4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
72 #ifndef CONFIG_NEED_MULTIPLE_NODES
73 /* use the per-pgdat data instead for discontigmem - mbligh */
74 unsigned long max_mapnr
;
77 EXPORT_SYMBOL(max_mapnr
);
78 EXPORT_SYMBOL(mem_map
);
81 unsigned long num_physpages
;
83 * A number of key systems in x86 including ioremap() rely on the assumption
84 * that high_memory defines the upper bound on direct map memory, then end
85 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
86 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 EXPORT_SYMBOL(num_physpages
);
92 EXPORT_SYMBOL(high_memory
);
95 * Randomize the address space (stacks, mmaps, brk, etc.).
97 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
98 * as ancient (libc5 based) binaries can segfault. )
100 int randomize_va_space __read_mostly
=
101 #ifdef CONFIG_COMPAT_BRK
107 static int __init
disable_randmaps(char *s
)
109 randomize_va_space
= 0;
112 __setup("norandmaps", disable_randmaps
);
114 unsigned long zero_pfn __read_mostly
;
115 unsigned long highest_memmap_pfn __read_mostly
;
118 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
120 static int __init
init_zero_pfn(void)
122 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
125 core_initcall(init_zero_pfn
);
128 #if defined(SPLIT_RSS_COUNTING)
130 void sync_mm_rss(struct mm_struct
*mm
)
134 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
135 if (current
->rss_stat
.count
[i
]) {
136 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
137 current
->rss_stat
.count
[i
] = 0;
140 current
->rss_stat
.events
= 0;
143 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
145 struct task_struct
*task
= current
;
147 if (likely(task
->mm
== mm
))
148 task
->rss_stat
.count
[member
] += val
;
150 add_mm_counter(mm
, member
, val
);
152 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
153 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
155 /* sync counter once per 64 page faults */
156 #define TASK_RSS_EVENTS_THRESH (64)
157 static void check_sync_rss_stat(struct task_struct
*task
)
159 if (unlikely(task
!= current
))
161 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
162 sync_mm_rss(task
->mm
);
164 #else /* SPLIT_RSS_COUNTING */
166 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
167 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
169 static void check_sync_rss_stat(struct task_struct
*task
)
173 #endif /* SPLIT_RSS_COUNTING */
175 #ifdef HAVE_GENERIC_MMU_GATHER
177 static int tlb_next_batch(struct mmu_gather
*tlb
)
179 struct mmu_gather_batch
*batch
;
183 tlb
->active
= batch
->next
;
187 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
190 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
197 batch
->max
= MAX_GATHER_BATCH
;
199 tlb
->active
->next
= batch
;
206 * Called to initialize an (on-stack) mmu_gather structure for page-table
207 * tear-down from @mm. The @fullmm argument is used when @mm is without
208 * users and we're going to destroy the full address space (exit/execve).
210 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, bool fullmm
)
214 tlb
->fullmm
= fullmm
;
218 tlb
->fast_mode
= (num_possible_cpus() == 1);
219 tlb
->local
.next
= NULL
;
221 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
222 tlb
->active
= &tlb
->local
;
223 tlb
->batch_count
= 0;
225 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 void tlb_flush_mmu(struct mmu_gather
*tlb
)
232 struct mmu_gather_batch
*batch
;
234 if (!tlb
->need_flush
)
238 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
239 tlb_table_flush(tlb
);
242 if (tlb_fast_mode(tlb
))
245 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
246 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
249 tlb
->active
= &tlb
->local
;
253 * Called at the end of the shootdown operation to free up any resources
254 * that were required.
256 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
258 struct mmu_gather_batch
*batch
, *next
;
264 /* keep the page table cache within bounds */
267 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
269 free_pages((unsigned long)batch
, 0);
271 tlb
->local
.next
= NULL
;
275 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276 * handling the additional races in SMP caused by other CPUs caching valid
277 * mappings in their TLBs. Returns the number of free page slots left.
278 * When out of page slots we must call tlb_flush_mmu().
280 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
282 struct mmu_gather_batch
*batch
;
284 VM_BUG_ON(!tlb
->need_flush
);
286 if (tlb_fast_mode(tlb
)) {
287 free_page_and_swap_cache(page
);
288 return 1; /* avoid calling tlb_flush_mmu() */
292 batch
->pages
[batch
->nr
++] = page
;
293 if (batch
->nr
== batch
->max
) {
294 if (!tlb_next_batch(tlb
))
298 VM_BUG_ON(batch
->nr
> batch
->max
);
300 return batch
->max
- batch
->nr
;
303 #endif /* HAVE_GENERIC_MMU_GATHER */
305 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
308 * See the comment near struct mmu_table_batch.
311 static void tlb_remove_table_smp_sync(void *arg
)
313 /* Simply deliver the interrupt */
316 static void tlb_remove_table_one(void *table
)
319 * This isn't an RCU grace period and hence the page-tables cannot be
320 * assumed to be actually RCU-freed.
322 * It is however sufficient for software page-table walkers that rely on
323 * IRQ disabling. See the comment near struct mmu_table_batch.
325 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
326 __tlb_remove_table(table
);
329 static void tlb_remove_table_rcu(struct rcu_head
*head
)
331 struct mmu_table_batch
*batch
;
334 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
336 for (i
= 0; i
< batch
->nr
; i
++)
337 __tlb_remove_table(batch
->tables
[i
]);
339 free_page((unsigned long)batch
);
342 void tlb_table_flush(struct mmu_gather
*tlb
)
344 struct mmu_table_batch
**batch
= &tlb
->batch
;
347 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
352 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
354 struct mmu_table_batch
**batch
= &tlb
->batch
;
359 * When there's less then two users of this mm there cannot be a
360 * concurrent page-table walk.
362 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
363 __tlb_remove_table(table
);
367 if (*batch
== NULL
) {
368 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
369 if (*batch
== NULL
) {
370 tlb_remove_table_one(table
);
375 (*batch
)->tables
[(*batch
)->nr
++] = table
;
376 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
377 tlb_table_flush(tlb
);
380 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
383 * If a p?d_bad entry is found while walking page tables, report
384 * the error, before resetting entry to p?d_none. Usually (but
385 * very seldom) called out from the p?d_none_or_clear_bad macros.
388 void pgd_clear_bad(pgd_t
*pgd
)
394 void pud_clear_bad(pud_t
*pud
)
400 void pmd_clear_bad(pmd_t
*pmd
)
407 * Note: this doesn't free the actual pages themselves. That
408 * has been handled earlier when unmapping all the memory regions.
410 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
413 pgtable_t token
= pmd_pgtable(*pmd
);
415 pte_free_tlb(tlb
, token
, addr
);
419 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
420 unsigned long addr
, unsigned long end
,
421 unsigned long floor
, unsigned long ceiling
)
428 pmd
= pmd_offset(pud
, addr
);
430 next
= pmd_addr_end(addr
, end
);
431 if (pmd_none_or_clear_bad(pmd
))
433 free_pte_range(tlb
, pmd
, addr
);
434 } while (pmd
++, addr
= next
, addr
!= end
);
444 if (end
- 1 > ceiling
- 1)
447 pmd
= pmd_offset(pud
, start
);
449 pmd_free_tlb(tlb
, pmd
, start
);
452 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
453 unsigned long addr
, unsigned long end
,
454 unsigned long floor
, unsigned long ceiling
)
461 pud
= pud_offset(pgd
, addr
);
463 next
= pud_addr_end(addr
, end
);
464 if (pud_none_or_clear_bad(pud
))
466 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
467 } while (pud
++, addr
= next
, addr
!= end
);
473 ceiling
&= PGDIR_MASK
;
477 if (end
- 1 > ceiling
- 1)
480 pud
= pud_offset(pgd
, start
);
482 pud_free_tlb(tlb
, pud
, start
);
486 * This function frees user-level page tables of a process.
488 * Must be called with pagetable lock held.
490 void free_pgd_range(struct mmu_gather
*tlb
,
491 unsigned long addr
, unsigned long end
,
492 unsigned long floor
, unsigned long ceiling
)
498 * The next few lines have given us lots of grief...
500 * Why are we testing PMD* at this top level? Because often
501 * there will be no work to do at all, and we'd prefer not to
502 * go all the way down to the bottom just to discover that.
504 * Why all these "- 1"s? Because 0 represents both the bottom
505 * of the address space and the top of it (using -1 for the
506 * top wouldn't help much: the masks would do the wrong thing).
507 * The rule is that addr 0 and floor 0 refer to the bottom of
508 * the address space, but end 0 and ceiling 0 refer to the top
509 * Comparisons need to use "end - 1" and "ceiling - 1" (though
510 * that end 0 case should be mythical).
512 * Wherever addr is brought up or ceiling brought down, we must
513 * be careful to reject "the opposite 0" before it confuses the
514 * subsequent tests. But what about where end is brought down
515 * by PMD_SIZE below? no, end can't go down to 0 there.
517 * Whereas we round start (addr) and ceiling down, by different
518 * masks at different levels, in order to test whether a table
519 * now has no other vmas using it, so can be freed, we don't
520 * bother to round floor or end up - the tests don't need that.
534 if (end
- 1 > ceiling
- 1)
539 pgd
= pgd_offset(tlb
->mm
, addr
);
541 next
= pgd_addr_end(addr
, end
);
542 if (pgd_none_or_clear_bad(pgd
))
544 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
545 } while (pgd
++, addr
= next
, addr
!= end
);
548 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
549 unsigned long floor
, unsigned long ceiling
)
552 struct vm_area_struct
*next
= vma
->vm_next
;
553 unsigned long addr
= vma
->vm_start
;
556 * Hide vma from rmap and truncate_pagecache before freeing
559 unlink_anon_vmas(vma
);
560 unlink_file_vma(vma
);
562 if (is_vm_hugetlb_page(vma
)) {
563 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
564 floor
, next
? next
->vm_start
: ceiling
);
567 * Optimization: gather nearby vmas into one call down
569 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
570 && !is_vm_hugetlb_page(next
)) {
573 unlink_anon_vmas(vma
);
574 unlink_file_vma(vma
);
576 free_pgd_range(tlb
, addr
, vma
->vm_end
,
577 floor
, next
? next
->vm_start
: ceiling
);
583 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
584 pmd_t
*pmd
, unsigned long address
)
586 pgtable_t
new = pte_alloc_one(mm
, address
);
587 int wait_split_huge_page
;
592 * Ensure all pte setup (eg. pte page lock and page clearing) are
593 * visible before the pte is made visible to other CPUs by being
594 * put into page tables.
596 * The other side of the story is the pointer chasing in the page
597 * table walking code (when walking the page table without locking;
598 * ie. most of the time). Fortunately, these data accesses consist
599 * of a chain of data-dependent loads, meaning most CPUs (alpha
600 * being the notable exception) will already guarantee loads are
601 * seen in-order. See the alpha page table accessors for the
602 * smp_read_barrier_depends() barriers in page table walking code.
604 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
606 spin_lock(&mm
->page_table_lock
);
607 wait_split_huge_page
= 0;
608 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
610 pmd_populate(mm
, pmd
, new);
612 } else if (unlikely(pmd_trans_splitting(*pmd
)))
613 wait_split_huge_page
= 1;
614 spin_unlock(&mm
->page_table_lock
);
617 if (wait_split_huge_page
)
618 wait_split_huge_page(vma
->anon_vma
, pmd
);
622 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
624 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
628 smp_wmb(); /* See comment in __pte_alloc */
630 spin_lock(&init_mm
.page_table_lock
);
631 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
632 pmd_populate_kernel(&init_mm
, pmd
, new);
635 VM_BUG_ON(pmd_trans_splitting(*pmd
));
636 spin_unlock(&init_mm
.page_table_lock
);
638 pte_free_kernel(&init_mm
, new);
642 static inline void init_rss_vec(int *rss
)
644 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
647 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
651 if (current
->mm
== mm
)
653 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
655 add_mm_counter(mm
, i
, rss
[i
]);
659 * This function is called to print an error when a bad pte
660 * is found. For example, we might have a PFN-mapped pte in
661 * a region that doesn't allow it.
663 * The calling function must still handle the error.
