unsigned long _addr = addr & PMD_MASK;
3518 unsigned long offset;
3519 spinlock_t *ptl;
3520 bool numa = false;
3521 int local_nid = numa_node_id();
3523 spin_lock(&mm->page_table_lock);
3524 pmd = *pmdp;
3525 if (pmd_numa(pmd)) {
3526 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3527 numa = true;
3529 spin_unlock(&mm->page_table_lock);
3531 if (!numa)
3532 return 0;
3534 /* we're in a page fault so some vma must be in the range */
3535 BUG_ON(!vma);
3536 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3537 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3538 VM_BUG_ON(offset >= PMD_SIZE);
3539 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3540 pte += offset >> PAGE_SHIFT;
3541 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3542 pte_t pteval = *pte;
3543 struct page *page;
3544 int curr_nid = local_nid;
3545 int target_nid;
3546 bool migrated;
3547 if (!pte_present(pteval))
3548 continue;
3549 if (!pte_numa(pteval))
3550 continue;
3551 if (addr >= vma->vm_end) {
3552 vma = find_vma(mm, addr);
3553 /* there's a pte present so there must be a vma */
3554 BUG_ON(!vma);
3555 BUG_ON(addr < vma->vm_start);
3557 if (pte_numa(pteval)) {
3558 pteval = pte_mknonnuma(pteval);
3559 set_pte_at(mm, addr, pte, pteval);
3561 page = vm_normal_page(vma, addr, pteval);
3562 if (unlikely(!page))
3563 continue;
3564 /* only check non-shared pages */
3565 if (unlikely(page_mapcount(page) != 1))
3566 continue;
3569 * Note that the NUMA fault is later accounted to either
3570 * the node that is currently running or where the page is
3571 * migrated to.
3573 curr_nid = local_nid;
3574 target_nid = numa_migrate_prep(page, vma, addr,
3575 page_to_nid(page));
3576 if (target_nid == -1) {
3577 put_page(page);
3578 continue;
3581 /* Migrate to the requested node */
3582 pte_unmap_unlock(pte, ptl);
3583 migrated = migrate_misplaced_page(page, target_nid);
3584 if (migrated)
3585 curr_nid = target_nid;
3586 task_numa_fault(curr_nid, 1, migrated);
3588 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3590 pte_unmap_unlock(orig_pte, ptl);
3592 return 0;
3594 #else
3595 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3596 unsigned long addr, pmd_t *pmdp)
3598 BUG();
3599 return 0;
3601 #endif /* CONFIG_NUMA_BALANCING */
3604 * These routines also need to handle stuff like marking pages dirty
3605 * and/or accessed for architectures that don't do it in hardware (most
3606 * RISC architectures). The early dirtying is also good on the i386.
3608 * There is also a hook called "update_mmu_cache()" that architectures
3609 * with external mmu caches can use to update those (ie the Sparc or
3610 * PowerPC hashed page tables that act as extended TLBs).
3612 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3613 * but allow concurrent faults), and pte mapped but not yet locked.
3614 * We return with mmap_sem still held, but pte unmapped and unlocked.
3616 int handle_pte_fault(struct mm_struct *mm,
3617 struct vm_area_struct *vma, unsigned long address,
3618 pte_t *pte, pmd_t *pmd, unsigned int flags)
3620 pte_t entry;
3621 spinlock_t *ptl;
3623 entry = *pte;
3624 if (!pte_present(entry)) {
3625 if (pte_none(entry)) {
3626 if (vma->vm_ops) {
3627 if (likely(vma->vm_ops->fault))
3628 return do_linear_fault(mm, vma, address,
3629 pte, pmd, flags, entry);
3631 return do_anonymous_page(mm, vma, address,
3632 pte, pmd, flags);
3634 if (pte_file(entry))
3635 return do_nonlinear_fault(mm, vma, address,
3636 pte, pmd, flags, entry);
3637 return do_swap_page(mm, vma, address,
3638 pte, pmd, flags, entry);
3641 if (pte_numa(entry))
3642 return do_numa_page(mm, vma, address, entry, pte, pmd);
3644 ptl = pte_lockptr(mm, pmd);
3645 spin_lock(ptl);
3646 if (unlikely(!pte_same(*pte, entry)))
3647 goto unlock;
3648 if (flags & FAULT_FLAG_WRITE) {
3649 if (!pte_write(entry))
3650 return do_wp_page(mm, vma, address,
3651 pte, pmd, ptl, entry);
3652 entry = pte_mkdirty(entry);
3654 entry = pte_mkyoung(entry);
3655 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3656 update_mmu_cache(vma, address, pte);
3657 } else {
3659 * This is needed only for protection faults but the arch code
3660 * is not yet telling us if this is a protection fault or not.
3661 * This still avoids useless tlb flushes for .text page faults
3662 * with threads.
3664 if (flags & FAULT_FLAG_WRITE)
3665 flush_tlb_fix_spurious_fault(vma, address);
3667 unlock:
3668 pte_unmap_unlock(pte, ptl);
3669 return 0;
3673 * By the time we get here, we already hold the mm semaphore
3675 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3676 unsigned long address, unsigned int flags)
3678 pgd_t *pgd;
3679 pud_t *pud;
3680 pmd_t *pmd;
3681 pte_t *pte;
3683 __set_current_state(TASK_RUNNING);
3685 count_vm_event(PGFAULT);
3686 mem_cgroup_count_vm_event(mm, PGFAULT);
3688 /* do counter updates before entering really critical section. */
3689 check_sync_rss_stat(current);
3691 if (unlikely(is_vm_hugetlb_page(vma)))
3692 return hugetlb_fault(mm, vma, address, flags);
3694 retry:
3695 pgd = pgd_offset(mm, address);
3696 pud = pud_alloc(mm, pgd, address);
3697 if (!pud)
3698 return VM_FAULT_OOM;
3699 pmd = pmd_alloc(mm, pud, address);
3700 if (!pmd)
3701 return VM_FAULT_OOM;
3702 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3703 if (!vma->vm_ops)
3704 return do_huge_pmd_anonymous_page(mm, vma, address,
3705 pmd, flags);
3706 } else {
3707 pmd_t orig_pmd = *pmd;
3708 int ret;
3710 barrier();
3711 if (pmd_trans_huge(orig_pmd)) {
3712 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3715 * If the pmd is splitting, return and retry the
3716 * the fault. Alternative: wait until the split
3717 * is done, and goto retry.
3719 if (pmd_trans_splitting(orig_pmd))
3720 return 0;
3722 if (pmd_numa(orig_pmd))
3723 return do_huge_pmd_numa_page(mm, vma, address,
3724 orig_pmd, pmd);
3726 if (dirty && !pmd_write(orig_pmd)) {
3727 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3728 orig_pmd);
3730 * If COW results in an oom, the huge pmd will
3731 * have been split, so retry the fault on the
3732 * pte for a smaller charge.
3734 if (unlikely(ret & VM_FAULT_OOM))
3735 goto retry;
3736 return ret;
3737 } else {
3738 huge_pmd_set_accessed(mm, vma, address, pmd,
3739 orig_pmd, dirty);
3742 return 0;
3746 if (pmd_numa(*pmd))
3747 return do_pmd_numa_page(mm, vma, address, pmd);
3750 * Use __pte_alloc instead of pte_alloc_map, because we can't
3751 * run pte_offset_map on the pmd, if an huge pmd could
3752 * materialize from under us from a different thread.
3754 if (unlikely(pmd_none(*pmd)) &&
3755 unlikely(__pte_alloc(mm, vma, pmd, address)))
3756 return VM_FAULT_OOM;
3757 /* if an huge pmd materialized from under us just retry later */
3758 if (unlikely(pmd_trans_huge(*pmd)))
3759 return 0;
3761 * A regular pmd is established and it can't morph into a huge pmd
3762 * from under us anymore at this point because we hold the mmap_sem
3763 * read mode and khugepaged takes it in write mode. So now it's
3764 * safe to run pte_offset_map().
3766 pte = pte_offset_map(pmd, address);
3768 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3771 #ifndef __PAGETABLE_PUD_FOLDED
3773 * Allocate page upper directory.
3774 * We've already handled the fast-path in-line.
3776 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3778 pud_t *new = pud_alloc_one(mm, address);
3779 if (!new)
3780 return -ENOMEM;
3782 smp_wmb(); /* See comment in __pte_alloc */
3784 spin_lock(&mm->page_table_lock);
3785 if (pgd_present(*pgd)) /* Another has populated it */
3786 pud_free(mm, new);
3787 else
3788 pgd_populate(mm, pgd, new);
3789 spin_unlock(&mm->page_table_lock);
3790 return 0;
3792 #endif /* __PAGETABLE_PUD_FOLDED */
3794 #ifndef __PAGETABLE_PMD_FOLDED
3796 * Allocate page middle directory.
3797 * We've already handled the fast-path in-line.
3799 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3801 pmd_t *new = pmd_alloc_one(mm, address);
3802 if (!new)
3803 return -ENOMEM;
3805 smp_wmb(); /* See comment in __pte_alloc */
3807 spin_lock(&mm->page_table_lock);
3808 #ifndef __ARCH_HAS_4LEVEL_HACK
3809 if (pud_present(*pud)) /* Another has populated it */
3810 pmd_free(mm, new);
3811 else
3812 pud_populate(mm, pud, new);
3813 #else
3814 if (pgd_present(*pud)) /* Another has populated it */
3815 pmd_free(mm, new);
3816 else
3817 pgd_populate(mm, pud, new);
3818 #endif /* __ARCH_HAS_4LEVEL_HACK */
3819 spin_unlock(&mm->page_table_lock);
3820 return 0;
3822 #endif /* __PAGETABLE_PMD_FOLDED */
3824 int make_pages_present(unsigned long addr, unsigned long end)
3826 int ret, len, write;
3827 struct vm_area_struct * vma;
3829 vma = find_vma(current->mm, addr);
3830 if (!vma)
3831 return -ENOMEM;
3833 * We want to touch writable mappings with a write fault in order
3834 * to break COW, except for shared mappings because these don't COW
3835 * and we would not want to dirty them for nothing.
3837 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3838 BUG_ON(addr >= end);
3839 BUG_ON(end > vma->vm_end);
3840 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3841 ret = get_user_pages(current, current->mm, addr,
3842 len, write, 0, NULL, NULL);
3843 if (ret < 0)
3844 return ret;
3845 return ret == len ? 0 : -EFAULT;
3848 #if !defined(__HAVE_ARCH_GATE_AREA)
3850 #if defined(AT_SYSINFO_EHDR)
3851 static struct vm_area_struct gate_vma;
3853 static int __init gate_vma_init(void)
3855 gate_vma.vm_mm = NULL;
3856 gate_vma.vm_start = FIXADDR_USER_START;
3857 gate_vma.vm_end = FIXADDR_USER_END;
3858 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3859 gate_vma.vm_page_prot = __P101;
3861 return 0;
3863 __initcall(gate_vma_init);
3864 #endif
3866 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3868 #ifdef AT_SYSINFO_EHDR
3869 return &gate_vma;
3870 #else
3871 return NULL;
3872 #endif
3875 int in_gate_area_no_mm(unsigned long addr)
3877 #ifdef AT_SYSINFO_EHDR
3878 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3879 return 1;
3880 #endif
3881 return 0;
3884 #endif /* __HAVE_ARCH_GATE_AREA */
3886 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3887 pte_t **ptepp, spinlock_t **ptlp)
3889 pgd_t *pgd;
3890 pud_t *pud;
3891 pmd_t *pmd;
3892 pte_t *ptep;
3894 pgd = pgd_offset(mm, address);
3895 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3896 goto out;
3898 pud = pud_offset(pgd, address);
3899 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3900 goto out;
3902 pmd = pmd_offset(pud, address);
3903 VM_BUG_ON(pmd_trans_huge(*pmd));
3904 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3905 goto out;
3907 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3908 if (pmd_huge(*pmd))
3909 goto out;
3911 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3912 if (!ptep)
3913 goto out;
3914 if (!pte_present(*ptep))
3915 goto unlock;
3916 *ptepp = ptep;
3917 return 0;
3918 unlock:
3919 pte_unmap_unlock(ptep, *ptlp);
3920 out:
3921 return -EINVAL;
3924 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3925 pte_t **ptepp, spinlock_t **ptlp)
3927 int res;
3929 /* (void) is needed to make gcc happy */
3930 (void) __cond_lock(*ptlp,
3931 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3932 return res;
3936 * follow_pfn - look up PFN at a user virtual address
3937 * @vma: memory mapping
3938 * @address: user virtual address
3939 * @pfn: location to store found PFN
3941 * Only IO mappings and raw PFN mappings are allowed.
3943 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3945 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3946 unsigned long *pfn)
3948 int ret = -EINVAL;
3949 spinlock_t *ptl;
3950 pte_t *ptep;
3952 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3953 return ret;
3955 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3956 if (ret)
3957 return ret;
3958 *pfn = pte_pfn(*ptep);
3959 pte_unmap_unlock(ptep, ptl);
3960 return 0;
3962 EXPORT_SYMBOL(follow_pfn);
3964 #ifdef CONFIG_HAVE_IOREMAP_PROT
3965 int follow_phys(struct vm_area_struct *vma,
3966 unsigned long address, unsigned int flags,
3967 unsigned long *prot, resource_size_t *phys)
3969 int ret = -EINVAL;
3970 pte_t *ptep, pte;
3971 spinlock_t *ptl;
3973 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3974 goto out;
3976 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3977 goto out;
3978 pte = *ptep;
3980 if ((flags & FOLL_WRITE) && !pte_write(pte))
3981 goto unlock;
3983 *prot = pgprot_val(pte_pgprot(pte));
3984 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3986 ret = 0;
3987 unlock:
3988 pte_unmap_unlock(ptep, ptl);
3989 out:
3990 return ret;
3993 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3994 void *buf, int len, int write)
3996 resource_size_t phys_addr;
3997 unsigned long prot = 0;
3998 void __iomem *maddr;
3999 int offset = addr & (PAGE_SIZE-1);
4001 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4002 return -EINVAL;
4004 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4005 if (write)
4006 memcpy_toio(maddr + offset, buf, len);
4007 else
4008 memcpy_fromio(buf, maddr + offset, len);
4009 iounmap(maddr);
4011 return len;
4013 #endif
4016 * Access another process' address space as given in mm. If non-NULL, use the
4017 * given task for page fault accounting.
4019 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4020 unsigned long addr, void *buf, int len, int write)
4022 struct vm_area_struct *vma;
4023 void *old_buf = buf;
4025 down_read(&mm->mmap_sem);
4026 /* ignore errors, just check how much was successfully transferred */
4027 while (len) {
4028 int bytes, ret, offset;
4029 void *maddr;
4030 struct page *page = NULL;
4032 ret = get_user_pages(tsk, mm, addr, 1,
4033 write, 1, &page, &vma);
4034 if (ret <= 0) {
4036 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4037 * we can access using slightly different code.
4039 #ifdef CONFIG_HAVE_IOREMAP_PROT
4040 vma = find_vma(mm, addr);
4041 if (!vma || vma->vm_start > addr)
4042 break;
4043 if (vma->vm_ops && vma->vm_ops->access)
4044 ret = vma->vm_ops->access(vma, addr, buf,
4045 len, write);
4046 if (ret <= 0)
4047 #endif
4048 break;
4049 bytes = ret;
4050 } else {
4051 bytes = len;
4052 offset = addr & (PAGE_SIZE-1);
4053 if (bytes > PAGE_SIZE-offset)
4054 bytes = PAGE_SIZE-offset;
4056 maddr = kmap(page);
4057 if (write) {
4058 copy_to_user_page(vma, page, addr,
4059 maddr + offset, buf, bytes);
4060 set_page_dirty_lock(page);
4061 } else {
4062 copy_from_user_page(vma, page, addr,
4063 buf, maddr + offset, bytes);
4065 kunmap(page);
4066 page_cache_release(page);
4068 len -= bytes;
4069 buf += bytes;
4070 addr += bytes;
4072 up_read(&mm->mmap_sem);
4074 return buf - old_buf;
4078 * access_remote_vm - access another process' address space
4079 * @mm: the mm_struct of the target address space
4080 * @addr: start address to access
4081 * @buf: source or destination buffer
4082 * @len: number of bytes to transfer
4083 * @write: whether the access is a write
4085 * The caller must hold a reference on @mm.
4087 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4088 void *buf, int len, int write)
4090 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4094 * Access another process' address space.
4095 * Source/target buffer must be kernel space,
4096 * Do not walk the page table directly, use get_user_pages
4098 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4099 void *buf, int len, int write)
4101 struct mm_struct *mm;
4102 int ret;
4104 mm = get_task_mm(tsk);
4105 if (!mm)
4106 return 0;
4108 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4109 mmput(mm);
4111 return ret;
4115 * Print the name of a VMA.
4117 void print_vma_addr(char *prefix, unsigned long ip)
4119 struct mm_struct *mm = current->mm;
4120 struct vm_area_struct *vma;
4123 * Do not print if we are in atomic
4124 * contexts (in exception stacks, etc.):
4126 if (preempt_count())
4127 return;
4129 down_read(&mm->mmap_sem);
4130 vma = find_vma(mm, ip);
4131 if (vma && vma->vm_file) {
4132 struct file *f = vma->vm_file;
4133 char *buf = (char *)__get_free_page(GFP_KERNEL);
4134 if (buf) {
4135 char *p;
4137 p = d_path(&f->f_path, buf, PAGE_SIZE);
4138 if (IS_ERR(p))
4139 p = "?";
4140 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4141 vma->vm_start,
4142 vma->vm_end - vma->vm_start);
4143 free_page((unsigned long)buf);
4146 up_read(&mm->mmap_sem);
4149 #ifdef CONFIG_PROVE_LOCKING
4150 void might_fault(void)
4153 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4154 * holding the mmap_sem, this is safe because kernel memory doesn't
4155 * get paged out, therefore we'll never actually fault, and the
4156 * below annotations will generate false positives.
4158 if (segment_eq(get_fs(), KERNEL_DS))
4159 return;
4161 might_sleep();
4163 * it would be nicer only to annotate paths which are not under
4164 * pagefault_disable, however that requires a larger audit and
4165 * providing helpers like get_user_atomic.
4167 if (!in_atomic() && current->mm)
4168 might_lock_read(&current->mm->mmap_sem);
4170 EXPORT_SYMBOL(might_fault);
4171 #endif
4173 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4174 static void clear_gigantic_page(struct page *page,
4175 unsigned long addr,
4176 unsigned int pages_per_huge_page)
4178 int i;
4179 struct page *p = page;
4181 might_sleep();
4182 for (i = 0; i < pages_per_huge_page;
4183 i++, p = mem_map_next(p, page, i)) {
4184 cond_resched();
4185 clear_user_highpage(p, addr + i * PAGE_SIZE);
4188 void clear_huge_page(struct page *page,
4189 unsigned long addr, unsigned int pages_per_huge_page)
4191 int i;
4193 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4194 clear_gigantic_page(page, addr, pages_per_huge_page);
4195 return;
4198 might_sleep();
4199 for (i = 0; i < pages_per_huge_page; i++) {
4200 cond_resched();
4201 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4205 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4206 unsigned long addr,
4207 struct vm_area_struct *vma,
4208 unsigned int pages_per_huge_page)
4210 int i;
4211 struct page *dst_base = dst;
4212 struct page *src_base = src;
4214 for (i = 0; i < pages_per_huge_page; ) {
4215 cond_resched();
4216 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4218 i++;
4219 dst = mem_map_next(dst, dst_base, i);
4220 src = mem_map_next(src, src_base, i);
4224 void copy_user_huge_page(struct page *dst, struct page *src,
4225 unsigned long addr, struct vm_area_struct *vma,
4226 unsigned int pages_per_huge_page)
4228 int i;
4230 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4231 copy_user_gigantic_page(dst, src, addr, vma,
4232 pages_per_huge_page);
4233 return;
4236 might_sleep();
4237 for (i = 0; i < pages_per_huge_page; i++) {
4238 cond_resched();
4239 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4242 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */