Pull nptcg into release branch
[linux-2.6/cjktty.git] / arch / ia64 / mm / tlb.c
blobd52ec4e83409126647984095dd52bced8856d314
1 /*
2 * TLB support routines.
4 * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * 08/02/00 A. Mallick <asit.k.mallick@intel.com>
8 * Modified RID allocation for SMP
9 * Goutham Rao <goutham.rao@intel.com>
10 * IPI based ptc implementation and A-step IPI implementation.
11 * Rohit Seth <rohit.seth@intel.com>
12 * Ken Chen <kenneth.w.chen@intel.com>
13 * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
14 * Copyright (C) 2007 Intel Corp
15 * Fenghua Yu <fenghua.yu@intel.com>
16 * Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/mm.h>
24 #include <linux/bootmem.h>
26 #include <asm/delay.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pal.h>
30 #include <asm/tlbflush.h>
31 #include <asm/dma.h>
32 #include <asm/processor.h>
33 #include <asm/sal.h>
34 #include <asm/tlb.h>
36 static struct {
37 unsigned long mask; /* mask of supported purge page-sizes */
38 unsigned long max_bits; /* log2 of largest supported purge page-size */
39 } purge;
41 struct ia64_ctx ia64_ctx = {
42 .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
43 .next = 1,
44 .max_ctx = ~0U
47 DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
48 DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/
49 DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
51 struct ia64_tr_entry __per_cpu_idtrs[NR_CPUS][2][IA64_TR_ALLOC_MAX];
54 * Initializes the ia64_ctx.bitmap array based on max_ctx+1.
55 * Called after cpu_init() has setup ia64_ctx.max_ctx based on
56 * maximum RID that is supported by boot CPU.
58 void __init
59 mmu_context_init (void)
61 ia64_ctx.bitmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
62 ia64_ctx.flushmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
66 * Acquire the ia64_ctx.lock before calling this function!
68 void
69 wrap_mmu_context (struct mm_struct *mm)
71 int i, cpu;
72 unsigned long flush_bit;
74 for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
75 flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
76 ia64_ctx.bitmap[i] ^= flush_bit;
79 /* use offset at 300 to skip daemons */
80 ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
81 ia64_ctx.max_ctx, 300);
82 ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
83 ia64_ctx.max_ctx, ia64_ctx.next);
86 * can't call flush_tlb_all() here because of race condition
87 * with O(1) scheduler [EF]
89 cpu = get_cpu(); /* prevent preemption/migration */
90 for_each_online_cpu(i)
91 if (i != cpu)
92 per_cpu(ia64_need_tlb_flush, i) = 1;
93 put_cpu();
94 local_flush_tlb_all();
98 * Implement "spinaphores" ... like counting semaphores, but they
99 * spin instead of sleeping. If there are ever any other users for
100 * this primitive it can be moved up to a spinaphore.h header.
102 struct spinaphore {
103 atomic_t cur;
106 static inline void spinaphore_init(struct spinaphore *ss, int val)
108 atomic_set(&ss->cur, val);
111 static inline void down_spin(struct spinaphore *ss)
113 while (unlikely(!atomic_add_unless(&ss->cur, -1, 0)))
114 while (atomic_read(&ss->cur) == 0)
115 cpu_relax();
118 static inline void up_spin(struct spinaphore *ss)
120 atomic_add(1, &ss->cur);
123 static struct spinaphore ptcg_sem;
124 static u16 nptcg = 1;
125 static int need_ptcg_sem = 1;
126 static int toolatetochangeptcgsem = 0;
129 * Kernel parameter "nptcg=" overrides max number of concurrent global TLB
130 * purges which is reported from either PAL or SAL PALO.
132 * We don't have sanity checking for nptcg value. It's the user's responsibility
133 * for valid nptcg value on the platform. Otherwise, kernel may hang in some
134 * cases.
136 static int __init
137 set_nptcg(char *str)
139 int value = 0;
141 get_option(&str, &value);
142 setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
144 return 1;
147 __setup("nptcg=", set_nptcg);
150 * Maximum number of simultaneous ptc.g purges in the system can
151 * be defined by PAL_VM_SUMMARY (in which case we should take
152 * the smallest value for any cpu in the system) or by the PAL
153 * override table (in which case we should ignore the value from
154 * PAL_VM_SUMMARY).
156 * Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
157 * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
158 * we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
160 * Complicating the logic here is the fact that num_possible_cpus()
161 * isn't fully setup until we start bringing cpus online.
163 void
164 setup_ptcg_sem(int max_purges, int nptcg_from)
166 static int kp_override;
167 static int palo_override;
168 static int firstcpu = 1;
170 if (toolatetochangeptcgsem) {
171 BUG_ON(max_purges < nptcg);
172 return;
175 if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
176 kp_override = 1;
177 nptcg = max_purges;
178 goto resetsema;
180 if (kp_override) {
181 need_ptcg_sem = num_possible_cpus() > nptcg;
182 return;
185 if (nptcg_from == NPTCG_FROM_PALO) {
186 palo_override = 1;
188 /* In PALO max_purges == 0 really means it! */
189 if (max_purges == 0)
190 panic("Whoa! Platform does not support global TLB purges.\n");
191 nptcg = max_purges;
192 if (nptcg == PALO_MAX_TLB_PURGES) {
193 need_ptcg_sem = 0;
194 return;
196 goto resetsema;
198 if (palo_override) {
199 if (nptcg != PALO_MAX_TLB_PURGES)
200 need_ptcg_sem = (num_possible_cpus() > nptcg);
201 return;
204 /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
205 if (max_purges == 0) max_purges = 1;
207 if (firstcpu) {
208 nptcg = max_purges;
209 firstcpu = 0;
211 if (max_purges < nptcg)
212 nptcg = max_purges;
213 if (nptcg == PAL_MAX_PURGES) {
214 need_ptcg_sem = 0;
215 return;
216 } else
217 need_ptcg_sem = (num_possible_cpus() > nptcg);
219 resetsema:
220 spinaphore_init(&ptcg_sem, max_purges);
223 void
224 ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
225 unsigned long end, unsigned long nbits)
227 struct mm_struct *active_mm = current->active_mm;
229 toolatetochangeptcgsem = 1;
231 if (mm != active_mm) {
232 /* Restore region IDs for mm */
233 if (mm && active_mm) {
234 activate_context(mm);
235 } else {
236 flush_tlb_all();
237 return;
241 if (need_ptcg_sem)
242 down_spin(&ptcg_sem);
244 do {
246 * Flush ALAT entries also.
248 ia64_ptcga(start, (nbits << 2));
249 ia64_srlz_i();
250 start += (1UL << nbits);
251 } while (start < end);
253 if (need_ptcg_sem)
254 up_spin(&ptcg_sem);
256 if (mm != active_mm) {
257 activate_context(active_mm);
261 void
262 local_flush_tlb_all (void)
264 unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
266 addr = local_cpu_data->ptce_base;
267 count0 = local_cpu_data->ptce_count[0];
268 count1 = local_cpu_data->ptce_count[1];
269 stride0 = local_cpu_data->ptce_stride[0];
270 stride1 = local_cpu_data->ptce_stride[1];
272 local_irq_save(flags);
273 for (i = 0; i < count0; ++i) {
274 for (j = 0; j < count1; ++j) {
275 ia64_ptce(addr);
276 addr += stride1;
278 addr += stride0;
280 local_irq_restore(flags);
281 ia64_srlz_i(); /* srlz.i implies srlz.d */
284 void
285 flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
286 unsigned long end)
288 struct mm_struct *mm = vma->vm_mm;
289 unsigned long size = end - start;
290 unsigned long nbits;
292 #ifndef CONFIG_SMP
293 if (mm != current->active_mm) {
294 mm->context = 0;
295 return;
297 #endif
299 nbits = ia64_fls(size + 0xfff);
300 while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
301 (nbits < purge.max_bits))
302 ++nbits;
303 if (nbits > purge.max_bits)
304 nbits = purge.max_bits;
305 start &= ~((1UL << nbits) - 1);
307 preempt_disable();
308 #ifdef CONFIG_SMP
309 if (mm != current->active_mm || cpus_weight(mm->cpu_vm_mask) != 1) {
310 platform_global_tlb_purge(mm, start, end, nbits);
311 preempt_enable();
312 return;
314 #endif
315 do {
316 ia64_ptcl(start, (nbits<<2));
317 start += (1UL << nbits);
318 } while (start < end);
319 preempt_enable();
320 ia64_srlz_i(); /* srlz.i implies srlz.d */
322 EXPORT_SYMBOL(flush_tlb_range);
324 void __devinit
325 ia64_tlb_init (void)
327 ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */
328 unsigned long tr_pgbits;
329 long status;
330 pal_vm_info_1_u_t vm_info_1;
331 pal_vm_info_2_u_t vm_info_2;
332 int cpu = smp_processor_id();
334 if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
335 printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
336 "defaulting to architected purge page-sizes.\n", status);
337 purge.mask = 0x115557000UL;
339 purge.max_bits = ia64_fls(purge.mask);
341 ia64_get_ptce(&ptce_info);
342 local_cpu_data->ptce_base = ptce_info.base;
343 local_cpu_data->ptce_count[0] = ptce_info.count[0];
344 local_cpu_data->ptce_count[1] = ptce_info.count[1];
345 local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
346 local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
348 local_flush_tlb_all(); /* nuke left overs from bootstrapping... */
349 status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
351 if (status) {
352 printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
353 per_cpu(ia64_tr_num, cpu) = 8;
354 return;
356 per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
357 if (per_cpu(ia64_tr_num, cpu) >
358 (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
359 per_cpu(ia64_tr_num, cpu) =
360 vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
361 if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
362 per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
363 printk(KERN_DEBUG "TR register number exceeds IA64_TR_ALLOC_MAX!"
364 "IA64_TR_ALLOC_MAX should be extended\n");
369 * is_tr_overlap
371 * Check overlap with inserted TRs.
373 static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
375 u64 tr_log_size;
376 u64 tr_end;
377 u64 va_rr = ia64_get_rr(va);
378 u64 va_rid = RR_TO_RID(va_rr);
379 u64 va_end = va + (1<<log_size) - 1;
381 if (va_rid != RR_TO_RID(p->rr))
382 return 0;
383 tr_log_size = (p->itir & 0xff) >> 2;
384 tr_end = p->ifa + (1<<tr_log_size) - 1;
386 if (va > tr_end || p->ifa > va_end)
387 return 0;
388 return 1;
393 * ia64_insert_tr in virtual mode. Allocate a TR slot
395 * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
397 * va : virtual address.
398 * pte : pte entries inserted.
399 * log_size: range to be covered.
401 * Return value: <0 : error No.
403 * >=0 : slot number allocated for TR.
404 * Must be called with preemption disabled.
406 int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
408 int i, r;
409 unsigned long psr;
410 struct ia64_tr_entry *p;
411 int cpu = smp_processor_id();
413 r = -EINVAL;
414 /*Check overlap with existing TR entries*/
415 if (target_mask & 0x1) {
416 p = &__per_cpu_idtrs[cpu][0][0];
417 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
418 i++, p++) {
419 if (p->pte & 0x1)
420 if (is_tr_overlap(p, va, log_size)) {
421 printk(KERN_DEBUG "Overlapped Entry"
422 "Inserted for TR Reigster!!\n");
423 goto out;
427 if (target_mask & 0x2) {
428 p = &__per_cpu_idtrs[cpu][1][0];
429 for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
430 i++, p++) {
431 if (p->pte & 0x1)
432 if (is_tr_overlap(p, va, log_size)) {
433 printk(KERN_DEBUG "Overlapped Entry"
434 "Inserted for TR Reigster!!\n");
435 goto out;
440 for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
441 switch (target_mask & 0x3) {
442 case 1:
443 if (!(__per_cpu_idtrs[cpu][0][i].pte & 0x1))
444 goto found;
445 continue;
446 case 2:
447 if (!(__per_cpu_idtrs[cpu][1][i].pte & 0x1))
448 goto found;
449 continue;
450 case 3:
451 if (!(__per_cpu_idtrs[cpu][0][i].pte & 0x1) &&
452 !(__per_cpu_idtrs[cpu][1][i].pte & 0x1))
453 goto found;
454 continue;
455 default:
456 r = -EINVAL;
457 goto out;
460 found:
461 if (i >= per_cpu(ia64_tr_num, cpu))
462 return -EBUSY;
464 /*Record tr info for mca hander use!*/
465 if (i > per_cpu(ia64_tr_used, cpu))
466 per_cpu(ia64_tr_used, cpu) = i;
468 psr = ia64_clear_ic();
469 if (target_mask & 0x1) {
470 ia64_itr(0x1, i, va, pte, log_size);
471 ia64_srlz_i();
472 p = &__per_cpu_idtrs[cpu][0][i];
473 p->ifa = va;
474 p->pte = pte;
475 p->itir = log_size << 2;
476 p->rr = ia64_get_rr(va);
478 if (target_mask & 0x2) {
479 ia64_itr(0x2, i, va, pte, log_size);
480 ia64_srlz_i();
481 p = &__per_cpu_idtrs[cpu][1][i];
482 p->ifa = va;
483 p->pte = pte;
484 p->itir = log_size << 2;
485 p->rr = ia64_get_rr(va);
487 ia64_set_psr(psr);
488 r = i;
489 out:
490 return r;
492 EXPORT_SYMBOL_GPL(ia64_itr_entry);
495 * ia64_purge_tr
497 * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
498 * slot: slot number to be freed.
500 * Must be called with preemption disabled.
502 void ia64_ptr_entry(u64 target_mask, int slot)
504 int cpu = smp_processor_id();
505 int i;
506 struct ia64_tr_entry *p;
508 if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
509 return;
511 if (target_mask & 0x1) {
512 p = &__per_cpu_idtrs[cpu][0][slot];
513 if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
514 p->pte = 0;
515 ia64_ptr(0x1, p->ifa, p->itir>>2);
516 ia64_srlz_i();
520 if (target_mask & 0x2) {
521 p = &__per_cpu_idtrs[cpu][1][slot];
522 if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
523 p->pte = 0;
524 ia64_ptr(0x2, p->ifa, p->itir>>2);
525 ia64_srlz_i();
529 for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
530 if ((__per_cpu_idtrs[cpu][0][i].pte & 0x1) ||
531 (__per_cpu_idtrs[cpu][1][i].pte & 0x1))
532 break;
534 per_cpu(ia64_tr_used, cpu) = i;
536 EXPORT_SYMBOL_GPL(ia64_ptr_entry);