665 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
666 pte_t pte
, struct page
*page
)
668 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
669 pud_t
*pud
= pud_offset(pgd
, addr
);
670 pmd_t
*pmd
= pmd_offset(pud
, addr
);
671 struct address_space
*mapping
;
673 static unsigned long resume
;
674 static unsigned long nr_shown
;
675 static unsigned long nr_unshown
;
678 * Allow a burst of 60 reports, then keep quiet for that minute;
679 * or allow a steady drip of one report per second.
681 if (nr_shown
== 60) {
682 if (time_before(jiffies
, resume
)) {
688 "BUG: Bad page map: %lu messages suppressed\n",
695 resume
= jiffies
+ 60 * HZ
;
697 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
698 index
= linear_page_index(vma
, addr
);
701 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
703 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
707 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
708 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
710 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
713 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
714 (unsigned long)vma
->vm_ops
->fault
);
715 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
716 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
717 (unsigned long)vma
->vm_file
->f_op
->mmap
);
719 add_taint(TAINT_BAD_PAGE
);
722 static inline bool is_cow_mapping(vm_flags_t flags
)
724 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
728 * vm_normal_page -- This function gets the "struct page" associated with a pte.
730 * "Special" mappings do not wish to be associated with a "struct page" (either
731 * it doesn't exist, or it exists but they don't want to touch it). In this
732 * case, NULL is returned here. "Normal" mappings do have a struct page.
734 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
735 * pte bit, in which case this function is trivial. Secondly, an architecture
736 * may not have a spare pte bit, which requires a more complicated scheme,
739 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
740 * special mapping (even if there are underlying and valid "struct pages").
741 * COWed pages of a VM_PFNMAP are always normal.
743 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
744 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
745 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
746 * mapping will always honor the rule
748 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
750 * And for normal mappings this is false.
752 * This restricts such mappings to be a linear translation from virtual address
753 * to pfn. To get around this restriction, we allow arbitrary mappings so long
754 * as the vma is not a COW mapping; in that case, we know that all ptes are
755 * special (because none can have been COWed).
758 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
760 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
761 * page" backing, however the difference is that _all_ pages with a struct
762 * page (that is, those where pfn_valid is true) are refcounted and considered
763 * normal pages by the VM. The disadvantage is that pages are refcounted
764 * (which can be slower and simply not an option for some PFNMAP users). The
765 * advantage is that we don't have to follow the strict linearity rule of
766 * PFNMAP mappings in order to support COWable mappings.
769 #ifdef __HAVE_ARCH_PTE_SPECIAL
770 # define HAVE_PTE_SPECIAL 1
772 # define HAVE_PTE_SPECIAL 0
774 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
777 unsigned long pfn
= pte_pfn(pte
);
779 if (HAVE_PTE_SPECIAL
) {
780 if (likely(!pte_special(pte
)))
782 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
784 if (!is_zero_pfn(pfn
))
785 print_bad_pte(vma
, addr
, pte
, NULL
);
789 /* !HAVE_PTE_SPECIAL case follows: */
791 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
792 if (vma
->vm_flags
& VM_MIXEDMAP
) {
798 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
799 if (pfn
== vma
->vm_pgoff
+ off
)
801 if (!is_cow_mapping(vma
->vm_flags
))
806 if (is_zero_pfn(pfn
))
809 if (unlikely(pfn
> highest_memmap_pfn
)) {
810 print_bad_pte(vma
, addr
, pte
, NULL
);
815 * NOTE! We still have PageReserved() pages in the page tables.
816 * eg. VDSO mappings can cause them to exist.
819 return pfn_to_page(pfn
);
823 * copy one vm_area from one task to the other. Assumes the page tables
824 * already present in the new task to be cleared in the whole range
825 * covered by this vma.
828 static inline unsigned long
829 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
830 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
831 unsigned long addr
, int *rss
)
833 unsigned long vm_flags
= vma
->vm_flags
;
834 pte_t pte
= *src_pte
;
837 /* pte contains position in swap or file, so copy. */
838 if (unlikely(!pte_present(pte
))) {
839 if (!pte_file(pte
)) {
840 swp_entry_t entry
= pte_to_swp_entry(pte
);
842 if (swap_duplicate(entry
) < 0)
845 /* make sure dst_mm is on swapoff's mmlist. */
846 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
847 spin_lock(&mmlist_lock
);
848 if (list_empty(&dst_mm
->mmlist
))
849 list_add(&dst_mm
->mmlist
,
851 spin_unlock(&mmlist_lock
);
853 if (likely(!non_swap_entry(entry
)))
855 else if (is_migration_entry(entry
)) {
856 page
= migration_entry_to_page(entry
);
863 if (is_write_migration_entry(entry
) &&
864 is_cow_mapping(vm_flags
)) {
866 * COW mappings require pages in both
867 * parent and child to be set to read.
869 make_migration_entry_read(&entry
);
870 pte
= swp_entry_to_pte(entry
);
871 set_pte_at(src_mm
, addr
, src_pte
, pte
);
879 * If it's a COW mapping, write protect it both
880 * in the parent and the child
882 if (is_cow_mapping(vm_flags
)) {
883 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
884 pte
= pte_wrprotect(pte
);
888 * If it's a shared mapping, mark it clean in
891 if (vm_flags
& VM_SHARED
)
892 pte
= pte_mkclean(pte
);
893 pte
= pte_mkold(pte
);
895 page
= vm_normal_page(vma
, addr
, pte
);
906 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
910 int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
911 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
912 unsigned long addr
, unsigned long end
)
914 pte_t
*orig_src_pte
, *orig_dst_pte
;
915 pte_t
*src_pte
, *dst_pte
;
916 spinlock_t
*src_ptl
, *dst_ptl
;
918 int rss
[NR_MM_COUNTERS
];
919 swp_entry_t entry
= (swp_entry_t
){0};
924 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
927 src_pte
= pte_offset_map(src_pmd
, addr
);
928 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
929 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
930 orig_src_pte
= src_pte
;
931 orig_dst_pte
= dst_pte
;
932 arch_enter_lazy_mmu_mode();
936 * We are holding two locks at this point - either of them
937 * could generate latencies in another task on another CPU.
939 if (progress
>= 32) {
941 if (need_resched() ||
942 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
945 if (pte_none(*src_pte
)) {
949 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
954 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
956 arch_leave_lazy_mmu_mode();
957 spin_unlock(src_ptl
);
958 pte_unmap(orig_src_pte
);
959 add_mm_rss_vec(dst_mm
, rss
);
960 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
964 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
973 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
974 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
975 unsigned long addr
, unsigned long end
)
977 pmd_t
*src_pmd
, *dst_pmd
;
980 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
983 src_pmd
= pmd_offset(src_pud
, addr
);
985 next
= pmd_addr_end(addr
, end
);
986 if (pmd_trans_huge(*src_pmd
)) {
988 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
989 err
= copy_huge_pmd(dst_mm
, src_mm
,
990 dst_pmd
, src_pmd
, addr
, vma
);
997 if (pmd_none_or_clear_bad(src_pmd
))
999 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1002 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1006 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1007 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1008 unsigned long addr
, unsigned long end
)
1010 pud_t
*src_pud
, *dst_pud
;
1013 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1016 src_pud
= pud_offset(src_pgd
, addr
);
1018 next
= pud_addr_end(addr
, end
);
1019 if (pud_none_or_clear_bad(src_pud
))
1021 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1024 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1028 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1029 struct vm_area_struct
*vma
)
1031 pgd_t
*src_pgd
, *dst_pgd
;
1033 unsigned long addr
= vma
->vm_start
;
1034 unsigned long end
= vma
->vm_end
;
1035 unsigned long mmun_start
; /* For mmu_notifiers */
1036 unsigned long mmun_end
; /* For mmu_notifiers */
1041 * Don't copy ptes where a page fault will fill them correctly.
1042 * Fork becomes much lighter when there are big shared or private
1043 * readonly mappings. The tradeoff is that copy_page_range is more
1044 * efficient than faulting.
1046 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1047 VM_PFNMAP
| VM_MIXEDMAP
))) {
1052 if (is_vm_hugetlb_page(vma
))
1053 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1055 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1057 * We do not free on error cases below as remove_vma
1058 * gets called on error from higher level routine
1060 ret
= track_pfn_copy(vma
);
1066 * We need to invalidate the secondary MMU mappings only when
1067 * there could be a permission downgrade on the ptes of the
1068 * parent mm. And a permission downgrade will only happen if
1069 * is_cow_mapping() returns true.
1071 is_cow
= is_cow_mapping(vma
->vm_flags
);
1075 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1079 dst_pgd
= pgd_offset(dst_mm
, addr
);
1080 src_pgd
= pgd_offset(src_mm
, addr
);
1082 next
= pgd_addr_end(addr
, end
);
1083 if (pgd_none_or_clear_bad(src_pgd
))
1085 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1086 vma
, addr
, next
))) {
1090 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1093 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1097 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1098 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1099 unsigned long addr
, unsigned long end
,
1100 struct zap_details
*details
)
1102 struct mm_struct
*mm
= tlb
->mm
;
1103 int force_flush
= 0;
1104 int rss
[NR_MM_COUNTERS
];
1111 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1113 arch_enter_lazy_mmu_mode();
1116 if (pte_none(ptent
)) {
1120 if (pte_present(ptent
)) {
1123 page
= vm_normal_page(vma
, addr
, ptent
);
1124 if (unlikely(details
) && page
) {
1126 * unmap_shared_mapping_pages() wants to
1127 * invalidate cache without truncating:
1128 * unmap shared but keep private pages.
1130 if (details
->check_mapping
&&
1131 details
->check_mapping
!= page
->mapping
)
1134 * Each page->index must be checked when
1135 * invalidating or truncating nonlinear.
1137 if (details
->nonlinear_vma
&&
1138 (page
->index
< details
->first_index
||
1139 page
->index
> details
->last_index
))
1142 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1144 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1145 if (unlikely(!page
))
1147 if (unlikely(details
) && details
->nonlinear_vma
1148 && linear_page_index(details
->nonlinear_vma
,
1149 addr
) != page
->index
)
1150 set_pte_at(mm
, addr
, pte
,
1151 pgoff_to_pte(page
->index
));
1153 rss
[MM_ANONPAGES
]--;
1155 if (pte_dirty(ptent
))
1156 set_page_dirty(page
);
1157 if (pte_young(ptent
) &&
1158 likely(!VM_SequentialReadHint(vma
)))
1159 mark_page_accessed(page
);
1160 rss
[MM_FILEPAGES
]--;
1162 page_remove_rmap(page
);
1163 if (unlikely(page_mapcount(page
) < 0))
1164 print_bad_pte(vma
, addr
, ptent
, page
);
1165 force_flush
= !__tlb_remove_page(tlb
, page
);
1171 * If details->check_mapping, we leave swap entries;
1172 * if details->nonlinear_vma, we leave file entries.
1174 if (unlikely(details
))
1176 if (pte_file(ptent
)) {
1177 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1178 print_bad_pte(vma
, addr
, ptent
, NULL
);
1180 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1182 if (!non_swap_entry(entry
))
1184 else if (is_migration_entry(entry
)) {
1187 page
= migration_entry_to_page(entry
);
1190 rss
[MM_ANONPAGES
]--;
1192 rss
[MM_FILEPAGES
]--;
1194 if (unlikely(!free_swap_and_cache(entry
)))
1195 print_bad_pte(vma
, addr
, ptent
, NULL
);
1197 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1198 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1200 add_mm_rss_vec(mm
, rss
);
1201 arch_leave_lazy_mmu_mode();
1202 pte_unmap_unlock(start_pte
, ptl
);
1205 * mmu_gather ran out of room to batch pages, we break out of
1206 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 * and page-free while holding it.
1212 #ifdef HAVE_GENERIC_MMU_GATHER
1224 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1225 struct vm_area_struct
*vma
, pud_t
*pud
,
1226 unsigned long addr
, unsigned long end
,
1227 struct zap_details
*details
)
1232 pmd
= pmd_offset(pud
, addr
);
1234 next
= pmd_addr_end(addr
, end
);
1235 if (pmd_trans_huge(*pmd
)) {
1236 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1237 #ifdef CONFIG_DEBUG_VM
1238 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1239 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240 __func__
, addr
, end
,
1246 split_huge_page_pmd(vma
, addr
, pmd
);
1247 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1252 * Here there can be other concurrent MADV_DONTNEED or
1253 * trans huge page faults running, and if the pmd is
1254 * none or trans huge it can change under us. This is
1255 * because MADV_DONTNEED holds the mmap_sem in read
1258 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1260 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1263 } while (pmd
++, addr
= next
, addr
!= end
);
1268 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1269 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1270 unsigned long addr
, unsigned long end
,
1271 struct zap_details
*details
)
1276 pud
= pud_offset(pgd
, addr
);
1278 next
= pud_addr_end(addr
, end
);
1279 if (pud_none_or_clear_bad(pud
))
1281 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1282 } while (pud
++, addr
= next
, addr
!= end
);
1287 static void unmap_page_range(struct mmu_gather
*tlb
,
1288 struct vm_area_struct
*vma
,
1289 unsigned long addr
, unsigned long end
,
1290 struct zap_details
*details
)
1295 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1298 BUG_ON(addr
>= end
);
1299 mem_cgroup_uncharge_start();
1300 tlb_start_vma(tlb
, vma
);
1301 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1303 next
= pgd_addr_end(addr
, end
);
1304 if (pgd_none_or_clear_bad(pgd
))
1306 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1307 } while (pgd
++, addr
= next
, addr
!= end
);
1308 tlb_end_vma(tlb
, vma
);
1309 mem_cgroup_uncharge_end();
1313 static void unmap_single_vma(struct mmu_gather
*tlb
,
1314 struct vm_area_struct
*vma
, unsigned long start_addr
,
1315 unsigned long end_addr
,
1316 struct zap_details
*details
)
1318 unsigned long start
= max(vma
->vm_start
, start_addr
);
1321 if (start
>= vma
->vm_end
)
1323 end
= min(vma
->vm_end
, end_addr
);
1324 if (end
<= vma
->vm_start
)
1328 uprobe_munmap(vma
, start
, end
);
1330 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1331 untrack_pfn(vma
, 0, 0);
1334 if (unlikely(is_vm_hugetlb_page(vma
))) {
1336 * It is undesirable to test vma->vm_file as it
1337 * should be non-null for valid hugetlb area.
1338 * However, vm_file will be NULL in the error
1339 * cleanup path of do_mmap_pgoff. When
1340 * hugetlbfs ->mmap method fails,
1341 * do_mmap_pgoff() nullifies vma->vm_file
1342 * before calling this function to clean up.
1343 * Since no pte has actually been setup, it is
1344 * safe to do nothing in this case.
1347 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1348 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1349 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1352 unmap_page_range(tlb
, vma
, start
, end
, details
);
1357 * unmap_vmas - unmap a range of memory covered by a list of vma's
1358 * @tlb: address of the caller's struct mmu_gather
1359 * @vma: the starting vma
1360 * @start_addr: virtual address at which to start unmapping
1361 * @end_addr: virtual address at which to end unmapping
1363 * Unmap all pages in the vma list.
1365 * Only addresses between `start' and `end' will be unmapped.
1367 * The VMA list must be sorted in ascending virtual address order.
1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370 * range after unmap_vmas() returns. So the only responsibility here is to
1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372 * drops the lock and schedules.
1374 void unmap_vmas(struct mmu_gather
*tlb
,
1375 struct vm_area_struct
*vma
, unsigned long start_addr
,
1376 unsigned long end_addr
)
1378 struct mm_struct
*mm
= vma
->vm_mm
;
1380 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1381 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1382 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1383 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1387 * zap_page_range - remove user pages in a given range
1388 * @vma: vm_area_struct holding the applicable pages
1389 * @start: starting address of pages to zap
1390 * @size: number of bytes to zap
1391 * @details: details of nonlinear truncation or shared cache invalidation
1393 * Caller must protect the VMA list
1395 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1396 unsigned long size
, struct zap_details
*details
)
1398 struct mm_struct
*mm
= vma
->vm_mm
;
1399 struct mmu_gather tlb
;
1400 unsigned long end
= start
+ size
;
1403 tlb_gather_mmu(&tlb
, mm
, 0);
1404 update_hiwater_rss(mm
);
1405 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1406 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1407 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1408 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1409 tlb_finish_mmu(&tlb
, start
, end
);
1413 * zap_page_range_single - remove user pages in a given range
1414 * @vma: vm_area_struct holding the applicable pages
1415 * @address: starting address of pages to zap
1416 * @size: number of bytes to zap
1417 * @details: details of nonlinear truncation or shared cache invalidation
1419 * The range must fit into one VMA.
1421 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1422 unsigned long size
, struct zap_details
*details
)
1424 struct mm_struct
*mm
= vma
->vm_mm
;
1425 struct mmu_gather tlb
;
1426 unsigned long end
= address
+ size
;
1429 tlb_gather_mmu(&tlb
, mm
, 0);
1430 update_hiwater_rss(mm
);
1431 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1432 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1433 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1434 tlb_finish_mmu(&tlb
, address
, end
);
1438 * zap_vma_ptes - remove ptes mapping the vma
1439 * @vma: vm_area_struct holding ptes to be zapped
1440 * @address: starting address of pages to zap
1441 * @size: number of bytes to zap
1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1445 * The entire address range must be fully contained within the vma.
1447 * Returns 0 if successful.
1449 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1452 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1453 !(vma
->vm_flags
& VM_PFNMAP
))
1455 zap_page_range_single(vma
, address
, size
, NULL
);
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1461 * follow_page - look up a page descriptor from a user-virtual address
1462 * @vma: vm_area_struct mapping @address
1463 * @address: virtual address to look up
1464 * @flags: flags modifying lookup behaviour
1466 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1468 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1469 * an error pointer if there is a mapping to something not represented
1470 * by a page descriptor (see also vm_normal_page()).
1472 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1481 struct mm_struct
*mm
= vma
->vm_mm
;
1483 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1484 if (!IS_ERR(page
)) {
1485 BUG_ON(flags
& FOLL_GET
);
1490 pgd
= pgd_offset(mm
, address
);
1491 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1494 pud
= pud_offset(pgd
, address
);
1497 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
1498 BUG_ON(flags
& FOLL_GET
);
1499 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1502 if (unlikely(pud_bad(*pud
)))
1505 pmd
= pmd_offset(pud
, address
);
1508 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
1509 BUG_ON(flags
& FOLL_GET
);
1510 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1513 if ((flags
& FOLL_NUMA
) && pmd_numa(*pmd
))
1515 if (pmd_trans_huge(*pmd
)) {
1516 if (flags
& FOLL_SPLIT
) {
1517 split_huge_page_pmd(vma
, address
, pmd
);
1518 goto split_fallthrough
;
1520 spin_lock(&mm
->page_table_lock
);
1521 if (likely(pmd_trans_huge(*pmd
))) {
1522 if (unlikely(pmd_trans_splitting(*pmd
))) {
1523 spin_unlock(&mm
->page_table_lock
);
1524 wait_split_huge_page(vma
->anon_vma
, pmd
);
1526 page
= follow_trans_huge_pmd(vma
, address
,
1528 spin_unlock(&mm
->page_table_lock
);
1532 spin_unlock(&mm
->page_table_lock
);
1536 if (unlikely(pmd_bad(*pmd
)))
1539 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1542 if (!pte_present(pte
))
1544 if ((flags
& FOLL_NUMA
) && pte_numa(pte
))
1546 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1549 page
= vm_normal_page(vma
, address
, pte
);
1550 if (unlikely(!page
)) {
1551 if ((flags
& FOLL_DUMP
) ||
1552 !is_zero_pfn(pte_pfn(pte
)))
1554 page
= pte_page(pte
);
1557 if (flags
& FOLL_GET
)
1558 get_page_foll(page
);
1559 if (flags
& FOLL_TOUCH
) {
1560 if ((flags
& FOLL_WRITE
) &&
1561 !pte_dirty(pte
) && !PageDirty(page
))
1562 set_page_dirty(page
);
1564 * pte_mkyoung() would be more correct here, but atomic care
1565 * is needed to avoid losing the dirty bit: it is easier to use
1566 * mark_page_accessed().
1568 mark_page_accessed(page
);
1570 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1572 * The preliminary mapping check is mainly to avoid the
1573 * pointless overhead of lock_page on the ZERO_PAGE
1574 * which might bounce very badly if there is contention.
1576 * If the page is already locked, we don't need to
1577 * handle it now - vmscan will handle it later if and
1578 * when it attempts to reclaim the page.
1580 if (page
->mapping
&& trylock_page(page
)) {
1581 lru_add_drain(); /* push cached pages to LRU */
1583 * Because we lock page here, and migration is
1584 * blocked by the pte's page reference, and we
1585 * know the page is still mapped, we don't even
1586 * need to check for file-cache page truncation.
1588 mlock_vma_page(page
);
1593 pte_unmap_unlock(ptep
, ptl
);
1598 pte_unmap_unlock(ptep
, ptl
);
1599 return ERR_PTR(-EFAULT
);
1602 pte_unmap_unlock(ptep
, ptl
);
1608 * When core dumping an enormous anonymous area that nobody
1609 * has touched so far, we don't want to allocate unnecessary pages or
1610 * page tables. Return error instead of NULL to skip handle_mm_fault,
1611 * then get_dump_page() will return NULL to leave a hole in the dump.
1612 * But we can only make this optimization where a hole would surely
1613 * be zero-filled if handle_mm_fault() actually did handle it.
1615 if ((flags
& FOLL_DUMP
) &&
1616 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1617 return ERR_PTR(-EFAULT
);
1621 static inline int stack_guard_page(struct vm_area_struct
*vma
, unsigned long addr
)
1623 return stack_guard_page_start(vma
, addr
) ||
1624 stack_guard_page_end(vma
, addr
+PAGE_SIZE
);
1628 * __get_user_pages() - pin user pages in memory
1629 * @tsk: task_struct of target task
1630 * @mm: mm_struct of target mm
1631 * @start: starting user address
1632 * @nr_pages: number of pages from start to pin
1633 * @gup_flags: flags modifying pin behaviour
1634 * @pages: array that receives pointers to the pages pinned.
1635 * Should be at least nr_pages long. Or NULL, if caller
1636 * only intends to ensure the pages are faulted in.
1637 * @vmas: array of pointers to vmas corresponding to each page.
1638 * Or NULL if the caller does not require them.
1639 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1641 * Returns number of pages pinned. This may be fewer than the number
1642 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1643 * were pinned, returns -errno. Each page returned must be released
1644 * with a put_page() call when it is finished with. vmas will only
1645 * remain valid while mmap_sem is held.
1647 * Must be called with mmap_sem held for read or write.
1649 * __get_user_pages walks a process's page tables and takes a reference to
1650 * each struct page that each user address corresponds to at a given
1651 * instant. That is, it takes the page that would be accessed if a user
1652 * thread accesses the given user virtual address at that instant.
1654 * This does not guarantee that the page exists in the user mappings when
1655 * __get_user_pages returns, and there may even be a completely different
1656 * page there in some cases (eg. if mmapped pagecache has been invalidated
1657 * and subsequently re faulted). However it does guarantee that the page
1658 * won't be freed completely. And mostly callers simply care that the page
1659 * contains data that was valid *at some point in time*. Typically, an IO
1660 * or similar operation cannot guarantee anything stronger anyway because
1661 * locks can't be held over the syscall boundary.
1663 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1664 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1665 * appropriate) must be called after the page is finished with, and
1666 * before put_page is called.
1668 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1669 * or mmap_sem contention, and if waiting is needed to pin all pages,
1670 * *@nonblocking will be set to 0.
1672 * In most cases, get_user_pages or get_user_pages_fast should be used
1673 * instead of __get_user_pages. __get_user_pages should be used only if
1674 * you need some special @gup_flags.
1676 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1677 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1678 struct page
**pages
, struct vm_area_struct
**vmas
,
1682 unsigned long vm_flags
;
1687 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1690 * Require read or write permissions.
1691 * If FOLL_FORCE is set, we only require the "MAY" flags.
1693 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1694 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1695 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1696 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1699 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1700 * would be called on PROT_NONE ranges. We must never invoke
1701 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1702 * page faults would unprotect the PROT_NONE ranges if
1703 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1704 * bitflag. So to avoid that, don't set FOLL_NUMA if
1705 * FOLL_FORCE is set.
1707 if (!(gup_flags
& FOLL_FORCE
))
1708 gup_flags
|= FOLL_NUMA
;
1713 struct vm_area_struct
*vma
;
1715 vma
= find_extend_vma(mm
, start
);
1716 if (!vma
&& in_gate_area(mm
, start
)) {
1717 unsigned long pg
= start
& PAGE_MASK
;
1723 /* user gate pages are read-only */
1724 if (gup_flags
& FOLL_WRITE
)
1725 return i
? : -EFAULT
;
1727 pgd
= pgd_offset_k(pg
);
1729 pgd
= pgd_offset_gate(mm
, pg
);
1730 BUG_ON(pgd_none(*pgd
));
1731 pud
= pud_offset(pgd
, pg
);
1732 BUG_ON(pud_none(*pud
));
1733 pmd
= pmd_offset(pud
, pg
);
1735 return i
? : -EFAULT
;
1736 VM_BUG_ON(pmd_trans_huge(*pmd
));
1737 pte
= pte_offset_map(pmd
, pg
);
1738 if (pte_none(*pte
)) {
1740 return i
? : -EFAULT
;
1742 vma
= get_gate_vma(mm
);
1746 page
= vm_normal_page(vma
, start
, *pte
);
1748 if (!(gup_flags
& FOLL_DUMP
) &&
1749 is_zero_pfn(pte_pfn(*pte
)))
1750 page
= pte_page(*pte
);
1753 return i
? : -EFAULT
;
1764 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1765 !(vm_flags
& vma
->vm_flags
))
1766 return i
? : -EFAULT
;
1768 if (is_vm_hugetlb_page(vma
)) {
1769 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1770 &start
, &nr_pages
, i
, gup_flags
);
1776 unsigned int foll_flags
= gup_flags
;
1779 * If we have a pending SIGKILL, don't keep faulting
1780 * pages and potentially allocating memory.
1782 if (unlikely(fatal_signal_pending(current
)))
1783 return i
? i
: -ERESTARTSYS
;
1786 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1788 unsigned int fault_flags
= 0;
1790 /* For mlock, just skip the stack guard page. */
1791 if (foll_flags
& FOLL_MLOCK
) {
1792 if (stack_guard_page(vma
, start
))
1795 if (foll_flags
& FOLL_WRITE
)
1796 fault_flags
|= FAULT_FLAG_WRITE
;
1798 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
1799 if (foll_flags
& FOLL_NOWAIT
)
1800 fault_flags
|= (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
);
1802 ret
= handle_mm_fault(mm
, vma
, start
,
1805 if (ret
& VM_FAULT_ERROR
) {
1806 if (ret
& VM_FAULT_OOM
)
1807 return i
? i
: -ENOMEM
;
1808 if (ret
& (VM_FAULT_HWPOISON
|
1809 VM_FAULT_HWPOISON_LARGE
)) {
1812 else if (gup_flags
& FOLL_HWPOISON
)
1817 if (ret
& VM_FAULT_SIGBUS
)
1818 return i
? i
: -EFAULT
;
1823 if (ret
& VM_FAULT_MAJOR
)
1829 if (ret
& VM_FAULT_RETRY
) {
1836 * The VM_FAULT_WRITE bit tells us that
1837 * do_wp_page has broken COW when necessary,
1838 * even if maybe_mkwrite decided not to set
1839 * pte_write. We can thus safely do subsequent
1840 * page lookups as if they were reads. But only
1841 * do so when looping for pte_write is futile:
1842 * in some cases userspace may also be wanting
1843 * to write to the gotten user page, which a
1844 * read fault here might prevent (a readonly
1845 * page might get reCOWed by userspace write).
1847 if ((ret
& VM_FAULT_WRITE
) &&
1848 !(vma
->vm_flags
& VM_WRITE
))
1849 foll_flags
&= ~FOLL_WRITE
;
1854 return i
? i
: PTR_ERR(page
);
1858 flush_anon_page(vma
, page
, start
);
1859 flush_dcache_page(page
);
1867 } while (nr_pages
&& start
< vma
->vm_end
);
1871 EXPORT_SYMBOL(__get_user_pages
);
1874 * fixup_user_fault() - manually resolve a user page fault
1875 * @tsk: the task_struct to use for page fault accounting, or
1876 * NULL if faults are not to be recorded.
1877 * @mm: mm_struct of target mm
1878 * @address: user address
1879 * @fault_flags:flags to pass down to handle_mm_fault()
1881 * This is meant to be called in the specific scenario where for locking reasons
1882 * we try to access user memory in atomic context (within a pagefault_disable()
1883 * section), this returns -EFAULT, and we want to resolve the user fault before
1886 * Typically this is meant to be used by the futex code.
1888 * The main difference with get_user_pages() is that this function will
1889 * unconditionally call handle_mm_fault() which will in turn perform all the
1890 * necessary SW fixup of the dirty and young bits in the PTE, while
1891 * handle_mm_fault() only guarantees to update these in the struct page.
1893 * This is important for some architectures where those bits also gate the
1894 * access permission to the page because they are maintained in software. On
1895 * such architectures, gup() will not be enough to make a subsequent access
1898 * This should be called with the mm_sem held for read.
1900 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
1901 unsigned long address
, unsigned int fault_flags
)
1903 struct vm_area_struct
*vma
;
1906 vma
= find_extend_vma(mm
, address
);
1907 if (!vma
|| address
< vma
->vm_start
)
1910 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
1911 if (ret
& VM_FAULT_ERROR
) {
1912 if (ret
& VM_FAULT_OOM
)
1914 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
1916 if (ret
& VM_FAULT_SIGBUS
)
1921 if (ret
& VM_FAULT_MAJOR
)
1930 * get_user_pages() - pin user pages in memory
1931 * @tsk: the task_struct to use for page fault accounting, or
1932 * NULL if faults are not to be recorded.
1933 * @mm: mm_struct of target mm
1934 * @start: starting user address
1935 * @nr_pages: number of pages from start to pin
1936 * @write: whether pages will be written to by the caller
1937 * @force: whether to force write access even if user mapping is
1938 * readonly. This will result in the page being COWed even
1939 * in MAP_SHARED mappings. You do not want this.
1940 * @pages: array that receives pointers to the pages pinned.
1941 * Should be at least nr_pages long. Or NULL, if caller
1942 * only intends to ensure the pages are faulted in.
1943 * @vmas: array of pointers to vmas corresponding to each page.
1944 * Or NULL if the caller does not require them.
1946 * Returns number of pages pinned. This may be fewer than the number
1947 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1948 * were pinned, returns -errno. Each page returned must be released
1949 * with a put_page() call when it is finished with. vmas will only
1950 * remain valid while mmap_sem is held.
1952 * Must be called with mmap_sem held for read or write.
1954 * get_user_pages walks a process's page tables and takes a reference to
1955 * each struct page that each user address corresponds to at a given
1956 * instant. That is, it takes the page that would be accessed if a user
1957 * thread accesses the given user virtual address at that instant.
1959 * This does not guarantee that the page exists in the user mappings when
1960 * get_user_pages returns, and there may even be a completely different
1961 * page there in some cases (eg. if mmapped pagecache has been invalidated
1962 * and subsequently re faulted). However it does guarantee that the page
1963 * won't be freed completely. And mostly callers simply care that the page
1964 * contains data that was valid *at some point in time*. Typically, an IO
1965 * or similar operation cannot guarantee anything stronger anyway because
1966 * locks can't be held over the syscall boundary.
1968 * If write=0, the page must not be written to. If the page is written to,
1969 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1970 * after the page is finished with, and before put_page is called.
1972 * get_user_pages is typically used for fewer-copy IO operations, to get a
1973 * handle on the memory by some means other than accesses via the user virtual
1974 * addresses. The pages may be submitted for DMA to devices or accessed via
1975 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1976 * use the correct cache flushing APIs.
1978 * See also get_user_pages_fast, for performance critical applications.
1980 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1981 unsigned long start
, int nr_pages
, int write
, int force
,
1982 struct page
**pages
, struct vm_area_struct
**vmas
)
1984 int flags
= FOLL_TOUCH
;
1989 flags
|= FOLL_WRITE
;
1991 flags
|= FOLL_FORCE
;
1993 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
1996 EXPORT_SYMBOL(get_user_pages
);
1999 * get_dump_page() - pin user page in memory while writing it to core dump
2000 * @addr: user address
2002 * Returns struct page pointer of user page pinned for dump,
2003 * to be freed afterwards by page_cache_release() or put_page().
2005 * Returns NULL on any kind of failure - a hole must then be inserted into
2006 * the corefile, to preserve alignment with its headers; and also returns
2007 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2008 * allowing a hole to be left in the corefile to save diskspace.
2010 * Called without mmap_sem, but after all other threads have been killed.
2012 #ifdef CONFIG_ELF_CORE
2013 struct page
*get_dump_page(unsigned long addr
)
2015 struct vm_area_struct
*vma
;
2018 if (__get_user_pages(current
, current
->mm
, addr
, 1,
2019 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
2022 flush_cache_page(vma
, addr
, page_to_pfn(page
));
2025 #endif /* CONFIG_ELF_CORE */
2027 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
2030 pgd_t
* pgd
= pgd_offset(mm
, addr
);
2031 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
2033 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
2035 VM_BUG_ON(pmd_trans_huge(*pmd
));
2036 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
2043 * This is the old fallback for page remapping.
2045 * For historical reasons, it only allows reserved pages. Only
2046 * old drivers should use this, and they needed to mark their
2047 * pages reserved for the old functions anyway.
2049 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2050 struct page
*page
, pgprot_t prot
)
2052 struct mm_struct
*mm
= vma
->vm_mm
;
2061 flush_dcache_page(page
);
2062 pte
= get_locked_pte(mm
, addr
, &ptl
);
2066 if (!pte_none(*pte
))
2069 /* Ok, finally just insert the thing.. */
2071 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2072 page_add_file_rmap(page
);
2073 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
2076 pte_unmap_unlock(pte
, ptl
);
2079 pte_unmap_unlock(pte
, ptl
);
2085 * vm_insert_page - insert single page into user vma
2086 * @vma: user vma to map to
2087 * @addr: target user address of this page
2088 * @page: source kernel page
2090 * This allows drivers to insert individual pages they've allocated
2093 * The page has to be a nice clean _individual_ kernel allocation.
2094 * If you allocate a compound page, you need to have marked it as
2095 * such (__GFP_COMP), or manually just split the page up yourself
2096 * (see split_page()).
2098 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2099 * took an arbitrary page protection parameter. This doesn't allow
2100 * that. Your vma protection will have to be set up correctly, which
2101 * means that if you want a shared writable mapping, you'd better
2102 * ask for a shared writable mapping!
2104 * The page does not need to be reserved.
2106 * Usually this function is called from f_op->mmap() handler
2107 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2108 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2109 * function from other places, for example from page-fault handler.
2111 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2114 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2116 if (!page_count(page
))
2118 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
2119 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
2120 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2121 vma
->vm_flags
|= VM_MIXEDMAP
;
2123 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2125 EXPORT_SYMBOL(vm_insert_page
);
2127 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2128 unsigned long pfn
, pgprot_t prot
)
2130 struct mm_struct
*mm
= vma
->vm_mm
;
2136 pte
= get_locked_pte(mm
, addr
, &ptl
);
2140 if (!pte_none(*pte
))
2143 /* Ok, finally just insert the thing.. */
2144 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
2145 set_pte_at(mm
, addr
, pte
, entry
);
2146 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
2150 pte_unmap_unlock(pte
, ptl
);
2156 * vm_insert_pfn - insert single pfn into user vma
2157 * @vma: user vma to map to
2158 * @addr: target user address of this page
2159 * @pfn: source kernel pfn
2161 * Similar to vm_insert_page, this allows drivers to insert individual pages
2162 * they've allocated into a user vma. Same comments apply.
2164 * This function should only be called from a vm_ops->fault handler, and
2165 * in that case the handler should return NULL.
2167 * vma cannot be a COW mapping.
2169 * As this is called only for pages that do not currently exist, we
2170 * do not need to flush old virtual caches or the TLB.
2172 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2176 pgprot_t pgprot
= vma
->vm_page_prot
;
2178 * Technically, architectures with pte_special can avoid all these
2179 * restrictions (same for remap_pfn_range). However we would like
2180 * consistency in testing and feature parity among all, so we should
2181 * try to keep these invariants in place for everybody.
2183 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2184 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
2185 (VM_PFNMAP
|VM_MIXEDMAP
));
2186 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2187 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2189 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2191 if (track_pfn_insert(vma
, &pgprot
, pfn
))
2194 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
2198 EXPORT_SYMBOL(vm_insert_pfn
);
2200 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
2203 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
2205 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2209 * If we don't have pte special, then we have to use the pfn_valid()
2210 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2211 * refcount the page if pfn_valid is true (hence insert_page rather
2212 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2213 * without pte special, it would there be refcounted as a normal page.
2215 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
2218 page
= pfn_to_page(pfn
);
2219 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2221 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
2223 EXPORT_SYMBOL(vm_insert_mixed
);
2226 * maps a range of physical memory into the requested pages. the old
2227 * mappings are removed. any references to nonexistent pages results
2228 * in null mappings (currently treated as "copy-on-access")
2230 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2231 unsigned long addr
, unsigned long end
,
2232 unsigned long pfn
, pgprot_t prot
)
2237 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2240 arch_enter_lazy_mmu_mode();
2242 BUG_ON(!pte_none(*pte
));
2243 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2245 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2246 arch_leave_lazy_mmu_mode();
2247 pte_unmap_unlock(pte
- 1, ptl
);
2251 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2252 unsigned long addr
, unsigned long end
,
2253 unsigned long pfn
, pgprot_t prot
)
2258 pfn
-= addr
>> PAGE_SHIFT
;
2259 pmd
= pmd_alloc(mm
, pud
, addr
);
2262 VM_BUG_ON(pmd_trans_huge(*pmd
));
2264 next
= pmd_addr_end(addr
, end
);
2265 if (remap_pte_range(mm
, pmd
, addr
, next
,
2266 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2268 } while (pmd
++, addr
= next
, addr
!= end
);
2272 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2273 unsigned long addr
, unsigned long end
,
2274 unsigned long pfn
, pgprot_t prot
)
2279 pfn
-= addr
>> PAGE_SHIFT
;
2280 pud
= pud_alloc(mm
, pgd
, addr
);
2284 next
= pud_addr_end(addr
, end
);
2285 if (remap_pmd_range(mm
, pud
, addr
, next
,
2286 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2288 } while (pud
++, addr
= next
, addr
!= end
);
2293 * remap_pfn_range - remap kernel memory to userspace
2294 * @vma: user vma to map to
2295 * @addr: target user address to start at
2296 * @pfn: physical address of kernel memory
2297 * @size: size of map area
2298 * @prot: page protection flags for this mapping
2300 * Note: this is only safe if the mm semaphore is held when called.
2302 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2303 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2307 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2308 struct mm_struct
*mm
= vma
->vm_mm
;
2312 * Physically remapped pages are special. Tell the
2313 * rest of the world about it:
2314 * VM_IO tells people not to look at these pages
2315 * (accesses can have side effects).
2316 * VM_PFNMAP tells the core MM that the base pages are just
2317 * raw PFN mappings, and do not have a "struct page" associated
2320 * Disable vma merging and expanding with mremap().
2322 * Omit vma from core dump, even when VM_IO turned off.
2324 * There's a horrible special case to handle copy-on-write
2325 * behaviour that some programs depend on. We mark the "original"
2326 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2327 * See vm_normal_page() for details.
2329 if (is_cow_mapping(vma
->vm_flags
)) {
2330 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2332 vma
->vm_pgoff
= pfn
;
2335 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
2339 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2341 BUG_ON(addr
>= end
);
2342 pfn
-= addr
>> PAGE_SHIFT
;
2343 pgd
= pgd_offset(mm
, addr
);
2344 flush_cache_range(vma
, addr
, end
);
2346 next
= pgd_addr_end(addr
, end
);
2347 err
= remap_pud_range(mm
, pgd
, addr
, next
,
2348 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2351 } while (pgd
++, addr
= next
, addr
!= end
);
2354 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
2358 EXPORT_SYMBOL(remap_pfn_range
);
2360 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2361 unsigned long addr
, unsigned long end
,
2362 pte_fn_t fn
, void *data
)
2367 spinlock_t
*uninitialized_var(ptl
);
2369 pte
= (mm
== &init_mm
) ?
2370 pte_alloc_kernel(pmd
, addr
) :
2371 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2375 BUG_ON(pmd_huge(*pmd
));
2377 arch_enter_lazy_mmu_mode();
2379 token
= pmd_pgtable(*pmd
);
2382 err
= fn(pte
++, token
, addr
, data
);
2385 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2387 arch_leave_lazy_mmu_mode();
2390 pte_unmap_unlock(pte
-1, ptl
);
2394 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2395 unsigned long addr
, unsigned long end
,
2396 pte_fn_t fn
, void *data
)
2402 BUG_ON(pud_huge(*pud
));
2404 pmd
= pmd_alloc(mm
, pud
, addr
);
2408 next
= pmd_addr_end(addr
, end
);
2409 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2412 } while (pmd
++, addr
= next
, addr
!= end
);
2416 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2417 unsigned long addr
, unsigned long end
,
2418 pte_fn_t fn
, void *data
)
2424 pud
= pud_alloc(mm
, pgd
, addr
);
2428 next
= pud_addr_end(addr
, end
);
2429 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2432 } while (pud
++, addr
= next
, addr
!= end
);
2437 * Scan a region of virtual memory, filling in page tables as necessary
2438 * and calling a provided function on each leaf page table.
2440 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2441 unsigned long size
, pte_fn_t fn
, void *data
)
2445 unsigned long end
= addr
+ size
;
2448 BUG_ON(addr
>= end
);
2449 pgd
= pgd_offset(mm
, addr
);
2451 next
= pgd_addr_end(addr
, end
);
2452 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2455 } while (pgd
++, addr
= next
, addr
!= end
);
2459 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2462 * handle_pte_fault chooses page fault handler according to an entry
2463 * which was read non-atomically. Before making any commitment, on
2464 * those architectures or configurations (e.g. i386 with PAE) which
2465 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2466 * must check under lock before unmapping the pte and proceeding
2467 * (but do_wp_page is only called after already making such a check;
2468 * and do_anonymous_page can safely check later on).
2470 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2471 pte_t
*page_table
, pte_t orig_pte
)
2474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2475 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2476 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2478 same
= pte_same(*page_table
, orig_pte
);
2482 pte_unmap(page_table
);
2486 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2489 * If the source page was a PFN mapping, we don't have
2490 * a "struct page" for it. We do a best-effort copy by
2491 * just copying from the original user address. If that
2492 * fails, we just zero-fill it. Live with it.
2494 if (unlikely(!src
)) {
2495 void *kaddr
= kmap_atomic(dst
);
2496 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2499 * This really shouldn't fail, because the page is there
2500 * in the page tables. But it might just be unreadable,
2501 * in which case we just give up and fill the result with
2504 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2506 kunmap_atomic(kaddr
);
2507 flush_dcache_page(dst
);
2509 copy_user_highpage(dst
, src
, va
, vma
);
2513 * This routine handles present pages, when users try to write
2514 * to a shared page. It is done by copying the page to a new address
2515 * and decrementing the shared-page counter for the old page.
2517 * Note that this routine assumes that the protection checks have been
2518 * done by the caller (the low-level page fault routine in most cases).
2519 * Thus we can safely just mark it writable once we've done any necessary
2522 * We also mark the page dirty at this point even though the page will
2523 * change only once the write actually happens. This avoids a few races,
2524 * and potentially makes it more efficient.
2526 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2527 * but allow concurrent faults), with pte both mapped and locked.
2528 * We return with mmap_sem still held, but pte unmapped and unlocked.
2530 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2531 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2532 spinlock_t
*ptl
, pte_t orig_pte
)
2535 struct page
*old_page
, *new_page
= NULL
;
2538 int page_mkwrite
= 0;
2539 struct page
*dirty_page
= NULL
;
2540 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2541 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2543 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2546 * VM_MIXEDMAP !pfn_valid() case
2548 * We should not cow pages in a shared writeable mapping.
2549 * Just mark the pages writable as we can't do any dirty
2550 * accounting on raw pfn maps.
2552 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2553 (VM_WRITE
|VM_SHARED
))
2559 * Take out anonymous pages first, anonymous shared vmas are
2560 * not dirty accountable.
2562 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2563 if (!trylock_page(old_page
)) {
2564 page_cache_get(old_page
);
2565 pte_unmap_unlock(page_table
, ptl
);
2566 lock_page(old_page
);
2567 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2569 if (!pte_same(*page_table
, orig_pte
)) {
2570 unlock_page(old_page
);
2573 page_cache_release(old_page
);
2575 if (reuse_swap_page(old_page
)) {
2577 * The page is all ours. Move it to our anon_vma so
2578 * the rmap code will not search our parent or siblings.
2579 * Protected against the rmap code by the page lock.
2581 page_move_anon_rmap(old_page
, vma
, address
);
2582 unlock_page(old_page
);
2585 unlock_page(old_page
);
2586 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2587 (VM_WRITE
|VM_SHARED
))) {
2589 * Only catch write-faults on shared writable pages,
2590 * read-only shared pages can get COWed by
2591 * get_user_pages(.write=1, .force=1).
2593 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2594 struct vm_fault vmf
;
2597 vmf
.virtual_address
= (void __user
*)(address
&
2599 vmf
.pgoff
= old_page
->index
;
2600 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2601 vmf
.page
= old_page
;
2604 * Notify the address space that the page is about to
2605 * become writable so that it can prohibit this or wait
2606 * for the page to get into an appropriate state.
2608 * We do this without the lock held, so that it can
2609 * sleep if it needs to.
2611 page_cache_get(old_page
);
2612 pte_unmap_unlock(page_table
, ptl
);
2614 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2616 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2618 goto unwritable_page
;
2620 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2621 lock_page(old_page
);
2622 if (!old_page
->mapping
) {
2623 ret
= 0; /* retry the fault */
2624 unlock_page(old_page
);
2625 goto unwritable_page
;
2628 VM_BUG_ON(!PageLocked(old_page
));
2631 * Since we dropped the lock we need to revalidate
2632 * the PTE as someone else may have changed it. If
2633 * they did, we just return, as we can count on the
2634 * MMU to tell us if they didn't also make it writable.
2636 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2638 if (!pte_same(*page_table
, orig_pte
)) {
2639 unlock_page(old_page
);
2645 dirty_page
= old_page
;
2646 get_page(dirty_page
);
2649 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2650 entry
= pte_mkyoung(orig_pte
);
2651 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2652 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2653 update_mmu_cache(vma
, address
, page_table
);
2654 pte_unmap_unlock(page_table
, ptl
);
2655 ret
|= VM_FAULT_WRITE
;
2661 * Yes, Virginia, this is actually required to prevent a race
2662 * with clear_page_dirty_for_io() from clearing the page dirty
2663 * bit after it clear all dirty ptes, but before a racing
2664 * do_wp_page installs a dirty pte.
2666 * __do_fault is protected similarly.
2668 if (!page_mkwrite
) {
2669 wait_on_page_locked(dirty_page
);
2670 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2671 /* file_update_time outside page_lock */
2673 file_update_time(vma
->vm_file
);
2675 put_page(dirty_page
);
2677 struct address_space
*mapping
= dirty_page
->mapping
;
2679 set_page_dirty(dirty_page
);
2680 unlock_page(dirty_page
);
2681 page_cache_release(dirty_page
);
2684 * Some device drivers do not set page.mapping
2685 * but still dirty their pages
2687 balance_dirty_pages_ratelimited(mapping
);
2695 * Ok, we need to copy. Oh, well..
2697 page_cache_get(old_page
);
2699 pte_unmap_unlock(page_table
, ptl
);
2701 if (unlikely(anon_vma_prepare(vma
)))
2704 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2705 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2709 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2712 cow_user_page(new_page
, old_page
, address
, vma
);
2714 __SetPageUptodate(new_page
);
2716 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2719 mmun_start
= address
& PAGE_MASK
;
2720 mmun_end
= mmun_start
+ PAGE_SIZE
;
2721 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2724 * Re-check the pte - we dropped the lock
2726 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2727 if (likely(pte_same(*page_table
, orig_pte
))) {
2729 if (!PageAnon(old_page
)) {
2730 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2731 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2734 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2735 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2736 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2737 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2739 * Clear the pte entry and flush it first, before updating the
2740 * pte with the new entry. This will avoid a race condition
2741 * seen in the presence of one thread doing SMC and another
2744 ptep_clear_flush(vma
, address
, page_table
);
2745 page_add_new_anon_rmap(new_page
, vma
, address
);
2747 * We call the notify macro here because, when using secondary
2748 * mmu page tables (such as kvm shadow page tables), we want the
2749 * new page to be mapped directly into the secondary page table.
2751 set_pte_at_notify(mm
, address
, page_table
, entry
);
2752 update_mmu_cache(vma
, address
, page_table
);
2755 * Only after switching the pte to the new page may
2756 * we remove the mapcount here. Otherwise another
2757 * process may come and find the rmap count decremented
2758 * before the pte is switched to the new page, and
2759 * "reuse" the old page writing into it while our pte
2760 * here still points into it and can be read by other
2763 * The critical issue is to order this
2764 * page_remove_rmap with the ptp_clear_flush above.
2765 * Those stores are ordered by (if nothing else,)
2766 * the barrier present in the atomic_add_negative
2767 * in page_remove_rmap.
2769 * Then the TLB flush in ptep_clear_flush ensures that
2770 * no process can access the old page before the
2771 * decremented mapcount is visible. And the old page
2772 * cannot be reused until after the decremented
2773 * mapcount is visible. So transitively, TLBs to
2774 * old page will be flushed before it can be reused.
2776 page_remove_rmap(old_page
);
2779 /* Free the old page.. */
2780 new_page
= old_page
;
2781 ret
|= VM_FAULT_WRITE
;
2783 mem_cgroup_uncharge_page(new_page
);
2786 page_cache_release(new_page
);
2788 pte_unmap_unlock(page_table
, ptl
);
2789 if (mmun_end
> mmun_start
)
2790 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2793 * Don't let another task, with possibly unlocked vma,
2794 * keep the mlocked page.
2796 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2797 lock_page(old_page
); /* LRU manipulation */
2798 munlock_vma_page(old_page
);
2799 unlock_page(old_page
);
2801 page_cache_release(old_page
);
2805 page_cache_release(new_page
);
2808 page_cache_release(old_page
);
2809 return VM_FAULT_OOM
;
2812 page_cache_release(old_page
);
2816 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2817 unsigned long start_addr
, unsigned long end_addr
,
2818 struct zap_details
*details
)
2820 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2823 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2824 struct zap_details
*details
)
2826 struct vm_area_struct
*vma
;
2827 pgoff_t vba
, vea
, zba
, zea
;
2829 vma_interval_tree_foreach(vma
, root
,
2830 details
->first_index
, details
->last_index
) {
2832 vba
= vma
->vm_pgoff
;
2833 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2834 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2835 zba
= details
->first_index
;
2838 zea
= details
->last_index
;
2842 unmap_mapping_range_vma(vma
,
2843 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2844 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2849 static inline void unmap_mapping_range_list(struct list_head
*head
,
2850 struct zap_details
*details
)
2852 struct vm_area_struct
*vma
;
2855 * In nonlinear VMAs there is no correspondence between virtual address
2856 * offset and file offset. So we must perform an exhaustive search
2857 * across *all* the pages in each nonlinear VMA, not just the pages
2858 * whose virtual address lies outside the file truncation point.
2860 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2861 details
->nonlinear_vma
= vma
;
2862 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2867 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2868 * @mapping: the address space containing mmaps to be unmapped.
2869 * @holebegin: byte in first page to unmap, relative to the start of
2870 * the underlying file. This will be rounded down to a PAGE_SIZE
2871 * boundary. Note that this is different from truncate_pagecache(), which
2872 * must keep the partial page. In contrast, we must get rid of
2874 * @holelen: size of prospective hole in bytes. This will be rounded
2875 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2877 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2878 * but 0 when invalidating pagecache, don't throw away private data.
2880 void unmap_mapping_range(struct address_space
*mapping
,
2881 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2883 struct zap_details details
;
2884 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2885 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2887 /* Check for overflow. */
2888 if (sizeof(holelen
) > sizeof(hlen
)) {
2890 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2891 if (holeend
& ~(long long)ULONG_MAX
)
2892 hlen
= ULONG_MAX
- hba
+ 1;
2895 details
.check_mapping
= even_cows
? NULL
: mapping
;
2896 details
.nonlinear_vma
= NULL
;
2897 details
.first_index
= hba
;
2898 details
.last_index
= hba
+ hlen
- 1;
2899 if (details
.last_index
< details
.first_index
)
2900 details
.last_index
= ULONG_MAX
;
2903 mutex_lock(&mapping
->i_mmap_mutex
);
2904 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2905 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2906 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2907 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2908 mutex_unlock(&mapping
->i_mmap_mutex
);
2910 EXPORT_SYMBOL(unmap_mapping_range
);
2913 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2914 * but allow concurrent faults), and pte mapped but not yet locked.
2915 * We return with mmap_sem still held, but pte unmapped and unlocked.
2917 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2918 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2919 unsigned int flags
, pte_t orig_pte
)
2922 struct page
*page
, *swapcache
= NULL
;
2926 struct mem_cgroup
*ptr
;
2930 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2933 entry
= pte_to_swp_entry(orig_pte
);
2934 if (unlikely(non_swap_entry(entry
))) {
2935 if (is_migration_entry(entry
)) {
2936 migration_entry_wait(mm
, pmd
, address
);
2937 } else if (is_hwpoison_entry(entry
)) {
2938 ret
= VM_FAULT_HWPOISON
;
2940 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2941 ret
= VM_FAULT_SIGBUS
;
2945 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2946 page
= lookup_swap_cache(entry
);
2948 page
= swapin_readahead(entry
,
2949 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2952 * Back out if somebody else faulted in this pte
2953 * while we released the pte lock.
2955 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2956 if (likely(pte_same(*page_table
, orig_pte
)))
2958 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2962 /* Had to read the page from swap area: Major fault */
2963 ret
= VM_FAULT_MAJOR
;
2964 count_vm_event(PGMAJFAULT
);
2965 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2966 } else if (PageHWPoison(page
)) {
2968 * hwpoisoned dirty swapcache pages are kept for killing
2969 * owner processes (which may be unknown at hwpoison time)
2971 ret
= VM_FAULT_HWPOISON
;
2972 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2976 locked
= lock_page_or_retry(page
, mm
, flags
);
2978 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2980 ret
|= VM_FAULT_RETRY
;
2985 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2986 * release the swapcache from under us. The page pin, and pte_same
2987 * test below, are not enough to exclude that. Even if it is still
2988 * swapcache, we need to check that the page's swap has not changed.
2990 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2993 if (ksm_might_need_to_copy(page
, vma
, address
)) {
2995 page
= ksm_does_need_to_copy(page
, vma
, address
);
2997 if (unlikely(!page
)) {
3005 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
3011 * Back out if somebody else already faulted in this pte.
3013 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3014 if (unlikely(!pte_same(*page_table
, orig_pte
)))
3017 if (unlikely(!PageUptodate(page
))) {
3018 ret
= VM_FAULT_SIGBUS
;
3023 * The page isn't present yet, go ahead with the fault.
3025 * Be careful about the sequence of operations here.
3026 * To get its accounting right, reuse_swap_page() must be called
3027 * while the page is counted on swap but not yet in mapcount i.e.
3028 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3029 * must be called after the swap_free(), or it will never succeed.
3030 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3031 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3032 * in page->private. In this case, a record in swap_cgroup is silently
3033 * discarded at swap_free().
3036 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3037 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
3038 pte
= mk_pte(page
, vma
->vm_page_prot
);
3039 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
3040 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3041 flags
&= ~FAULT_FLAG_WRITE
;
3042 ret
|= VM_FAULT_WRITE
;
3045 flush_icache_page(vma
, page
);
3046 set_pte_at(mm
, address
, page_table
, pte
);
3047 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
3048 /* It's better to call commit-charge after rmap is established */
3049 mem_cgroup_commit_charge_swapin(page
, ptr
);
3052 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3053 try_to_free_swap(page
);
3057 * Hold the lock to avoid the swap entry to be reused
3058 * until we take the PT lock for the pte_same() check
3059 * (to avoid false positives from pte_same). For
3060 * further safety release the lock after the swap_free
3061 * so that the swap count won't change under a
3062 * parallel locked swapcache.
3064 unlock_page(swapcache
);
3065 page_cache_release(swapcache
);
3068 if (flags
& FAULT_FLAG_WRITE
) {
3069 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
3070 if (ret
& VM_FAULT_ERROR
)
3071 ret
&= VM_FAULT_ERROR
;
3075 /* No need to invalidate - it was non-present before */
3076 update_mmu_cache(vma
, address
, page_table
);
3078 pte_unmap_unlock(page_table
, ptl
);
3082 mem_cgroup_cancel_charge_swapin(ptr
);
3083 pte_unmap_unlock(page_table
, ptl
);
3087 page_cache_release(page
);
3089 unlock_page(swapcache
);
3090 page_cache_release(swapcache
);
3096 * This is like a special single-page "expand_{down|up}wards()",
3097 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3098 * doesn't hit another vma.
3100 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
3102 address
&= PAGE_MASK
;
3103 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
3104 struct vm_area_struct
*prev
= vma
->vm_prev
;
3107 * Is there a mapping abutting this one below?
3109 * That's only ok if it's the same stack mapping
3110 * that has gotten split..
3112 if (prev
&& prev
->vm_end
== address
)
3113 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
3115 expand_downwards(vma
, address
- PAGE_SIZE
);
3117 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
3118 struct vm_area_struct
*next
= vma
->vm_next
;
3120 /* As VM_GROWSDOWN but s/below/above/ */
3121 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
3122 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
3124 expand_upwards(vma
, address
+ PAGE_SIZE
);
3130 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3131 * but allow concurrent faults), and pte mapped but not yet locked.
3132 * We return with mmap_sem still held, but pte unmapped and unlocked.
3134 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3135 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3142 pte_unmap(page_table
);
3144 /* Check if we need to add a guard page to the stack */
3145 if (check_stack_guard_page(vma
, address
) < 0)
3146 return VM_FAULT_SIGBUS
;
3148 /* Use the zero-page for reads */
3149 if (!(flags
& FAULT_FLAG_WRITE
)) {
3150 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
3151 vma
->vm_page_prot
));
3152 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3153 if (!pte_none(*page_table
))
3158 /* Allocate our own private page. */
3159 if (unlikely(anon_vma_prepare(vma
)))
3161 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
3164 __SetPageUptodate(page
);
3166 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
3169 entry
= mk_pte(page
, vma
->vm_page_prot
);
3170 if (vma
->vm_flags
& VM_WRITE
)
3171 entry
= pte_mkwrite(pte_mkdirty(entry
));
3173 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3174 if (!pte_none(*page_table
))
3177 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3178 page_add_new_anon_rmap(page
, vma
, address
);
3180 set_pte_at(mm
, address
, page_table
, entry
);
3182 /* No need to invalidate - it was non-present before */
3183 update_mmu_cache(vma
, address
, page_table
);
3185 pte_unmap_unlock(page_table
, ptl
);
3188 mem_cgroup_uncharge_page(page
);
3189 page_cache_release(page
);
3192 page_cache_release(page
);
3194 return VM_FAULT_OOM
;
3198 * __do_fault() tries to create a new page mapping. It aggressively
3199 * tries to share with existing pages, but makes a separate copy if
3200 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3201 * the next page fault.
3203 * As this is called only for pages that do not currently exist, we
3204 * do not need to flush old virtual caches or the TLB.
3206 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3207 * but allow concurrent faults), and pte neither mapped nor locked.
3208 * We return with mmap_sem still held, but pte unmapped and unlocked.
3210 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3211 unsigned long address
, pmd_t
*pmd
,
3212 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3217 struct page
*cow_page
;
3220 struct page
*dirty_page
= NULL
;
3221 struct vm_fault vmf
;
3223 int page_mkwrite
= 0;
3226 * If we do COW later, allocate page befor taking lock_page()
3227 * on the file cache page. This will reduce lock holding time.
3229 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3231 if (unlikely(anon_vma_prepare(vma
)))
3232 return VM_FAULT_OOM
;
3234 cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
3236 return VM_FAULT_OOM
;
3238 if (mem_cgroup_newpage_charge(cow_page
, mm
, GFP_KERNEL
)) {
3239 page_cache_release(cow_page
);
3240 return VM_FAULT_OOM
;
3245 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
3250 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
3251 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3255 if (unlikely(PageHWPoison(vmf
.page
))) {
3256 if (ret
& VM_FAULT_LOCKED
)
3257 unlock_page(vmf
.page
);
3258 ret
= VM_FAULT_HWPOISON
;
3263 * For consistency in subsequent calls, make the faulted page always
3266 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3267 lock_page(vmf
.page
);
3269 VM_BUG_ON(!PageLocked(vmf
.page
));
3272 * Should we do an early C-O-W break?
3275 if (flags
& FAULT_FLAG_WRITE
) {
3276 if (!(vma
->vm_flags
& VM_SHARED
)) {
3279 copy_user_highpage(page
, vmf
.page
, address
, vma
);
3280 __SetPageUptodate(page
);
3283 * If the page will be shareable, see if the backing
3284 * address space wants to know that the page is about
3285 * to become writable
3287 if (vma
->vm_ops
->page_mkwrite
) {
3291 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
3292 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
3294 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
3296 goto unwritable_page
;
3298 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
3300 if (!page
->mapping
) {
3301 ret
= 0; /* retry the fault */
3303 goto unwritable_page
;
3306 VM_BUG_ON(!PageLocked(page
));
3313 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3316 * This silly early PAGE_DIRTY setting removes a race
3317 * due to the bad i386 page protection. But it's valid
3318 * for other architectures too.
3320 * Note that if FAULT_FLAG_WRITE is set, we either now have
3321 * an exclusive copy of the page, or this is a shared mapping,
3322 * so we can make it writable and dirty to avoid having to
3323 * handle that later.
3325 /* Only go through if we didn't race with anybody else... */
3326 if (likely(pte_same(*page_table
, orig_pte
))) {
3327 flush_icache_page(vma
, page
);
3328 entry
= mk_pte(page
, vma
->vm_page_prot
);
3329 if (flags
& FAULT_FLAG_WRITE
)
3330 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3332 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3333 page_add_new_anon_rmap(page
, vma
, address
);
3335 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
3336 page_add_file_rmap(page
);
3337 if (flags
& FAULT_FLAG_WRITE
) {
3339 get_page(dirty_page
);
3342 set_pte_at(mm
, address
, page_table
, entry
);
3344 /* no need to invalidate: a not-present page won't be cached */
3345 update_mmu_cache(vma
, address
, page_table
);
3348 mem_cgroup_uncharge_page(cow_page
);
3350 page_cache_release(page
);
3352 anon
= 1; /* no anon but release faulted_page */
3355 pte_unmap_unlock(page_table
, ptl
);
3358 struct address_space
*mapping
= page
->mapping
;
3361 if (set_page_dirty(dirty_page
))
3363 unlock_page(dirty_page
);
3364 put_page(dirty_page
);
3365 if ((dirtied
|| page_mkwrite
) && mapping
) {
3367 * Some device drivers do not set page.mapping but still
3370 balance_dirty_pages_ratelimited(mapping
);
3373 /* file_update_time outside page_lock */
3374 if (vma
->vm_file
&& !page_mkwrite
)
3375 file_update_time(vma
->vm_file
);
3377 unlock_page(vmf
.page
);
3379 page_cache_release(vmf
.page
);
3385 page_cache_release(page
);
3388 /* fs's fault handler get error */
3390 mem_cgroup_uncharge_page(cow_page
);
3391 page_cache_release(cow_page
);
3396 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3397 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3398 unsigned int flags
, pte_t orig_pte
)
3400 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3401 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3403 pte_unmap(page_table
);
3404 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3408 * Fault of a previously existing named mapping. Repopulate the pte
3409 * from the encoded file_pte if possible. This enables swappable
3412 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3413 * but allow concurrent faults), and pte mapped but not yet locked.
3414 * We return with mmap_sem still held, but pte unmapped and unlocked.
3416 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3417 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3418 unsigned int flags
, pte_t orig_pte
)
3422 flags
|= FAULT_FLAG_NONLINEAR
;
3424 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3427 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3429 * Page table corrupted: show pte and kill process.
3431 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3432 return VM_FAULT_SIGBUS
;
3435 pgoff
= pte_to_pgoff(orig_pte
);
3436 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3439 int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3440 unsigned long addr
, int current_nid
)
3444 count_vm_numa_event(NUMA_HINT_FAULTS
);
3445 if (current_nid
== numa_node_id())
3446 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3448 return mpol_misplaced(page
, vma
, addr
);
3451 int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3452 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3454 struct page
*page
= NULL
;
3456 int current_nid
= -1;
3458 bool migrated
= false;
3461 * The "pte" at this point cannot be used safely without
3462 * validation through pte_unmap_same(). It's of NUMA type but
3463 * the pfn may be screwed if the read is non atomic.
3465 * ptep_modify_prot_start is not called as this is clearing
3466 * the _PAGE_NUMA bit and it is not really expected that there
3467 * would be concurrent hardware modifications to the PTE.
3469 ptl
= pte_lockptr(mm
, pmd
);
3471 if (unlikely(!pte_same(*ptep
, pte
))) {
3472 pte_unmap_unlock(ptep
, ptl
);
3476 pte
= pte_mknonnuma(pte
);
3477 set_pte_at(mm
, addr
, ptep
, pte
);
3478 update_mmu_cache(vma
, addr
, ptep
);
3480 page
= vm_normal_page(vma
, addr
, pte
);
3482 pte_unmap_unlock(ptep
, ptl
);
3486 current_nid
= page_to_nid(page
);
3487 target_nid
= numa_migrate_prep(page
, vma
, addr
, current_nid
);
3488 pte_unmap_unlock(ptep
, ptl
);
3489 if (target_nid
== -1) {
3491 * Account for the fault against the current node if it not
3492 * being replaced regardless of where the page is located.
3494 current_nid
= numa_node_id();
3499 /* Migrate to the requested node */
3500 migrated
= migrate_misplaced_page(page
, target_nid
);
3502 current_nid
= target_nid
;
3505 if (current_nid
!= -1)
3506 task_numa_fault(current_nid
, 1, migrated
);
3510 /* NUMA hinting page fault entry point for regular pmds */
3511 #ifdef CONFIG_NUMA_BALANCING
3512 static int do_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3513 unsigned long addr
, pmd_t
*pmdp
)
3516 pte_t
*pte
, *orig_pte
;
3517 unsigned long _addr
= addr
& PMD_MASK
;
3518 unsigned long offset
;
3521 int local_nid
= numa_node_id();
3523 spin_lock(&mm
->page_table_lock
);
3525 if (pmd_numa(pmd
)) {
3526 set_pmd_at(mm
, _addr
, pmdp
, pmd_mknonnuma(pmd
));
3529 spin_unlock(&mm
->page_table_lock
);
3534 /* we're in a page fault so some vma must be in the range */
3536 BUG_ON(vma
->vm_start
>= _addr
+ PMD_SIZE
);
3537 offset
= max(_addr
, vma
->vm_start
) & ~PMD_MASK
;
3538 VM_BUG_ON(offset
>= PMD_SIZE
);
3539 orig_pte
= pte
= pte_offset_map_lock(mm
, pmdp
, _addr
, &ptl
);
3540 pte
+= offset
>> PAGE_SHIFT
;
3541 for (addr
= _addr
+ offset
; addr
< _addr
+ PMD_SIZE
; pte
++, addr
+= PAGE_SIZE
) {
3542 pte_t pteval
= *pte
;
3544 int curr_nid
= local_nid
;
3547 if (!pte_present(pteval
))
3549 if (!pte_numa(pteval
))
3551 if (addr
>= vma
->vm_end
) {
3552 vma
= find_vma(mm
, addr
);
3553 /* there's a pte present so there must be a vma */
3555 BUG_ON(addr
< vma
->vm_start
);
3557 if (pte_numa(pteval
)) {
3558 pteval
= pte_mknonnuma(pteval
);
3559 set_pte_at(mm
, addr
, pte
, pteval
);
3561 page
= vm_normal_page(vma
, addr
, pteval
);
3562 if (unlikely(!page
))
3564 /* only check non-shared pages */
3565 if (unlikely(page_mapcount(page
) != 1))
3569 * Note that the NUMA fault is later accounted to either
3570 * the node that is currently running or where the page is
3573 curr_nid
= local_nid
;
3574 target_nid
= numa_migrate_prep(page
, vma
, addr
,
3576 if (target_nid
== -1) {
3581 /* Migrate to the requested node */
3582 pte_unmap_unlock(pte
, ptl
);
3583 migrated
= migrate_misplaced_page(page
, target_nid
);
3585 curr_nid
= target_nid
;
3586 task_numa_fault(curr_nid
, 1, migrated
);
3588 pte
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
3590 pte_unmap_unlock(orig_pte
, ptl
);
3595 static int do_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3596 unsigned long addr
, pmd_t
*pmdp
)
3601 #endif /* CONFIG_NUMA_BALANCING */
3604 * These routines also need to handle stuff like marking pages dirty
3605 * and/or accessed for architectures that don't do it in hardware (most
3606 * RISC architectures). The early dirtying is also good on the i386.
3608 * There is also a hook called "update_mmu_cache()" that architectures
3609 * with external mmu caches can use to update those (ie the Sparc or
3610 * PowerPC hashed page tables that act as extended TLBs).
3612 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3613 * but allow concurrent faults), and pte mapped but not yet locked.
3614 * We return with mmap_sem still held, but pte unmapped and unlocked.
3616 int handle_pte_fault(struct mm_struct
*mm
,
3617 struct vm_area_struct
*vma
, unsigned long address
,
3618 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3624 if (!pte_present(entry
)) {
3625 if (pte_none(entry
)) {
3627 if (likely(vma
->vm_ops
->fault
))
3628 return do_linear_fault(mm
, vma
, address
,
3629 pte
, pmd
, flags
, entry
);
3631 return do_anonymous_page(mm
, vma
, address
,
3634 if (pte_file(entry
))
3635 return do_nonlinear_fault(mm
, vma
, address
,
3636 pte
, pmd
, flags
, entry
);
3637 return do_swap_page(mm
, vma
, address
,
3638 pte
, pmd
, flags
, entry
);
3641 if (pte_numa(entry
))
3642 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3644 ptl
= pte_lockptr(mm
, pmd
);
3646 if (unlikely(!pte_same(*pte
, entry
)))
3648 if (flags
& FAULT_FLAG_WRITE
) {
3649 if (!pte_write(entry
))
3650 return do_wp_page(mm
, vma
, address
,
3651 pte
, pmd
, ptl
, entry
);
3652 entry
= pte_mkdirty(entry
);
3654 entry
= pte_mkyoung(entry
);
3655 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3656 update_mmu_cache(vma
, address
, pte
);
3659 * This is needed only for protection faults but the arch code
3660 * is not yet telling us if this is a protection fault or not.
3661 * This still avoids useless tlb flushes for .text page faults
3664 if (flags
& FAULT_FLAG_WRITE
)
3665 flush_tlb_fix_spurious_fault(vma
, address
);
3668 pte_unmap_unlock(pte
, ptl
);
3673 * By the time we get here, we already hold the mm semaphore
3675 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3676 unsigned long address
, unsigned int flags
)
3683 __set_current_state(TASK_RUNNING
);
3685 count_vm_event(PGFAULT
);
3686 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3688 /* do counter updates before entering really critical section. */
3689 check_sync_rss_stat(current
);
3691 if (unlikely(is_vm_hugetlb_page(vma
)))
3692 return hugetlb_fault(mm
, vma
, address
, flags
);
3695 pgd
= pgd_offset(mm
, address
);
3696 pud
= pud_alloc(mm
, pgd
, address
);
3698 return VM_FAULT_OOM
;
3699 pmd
= pmd_alloc(mm
, pud
, address
);
3701 return VM_FAULT_OOM
;
3702 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3704 return do_huge_pmd_anonymous_page(mm
, vma
, address
,
3707 pmd_t orig_pmd
= *pmd
;
3711 if (pmd_trans_huge(orig_pmd
)) {
3712 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3715 * If the pmd is splitting, return and retry the
3716 * the fault. Alternative: wait until the split
3717 * is done, and goto retry.
3719 if (pmd_trans_splitting(orig_pmd
))
3722 if (pmd_numa(orig_pmd
))
3723 return do_huge_pmd_numa_page(mm
, vma
, address
,
3726 if (dirty
&& !pmd_write(orig_pmd
)) {
3727 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3730 * If COW results in an oom, the huge pmd will
3731 * have been split, so retry the fault on the
3732 * pte for a smaller charge.
3734 if (unlikely(ret
& VM_FAULT_OOM
))
3738 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3747 return do_pmd_numa_page(mm
, vma
, address
, pmd
);
3750 * Use __pte_alloc instead of pte_alloc_map, because we can't
3751 * run pte_offset_map on the pmd, if an huge pmd could
3752 * materialize from under us from a different thread.
3754 if (unlikely(pmd_none(*pmd
)) &&
3755 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3756 return VM_FAULT_OOM
;
3757 /* if an huge pmd materialized from under us just retry later */
3758 if (unlikely(pmd_trans_huge(*pmd
)))
3761 * A regular pmd is established and it can't morph into a huge pmd
3762 * from under us anymore at this point because we hold the mmap_sem
3763 * read mode and khugepaged takes it in write mode. So now it's
3764 * safe to run pte_offset_map().
3766 pte
= pte_offset_map(pmd
, address
);
3768 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3771 #ifndef __PAGETABLE_PUD_FOLDED
3773 * Allocate page upper directory.
3774 * We've already handled the fast-path in-line.
3776 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3778 pud_t
*new = pud_alloc_one(mm
, address
);
3782 smp_wmb(); /* See comment in __pte_alloc */
3784 spin_lock(&mm
->page_table_lock
);
3785 if (pgd_present(*pgd
)) /* Another has populated it */
3788 pgd_populate(mm
, pgd
, new);
3789 spin_unlock(&mm
->page_table_lock
);
3792 #endif /* __PAGETABLE_PUD_FOLDED */
3794 #ifndef __PAGETABLE_PMD_FOLDED
3796 * Allocate page middle directory.
3797 * We've already handled the fast-path in-line.
3799 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3801 pmd_t
*new = pmd_alloc_one(mm
, address
);
3805 smp_wmb(); /* See comment in __pte_alloc */
3807 spin_lock(&mm
->page_table_lock
);
3808 #ifndef __ARCH_HAS_4LEVEL_HACK
3809 if (pud_present(*pud
)) /* Another has populated it */
3812 pud_populate(mm
, pud
, new);
3814 if (pgd_present(*pud
)) /* Another has populated it */
3817 pgd_populate(mm
, pud
, new);
3818 #endif /* __ARCH_HAS_4LEVEL_HACK */
3819 spin_unlock(&mm
->page_table_lock
);
3822 #endif /* __PAGETABLE_PMD_FOLDED */
3824 int make_pages_present(unsigned long addr
, unsigned long end
)
3826 int ret
, len
, write
;
3827 struct vm_area_struct
* vma
;
3829 vma
= find_vma(current
->mm
, addr
);
3833 * We want to touch writable mappings with a write fault in order
3834 * to break COW, except for shared mappings because these don't COW
3835 * and we would not want to dirty them for nothing.
3837 write
= (vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
;
3838 BUG_ON(addr
>= end
);
3839 BUG_ON(end
> vma
->vm_end
);
3840 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3841 ret
= get_user_pages(current
, current
->mm
, addr
,
3842 len
, write
, 0, NULL
, NULL
);
3845 return ret
== len
? 0 : -EFAULT
;
3848 #if !defined(__HAVE_ARCH_GATE_AREA)
3850 #if defined(AT_SYSINFO_EHDR)
3851 static struct vm_area_struct gate_vma
;
3853 static int __init
gate_vma_init(void)
3855 gate_vma
.vm_mm
= NULL
;
3856 gate_vma
.vm_start
= FIXADDR_USER_START
;
3857 gate_vma
.vm_end
= FIXADDR_USER_END
;
3858 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3859 gate_vma
.vm_page_prot
= __P101
;
3863 __initcall(gate_vma_init
);
3866 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
3868 #ifdef AT_SYSINFO_EHDR
3875 int in_gate_area_no_mm(unsigned long addr
)
3877 #ifdef AT_SYSINFO_EHDR
3878 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3884 #endif /* __HAVE_ARCH_GATE_AREA */
3886 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3887 pte_t
**ptepp
, spinlock_t
**ptlp
)
3894 pgd
= pgd_offset(mm
, address
);
3895 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3898 pud
= pud_offset(pgd
, address
);
3899 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3902 pmd
= pmd_offset(pud
, address
);
3903 VM_BUG_ON(pmd_trans_huge(*pmd
));
3904 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3907 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3911 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3914 if (!pte_present(*ptep
))
3919 pte_unmap_unlock(ptep
, *ptlp
);
3924 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3925 pte_t
**ptepp
, spinlock_t
**ptlp
)
3929 /* (void) is needed to make gcc happy */
3930 (void) __cond_lock(*ptlp
,
3931 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3936 * follow_pfn - look up PFN at a user virtual address
3937 * @vma: memory mapping
3938 * @address: user virtual address
3939 * @pfn: location to store found PFN
3941 * Only IO mappings and raw PFN mappings are allowed.
3943 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3945 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3952 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3955 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3958 *pfn
= pte_pfn(*ptep
);
3959 pte_unmap_unlock(ptep
, ptl
);
3962 EXPORT_SYMBOL(follow_pfn
);
3964 #ifdef CONFIG_HAVE_IOREMAP_PROT
3965 int follow_phys(struct vm_area_struct
*vma
,
3966 unsigned long address
, unsigned int flags
,
3967 unsigned long *prot
, resource_size_t
*phys
)
3973 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3976 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3980 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3983 *prot
= pgprot_val(pte_pgprot(pte
));
3984 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3988 pte_unmap_unlock(ptep
, ptl
);
3993 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3994 void *buf
, int len
, int write
)
3996 resource_size_t phys_addr
;
3997 unsigned long prot
= 0;
3998 void __iomem
*maddr
;
3999 int offset
= addr
& (PAGE_SIZE
-1);
4001 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4004 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
4006 memcpy_toio(maddr
+ offset
, buf
, len
);
4008 memcpy_fromio(buf
, maddr
+ offset
, len
);
4016 * Access another process' address space as given in mm. If non-NULL, use the
4017 * given task for page fault accounting.
4019 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4020 unsigned long addr
, void *buf
, int len
, int write
)
4022 struct vm_area_struct
*vma
;
4023 void *old_buf
= buf
;
4025 down_read(&mm
->mmap_sem
);
4026 /* ignore errors, just check how much was successfully transferred */
4028 int bytes
, ret
, offset
;
4030 struct page
*page
= NULL
;
4032 ret
= get_user_pages(tsk
, mm
, addr
, 1,
4033 write
, 1, &page
, &vma
);
4036 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4037 * we can access using slightly different code.
4039 #ifdef CONFIG_HAVE_IOREMAP_PROT
4040 vma
= find_vma(mm
, addr
);
4041 if (!vma
|| vma
->vm_start
> addr
)
4043 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4044 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4052 offset
= addr
& (PAGE_SIZE
-1);
4053 if (bytes
> PAGE_SIZE
-offset
)
4054 bytes
= PAGE_SIZE
-offset
;
4058 copy_to_user_page(vma
, page
, addr
,
4059 maddr
+ offset
, buf
, bytes
);
4060 set_page_dirty_lock(page
);
4062 copy_from_user_page(vma
, page
, addr
,
4063 buf
, maddr
+ offset
, bytes
);
4066 page_cache_release(page
);
4072 up_read(&mm
->mmap_sem
);
4074 return buf
- old_buf
;
4078 * access_remote_vm - access another process' address space
4079 * @mm: the mm_struct of the target address space
4080 * @addr: start address to access
4081 * @buf: source or destination buffer
4082 * @len: number of bytes to transfer
4083 * @write: whether the access is a write
4085 * The caller must hold a reference on @mm.
4087 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4088 void *buf
, int len
, int write
)
4090 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
4094 * Access another process' address space.
4095 * Source/target buffer must be kernel space,
4096 * Do not walk the page table directly, use get_user_pages
4098 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4099 void *buf
, int len
, int write
)
4101 struct mm_struct
*mm
;
4104 mm
= get_task_mm(tsk
);
4108 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
4115 * Print the name of a VMA.
4117 void print_vma_addr(char *prefix
, unsigned long ip
)
4119 struct mm_struct
*mm
= current
->mm
;
4120 struct vm_area_struct
*vma
;
4123 * Do not print if we are in atomic
4124 * contexts (in exception stacks, etc.):
4126 if (preempt_count())
4129 down_read(&mm
->mmap_sem
);
4130 vma
= find_vma(mm
, ip
);
4131 if (vma
&& vma
->vm_file
) {
4132 struct file
*f
= vma
->vm_file
;
4133 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4137 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
4140 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4142 vma
->vm_end
- vma
->vm_start
);
4143 free_page((unsigned long)buf
);
4146 up_read(&mm
->mmap_sem
);
4149 #ifdef CONFIG_PROVE_LOCKING
4150 void might_fault(void)
4153 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4154 * holding the mmap_sem, this is safe because kernel memory doesn't
4155 * get paged out, therefore we'll never actually fault, and the
4156 * below annotations will generate false positives.
4158 if (segment_eq(get_fs(), KERNEL_DS
))
4163 * it would be nicer only to annotate paths which are not under
4164 * pagefault_disable, however that requires a larger audit and
4165 * providing helpers like get_user_atomic.
4167 if (!in_atomic() && current
->mm
)
4168 might_lock_read(¤t
->mm
->mmap_sem
);
4170 EXPORT_SYMBOL(might_fault
);
4173 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4174 static void clear_gigantic_page(struct page
*page
,
4176 unsigned int pages_per_huge_page
)
4179 struct page
*p
= page
;
4182 for (i
= 0; i
< pages_per_huge_page
;
4183 i
++, p
= mem_map_next(p
, page
, i
)) {
4185 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4188 void clear_huge_page(struct page
*page
,
4189 unsigned long addr
, unsigned int pages_per_huge_page
)
4193 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4194 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4199 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4201 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4205 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4207 struct vm_area_struct
*vma
,
4208 unsigned int pages_per_huge_page
)
4211 struct page
*dst_base
= dst
;
4212 struct page
*src_base
= src
;
4214 for (i
= 0; i
< pages_per_huge_page
; ) {
4216 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4219 dst
= mem_map_next(dst
, dst_base
, i
);
4220 src
= mem_map_next(src
, src_base
, i
);
4224 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4225 unsigned long addr
, struct vm_area_struct
*vma
,
4226 unsigned int pages_per_huge_page
)
4230 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4231 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4232 pages_per_huge_page
);
4237 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4239 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4242 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */