2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
71 static int cciss_allow_hpsa
;
72 module_param(cciss_allow_hpsa
, int, S_IRUGO
|S_IWUSR
);
73 MODULE_PARM_DESC(cciss_allow_hpsa
,
74 "Prevent cciss driver from accessing hardware known to be "
75 " supported by the hpsa driver");
77 #include "cciss_cmd.h"
79 #include <linux/cciss_ioctl.h>
81 /* define the PCI info for the cards we can control */
82 static const struct pci_device_id cciss_pci_device_id
[] = {
83 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
84 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
85 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
86 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
87 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
88 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
89 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
90 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
91 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
113 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
115 /* board_id = Subsystem Device ID & Vendor ID
116 * product = Marketing Name for the board
117 * access = Address of the struct of function pointers
119 static struct board_type products
[] = {
120 {0x40700E11, "Smart Array 5300", &SA5_access
},
121 {0x40800E11, "Smart Array 5i", &SA5B_access
},
122 {0x40820E11, "Smart Array 532", &SA5B_access
},
123 {0x40830E11, "Smart Array 5312", &SA5B_access
},
124 {0x409A0E11, "Smart Array 641", &SA5_access
},
125 {0x409B0E11, "Smart Array 642", &SA5_access
},
126 {0x409C0E11, "Smart Array 6400", &SA5_access
},
127 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
128 {0x40910E11, "Smart Array 6i", &SA5_access
},
129 {0x3225103C, "Smart Array P600", &SA5_access
},
130 {0x3235103C, "Smart Array P400i", &SA5_access
},
131 {0x3211103C, "Smart Array E200i", &SA5_access
},
132 {0x3212103C, "Smart Array E200", &SA5_access
},
133 {0x3213103C, "Smart Array E200i", &SA5_access
},
134 {0x3214103C, "Smart Array E200i", &SA5_access
},
135 {0x3215103C, "Smart Array E200i", &SA5_access
},
136 {0x3237103C, "Smart Array E500", &SA5_access
},
137 /* controllers below this line are also supported by the hpsa driver. */
138 #define HPSA_BOUNDARY 0x3223103C
139 {0x3223103C, "Smart Array P800", &SA5_access
},
140 {0x3234103C, "Smart Array P400", &SA5_access
},
141 {0x323D103C, "Smart Array P700m", &SA5_access
},
142 {0x3241103C, "Smart Array P212", &SA5_access
},
143 {0x3243103C, "Smart Array P410", &SA5_access
},
144 {0x3245103C, "Smart Array P410i", &SA5_access
},
145 {0x3247103C, "Smart Array P411", &SA5_access
},
146 {0x3249103C, "Smart Array P812", &SA5_access
},
147 {0x324A103C, "Smart Array P712m", &SA5_access
},
148 {0x324B103C, "Smart Array P711m", &SA5_access
},
151 /* How long to wait (in milliseconds) for board to go into simple mode */
152 #define MAX_CONFIG_WAIT 30000
153 #define MAX_IOCTL_CONFIG_WAIT 1000
155 /*define how many times we will try a command because of bus resets */
156 #define MAX_CMD_RETRIES 3
160 /* Originally cciss driver only supports 8 major numbers */
161 #define MAX_CTLR_ORIG 8
163 static ctlr_info_t
*hba
[MAX_CTLR
];
165 static struct task_struct
*cciss_scan_thread
;
166 static DEFINE_MUTEX(scan_mutex
);
167 static LIST_HEAD(scan_q
);
169 static void do_cciss_request(struct request_queue
*q
);
170 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
);
171 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
172 static int cciss_release(struct gendisk
*disk
, fmode_t mode
);
173 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
174 unsigned int cmd
, unsigned long arg
);
175 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
177 static int cciss_revalidate(struct gendisk
*disk
);
178 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
, int via_ioctl
);
179 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
180 int clear_all
, int via_ioctl
);
182 static void cciss_read_capacity(int ctlr
, int logvol
,
183 sector_t
*total_size
, unsigned int *block_size
);
184 static void cciss_read_capacity_16(int ctlr
, int logvol
,
185 sector_t
*total_size
, unsigned int *block_size
);
186 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
188 unsigned int block_size
, InquiryData_struct
*inq_buff
,
189 drive_info_struct
*drv
);
190 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*, struct pci_dev
*,
192 static void start_io(ctlr_info_t
*h
);
193 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
194 __u8 page_code
, unsigned char scsi3addr
[],
196 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
198 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
200 static void fail_all_cmds(unsigned long ctlr
);
201 static int add_to_scan_list(struct ctlr_info
*h
);
202 static int scan_thread(void *data
);
203 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
204 static void cciss_hba_release(struct device
*dev
);
205 static void cciss_device_release(struct device
*dev
);
206 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
);
207 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
);
209 #ifdef CONFIG_PROC_FS
210 static void cciss_procinit(int i
);
212 static void cciss_procinit(int i
)
215 #endif /* CONFIG_PROC_FS */
218 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
219 unsigned, unsigned long);
222 static const struct block_device_operations cciss_fops
= {
223 .owner
= THIS_MODULE
,
225 .release
= cciss_release
,
226 .locked_ioctl
= cciss_ioctl
,
227 .getgeo
= cciss_getgeo
,
229 .compat_ioctl
= cciss_compat_ioctl
,
231 .revalidate_disk
= cciss_revalidate
,
235 * Enqueuing and dequeuing functions for cmdlists.
237 static inline void addQ(struct hlist_head
*list
, CommandList_struct
*c
)
239 hlist_add_head(&c
->list
, list
);
242 static inline void removeQ(CommandList_struct
*c
)
245 * After kexec/dump some commands might still
246 * be in flight, which the firmware will try
247 * to complete. Resetting the firmware doesn't work
248 * with old fw revisions, so we have to mark
249 * them off as 'stale' to prevent the driver from
252 if (WARN_ON(hlist_unhashed(&c
->list
))) {
253 c
->cmd_type
= CMD_MSG_STALE
;
257 hlist_del_init(&c
->list
);
260 static void cciss_free_sg_chain_blocks(SGDescriptor_struct
**cmd_sg_list
,
267 for (i
= 0; i
< nr_cmds
; i
++) {
268 kfree(cmd_sg_list
[i
]);
269 cmd_sg_list
[i
] = NULL
;
274 static SGDescriptor_struct
**cciss_allocate_sg_chain_blocks(
275 ctlr_info_t
*h
, int chainsize
, int nr_cmds
)
278 SGDescriptor_struct
**cmd_sg_list
;
283 cmd_sg_list
= kmalloc(sizeof(*cmd_sg_list
) * nr_cmds
, GFP_KERNEL
);
287 /* Build up chain blocks for each command */
288 for (j
= 0; j
< nr_cmds
; j
++) {
289 /* Need a block of chainsized s/g elements. */
290 cmd_sg_list
[j
] = kmalloc((chainsize
*
291 sizeof(*cmd_sg_list
[j
])), GFP_KERNEL
);
292 if (!cmd_sg_list
[j
]) {
293 dev_err(&h
->pdev
->dev
, "Cannot get memory "
294 "for s/g chains.\n");
300 cciss_free_sg_chain_blocks(cmd_sg_list
, nr_cmds
);
304 static void cciss_unmap_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
)
306 SGDescriptor_struct
*chain_sg
;
309 if (c
->Header
.SGTotal
<= h
->max_cmd_sgentries
)
312 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
313 temp64
.val32
.lower
= chain_sg
->Addr
.lower
;
314 temp64
.val32
.upper
= chain_sg
->Addr
.upper
;
315 pci_unmap_single(h
->pdev
, temp64
.val
, chain_sg
->Len
, PCI_DMA_TODEVICE
);
318 static void cciss_map_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
,
319 SGDescriptor_struct
*chain_block
, int len
)
321 SGDescriptor_struct
*chain_sg
;
324 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
325 chain_sg
->Ext
= CCISS_SG_CHAIN
;
327 temp64
.val
= pci_map_single(h
->pdev
, chain_block
, len
,
329 chain_sg
->Addr
.lower
= temp64
.val32
.lower
;
330 chain_sg
->Addr
.upper
= temp64
.val32
.upper
;
333 #include "cciss_scsi.c" /* For SCSI tape support */
335 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
338 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
340 #ifdef CONFIG_PROC_FS
343 * Report information about this controller.
345 #define ENG_GIG 1000000000
346 #define ENG_GIG_FACTOR (ENG_GIG/512)
347 #define ENGAGE_SCSI "engage scsi"
349 static struct proc_dir_entry
*proc_cciss
;
351 static void cciss_seq_show_header(struct seq_file
*seq
)
353 ctlr_info_t
*h
= seq
->private;
355 seq_printf(seq
, "%s: HP %s Controller\n"
356 "Board ID: 0x%08lx\n"
357 "Firmware Version: %c%c%c%c\n"
359 "Logical drives: %d\n"
360 "Current Q depth: %d\n"
361 "Current # commands on controller: %d\n"
362 "Max Q depth since init: %d\n"
363 "Max # commands on controller since init: %d\n"
364 "Max SG entries since init: %d\n",
367 (unsigned long)h
->board_id
,
368 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
369 h
->firm_ver
[3], (unsigned int)h
->intr
[SIMPLE_MODE_INT
],
371 h
->Qdepth
, h
->commands_outstanding
,
372 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
374 #ifdef CONFIG_CISS_SCSI_TAPE
375 cciss_seq_tape_report(seq
, h
->ctlr
);
376 #endif /* CONFIG_CISS_SCSI_TAPE */
379 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
381 ctlr_info_t
*h
= seq
->private;
382 unsigned ctlr
= h
->ctlr
;
385 /* prevent displaying bogus info during configuration
386 * or deconfiguration of a logical volume
388 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
389 if (h
->busy_configuring
) {
390 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
391 return ERR_PTR(-EBUSY
);
393 h
->busy_configuring
= 1;
394 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
397 cciss_seq_show_header(seq
);
402 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
404 sector_t vol_sz
, vol_sz_frac
;
405 ctlr_info_t
*h
= seq
->private;
406 unsigned ctlr
= h
->ctlr
;
408 drive_info_struct
*drv
= h
->drv
[*pos
];
410 if (*pos
> h
->highest_lun
)
413 if (drv
== NULL
) /* it's possible for h->drv[] to have holes. */
419 vol_sz
= drv
->nr_blocks
;
420 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
422 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
424 if (drv
->raid_level
< 0 || drv
->raid_level
> RAID_UNKNOWN
)
425 drv
->raid_level
= RAID_UNKNOWN
;
426 seq_printf(seq
, "cciss/c%dd%d:"
427 "\t%4u.%02uGB\tRAID %s\n",
428 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
429 raid_label
[drv
->raid_level
]);
433 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
435 ctlr_info_t
*h
= seq
->private;
437 if (*pos
> h
->highest_lun
)
444 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
446 ctlr_info_t
*h
= seq
->private;
448 /* Only reset h->busy_configuring if we succeeded in setting
449 * it during cciss_seq_start. */
450 if (v
== ERR_PTR(-EBUSY
))
453 h
->busy_configuring
= 0;
456 static const struct seq_operations cciss_seq_ops
= {
457 .start
= cciss_seq_start
,
458 .show
= cciss_seq_show
,
459 .next
= cciss_seq_next
,
460 .stop
= cciss_seq_stop
,
463 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
465 int ret
= seq_open(file
, &cciss_seq_ops
);
466 struct seq_file
*seq
= file
->private_data
;
469 seq
->private = PDE(inode
)->data
;
475 cciss_proc_write(struct file
*file
, const char __user
*buf
,
476 size_t length
, loff_t
*ppos
)
481 #ifndef CONFIG_CISS_SCSI_TAPE
485 if (!buf
|| length
> PAGE_SIZE
- 1)
488 buffer
= (char *)__get_free_page(GFP_KERNEL
);
493 if (copy_from_user(buffer
, buf
, length
))
495 buffer
[length
] = '\0';
497 #ifdef CONFIG_CISS_SCSI_TAPE
498 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
499 struct seq_file
*seq
= file
->private_data
;
500 ctlr_info_t
*h
= seq
->private;
502 err
= cciss_engage_scsi(h
->ctlr
);
506 #endif /* CONFIG_CISS_SCSI_TAPE */
508 /* might be nice to have "disengage" too, but it's not
509 safely possible. (only 1 module use count, lock issues.) */
512 free_page((unsigned long)buffer
);
516 static const struct file_operations cciss_proc_fops
= {
517 .owner
= THIS_MODULE
,
518 .open
= cciss_seq_open
,
521 .release
= seq_release
,
522 .write
= cciss_proc_write
,
525 static void __devinit
cciss_procinit(int i
)
527 struct proc_dir_entry
*pde
;
529 if (proc_cciss
== NULL
)
530 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
533 pde
= proc_create_data(hba
[i
]->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
535 &cciss_proc_fops
, hba
[i
]);
537 #endif /* CONFIG_PROC_FS */
539 #define MAX_PRODUCT_NAME_LEN 19
541 #define to_hba(n) container_of(n, struct ctlr_info, dev)
542 #define to_drv(n) container_of(n, drive_info_struct, dev)
544 static ssize_t
host_store_rescan(struct device
*dev
,
545 struct device_attribute
*attr
,
546 const char *buf
, size_t count
)
548 struct ctlr_info
*h
= to_hba(dev
);
551 wake_up_process(cciss_scan_thread
);
552 wait_for_completion_interruptible(&h
->scan_wait
);
556 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
558 static ssize_t
dev_show_unique_id(struct device
*dev
,
559 struct device_attribute
*attr
,
562 drive_info_struct
*drv
= to_drv(dev
);
563 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
568 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
569 if (h
->busy_configuring
)
572 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
573 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
578 return snprintf(buf
, 16 * 2 + 2,
579 "%02X%02X%02X%02X%02X%02X%02X%02X"
580 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
581 sn
[0], sn
[1], sn
[2], sn
[3],
582 sn
[4], sn
[5], sn
[6], sn
[7],
583 sn
[8], sn
[9], sn
[10], sn
[11],
584 sn
[12], sn
[13], sn
[14], sn
[15]);
586 static DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
588 static ssize_t
dev_show_vendor(struct device
*dev
,
589 struct device_attribute
*attr
,
592 drive_info_struct
*drv
= to_drv(dev
);
593 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
594 char vendor
[VENDOR_LEN
+ 1];
598 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
599 if (h
->busy_configuring
)
602 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
603 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
608 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
610 static DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
612 static ssize_t
dev_show_model(struct device
*dev
,
613 struct device_attribute
*attr
,
616 drive_info_struct
*drv
= to_drv(dev
);
617 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
618 char model
[MODEL_LEN
+ 1];
622 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
623 if (h
->busy_configuring
)
626 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
627 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
632 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
634 static DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
636 static ssize_t
dev_show_rev(struct device
*dev
,
637 struct device_attribute
*attr
,
640 drive_info_struct
*drv
= to_drv(dev
);
641 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
642 char rev
[REV_LEN
+ 1];
646 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
647 if (h
->busy_configuring
)
650 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
651 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
656 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
658 static DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
660 static ssize_t
cciss_show_lunid(struct device
*dev
,
661 struct device_attribute
*attr
, char *buf
)
663 drive_info_struct
*drv
= to_drv(dev
);
664 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
666 unsigned char lunid
[8];
668 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
669 if (h
->busy_configuring
) {
670 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
674 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
677 memcpy(lunid
, drv
->LunID
, sizeof(lunid
));
678 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
679 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
680 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
681 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
683 static DEVICE_ATTR(lunid
, S_IRUGO
, cciss_show_lunid
, NULL
);
685 static ssize_t
cciss_show_raid_level(struct device
*dev
,
686 struct device_attribute
*attr
, char *buf
)
688 drive_info_struct
*drv
= to_drv(dev
);
689 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
693 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
694 if (h
->busy_configuring
) {
695 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
698 raid
= drv
->raid_level
;
699 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
700 if (raid
< 0 || raid
> RAID_UNKNOWN
)
703 return snprintf(buf
, strlen(raid_label
[raid
]) + 7, "RAID %s\n",
706 static DEVICE_ATTR(raid_level
, S_IRUGO
, cciss_show_raid_level
, NULL
);
708 static ssize_t
cciss_show_usage_count(struct device
*dev
,
709 struct device_attribute
*attr
, char *buf
)
711 drive_info_struct
*drv
= to_drv(dev
);
712 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
716 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
717 if (h
->busy_configuring
) {
718 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
721 count
= drv
->usage_count
;
722 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
723 return snprintf(buf
, 20, "%d\n", count
);
725 static DEVICE_ATTR(usage_count
, S_IRUGO
, cciss_show_usage_count
, NULL
);
727 static struct attribute
*cciss_host_attrs
[] = {
728 &dev_attr_rescan
.attr
,
732 static struct attribute_group cciss_host_attr_group
= {
733 .attrs
= cciss_host_attrs
,
736 static const struct attribute_group
*cciss_host_attr_groups
[] = {
737 &cciss_host_attr_group
,
741 static struct device_type cciss_host_type
= {
742 .name
= "cciss_host",
743 .groups
= cciss_host_attr_groups
,
744 .release
= cciss_hba_release
,
747 static struct attribute
*cciss_dev_attrs
[] = {
748 &dev_attr_unique_id
.attr
,
749 &dev_attr_model
.attr
,
750 &dev_attr_vendor
.attr
,
752 &dev_attr_lunid
.attr
,
753 &dev_attr_raid_level
.attr
,
754 &dev_attr_usage_count
.attr
,
758 static struct attribute_group cciss_dev_attr_group
= {
759 .attrs
= cciss_dev_attrs
,
762 static const struct attribute_group
*cciss_dev_attr_groups
[] = {
763 &cciss_dev_attr_group
,
767 static struct device_type cciss_dev_type
= {
768 .name
= "cciss_device",
769 .groups
= cciss_dev_attr_groups
,
770 .release
= cciss_device_release
,
773 static struct bus_type cciss_bus_type
= {
778 * cciss_hba_release is called when the reference count
779 * of h->dev goes to zero.
781 static void cciss_hba_release(struct device
*dev
)
784 * nothing to do, but need this to avoid a warning
785 * about not having a release handler from lib/kref.c.
790 * Initialize sysfs entry for each controller. This sets up and registers
791 * the 'cciss#' directory for each individual controller under
792 * /sys/bus/pci/devices/<dev>/.
794 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
796 device_initialize(&h
->dev
);
797 h
->dev
.type
= &cciss_host_type
;
798 h
->dev
.bus
= &cciss_bus_type
;
799 dev_set_name(&h
->dev
, "%s", h
->devname
);
800 h
->dev
.parent
= &h
->pdev
->dev
;
802 return device_add(&h
->dev
);
806 * Remove sysfs entries for an hba.
808 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
811 put_device(&h
->dev
); /* final put. */
814 /* cciss_device_release is called when the reference count
815 * of h->drv[x]dev goes to zero.
817 static void cciss_device_release(struct device
*dev
)
819 drive_info_struct
*drv
= to_drv(dev
);
824 * Initialize sysfs for each logical drive. This sets up and registers
825 * the 'c#d#' directory for each individual logical drive under
826 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
827 * /sys/block/cciss!c#d# to this entry.
829 static long cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
834 if (h
->drv
[drv_index
]->device_initialized
)
837 dev
= &h
->drv
[drv_index
]->dev
;
838 device_initialize(dev
);
839 dev
->type
= &cciss_dev_type
;
840 dev
->bus
= &cciss_bus_type
;
841 dev_set_name(dev
, "c%dd%d", h
->ctlr
, drv_index
);
842 dev
->parent
= &h
->dev
;
843 h
->drv
[drv_index
]->device_initialized
= 1;
844 return device_add(dev
);
848 * Remove sysfs entries for a logical drive.
850 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info
*h
, int drv_index
,
853 struct device
*dev
= &h
->drv
[drv_index
]->dev
;
855 /* special case for c*d0, we only destroy it on controller exit */
856 if (drv_index
== 0 && !ctlr_exiting
)
860 put_device(dev
); /* the "final" put. */
861 h
->drv
[drv_index
] = NULL
;
865 * For operations that cannot sleep, a command block is allocated at init,
866 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
867 * which ones are free or in use. For operations that can wait for kmalloc
868 * to possible sleep, this routine can be called with get_from_pool set to 0.
869 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
871 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
, int get_from_pool
)
873 CommandList_struct
*c
;
876 dma_addr_t cmd_dma_handle
, err_dma_handle
;
878 if (!get_from_pool
) {
879 c
= (CommandList_struct
*) pci_alloc_consistent(h
->pdev
,
880 sizeof(CommandList_struct
), &cmd_dma_handle
);
883 memset(c
, 0, sizeof(CommandList_struct
));
887 c
->err_info
= (ErrorInfo_struct
*)
888 pci_alloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
891 if (c
->err_info
== NULL
) {
892 pci_free_consistent(h
->pdev
,
893 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
896 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
897 } else { /* get it out of the controllers pool */
900 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
903 } while (test_and_set_bit
904 (i
& (BITS_PER_LONG
- 1),
905 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
907 printk(KERN_DEBUG
"cciss: using command buffer %d\n", i
);
910 memset(c
, 0, sizeof(CommandList_struct
));
911 cmd_dma_handle
= h
->cmd_pool_dhandle
912 + i
* sizeof(CommandList_struct
);
913 c
->err_info
= h
->errinfo_pool
+ i
;
914 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
915 err_dma_handle
= h
->errinfo_pool_dhandle
916 + i
* sizeof(ErrorInfo_struct
);
922 INIT_HLIST_NODE(&c
->list
);
923 c
->busaddr
= (__u32
) cmd_dma_handle
;
924 temp64
.val
= (__u64
) err_dma_handle
;
925 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
926 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
927 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
934 * Frees a command block that was previously allocated with cmd_alloc().
936 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
, int got_from_pool
)
941 if (!got_from_pool
) {
942 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
943 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
944 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
945 c
->err_info
, (dma_addr_t
) temp64
.val
);
946 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
),
947 c
, (dma_addr_t
) c
->busaddr
);
950 clear_bit(i
& (BITS_PER_LONG
- 1),
951 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
956 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
958 return disk
->queue
->queuedata
;
961 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
963 return disk
->private_data
;
967 * Open. Make sure the device is really there.
969 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
971 ctlr_info_t
*host
= get_host(bdev
->bd_disk
);
972 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
975 printk(KERN_DEBUG
"cciss_open %s\n", bdev
->bd_disk
->disk_name
);
976 #endif /* CCISS_DEBUG */
978 if (drv
->busy_configuring
)
981 * Root is allowed to open raw volume zero even if it's not configured
982 * so array config can still work. Root is also allowed to open any
983 * volume that has a LUN ID, so it can issue IOCTL to reread the
984 * disk information. I don't think I really like this
985 * but I'm already using way to many device nodes to claim another one
986 * for "raw controller".
988 if (drv
->heads
== 0) {
989 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
990 /* if not node 0 make sure it is a partition = 0 */
991 if (MINOR(bdev
->bd_dev
) & 0x0f) {
993 /* if it is, make sure we have a LUN ID */
994 } else if (memcmp(drv
->LunID
, CTLR_LUNID
,
995 sizeof(drv
->LunID
))) {
999 if (!capable(CAP_SYS_ADMIN
))
1003 host
->usage_count
++;
1008 * Close. Sync first.
1010 static int cciss_release(struct gendisk
*disk
, fmode_t mode
)
1012 ctlr_info_t
*host
= get_host(disk
);
1013 drive_info_struct
*drv
= get_drv(disk
);
1016 printk(KERN_DEBUG
"cciss_release %s\n", disk
->disk_name
);
1017 #endif /* CCISS_DEBUG */
1020 host
->usage_count
--;
1024 #ifdef CONFIG_COMPAT
1026 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
1027 unsigned cmd
, unsigned long arg
)
1031 ret
= cciss_ioctl(bdev
, mode
, cmd
, arg
);
1036 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1037 unsigned cmd
, unsigned long arg
);
1038 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1039 unsigned cmd
, unsigned long arg
);
1041 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1042 unsigned cmd
, unsigned long arg
)
1045 case CCISS_GETPCIINFO
:
1046 case CCISS_GETINTINFO
:
1047 case CCISS_SETINTINFO
:
1048 case CCISS_GETNODENAME
:
1049 case CCISS_SETNODENAME
:
1050 case CCISS_GETHEARTBEAT
:
1051 case CCISS_GETBUSTYPES
:
1052 case CCISS_GETFIRMVER
:
1053 case CCISS_GETDRIVVER
:
1054 case CCISS_REVALIDVOLS
:
1055 case CCISS_DEREGDISK
:
1056 case CCISS_REGNEWDISK
:
1058 case CCISS_RESCANDISK
:
1059 case CCISS_GETLUNINFO
:
1060 return do_ioctl(bdev
, mode
, cmd
, arg
);
1062 case CCISS_PASSTHRU32
:
1063 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
1064 case CCISS_BIG_PASSTHRU32
:
1065 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
1068 return -ENOIOCTLCMD
;
1072 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1073 unsigned cmd
, unsigned long arg
)
1075 IOCTL32_Command_struct __user
*arg32
=
1076 (IOCTL32_Command_struct __user
*) arg
;
1077 IOCTL_Command_struct arg64
;
1078 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
1084 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1085 sizeof(arg64
.LUN_info
));
1087 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1088 sizeof(arg64
.Request
));
1090 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1091 sizeof(arg64
.error_info
));
1092 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1093 err
|= get_user(cp
, &arg32
->buf
);
1094 arg64
.buf
= compat_ptr(cp
);
1095 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1100 err
= do_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
1104 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1105 sizeof(arg32
->error_info
));
1111 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1112 unsigned cmd
, unsigned long arg
)
1114 BIG_IOCTL32_Command_struct __user
*arg32
=
1115 (BIG_IOCTL32_Command_struct __user
*) arg
;
1116 BIG_IOCTL_Command_struct arg64
;
1117 BIG_IOCTL_Command_struct __user
*p
=
1118 compat_alloc_user_space(sizeof(arg64
));
1124 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1125 sizeof(arg64
.LUN_info
));
1127 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1128 sizeof(arg64
.Request
));
1130 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1131 sizeof(arg64
.error_info
));
1132 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1133 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
1134 err
|= get_user(cp
, &arg32
->buf
);
1135 arg64
.buf
= compat_ptr(cp
);
1136 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1141 err
= do_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
1145 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1146 sizeof(arg32
->error_info
));
1153 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1155 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1157 if (!drv
->cylinders
)
1160 geo
->heads
= drv
->heads
;
1161 geo
->sectors
= drv
->sectors
;
1162 geo
->cylinders
= drv
->cylinders
;
1166 static void check_ioctl_unit_attention(ctlr_info_t
*host
, CommandList_struct
*c
)
1168 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
1169 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
1170 (void)check_for_unit_attention(host
, c
);
1175 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
1176 unsigned int cmd
, unsigned long arg
)
1178 struct gendisk
*disk
= bdev
->bd_disk
;
1179 ctlr_info_t
*host
= get_host(disk
);
1180 drive_info_struct
*drv
= get_drv(disk
);
1181 int ctlr
= host
->ctlr
;
1182 void __user
*argp
= (void __user
*)arg
;
1185 printk(KERN_DEBUG
"cciss_ioctl: Called with cmd=%x %lx\n", cmd
, arg
);
1186 #endif /* CCISS_DEBUG */
1189 case CCISS_GETPCIINFO
:
1191 cciss_pci_info_struct pciinfo
;
1195 pciinfo
.domain
= pci_domain_nr(host
->pdev
->bus
);
1196 pciinfo
.bus
= host
->pdev
->bus
->number
;
1197 pciinfo
.dev_fn
= host
->pdev
->devfn
;
1198 pciinfo
.board_id
= host
->board_id
;
1200 (argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
1204 case CCISS_GETINTINFO
:
1206 cciss_coalint_struct intinfo
;
1210 readl(&host
->cfgtable
->HostWrite
.CoalIntDelay
);
1212 readl(&host
->cfgtable
->HostWrite
.CoalIntCount
);
1214 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
1218 case CCISS_SETINTINFO
:
1220 cciss_coalint_struct intinfo
;
1221 unsigned long flags
;
1226 if (!capable(CAP_SYS_ADMIN
))
1229 (&intinfo
, argp
, sizeof(cciss_coalint_struct
)))
1231 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
1233 // printk("cciss_ioctl: delay and count cannot be 0\n");
1236 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1237 /* Update the field, and then ring the doorbell */
1238 writel(intinfo
.delay
,
1239 &(host
->cfgtable
->HostWrite
.CoalIntDelay
));
1240 writel(intinfo
.count
,
1241 &(host
->cfgtable
->HostWrite
.CoalIntCount
));
1242 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1244 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1245 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1246 & CFGTBL_ChangeReq
))
1248 /* delay and try again */
1251 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1252 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1256 case CCISS_GETNODENAME
:
1258 NodeName_type NodeName
;
1263 for (i
= 0; i
< 16; i
++)
1265 readb(&host
->cfgtable
->ServerName
[i
]);
1266 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1270 case CCISS_SETNODENAME
:
1272 NodeName_type NodeName
;
1273 unsigned long flags
;
1278 if (!capable(CAP_SYS_ADMIN
))
1282 (NodeName
, argp
, sizeof(NodeName_type
)))
1285 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1287 /* Update the field, and then ring the doorbell */
1288 for (i
= 0; i
< 16; i
++)
1290 &host
->cfgtable
->ServerName
[i
]);
1292 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1294 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1295 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1296 & CFGTBL_ChangeReq
))
1298 /* delay and try again */
1301 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1302 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1307 case CCISS_GETHEARTBEAT
:
1309 Heartbeat_type heartbeat
;
1313 heartbeat
= readl(&host
->cfgtable
->HeartBeat
);
1315 (argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1319 case CCISS_GETBUSTYPES
:
1321 BusTypes_type BusTypes
;
1325 BusTypes
= readl(&host
->cfgtable
->BusTypes
);
1327 (argp
, &BusTypes
, sizeof(BusTypes_type
)))
1331 case CCISS_GETFIRMVER
:
1333 FirmwareVer_type firmware
;
1337 memcpy(firmware
, host
->firm_ver
, 4);
1340 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1344 case CCISS_GETDRIVVER
:
1346 DriverVer_type DriverVer
= DRIVER_VERSION
;
1352 (argp
, &DriverVer
, sizeof(DriverVer_type
)))
1357 case CCISS_DEREGDISK
:
1359 case CCISS_REVALIDVOLS
:
1360 return rebuild_lun_table(host
, 0, 1);
1362 case CCISS_GETLUNINFO
:{
1363 LogvolInfo_struct luninfo
;
1365 memcpy(&luninfo
.LunID
, drv
->LunID
,
1366 sizeof(luninfo
.LunID
));
1367 luninfo
.num_opens
= drv
->usage_count
;
1368 luninfo
.num_parts
= 0;
1369 if (copy_to_user(argp
, &luninfo
,
1370 sizeof(LogvolInfo_struct
)))
1374 case CCISS_PASSTHRU
:
1376 IOCTL_Command_struct iocommand
;
1377 CommandList_struct
*c
;
1380 unsigned long flags
;
1381 DECLARE_COMPLETION_ONSTACK(wait
);
1386 if (!capable(CAP_SYS_RAWIO
))
1390 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1392 if ((iocommand
.buf_size
< 1) &&
1393 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1396 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1397 /* Check kmalloc limits */
1398 if (iocommand
.buf_size
> 128000)
1401 if (iocommand
.buf_size
> 0) {
1402 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1406 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1407 /* Copy the data into the buffer we created */
1409 (buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1414 memset(buff
, 0, iocommand
.buf_size
);
1416 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1420 /* Fill in the command type */
1421 c
->cmd_type
= CMD_IOCTL_PEND
;
1422 /* Fill in Command Header */
1423 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
1424 if (iocommand
.buf_size
> 0) /* buffer to fill */
1426 c
->Header
.SGList
= 1;
1427 c
->Header
.SGTotal
= 1;
1428 } else /* no buffers to fill */
1430 c
->Header
.SGList
= 0;
1431 c
->Header
.SGTotal
= 0;
1433 c
->Header
.LUN
= iocommand
.LUN_info
;
1434 /* use the kernel address the cmd block for tag */
1435 c
->Header
.Tag
.lower
= c
->busaddr
;
1437 /* Fill in Request block */
1438 c
->Request
= iocommand
.Request
;
1440 /* Fill in the scatter gather information */
1441 if (iocommand
.buf_size
> 0) {
1442 temp64
.val
= pci_map_single(host
->pdev
, buff
,
1444 PCI_DMA_BIDIRECTIONAL
);
1445 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1446 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1447 c
->SG
[0].Len
= iocommand
.buf_size
;
1448 c
->SG
[0].Ext
= 0; /* we are not chaining */
1452 /* Put the request on the tail of the request queue */
1453 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1454 addQ(&host
->reqQ
, c
);
1457 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1459 wait_for_completion(&wait
);
1461 /* unlock the buffers from DMA */
1462 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1463 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1464 pci_unmap_single(host
->pdev
, (dma_addr_t
) temp64
.val
,
1466 PCI_DMA_BIDIRECTIONAL
);
1468 check_ioctl_unit_attention(host
, c
);
1470 /* Copy the error information out */
1471 iocommand
.error_info
= *(c
->err_info
);
1473 (argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1475 cmd_free(host
, c
, 0);
1479 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1480 /* Copy the data out of the buffer we created */
1482 (iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1484 cmd_free(host
, c
, 0);
1489 cmd_free(host
, c
, 0);
1492 case CCISS_BIG_PASSTHRU
:{
1493 BIG_IOCTL_Command_struct
*ioc
;
1494 CommandList_struct
*c
;
1495 unsigned char **buff
= NULL
;
1496 int *buff_size
= NULL
;
1498 unsigned long flags
;
1502 DECLARE_COMPLETION_ONSTACK(wait
);
1505 BYTE __user
*data_ptr
;
1509 if (!capable(CAP_SYS_RAWIO
))
1511 ioc
= (BIG_IOCTL_Command_struct
*)
1512 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1517 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1521 if ((ioc
->buf_size
< 1) &&
1522 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1526 /* Check kmalloc limits using all SGs */
1527 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1531 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1536 kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1541 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int),
1547 left
= ioc
->buf_size
;
1548 data_ptr
= ioc
->buf
;
1551 ioc
->malloc_size
) ? ioc
->
1553 buff_size
[sg_used
] = sz
;
1554 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1555 if (buff
[sg_used
] == NULL
) {
1559 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1561 (buff
[sg_used
], data_ptr
, sz
)) {
1566 memset(buff
[sg_used
], 0, sz
);
1572 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1576 c
->cmd_type
= CMD_IOCTL_PEND
;
1577 c
->Header
.ReplyQueue
= 0;
1579 if (ioc
->buf_size
> 0) {
1580 c
->Header
.SGList
= sg_used
;
1581 c
->Header
.SGTotal
= sg_used
;
1583 c
->Header
.SGList
= 0;
1584 c
->Header
.SGTotal
= 0;
1586 c
->Header
.LUN
= ioc
->LUN_info
;
1587 c
->Header
.Tag
.lower
= c
->busaddr
;
1589 c
->Request
= ioc
->Request
;
1590 if (ioc
->buf_size
> 0) {
1592 for (i
= 0; i
< sg_used
; i
++) {
1594 pci_map_single(host
->pdev
, buff
[i
],
1596 PCI_DMA_BIDIRECTIONAL
);
1597 c
->SG
[i
].Addr
.lower
=
1599 c
->SG
[i
].Addr
.upper
=
1601 c
->SG
[i
].Len
= buff_size
[i
];
1602 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1606 /* Put the request on the tail of the request queue */
1607 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1608 addQ(&host
->reqQ
, c
);
1611 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1612 wait_for_completion(&wait
);
1613 /* unlock the buffers from DMA */
1614 for (i
= 0; i
< sg_used
; i
++) {
1615 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1616 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1617 pci_unmap_single(host
->pdev
,
1618 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1619 PCI_DMA_BIDIRECTIONAL
);
1621 check_ioctl_unit_attention(host
, c
);
1622 /* Copy the error information out */
1623 ioc
->error_info
= *(c
->err_info
);
1624 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1625 cmd_free(host
, c
, 0);
1629 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1630 /* Copy the data out of the buffer we created */
1631 BYTE __user
*ptr
= ioc
->buf
;
1632 for (i
= 0; i
< sg_used
; i
++) {
1634 (ptr
, buff
[i
], buff_size
[i
])) {
1635 cmd_free(host
, c
, 0);
1639 ptr
+= buff_size
[i
];
1642 cmd_free(host
, c
, 0);
1646 for (i
= 0; i
< sg_used
; i
++)
1655 /* scsi_cmd_ioctl handles these, below, though some are not */
1656 /* very meaningful for cciss. SG_IO is the main one people want. */
1658 case SG_GET_VERSION_NUM
:
1659 case SG_SET_TIMEOUT
:
1660 case SG_GET_TIMEOUT
:
1661 case SG_GET_RESERVED_SIZE
:
1662 case SG_SET_RESERVED_SIZE
:
1663 case SG_EMULATED_HOST
:
1665 case SCSI_IOCTL_SEND_COMMAND
:
1666 return scsi_cmd_ioctl(disk
->queue
, disk
, mode
, cmd
, argp
);
1668 /* scsi_cmd_ioctl would normally handle these, below, but */
1669 /* they aren't a good fit for cciss, as CD-ROMs are */
1670 /* not supported, and we don't have any bus/target/lun */
1671 /* which we present to the kernel. */
1673 case CDROM_SEND_PACKET
:
1674 case CDROMCLOSETRAY
:
1676 case SCSI_IOCTL_GET_IDLUN
:
1677 case SCSI_IOCTL_GET_BUS_NUMBER
:
1683 static void cciss_check_queues(ctlr_info_t
*h
)
1685 int start_queue
= h
->next_to_run
;
1688 /* check to see if we have maxed out the number of commands that can
1689 * be placed on the queue. If so then exit. We do this check here
1690 * in case the interrupt we serviced was from an ioctl and did not
1691 * free any new commands.
1693 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1696 /* We have room on the queue for more commands. Now we need to queue
1697 * them up. We will also keep track of the next queue to run so
1698 * that every queue gets a chance to be started first.
1700 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1701 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1702 /* make sure the disk has been added and the drive is real
1703 * because this can be called from the middle of init_one.
1705 if (!h
->drv
[curr_queue
])
1707 if (!(h
->drv
[curr_queue
]->queue
) ||
1708 !(h
->drv
[curr_queue
]->heads
))
1710 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1712 /* check to see if we have maxed out the number of commands
1713 * that can be placed on the queue.
1715 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1716 if (curr_queue
== start_queue
) {
1718 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1721 h
->next_to_run
= curr_queue
;
1728 static void cciss_softirq_done(struct request
*rq
)
1730 CommandList_struct
*cmd
= rq
->completion_data
;
1731 ctlr_info_t
*h
= hba
[cmd
->ctlr
];
1732 SGDescriptor_struct
*curr_sg
= cmd
->SG
;
1733 unsigned long flags
;
1738 if (cmd
->Request
.Type
.Direction
== XFER_READ
)
1739 ddir
= PCI_DMA_FROMDEVICE
;
1741 ddir
= PCI_DMA_TODEVICE
;
1743 /* command did not need to be retried */
1744 /* unmap the DMA mapping for all the scatter gather elements */
1745 for (i
= 0; i
< cmd
->Header
.SGList
; i
++) {
1746 if (curr_sg
[sg_index
].Ext
== CCISS_SG_CHAIN
) {
1747 cciss_unmap_sg_chain_block(h
, cmd
);
1748 /* Point to the next block */
1749 curr_sg
= h
->cmd_sg_list
[cmd
->cmdindex
];
1752 temp64
.val32
.lower
= curr_sg
[sg_index
].Addr
.lower
;
1753 temp64
.val32
.upper
= curr_sg
[sg_index
].Addr
.upper
;
1754 pci_unmap_page(h
->pdev
, temp64
.val
, curr_sg
[sg_index
].Len
,
1760 printk("Done with %p\n", rq
);
1761 #endif /* CCISS_DEBUG */
1763 /* set the residual count for pc requests */
1764 if (blk_pc_request(rq
))
1765 rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
1767 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1769 spin_lock_irqsave(&h
->lock
, flags
);
1770 cmd_free(h
, cmd
, 1);
1771 cciss_check_queues(h
);
1772 spin_unlock_irqrestore(&h
->lock
, flags
);
1775 static inline void log_unit_to_scsi3addr(ctlr_info_t
*h
,
1776 unsigned char scsi3addr
[], uint32_t log_unit
)
1778 memcpy(scsi3addr
, h
->drv
[log_unit
]->LunID
,
1779 sizeof(h
->drv
[log_unit
]->LunID
));
1782 /* This function gets the SCSI vendor, model, and revision of a logical drive
1783 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1784 * they cannot be read.
1786 static void cciss_get_device_descr(int ctlr
, int logvol
,
1787 char *vendor
, char *model
, char *rev
)
1790 InquiryData_struct
*inq_buf
;
1791 unsigned char scsi3addr
[8];
1797 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1801 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1802 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, inq_buf
, sizeof(*inq_buf
), 0,
1803 scsi3addr
, TYPE_CMD
);
1805 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1806 vendor
[VENDOR_LEN
] = '\0';
1807 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1808 model
[MODEL_LEN
] = '\0';
1809 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1810 rev
[REV_LEN
] = '\0';
1817 /* This function gets the serial number of a logical drive via
1818 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1819 * number cannot be had, for whatever reason, 16 bytes of 0xff
1820 * are returned instead.
1822 static void cciss_get_serial_no(int ctlr
, int logvol
,
1823 unsigned char *serial_no
, int buflen
)
1825 #define PAGE_83_INQ_BYTES 64
1828 unsigned char scsi3addr
[8];
1832 memset(serial_no
, 0xff, buflen
);
1833 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1836 memset(serial_no
, 0, buflen
);
1837 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1838 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, buf
,
1839 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1841 memcpy(serial_no
, &buf
[8], buflen
);
1847 * cciss_add_disk sets up the block device queue for a logical drive
1849 static int cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1852 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1854 goto init_queue_failure
;
1855 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1856 disk
->major
= h
->major
;
1857 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1858 disk
->fops
= &cciss_fops
;
1859 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
1861 disk
->private_data
= h
->drv
[drv_index
];
1862 disk
->driverfs_dev
= &h
->drv
[drv_index
]->dev
;
1864 /* Set up queue information */
1865 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1867 /* This is a hardware imposed limit. */
1868 blk_queue_max_segments(disk
->queue
, h
->maxsgentries
);
1870 blk_queue_max_hw_sectors(disk
->queue
, h
->cciss_max_sectors
);
1872 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1874 disk
->queue
->queuedata
= h
;
1876 blk_queue_logical_block_size(disk
->queue
,
1877 h
->drv
[drv_index
]->block_size
);
1879 /* Make sure all queue data is written out before */
1880 /* setting h->drv[drv_index]->queue, as setting this */
1881 /* allows the interrupt handler to start the queue */
1883 h
->drv
[drv_index
]->queue
= disk
->queue
;
1888 blk_cleanup_queue(disk
->queue
);
1894 /* This function will check the usage_count of the drive to be updated/added.
1895 * If the usage_count is zero and it is a heretofore unknown drive, or,
1896 * the drive's capacity, geometry, or serial number has changed,
1897 * then the drive information will be updated and the disk will be
1898 * re-registered with the kernel. If these conditions don't hold,
1899 * then it will be left alone for the next reboot. The exception to this
1900 * is disk 0 which will always be left registered with the kernel since it
1901 * is also the controller node. Any changes to disk 0 will show up on
1904 static void cciss_update_drive_info(int ctlr
, int drv_index
, int first_time
,
1907 ctlr_info_t
*h
= hba
[ctlr
];
1908 struct gendisk
*disk
;
1909 InquiryData_struct
*inq_buff
= NULL
;
1910 unsigned int block_size
;
1911 sector_t total_size
;
1912 unsigned long flags
= 0;
1914 drive_info_struct
*drvinfo
;
1916 /* Get information about the disk and modify the driver structure */
1917 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1918 drvinfo
= kzalloc(sizeof(*drvinfo
), GFP_KERNEL
);
1919 if (inq_buff
== NULL
|| drvinfo
== NULL
)
1922 /* testing to see if 16-byte CDBs are already being used */
1923 if (h
->cciss_read
== CCISS_READ_16
) {
1924 cciss_read_capacity_16(h
->ctlr
, drv_index
,
1925 &total_size
, &block_size
);
1928 cciss_read_capacity(ctlr
, drv_index
, &total_size
, &block_size
);
1929 /* if read_capacity returns all F's this volume is >2TB */
1930 /* in size so we switch to 16-byte CDB's for all */
1931 /* read/write ops */
1932 if (total_size
== 0xFFFFFFFFULL
) {
1933 cciss_read_capacity_16(ctlr
, drv_index
,
1934 &total_size
, &block_size
);
1935 h
->cciss_read
= CCISS_READ_16
;
1936 h
->cciss_write
= CCISS_WRITE_16
;
1938 h
->cciss_read
= CCISS_READ_10
;
1939 h
->cciss_write
= CCISS_WRITE_10
;
1943 cciss_geometry_inquiry(ctlr
, drv_index
, total_size
, block_size
,
1945 drvinfo
->block_size
= block_size
;
1946 drvinfo
->nr_blocks
= total_size
+ 1;
1948 cciss_get_device_descr(ctlr
, drv_index
, drvinfo
->vendor
,
1949 drvinfo
->model
, drvinfo
->rev
);
1950 cciss_get_serial_no(ctlr
, drv_index
, drvinfo
->serial_no
,
1951 sizeof(drvinfo
->serial_no
));
1952 /* Save the lunid in case we deregister the disk, below. */
1953 memcpy(drvinfo
->LunID
, h
->drv
[drv_index
]->LunID
,
1954 sizeof(drvinfo
->LunID
));
1956 /* Is it the same disk we already know, and nothing's changed? */
1957 if (h
->drv
[drv_index
]->raid_level
!= -1 &&
1958 ((memcmp(drvinfo
->serial_no
,
1959 h
->drv
[drv_index
]->serial_no
, 16) == 0) &&
1960 drvinfo
->block_size
== h
->drv
[drv_index
]->block_size
&&
1961 drvinfo
->nr_blocks
== h
->drv
[drv_index
]->nr_blocks
&&
1962 drvinfo
->heads
== h
->drv
[drv_index
]->heads
&&
1963 drvinfo
->sectors
== h
->drv
[drv_index
]->sectors
&&
1964 drvinfo
->cylinders
== h
->drv
[drv_index
]->cylinders
))
1965 /* The disk is unchanged, nothing to update */
1968 /* If we get here it's not the same disk, or something's changed,
1969 * so we need to * deregister it, and re-register it, if it's not
1971 * If the disk already exists then deregister it before proceeding
1972 * (unless it's the first disk (for the controller node).
1974 if (h
->drv
[drv_index
]->raid_level
!= -1 && drv_index
!= 0) {
1975 printk(KERN_WARNING
"disk %d has changed.\n", drv_index
);
1976 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
1977 h
->drv
[drv_index
]->busy_configuring
= 1;
1978 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1980 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1981 * which keeps the interrupt handler from starting
1984 ret
= deregister_disk(h
, drv_index
, 0, via_ioctl
);
1987 /* If the disk is in use return */
1991 /* Save the new information from cciss_geometry_inquiry
1992 * and serial number inquiry. If the disk was deregistered
1993 * above, then h->drv[drv_index] will be NULL.
1995 if (h
->drv
[drv_index
] == NULL
) {
1996 drvinfo
->device_initialized
= 0;
1997 h
->drv
[drv_index
] = drvinfo
;
1998 drvinfo
= NULL
; /* so it won't be freed below. */
2000 /* special case for cxd0 */
2001 h
->drv
[drv_index
]->block_size
= drvinfo
->block_size
;
2002 h
->drv
[drv_index
]->nr_blocks
= drvinfo
->nr_blocks
;
2003 h
->drv
[drv_index
]->heads
= drvinfo
->heads
;
2004 h
->drv
[drv_index
]->sectors
= drvinfo
->sectors
;
2005 h
->drv
[drv_index
]->cylinders
= drvinfo
->cylinders
;
2006 h
->drv
[drv_index
]->raid_level
= drvinfo
->raid_level
;
2007 memcpy(h
->drv
[drv_index
]->serial_no
, drvinfo
->serial_no
, 16);
2008 memcpy(h
->drv
[drv_index
]->vendor
, drvinfo
->vendor
,
2010 memcpy(h
->drv
[drv_index
]->model
, drvinfo
->model
, MODEL_LEN
+ 1);
2011 memcpy(h
->drv
[drv_index
]->rev
, drvinfo
->rev
, REV_LEN
+ 1);
2015 disk
= h
->gendisk
[drv_index
];
2016 set_capacity(disk
, h
->drv
[drv_index
]->nr_blocks
);
2018 /* If it's not disk 0 (drv_index != 0)
2019 * or if it was disk 0, but there was previously
2020 * no actual corresponding configured logical drive
2021 * (raid_leve == -1) then we want to update the
2022 * logical drive's information.
2024 if (drv_index
|| first_time
) {
2025 if (cciss_add_disk(h
, disk
, drv_index
) != 0) {
2026 cciss_free_gendisk(h
, drv_index
);
2027 cciss_free_drive_info(h
, drv_index
);
2028 printk(KERN_WARNING
"cciss:%d could not update "
2029 "disk %d\n", h
->ctlr
, drv_index
);
2039 printk(KERN_ERR
"cciss: out of memory\n");
2043 /* This function will find the first index of the controllers drive array
2044 * that has a null drv pointer and allocate the drive info struct and
2045 * will return that index This is where new drives will be added.
2046 * If the index to be returned is greater than the highest_lun index for
2047 * the controller then highest_lun is set * to this new index.
2048 * If there are no available indexes or if tha allocation fails, then -1
2049 * is returned. * "controller_node" is used to know if this is a real
2050 * logical drive, or just the controller node, which determines if this
2051 * counts towards highest_lun.
2053 static int cciss_alloc_drive_info(ctlr_info_t
*h
, int controller_node
)
2056 drive_info_struct
*drv
;
2058 /* Search for an empty slot for our drive info */
2059 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
2061 /* if not cxd0 case, and it's occupied, skip it. */
2062 if (h
->drv
[i
] && i
!= 0)
2065 * If it's cxd0 case, and drv is alloc'ed already, and a
2066 * disk is configured there, skip it.
2068 if (i
== 0 && h
->drv
[i
] && h
->drv
[i
]->raid_level
!= -1)
2072 * We've found an empty slot. Update highest_lun
2073 * provided this isn't just the fake cxd0 controller node.
2075 if (i
> h
->highest_lun
&& !controller_node
)
2078 /* If adding a real disk at cxd0, and it's already alloc'ed */
2079 if (i
== 0 && h
->drv
[i
] != NULL
)
2083 * Found an empty slot, not already alloc'ed. Allocate it.
2084 * Mark it with raid_level == -1, so we know it's new later on.
2086 drv
= kzalloc(sizeof(*drv
), GFP_KERNEL
);
2089 drv
->raid_level
= -1; /* so we know it's new */
2096 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
)
2098 kfree(h
->drv
[drv_index
]);
2099 h
->drv
[drv_index
] = NULL
;
2102 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
)
2104 put_disk(h
->gendisk
[drv_index
]);
2105 h
->gendisk
[drv_index
] = NULL
;
2108 /* cciss_add_gendisk finds a free hba[]->drv structure
2109 * and allocates a gendisk if needed, and sets the lunid
2110 * in the drvinfo structure. It returns the index into
2111 * the ->drv[] array, or -1 if none are free.
2112 * is_controller_node indicates whether highest_lun should
2113 * count this disk, or if it's only being added to provide
2114 * a means to talk to the controller in case no logical
2115 * drives have yet been configured.
2117 static int cciss_add_gendisk(ctlr_info_t
*h
, unsigned char lunid
[],
2118 int controller_node
)
2122 drv_index
= cciss_alloc_drive_info(h
, controller_node
);
2123 if (drv_index
== -1)
2126 /*Check if the gendisk needs to be allocated */
2127 if (!h
->gendisk
[drv_index
]) {
2128 h
->gendisk
[drv_index
] =
2129 alloc_disk(1 << NWD_SHIFT
);
2130 if (!h
->gendisk
[drv_index
]) {
2131 printk(KERN_ERR
"cciss%d: could not "
2132 "allocate a new disk %d\n",
2133 h
->ctlr
, drv_index
);
2134 goto err_free_drive_info
;
2137 memcpy(h
->drv
[drv_index
]->LunID
, lunid
,
2138 sizeof(h
->drv
[drv_index
]->LunID
));
2139 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
2141 /* Don't need to mark this busy because nobody */
2142 /* else knows about this disk yet to contend */
2143 /* for access to it. */
2144 h
->drv
[drv_index
]->busy_configuring
= 0;
2149 cciss_free_gendisk(h
, drv_index
);
2150 err_free_drive_info
:
2151 cciss_free_drive_info(h
, drv_index
);
2155 /* This is for the special case of a controller which
2156 * has no logical drives. In this case, we still need
2157 * to register a disk so the controller can be accessed
2158 * by the Array Config Utility.
2160 static void cciss_add_controller_node(ctlr_info_t
*h
)
2162 struct gendisk
*disk
;
2165 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
2168 drv_index
= cciss_add_gendisk(h
, CTLR_LUNID
, 1);
2169 if (drv_index
== -1)
2171 h
->drv
[drv_index
]->block_size
= 512;
2172 h
->drv
[drv_index
]->nr_blocks
= 0;
2173 h
->drv
[drv_index
]->heads
= 0;
2174 h
->drv
[drv_index
]->sectors
= 0;
2175 h
->drv
[drv_index
]->cylinders
= 0;
2176 h
->drv
[drv_index
]->raid_level
= -1;
2177 memset(h
->drv
[drv_index
]->serial_no
, 0, 16);
2178 disk
= h
->gendisk
[drv_index
];
2179 if (cciss_add_disk(h
, disk
, drv_index
) == 0)
2181 cciss_free_gendisk(h
, drv_index
);
2182 cciss_free_drive_info(h
, drv_index
);
2184 printk(KERN_WARNING
"cciss%d: could not "
2185 "add disk 0.\n", h
->ctlr
);
2189 /* This function will add and remove logical drives from the Logical
2190 * drive array of the controller and maintain persistency of ordering
2191 * so that mount points are preserved until the next reboot. This allows
2192 * for the removal of logical drives in the middle of the drive array
2193 * without a re-ordering of those drives.
2195 * h = The controller to perform the operations on
2197 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
,
2202 ReportLunData_struct
*ld_buff
= NULL
;
2208 unsigned char lunid
[8] = CTLR_LUNID
;
2209 unsigned long flags
;
2211 if (!capable(CAP_SYS_RAWIO
))
2214 /* Set busy_configuring flag for this operation */
2215 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2216 if (h
->busy_configuring
) {
2217 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2220 h
->busy_configuring
= 1;
2221 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2223 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
2224 if (ld_buff
== NULL
)
2227 return_code
= sendcmd_withirq(CISS_REPORT_LOG
, ctlr
, ld_buff
,
2228 sizeof(ReportLunData_struct
),
2229 0, CTLR_LUNID
, TYPE_CMD
);
2231 if (return_code
== IO_OK
)
2232 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
2233 else { /* reading number of logical volumes failed */
2234 printk(KERN_WARNING
"cciss: report logical volume"
2235 " command failed\n");
2240 num_luns
= listlength
/ 8; /* 8 bytes per entry */
2241 if (num_luns
> CISS_MAX_LUN
) {
2242 num_luns
= CISS_MAX_LUN
;
2243 printk(KERN_WARNING
"cciss: more luns configured"
2244 " on controller than can be handled by"
2249 cciss_add_controller_node(h
);
2251 /* Compare controller drive array to driver's drive array
2252 * to see if any drives are missing on the controller due
2253 * to action of Array Config Utility (user deletes drive)
2254 * and deregister logical drives which have disappeared.
2256 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2260 /* skip holes in the array from already deleted drives */
2261 if (h
->drv
[i
] == NULL
)
2264 for (j
= 0; j
< num_luns
; j
++) {
2265 memcpy(lunid
, &ld_buff
->LUN
[j
][0], sizeof(lunid
));
2266 if (memcmp(h
->drv
[i
]->LunID
, lunid
,
2267 sizeof(lunid
)) == 0) {
2273 /* Deregister it from the OS, it's gone. */
2274 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2275 h
->drv
[i
]->busy_configuring
= 1;
2276 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2277 return_code
= deregister_disk(h
, i
, 1, via_ioctl
);
2278 if (h
->drv
[i
] != NULL
)
2279 h
->drv
[i
]->busy_configuring
= 0;
2283 /* Compare controller drive array to driver's drive array.
2284 * Check for updates in the drive information and any new drives
2285 * on the controller due to ACU adding logical drives, or changing
2286 * a logical drive's size, etc. Reregister any new/changed drives
2288 for (i
= 0; i
< num_luns
; i
++) {
2293 memcpy(lunid
, &ld_buff
->LUN
[i
][0], sizeof(lunid
));
2294 /* Find if the LUN is already in the drive array
2295 * of the driver. If so then update its info
2296 * if not in use. If it does not exist then find
2297 * the first free index and add it.
2299 for (j
= 0; j
<= h
->highest_lun
; j
++) {
2300 if (h
->drv
[j
] != NULL
&&
2301 memcmp(h
->drv
[j
]->LunID
, lunid
,
2302 sizeof(h
->drv
[j
]->LunID
)) == 0) {
2309 /* check if the drive was found already in the array */
2311 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2312 if (drv_index
== -1)
2315 cciss_update_drive_info(ctlr
, drv_index
, first_time
,
2321 h
->busy_configuring
= 0;
2322 /* We return -1 here to tell the ACU that we have registered/updated
2323 * all of the drives that we can and to keep it from calling us
2328 printk(KERN_ERR
"cciss: out of memory\n");
2329 h
->busy_configuring
= 0;
2333 static void cciss_clear_drive_info(drive_info_struct
*drive_info
)
2335 /* zero out the disk size info */
2336 drive_info
->nr_blocks
= 0;
2337 drive_info
->block_size
= 0;
2338 drive_info
->heads
= 0;
2339 drive_info
->sectors
= 0;
2340 drive_info
->cylinders
= 0;
2341 drive_info
->raid_level
= -1;
2342 memset(drive_info
->serial_no
, 0, sizeof(drive_info
->serial_no
));
2343 memset(drive_info
->model
, 0, sizeof(drive_info
->model
));
2344 memset(drive_info
->rev
, 0, sizeof(drive_info
->rev
));
2345 memset(drive_info
->vendor
, 0, sizeof(drive_info
->vendor
));
2347 * don't clear the LUNID though, we need to remember which
2352 /* This function will deregister the disk and it's queue from the
2353 * kernel. It must be called with the controller lock held and the
2354 * drv structures busy_configuring flag set. It's parameters are:
2356 * disk = This is the disk to be deregistered
2357 * drv = This is the drive_info_struct associated with the disk to be
2358 * deregistered. It contains information about the disk used
2360 * clear_all = This flag determines whether or not the disk information
2361 * is going to be completely cleared out and the highest_lun
2362 * reset. Sometimes we want to clear out information about
2363 * the disk in preparation for re-adding it. In this case
2364 * the highest_lun should be left unchanged and the LunID
2365 * should not be cleared.
2367 * This indicates whether we've reached this path via ioctl.
2368 * This affects the maximum usage count allowed for c0d0 to be messed with.
2369 * If this path is reached via ioctl(), then the max_usage_count will
2370 * be 1, as the process calling ioctl() has got to have the device open.
2371 * If we get here via sysfs, then the max usage count will be zero.
2373 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2374 int clear_all
, int via_ioctl
)
2377 struct gendisk
*disk
;
2378 drive_info_struct
*drv
;
2379 int recalculate_highest_lun
;
2381 if (!capable(CAP_SYS_RAWIO
))
2384 drv
= h
->drv
[drv_index
];
2385 disk
= h
->gendisk
[drv_index
];
2387 /* make sure logical volume is NOT is use */
2388 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2389 if (drv
->usage_count
> via_ioctl
)
2391 } else if (drv
->usage_count
> 0)
2394 recalculate_highest_lun
= (drv
== h
->drv
[h
->highest_lun
]);
2396 /* invalidate the devices and deregister the disk. If it is disk
2397 * zero do not deregister it but just zero out it's values. This
2398 * allows us to delete disk zero but keep the controller registered.
2400 if (h
->gendisk
[0] != disk
) {
2401 struct request_queue
*q
= disk
->queue
;
2402 if (disk
->flags
& GENHD_FL_UP
) {
2403 cciss_destroy_ld_sysfs_entry(h
, drv_index
, 0);
2407 blk_cleanup_queue(q
);
2408 /* If clear_all is set then we are deleting the logical
2409 * drive, not just refreshing its info. For drives
2410 * other than disk 0 we will call put_disk. We do not
2411 * do this for disk 0 as we need it to be able to
2412 * configure the controller.
2415 /* This isn't pretty, but we need to find the
2416 * disk in our array and NULL our the pointer.
2417 * This is so that we will call alloc_disk if
2418 * this index is used again later.
2420 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2421 if (h
->gendisk
[i
] == disk
) {
2422 h
->gendisk
[i
] = NULL
;
2429 set_capacity(disk
, 0);
2430 cciss_clear_drive_info(drv
);
2435 /* if it was the last disk, find the new hightest lun */
2436 if (clear_all
&& recalculate_highest_lun
) {
2437 int i
, newhighest
= -1;
2438 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2439 /* if the disk has size > 0, it is available */
2440 if (h
->drv
[i
] && h
->drv
[i
]->heads
)
2443 h
->highest_lun
= newhighest
;
2448 static int fill_cmd(CommandList_struct
*c
, __u8 cmd
, int ctlr
, void *buff
,
2449 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2452 ctlr_info_t
*h
= hba
[ctlr
];
2453 u64bit buff_dma_handle
;
2456 c
->cmd_type
= CMD_IOCTL_PEND
;
2457 c
->Header
.ReplyQueue
= 0;
2459 c
->Header
.SGList
= 1;
2460 c
->Header
.SGTotal
= 1;
2462 c
->Header
.SGList
= 0;
2463 c
->Header
.SGTotal
= 0;
2465 c
->Header
.Tag
.lower
= c
->busaddr
;
2466 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2468 c
->Request
.Type
.Type
= cmd_type
;
2469 if (cmd_type
== TYPE_CMD
) {
2472 /* are we trying to read a vital product page */
2473 if (page_code
!= 0) {
2474 c
->Request
.CDB
[1] = 0x01;
2475 c
->Request
.CDB
[2] = page_code
;
2477 c
->Request
.CDBLen
= 6;
2478 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2479 c
->Request
.Type
.Direction
= XFER_READ
;
2480 c
->Request
.Timeout
= 0;
2481 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2482 c
->Request
.CDB
[4] = size
& 0xFF;
2484 case CISS_REPORT_LOG
:
2485 case CISS_REPORT_PHYS
:
2486 /* Talking to controller so It's a physical command
2487 mode = 00 target = 0. Nothing to write.
2489 c
->Request
.CDBLen
= 12;
2490 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2491 c
->Request
.Type
.Direction
= XFER_READ
;
2492 c
->Request
.Timeout
= 0;
2493 c
->Request
.CDB
[0] = cmd
;
2494 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
2495 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2496 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2497 c
->Request
.CDB
[9] = size
& 0xFF;
2500 case CCISS_READ_CAPACITY
:
2501 c
->Request
.CDBLen
= 10;
2502 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2503 c
->Request
.Type
.Direction
= XFER_READ
;
2504 c
->Request
.Timeout
= 0;
2505 c
->Request
.CDB
[0] = cmd
;
2507 case CCISS_READ_CAPACITY_16
:
2508 c
->Request
.CDBLen
= 16;
2509 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2510 c
->Request
.Type
.Direction
= XFER_READ
;
2511 c
->Request
.Timeout
= 0;
2512 c
->Request
.CDB
[0] = cmd
;
2513 c
->Request
.CDB
[1] = 0x10;
2514 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2515 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2516 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2517 c
->Request
.CDB
[13] = size
& 0xFF;
2518 c
->Request
.Timeout
= 0;
2519 c
->Request
.CDB
[0] = cmd
;
2521 case CCISS_CACHE_FLUSH
:
2522 c
->Request
.CDBLen
= 12;
2523 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2524 c
->Request
.Type
.Direction
= XFER_WRITE
;
2525 c
->Request
.Timeout
= 0;
2526 c
->Request
.CDB
[0] = BMIC_WRITE
;
2527 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2529 case TEST_UNIT_READY
:
2530 c
->Request
.CDBLen
= 6;
2531 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2532 c
->Request
.Type
.Direction
= XFER_NONE
;
2533 c
->Request
.Timeout
= 0;
2537 "cciss%d: Unknown Command 0x%c\n", ctlr
, cmd
);
2540 } else if (cmd_type
== TYPE_MSG
) {
2542 case 0: /* ABORT message */
2543 c
->Request
.CDBLen
= 12;
2544 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2545 c
->Request
.Type
.Direction
= XFER_WRITE
;
2546 c
->Request
.Timeout
= 0;
2547 c
->Request
.CDB
[0] = cmd
; /* abort */
2548 c
->Request
.CDB
[1] = 0; /* abort a command */
2549 /* buff contains the tag of the command to abort */
2550 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2552 case 1: /* RESET message */
2553 c
->Request
.CDBLen
= 16;
2554 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2555 c
->Request
.Type
.Direction
= XFER_NONE
;
2556 c
->Request
.Timeout
= 0;
2557 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2558 c
->Request
.CDB
[0] = cmd
; /* reset */
2559 c
->Request
.CDB
[1] = 0x03; /* reset a target */
2561 case 3: /* No-Op message */
2562 c
->Request
.CDBLen
= 1;
2563 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2564 c
->Request
.Type
.Direction
= XFER_WRITE
;
2565 c
->Request
.Timeout
= 0;
2566 c
->Request
.CDB
[0] = cmd
;
2570 "cciss%d: unknown message type %d\n", ctlr
, cmd
);
2575 "cciss%d: unknown command type %d\n", ctlr
, cmd_type
);
2578 /* Fill in the scatter gather information */
2580 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2582 PCI_DMA_BIDIRECTIONAL
);
2583 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2584 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2585 c
->SG
[0].Len
= size
;
2586 c
->SG
[0].Ext
= 0; /* we are not chaining */
2591 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2593 switch (c
->err_info
->ScsiStatus
) {
2596 case SAM_STAT_CHECK_CONDITION
:
2597 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2598 case 0: return IO_OK
; /* no sense */
2599 case 1: return IO_OK
; /* recovered error */
2601 if (check_for_unit_attention(h
, c
))
2602 return IO_NEEDS_RETRY
;
2603 printk(KERN_WARNING
"cciss%d: cmd 0x%02x "
2604 "check condition, sense key = 0x%02x\n",
2605 h
->ctlr
, c
->Request
.CDB
[0],
2606 c
->err_info
->SenseInfo
[2]);
2610 printk(KERN_WARNING
"cciss%d: cmd 0x%02x"
2611 "scsi status = 0x%02x\n", h
->ctlr
,
2612 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2618 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2620 int return_status
= IO_OK
;
2622 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2625 switch (c
->err_info
->CommandStatus
) {
2626 case CMD_TARGET_STATUS
:
2627 return_status
= check_target_status(h
, c
);
2629 case CMD_DATA_UNDERRUN
:
2630 case CMD_DATA_OVERRUN
:
2631 /* expected for inquiry and report lun commands */
2634 printk(KERN_WARNING
"cciss: cmd 0x%02x is "
2635 "reported invalid\n", c
->Request
.CDB
[0]);
2636 return_status
= IO_ERROR
;
2638 case CMD_PROTOCOL_ERR
:
2639 printk(KERN_WARNING
"cciss: cmd 0x%02x has "
2640 "protocol error \n", c
->Request
.CDB
[0]);
2641 return_status
= IO_ERROR
;
2643 case CMD_HARDWARE_ERR
:
2644 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2645 " hardware error\n", c
->Request
.CDB
[0]);
2646 return_status
= IO_ERROR
;
2648 case CMD_CONNECTION_LOST
:
2649 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2650 "connection lost\n", c
->Request
.CDB
[0]);
2651 return_status
= IO_ERROR
;
2654 printk(KERN_WARNING
"cciss: cmd 0x%02x was "
2655 "aborted\n", c
->Request
.CDB
[0]);
2656 return_status
= IO_ERROR
;
2658 case CMD_ABORT_FAILED
:
2659 printk(KERN_WARNING
"cciss: cmd 0x%02x reports "
2660 "abort failed\n", c
->Request
.CDB
[0]);
2661 return_status
= IO_ERROR
;
2663 case CMD_UNSOLICITED_ABORT
:
2665 "cciss%d: unsolicited abort 0x%02x\n", h
->ctlr
,
2667 return_status
= IO_NEEDS_RETRY
;
2670 printk(KERN_WARNING
"cciss: cmd 0x%02x returned "
2671 "unknown status %x\n", c
->Request
.CDB
[0],
2672 c
->err_info
->CommandStatus
);
2673 return_status
= IO_ERROR
;
2675 return return_status
;
2678 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2681 DECLARE_COMPLETION_ONSTACK(wait
);
2682 u64bit buff_dma_handle
;
2683 unsigned long flags
;
2684 int return_status
= IO_OK
;
2688 /* Put the request on the tail of the queue and send it */
2689 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2693 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2695 wait_for_completion(&wait
);
2697 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2700 return_status
= process_sendcmd_error(h
, c
);
2702 if (return_status
== IO_NEEDS_RETRY
&&
2703 c
->retry_count
< MAX_CMD_RETRIES
) {
2704 printk(KERN_WARNING
"cciss%d: retrying 0x%02x\n", h
->ctlr
,
2707 /* erase the old error information */
2708 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2709 return_status
= IO_OK
;
2710 INIT_COMPLETION(wait
);
2715 /* unlock the buffers from DMA */
2716 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2717 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2718 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2719 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2720 return return_status
;
2723 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
2724 __u8 page_code
, unsigned char scsi3addr
[],
2727 ctlr_info_t
*h
= hba
[ctlr
];
2728 CommandList_struct
*c
;
2731 c
= cmd_alloc(h
, 0);
2734 return_status
= fill_cmd(c
, cmd
, ctlr
, buff
, size
, page_code
,
2735 scsi3addr
, cmd_type
);
2736 if (return_status
== IO_OK
)
2737 return_status
= sendcmd_withirq_core(h
, c
, 1);
2740 return return_status
;
2743 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
2744 sector_t total_size
,
2745 unsigned int block_size
,
2746 InquiryData_struct
*inq_buff
,
2747 drive_info_struct
*drv
)
2751 unsigned char scsi3addr
[8];
2753 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2754 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2755 return_code
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, inq_buff
,
2756 sizeof(*inq_buff
), 0xC1, scsi3addr
, TYPE_CMD
);
2757 if (return_code
== IO_OK
) {
2758 if (inq_buff
->data_byte
[8] == 0xFF) {
2760 "cciss: reading geometry failed, volume "
2761 "does not support reading geometry\n");
2763 drv
->sectors
= 32; /* Sectors per track */
2764 drv
->cylinders
= total_size
+ 1;
2765 drv
->raid_level
= RAID_UNKNOWN
;
2767 drv
->heads
= inq_buff
->data_byte
[6];
2768 drv
->sectors
= inq_buff
->data_byte
[7];
2769 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2770 drv
->cylinders
+= inq_buff
->data_byte
[5];
2771 drv
->raid_level
= inq_buff
->data_byte
[8];
2773 drv
->block_size
= block_size
;
2774 drv
->nr_blocks
= total_size
+ 1;
2775 t
= drv
->heads
* drv
->sectors
;
2777 sector_t real_size
= total_size
+ 1;
2778 unsigned long rem
= sector_div(real_size
, t
);
2781 drv
->cylinders
= real_size
;
2783 } else { /* Get geometry failed */
2784 printk(KERN_WARNING
"cciss: reading geometry failed\n");
2789 cciss_read_capacity(int ctlr
, int logvol
, sector_t
*total_size
,
2790 unsigned int *block_size
)
2792 ReadCapdata_struct
*buf
;
2794 unsigned char scsi3addr
[8];
2796 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2798 printk(KERN_WARNING
"cciss: out of memory\n");
2802 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2803 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY
, ctlr
, buf
,
2804 sizeof(ReadCapdata_struct
), 0, scsi3addr
, TYPE_CMD
);
2805 if (return_code
== IO_OK
) {
2806 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2807 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2808 } else { /* read capacity command failed */
2809 printk(KERN_WARNING
"cciss: read capacity failed\n");
2811 *block_size
= BLOCK_SIZE
;
2816 static void cciss_read_capacity_16(int ctlr
, int logvol
,
2817 sector_t
*total_size
, unsigned int *block_size
)
2819 ReadCapdata_struct_16
*buf
;
2821 unsigned char scsi3addr
[8];
2823 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2825 printk(KERN_WARNING
"cciss: out of memory\n");
2829 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2830 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY_16
,
2831 ctlr
, buf
, sizeof(ReadCapdata_struct_16
),
2832 0, scsi3addr
, TYPE_CMD
);
2833 if (return_code
== IO_OK
) {
2834 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2835 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2836 } else { /* read capacity command failed */
2837 printk(KERN_WARNING
"cciss: read capacity failed\n");
2839 *block_size
= BLOCK_SIZE
;
2841 printk(KERN_INFO
" blocks= %llu block_size= %d\n",
2842 (unsigned long long)*total_size
+1, *block_size
);
2846 static int cciss_revalidate(struct gendisk
*disk
)
2848 ctlr_info_t
*h
= get_host(disk
);
2849 drive_info_struct
*drv
= get_drv(disk
);
2852 unsigned int block_size
;
2853 sector_t total_size
;
2854 InquiryData_struct
*inq_buff
= NULL
;
2856 for (logvol
= 0; logvol
< CISS_MAX_LUN
; logvol
++) {
2857 if (memcmp(h
->drv
[logvol
]->LunID
, drv
->LunID
,
2858 sizeof(drv
->LunID
)) == 0) {
2867 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2868 if (inq_buff
== NULL
) {
2869 printk(KERN_WARNING
"cciss: out of memory\n");
2872 if (h
->cciss_read
== CCISS_READ_10
) {
2873 cciss_read_capacity(h
->ctlr
, logvol
,
2874 &total_size
, &block_size
);
2876 cciss_read_capacity_16(h
->ctlr
, logvol
,
2877 &total_size
, &block_size
);
2879 cciss_geometry_inquiry(h
->ctlr
, logvol
, total_size
, block_size
,
2882 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2883 set_capacity(disk
, drv
->nr_blocks
);
2890 * Map (physical) PCI mem into (virtual) kernel space
2892 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
2894 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
2895 ulong page_offs
= ((ulong
) base
) - page_base
;
2896 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
2898 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
2902 * Takes jobs of the Q and sends them to the hardware, then puts it on
2903 * the Q to wait for completion.
2905 static void start_io(ctlr_info_t
*h
)
2907 CommandList_struct
*c
;
2909 while (!hlist_empty(&h
->reqQ
)) {
2910 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
2911 /* can't do anything if fifo is full */
2912 if ((h
->access
.fifo_full(h
))) {
2913 printk(KERN_WARNING
"cciss: fifo full\n");
2917 /* Get the first entry from the Request Q */
2921 /* Tell the controller execute command */
2922 h
->access
.submit_command(h
, c
);
2924 /* Put job onto the completed Q */
2929 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2930 /* Zeros out the error record and then resends the command back */
2931 /* to the controller */
2932 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
2934 /* erase the old error information */
2935 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2937 /* add it to software queue and then send it to the controller */
2940 if (h
->Qdepth
> h
->maxQsinceinit
)
2941 h
->maxQsinceinit
= h
->Qdepth
;
2946 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
2947 unsigned int msg_byte
, unsigned int host_byte
,
2948 unsigned int driver_byte
)
2950 /* inverse of macros in scsi.h */
2951 return (scsi_status_byte
& 0xff) |
2952 ((msg_byte
& 0xff) << 8) |
2953 ((host_byte
& 0xff) << 16) |
2954 ((driver_byte
& 0xff) << 24);
2957 static inline int evaluate_target_status(ctlr_info_t
*h
,
2958 CommandList_struct
*cmd
, int *retry_cmd
)
2960 unsigned char sense_key
;
2961 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
2965 /* If we get in here, it means we got "target status", that is, scsi status */
2966 status_byte
= cmd
->err_info
->ScsiStatus
;
2967 driver_byte
= DRIVER_OK
;
2968 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
2970 if (blk_pc_request(cmd
->rq
))
2971 host_byte
= DID_PASSTHROUGH
;
2975 error_value
= make_status_bytes(status_byte
, msg_byte
,
2976 host_byte
, driver_byte
);
2978 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
2979 if (!blk_pc_request(cmd
->rq
))
2980 printk(KERN_WARNING
"cciss: cmd %p "
2981 "has SCSI Status 0x%x\n",
2982 cmd
, cmd
->err_info
->ScsiStatus
);
2986 /* check the sense key */
2987 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
2988 /* no status or recovered error */
2989 if (((sense_key
== 0x0) || (sense_key
== 0x1)) && !blk_pc_request(cmd
->rq
))
2992 if (check_for_unit_attention(h
, cmd
)) {
2993 *retry_cmd
= !blk_pc_request(cmd
->rq
);
2997 if (!blk_pc_request(cmd
->rq
)) { /* Not SG_IO or similar? */
2998 if (error_value
!= 0)
2999 printk(KERN_WARNING
"cciss: cmd %p has CHECK CONDITION"
3000 " sense key = 0x%x\n", cmd
, sense_key
);
3004 /* SG_IO or similar, copy sense data back */
3005 if (cmd
->rq
->sense
) {
3006 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
3007 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
3008 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
3009 cmd
->rq
->sense_len
);
3011 cmd
->rq
->sense_len
= 0;
3016 /* checks the status of the job and calls complete buffers to mark all
3017 * buffers for the completed job. Note that this function does not need
3018 * to hold the hba/queue lock.
3020 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
3024 struct request
*rq
= cmd
->rq
;
3029 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
3031 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
3032 goto after_error_processing
;
3034 switch (cmd
->err_info
->CommandStatus
) {
3035 case CMD_TARGET_STATUS
:
3036 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
3038 case CMD_DATA_UNDERRUN
:
3039 if (blk_fs_request(cmd
->rq
)) {
3040 printk(KERN_WARNING
"cciss: cmd %p has"
3041 " completed with data underrun "
3043 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
3046 case CMD_DATA_OVERRUN
:
3047 if (blk_fs_request(cmd
->rq
))
3048 printk(KERN_WARNING
"cciss: cmd %p has"
3049 " completed with data overrun "
3053 printk(KERN_WARNING
"cciss: cmd %p is "
3054 "reported invalid\n", cmd
);
3055 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3056 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3057 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3059 case CMD_PROTOCOL_ERR
:
3060 printk(KERN_WARNING
"cciss: cmd %p has "
3061 "protocol error \n", cmd
);
3062 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3063 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3064 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3066 case CMD_HARDWARE_ERR
:
3067 printk(KERN_WARNING
"cciss: cmd %p had "
3068 " hardware error\n", cmd
);
3069 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3070 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3071 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3073 case CMD_CONNECTION_LOST
:
3074 printk(KERN_WARNING
"cciss: cmd %p had "
3075 "connection lost\n", cmd
);
3076 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3077 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3078 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3081 printk(KERN_WARNING
"cciss: cmd %p was "
3083 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3084 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3085 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
3087 case CMD_ABORT_FAILED
:
3088 printk(KERN_WARNING
"cciss: cmd %p reports "
3089 "abort failed\n", cmd
);
3090 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3091 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3092 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3094 case CMD_UNSOLICITED_ABORT
:
3095 printk(KERN_WARNING
"cciss%d: unsolicited "
3096 "abort %p\n", h
->ctlr
, cmd
);
3097 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
3100 "cciss%d: retrying %p\n", h
->ctlr
, cmd
);
3104 "cciss%d: %p retried too "
3105 "many times\n", h
->ctlr
, cmd
);
3106 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3107 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3108 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
3111 printk(KERN_WARNING
"cciss: cmd %p timedout\n", cmd
);
3112 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3113 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3114 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3117 printk(KERN_WARNING
"cciss: cmd %p returned "
3118 "unknown status %x\n", cmd
,
3119 cmd
->err_info
->CommandStatus
);
3120 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3121 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3122 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3125 after_error_processing
:
3127 /* We need to return this command */
3129 resend_cciss_cmd(h
, cmd
);
3132 cmd
->rq
->completion_data
= cmd
;
3133 blk_complete_request(cmd
->rq
);
3137 * Get a request and submit it to the controller.
3139 static void do_cciss_request(struct request_queue
*q
)
3141 ctlr_info_t
*h
= q
->queuedata
;
3142 CommandList_struct
*c
;
3145 struct request
*creq
;
3147 struct scatterlist
*tmp_sg
;
3148 SGDescriptor_struct
*curr_sg
;
3149 drive_info_struct
*drv
;
3154 /* We call start_io here in case there is a command waiting on the
3155 * queue that has not been sent.
3157 if (blk_queue_plugged(q
))
3161 creq
= blk_peek_request(q
);
3165 BUG_ON(creq
->nr_phys_segments
> h
->maxsgentries
);
3167 if ((c
= cmd_alloc(h
, 1)) == NULL
)
3170 blk_start_request(creq
);
3172 tmp_sg
= h
->scatter_list
[c
->cmdindex
];
3173 spin_unlock_irq(q
->queue_lock
);
3175 c
->cmd_type
= CMD_RWREQ
;
3178 /* fill in the request */
3179 drv
= creq
->rq_disk
->private_data
;
3180 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
3181 /* got command from pool, so use the command block index instead */
3182 /* for direct lookups. */
3183 /* The first 2 bits are reserved for controller error reporting. */
3184 c
->Header
.Tag
.lower
= (c
->cmdindex
<< 3);
3185 c
->Header
.Tag
.lower
|= 0x04; /* flag for direct lookup. */
3186 memcpy(&c
->Header
.LUN
, drv
->LunID
, sizeof(drv
->LunID
));
3187 c
->Request
.CDBLen
= 10; /* 12 byte commands not in FW yet; */
3188 c
->Request
.Type
.Type
= TYPE_CMD
; /* It is a command. */
3189 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3190 c
->Request
.Type
.Direction
=
3191 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3192 c
->Request
.Timeout
= 0; /* Don't time out */
3194 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3195 start_blk
= blk_rq_pos(creq
);
3197 printk(KERN_DEBUG
"ciss: sector =%d nr_sectors=%d\n",
3198 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3199 #endif /* CCISS_DEBUG */
3201 sg_init_table(tmp_sg
, h
->maxsgentries
);
3202 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3204 /* get the DMA records for the setup */
3205 if (c
->Request
.Type
.Direction
== XFER_READ
)
3206 dir
= PCI_DMA_FROMDEVICE
;
3208 dir
= PCI_DMA_TODEVICE
;
3214 for (i
= 0; i
< seg
; i
++) {
3215 if (((sg_index
+1) == (h
->max_cmd_sgentries
)) &&
3216 !chained
&& ((seg
- i
) > 1)) {
3217 /* Point to next chain block. */
3218 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
3222 curr_sg
[sg_index
].Len
= tmp_sg
[i
].length
;
3223 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3225 tmp_sg
[i
].length
, dir
);
3226 curr_sg
[sg_index
].Addr
.lower
= temp64
.val32
.lower
;
3227 curr_sg
[sg_index
].Addr
.upper
= temp64
.val32
.upper
;
3228 curr_sg
[sg_index
].Ext
= 0; /* we are not chaining */
3232 cciss_map_sg_chain_block(h
, c
, h
->cmd_sg_list
[c
->cmdindex
],
3233 (seg
- (h
->max_cmd_sgentries
- 1)) *
3234 sizeof(SGDescriptor_struct
));
3236 /* track how many SG entries we are using */
3241 printk(KERN_DEBUG
"cciss: Submitting %ld sectors in %d segments "
3243 blk_rq_sectors(creq
), seg
, chained
);
3244 #endif /* CCISS_DEBUG */
3246 c
->Header
.SGList
= c
->Header
.SGTotal
= seg
+ chained
;
3247 if (seg
> h
->max_cmd_sgentries
)
3248 c
->Header
.SGList
= h
->max_cmd_sgentries
;
3250 if (likely(blk_fs_request(creq
))) {
3251 if(h
->cciss_read
== CCISS_READ_10
) {
3252 c
->Request
.CDB
[1] = 0;
3253 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; /* MSB */
3254 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3255 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3256 c
->Request
.CDB
[5] = start_blk
& 0xff;
3257 c
->Request
.CDB
[6] = 0; /* (sect >> 24) & 0xff; MSB */
3258 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3259 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3260 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3262 u32 upper32
= upper_32_bits(start_blk
);
3264 c
->Request
.CDBLen
= 16;
3265 c
->Request
.CDB
[1]= 0;
3266 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; /* MSB */
3267 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3268 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3269 c
->Request
.CDB
[5]= upper32
& 0xff;
3270 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3271 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3272 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3273 c
->Request
.CDB
[9]= start_blk
& 0xff;
3274 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3275 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3276 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3277 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3278 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3280 } else if (blk_pc_request(creq
)) {
3281 c
->Request
.CDBLen
= creq
->cmd_len
;
3282 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3284 printk(KERN_WARNING
"cciss%d: bad request type %d\n", h
->ctlr
, creq
->cmd_type
);
3288 spin_lock_irq(q
->queue_lock
);
3292 if (h
->Qdepth
> h
->maxQsinceinit
)
3293 h
->maxQsinceinit
= h
->Qdepth
;
3299 /* We will already have the driver lock here so not need
3305 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3307 return h
->access
.command_completed(h
);
3310 static inline int interrupt_pending(ctlr_info_t
*h
)
3312 return h
->access
.intr_pending(h
);
3315 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3317 return (((h
->access
.intr_pending(h
) == 0) ||
3318 (h
->interrupts_enabled
== 0)));
3321 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
)
3323 ctlr_info_t
*h
= dev_id
;
3324 CommandList_struct
*c
;
3325 unsigned long flags
;
3328 if (interrupt_not_for_us(h
))
3331 * If there are completed commands in the completion queue,
3332 * we had better do something about it.
3334 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
3335 while (interrupt_pending(h
)) {
3336 while ((a
= get_next_completion(h
)) != FIFO_EMPTY
) {
3340 if (a2
>= h
->nr_cmds
) {
3342 "cciss: controller cciss%d failed, stopping.\n",
3344 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
3345 fail_all_cmds(h
->ctlr
);
3349 c
= h
->cmd_pool
+ a2
;
3353 struct hlist_node
*tmp
;
3357 hlist_for_each_entry(c
, tmp
, &h
->cmpQ
, list
) {
3358 if (c
->busaddr
== a
)
3363 * If we've found the command, take it off the
3364 * completion Q and free it
3366 if (c
&& c
->busaddr
== a
) {
3368 if (c
->cmd_type
== CMD_RWREQ
) {
3369 complete_command(h
, c
, 0);
3370 } else if (c
->cmd_type
== CMD_IOCTL_PEND
) {
3371 complete(c
->waiting
);
3373 # ifdef CONFIG_CISS_SCSI_TAPE
3374 else if (c
->cmd_type
== CMD_SCSI
)
3375 complete_scsi_command(c
, 0, a1
);
3382 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
3387 * add_to_scan_list() - add controller to rescan queue
3388 * @h: Pointer to the controller.
3390 * Adds the controller to the rescan queue if not already on the queue.
3392 * returns 1 if added to the queue, 0 if skipped (could be on the
3393 * queue already, or the controller could be initializing or shutting
3396 static int add_to_scan_list(struct ctlr_info
*h
)
3398 struct ctlr_info
*test_h
;
3402 if (h
->busy_initializing
)
3405 if (!mutex_trylock(&h
->busy_shutting_down
))
3408 mutex_lock(&scan_mutex
);
3409 list_for_each_entry(test_h
, &scan_q
, scan_list
) {
3415 if (!found
&& !h
->busy_scanning
) {
3416 INIT_COMPLETION(h
->scan_wait
);
3417 list_add_tail(&h
->scan_list
, &scan_q
);
3420 mutex_unlock(&scan_mutex
);
3421 mutex_unlock(&h
->busy_shutting_down
);
3427 * remove_from_scan_list() - remove controller from rescan queue
3428 * @h: Pointer to the controller.
3430 * Removes the controller from the rescan queue if present. Blocks if
3431 * the controller is currently conducting a rescan. The controller
3432 * can be in one of three states:
3433 * 1. Doesn't need a scan
3434 * 2. On the scan list, but not scanning yet (we remove it)
3435 * 3. Busy scanning (and not on the list). In this case we want to wait for
3436 * the scan to complete to make sure the scanning thread for this
3437 * controller is completely idle.
3439 static void remove_from_scan_list(struct ctlr_info
*h
)
3441 struct ctlr_info
*test_h
, *tmp_h
;
3443 mutex_lock(&scan_mutex
);
3444 list_for_each_entry_safe(test_h
, tmp_h
, &scan_q
, scan_list
) {
3445 if (test_h
== h
) { /* state 2. */
3446 list_del(&h
->scan_list
);
3447 complete_all(&h
->scan_wait
);
3448 mutex_unlock(&scan_mutex
);
3452 if (h
->busy_scanning
) { /* state 3. */
3453 mutex_unlock(&scan_mutex
);
3454 wait_for_completion(&h
->scan_wait
);
3455 } else { /* state 1, nothing to do. */
3456 mutex_unlock(&scan_mutex
);
3461 * scan_thread() - kernel thread used to rescan controllers
3464 * A kernel thread used scan for drive topology changes on
3465 * controllers. The thread processes only one controller at a time
3466 * using a queue. Controllers are added to the queue using
3467 * add_to_scan_list() and removed from the queue either after done
3468 * processing or using remove_from_scan_list().
3472 static int scan_thread(void *data
)
3474 struct ctlr_info
*h
;
3477 set_current_state(TASK_INTERRUPTIBLE
);
3479 if (kthread_should_stop())
3483 mutex_lock(&scan_mutex
);
3484 if (list_empty(&scan_q
)) {
3485 mutex_unlock(&scan_mutex
);
3489 h
= list_entry(scan_q
.next
,
3492 list_del(&h
->scan_list
);
3493 h
->busy_scanning
= 1;
3494 mutex_unlock(&scan_mutex
);
3496 rebuild_lun_table(h
, 0, 0);
3497 complete_all(&h
->scan_wait
);
3498 mutex_lock(&scan_mutex
);
3499 h
->busy_scanning
= 0;
3500 mutex_unlock(&scan_mutex
);
3507 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3509 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3512 switch (c
->err_info
->SenseInfo
[12]) {
3514 printk(KERN_WARNING
"cciss%d: a state change "
3515 "detected, command retried\n", h
->ctlr
);
3519 printk(KERN_WARNING
"cciss%d: LUN failure "
3520 "detected, action required\n", h
->ctlr
);
3523 case REPORT_LUNS_CHANGED
:
3524 printk(KERN_WARNING
"cciss%d: report LUN data "
3525 "changed\n", h
->ctlr
);
3527 * Here, we could call add_to_scan_list and wake up the scan thread,
3528 * except that it's quite likely that we will get more than one
3529 * REPORT_LUNS_CHANGED condition in quick succession, which means
3530 * that those which occur after the first one will likely happen
3531 * *during* the scan_thread's rescan. And the rescan code is not
3532 * robust enough to restart in the middle, undoing what it has already
3533 * done, and it's not clear that it's even possible to do this, since
3534 * part of what it does is notify the block layer, which starts
3535 * doing it's own i/o to read partition tables and so on, and the
3536 * driver doesn't have visibility to know what might need undoing.
3537 * In any event, if possible, it is horribly complicated to get right
3538 * so we just don't do it for now.
3540 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3544 case POWER_OR_RESET
:
3545 printk(KERN_WARNING
"cciss%d: a power on "
3546 "or device reset detected\n", h
->ctlr
);
3549 case UNIT_ATTENTION_CLEARED
:
3550 printk(KERN_WARNING
"cciss%d: unit attention "
3551 "cleared by another initiator\n", h
->ctlr
);
3555 printk(KERN_WARNING
"cciss%d: unknown "
3556 "unit attention detected\n", h
->ctlr
);
3562 * We cannot read the structure directly, for portability we must use
3564 * This is for debug only.
3567 static void print_cfg_table(CfgTable_struct
*tb
)
3572 printk("Controller Configuration information\n");
3573 printk("------------------------------------\n");
3574 for (i
= 0; i
< 4; i
++)
3575 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3576 temp_name
[4] = '\0';
3577 printk(" Signature = %s\n", temp_name
);
3578 printk(" Spec Number = %d\n", readl(&(tb
->SpecValence
)));
3579 printk(" Transport methods supported = 0x%x\n",
3580 readl(&(tb
->TransportSupport
)));
3581 printk(" Transport methods active = 0x%x\n",
3582 readl(&(tb
->TransportActive
)));
3583 printk(" Requested transport Method = 0x%x\n",
3584 readl(&(tb
->HostWrite
.TransportRequest
)));
3585 printk(" Coalesce Interrupt Delay = 0x%x\n",
3586 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3587 printk(" Coalesce Interrupt Count = 0x%x\n",
3588 readl(&(tb
->HostWrite
.CoalIntCount
)));
3589 printk(" Max outstanding commands = 0x%d\n",
3590 readl(&(tb
->CmdsOutMax
)));
3591 printk(" Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
3592 for (i
= 0; i
< 16; i
++)
3593 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3594 temp_name
[16] = '\0';
3595 printk(" Server Name = %s\n", temp_name
);
3596 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb
->HeartBeat
)));
3598 #endif /* CCISS_DEBUG */
3600 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3602 int i
, offset
, mem_type
, bar_type
;
3603 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3606 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3607 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3608 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3611 mem_type
= pci_resource_flags(pdev
, i
) &
3612 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3614 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3615 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3616 offset
+= 4; /* 32 bit */
3618 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3621 default: /* reserved in PCI 2.2 */
3623 "Base address is invalid\n");
3628 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3634 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3635 * controllers that are capable. If not, we use IO-APIC mode.
3638 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*c
,
3639 struct pci_dev
*pdev
, __u32 board_id
)
3641 #ifdef CONFIG_PCI_MSI
3643 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
3647 /* Some boards advertise MSI but don't really support it */
3648 if ((board_id
== 0x40700E11) ||
3649 (board_id
== 0x40800E11) ||
3650 (board_id
== 0x40820E11) || (board_id
== 0x40830E11))
3651 goto default_int_mode
;
3653 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
)) {
3654 err
= pci_enable_msix(pdev
, cciss_msix_entries
, 4);
3656 c
->intr
[0] = cciss_msix_entries
[0].vector
;
3657 c
->intr
[1] = cciss_msix_entries
[1].vector
;
3658 c
->intr
[2] = cciss_msix_entries
[2].vector
;
3659 c
->intr
[3] = cciss_msix_entries
[3].vector
;
3664 printk(KERN_WARNING
"cciss: only %d MSI-X vectors "
3665 "available\n", err
);
3666 goto default_int_mode
;
3668 printk(KERN_WARNING
"cciss: MSI-X init failed %d\n",
3670 goto default_int_mode
;
3673 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
)) {
3674 if (!pci_enable_msi(pdev
)) {
3677 printk(KERN_WARNING
"cciss: MSI init failed\n");
3681 #endif /* CONFIG_PCI_MSI */
3682 /* if we get here we're going to use the default interrupt mode */
3683 c
->intr
[SIMPLE_MODE_INT
] = pdev
->irq
;
3687 static int __devinit
cciss_pci_init(ctlr_info_t
*c
, struct pci_dev
*pdev
)
3689 ushort subsystem_vendor_id
, subsystem_device_id
, command
;
3690 __u32 board_id
, scratchpad
= 0;
3692 __u32 cfg_base_addr
;
3693 __u64 cfg_base_addr_index
;
3694 int i
, prod_index
, err
;
3696 subsystem_vendor_id
= pdev
->subsystem_vendor
;
3697 subsystem_device_id
= pdev
->subsystem_device
;
3698 board_id
= (((__u32
) (subsystem_device_id
<< 16) & 0xffff0000) |
3699 subsystem_vendor_id
);
3701 for (i
= 0; i
< ARRAY_SIZE(products
); i
++) {
3702 /* Stand aside for hpsa driver on request */
3703 if (cciss_allow_hpsa
&& products
[i
].board_id
== HPSA_BOUNDARY
)
3705 if (board_id
== products
[i
].board_id
)
3709 if (prod_index
== ARRAY_SIZE(products
)) {
3710 dev_warn(&pdev
->dev
,
3711 "unrecognized board ID: 0x%08lx, ignoring.\n",
3712 (unsigned long) board_id
);
3716 /* check to see if controller has been disabled */
3717 /* BEFORE trying to enable it */
3718 (void)pci_read_config_word(pdev
, PCI_COMMAND
, &command
);
3719 if (!(command
& 0x02)) {
3721 "cciss: controller appears to be disabled\n");
3725 err
= pci_enable_device(pdev
);
3727 printk(KERN_ERR
"cciss: Unable to Enable PCI device\n");
3731 err
= pci_request_regions(pdev
, "cciss");
3733 printk(KERN_ERR
"cciss: Cannot obtain PCI resources, "
3739 printk("command = %x\n", command
);
3740 printk("irq = %x\n", pdev
->irq
);
3741 printk("board_id = %x\n", board_id
);
3742 #endif /* CCISS_DEBUG */
3744 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3745 * else we use the IO-APIC interrupt assigned to us by system ROM.
3747 cciss_interrupt_mode(c
, pdev
, board_id
);
3749 /* find the memory BAR */
3750 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3751 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
)
3754 if (i
== DEVICE_COUNT_RESOURCE
) {
3755 printk(KERN_WARNING
"cciss: No memory BAR found\n");
3757 goto err_out_free_res
;
3760 c
->paddr
= pci_resource_start(pdev
, i
); /* addressing mode bits
3765 printk("address 0 = %lx\n", c
->paddr
);
3766 #endif /* CCISS_DEBUG */
3767 c
->vaddr
= remap_pci_mem(c
->paddr
, 0x250);
3769 /* Wait for the board to become ready. (PCI hotplug needs this.)
3770 * We poll for up to 120 secs, once per 100ms. */
3771 for (i
= 0; i
< 1200; i
++) {
3772 scratchpad
= readl(c
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
3773 if (scratchpad
== CCISS_FIRMWARE_READY
)
3775 set_current_state(TASK_INTERRUPTIBLE
);
3776 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3778 if (scratchpad
!= CCISS_FIRMWARE_READY
) {
3779 printk(KERN_WARNING
"cciss: Board not ready. Timed out.\n");
3781 goto err_out_free_res
;
3784 /* get the address index number */
3785 cfg_base_addr
= readl(c
->vaddr
+ SA5_CTCFG_OFFSET
);
3786 cfg_base_addr
&= (__u32
) 0x0000ffff;
3788 printk("cfg base address = %x\n", cfg_base_addr
);
3789 #endif /* CCISS_DEBUG */
3790 cfg_base_addr_index
= find_PCI_BAR_index(pdev
, cfg_base_addr
);
3792 printk("cfg base address index = %llx\n",
3793 (unsigned long long)cfg_base_addr_index
);
3794 #endif /* CCISS_DEBUG */
3795 if (cfg_base_addr_index
== -1) {
3796 printk(KERN_WARNING
"cciss: Cannot find cfg_base_addr_index\n");
3798 goto err_out_free_res
;
3801 cfg_offset
= readl(c
->vaddr
+ SA5_CTMEM_OFFSET
);
3803 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset
);
3804 #endif /* CCISS_DEBUG */
3805 c
->cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
3806 cfg_base_addr_index
) +
3807 cfg_offset
, sizeof(CfgTable_struct
));
3808 c
->board_id
= board_id
;
3811 print_cfg_table(c
->cfgtable
);
3812 #endif /* CCISS_DEBUG */
3814 /* Some controllers support Zero Memory Raid (ZMR).
3815 * When configured in ZMR mode the number of supported
3816 * commands drops to 64. So instead of just setting an
3817 * arbitrary value we make the driver a little smarter.
3818 * We read the config table to tell us how many commands
3819 * are supported on the controller then subtract 4 to
3820 * leave a little room for ioctl calls.
3822 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3823 c
->maxsgentries
= readl(&(c
->cfgtable
->MaxSGElements
));
3826 * Limit native command to 32 s/g elements to save dma'able memory.
3827 * Howvever spec says if 0, use 31
3830 c
->max_cmd_sgentries
= 31;
3831 if (c
->maxsgentries
> 512) {
3832 c
->max_cmd_sgentries
= 32;
3833 c
->chainsize
= c
->maxsgentries
- c
->max_cmd_sgentries
+ 1;
3834 c
->maxsgentries
-= 1; /* account for chain pointer */
3836 c
->maxsgentries
= 31; /* Default to traditional value */
3837 c
->chainsize
= 0; /* traditional */
3840 c
->product_name
= products
[prod_index
].product_name
;
3841 c
->access
= *(products
[prod_index
].access
);
3842 c
->nr_cmds
= c
->max_commands
- 4;
3843 if ((readb(&c
->cfgtable
->Signature
[0]) != 'C') ||
3844 (readb(&c
->cfgtable
->Signature
[1]) != 'I') ||
3845 (readb(&c
->cfgtable
->Signature
[2]) != 'S') ||
3846 (readb(&c
->cfgtable
->Signature
[3]) != 'S')) {
3847 printk("Does not appear to be a valid CISS config table\n");
3849 goto err_out_free_res
;
3853 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3855 prefetch
= readl(&(c
->cfgtable
->SCSI_Prefetch
));
3857 writel(prefetch
, &(c
->cfgtable
->SCSI_Prefetch
));
3861 /* Disabling DMA prefetch and refetch for the P600.
3862 * An ASIC bug may result in accesses to invalid memory addresses.
3863 * We've disabled prefetch for some time now. Testing with XEN
3864 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3866 if(board_id
== 0x3225103C) {
3869 dma_prefetch
= readl(c
->vaddr
+ I2O_DMA1_CFG
);
3870 dma_prefetch
|= 0x8000;
3871 writel(dma_prefetch
, c
->vaddr
+ I2O_DMA1_CFG
);
3872 pci_read_config_dword(pdev
, PCI_COMMAND_PARITY
, &dma_refetch
);
3874 pci_write_config_dword(pdev
, PCI_COMMAND_PARITY
, dma_refetch
);
3878 printk("Trying to put board into Simple mode\n");
3879 #endif /* CCISS_DEBUG */
3880 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3881 /* Update the field, and then ring the doorbell */
3882 writel(CFGTBL_Trans_Simple
, &(c
->cfgtable
->HostWrite
.TransportRequest
));
3883 writel(CFGTBL_ChangeReq
, c
->vaddr
+ SA5_DOORBELL
);
3885 /* under certain very rare conditions, this can take awhile.
3886 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3887 * as we enter this code.) */
3888 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
3889 if (!(readl(c
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
3891 /* delay and try again */
3892 set_current_state(TASK_INTERRUPTIBLE
);
3893 schedule_timeout(msecs_to_jiffies(1));
3897 printk(KERN_DEBUG
"I counter got to %d %x\n", i
,
3898 readl(c
->vaddr
+ SA5_DOORBELL
));
3899 #endif /* CCISS_DEBUG */
3901 print_cfg_table(c
->cfgtable
);
3902 #endif /* CCISS_DEBUG */
3904 if (!(readl(&(c
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
)) {
3905 printk(KERN_WARNING
"cciss: unable to get board into"
3908 goto err_out_free_res
;
3914 * Deliberately omit pci_disable_device(): it does something nasty to
3915 * Smart Array controllers that pci_enable_device does not undo
3917 pci_release_regions(pdev
);
3921 /* Function to find the first free pointer into our hba[] array
3922 * Returns -1 if no free entries are left.
3924 static int alloc_cciss_hba(void)
3928 for (i
= 0; i
< MAX_CTLR
; i
++) {
3932 p
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
3939 printk(KERN_WARNING
"cciss: This driver supports a maximum"
3940 " of %d controllers.\n", MAX_CTLR
);
3943 printk(KERN_ERR
"cciss: out of memory.\n");
3947 static void free_hba(int n
)
3949 ctlr_info_t
*h
= hba
[n
];
3953 for (i
= 0; i
< h
->highest_lun
+ 1; i
++)
3954 if (h
->gendisk
[i
] != NULL
)
3955 put_disk(h
->gendisk
[i
]);
3959 /* Send a message CDB to the firmware. */
3960 static __devinit
int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
, unsigned char type
)
3963 CommandListHeader_struct CommandHeader
;
3964 RequestBlock_struct Request
;
3965 ErrDescriptor_struct ErrorDescriptor
;
3967 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
3970 uint32_t paddr32
, tag
;
3971 void __iomem
*vaddr
;
3974 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
3978 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3979 CCISS commands, so they must be allocated from the lower 4GiB of
3981 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3987 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
3993 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3994 although there's no guarantee, we assume that the address is at
3995 least 4-byte aligned (most likely, it's page-aligned). */
3998 cmd
->CommandHeader
.ReplyQueue
= 0;
3999 cmd
->CommandHeader
.SGList
= 0;
4000 cmd
->CommandHeader
.SGTotal
= 0;
4001 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
4002 cmd
->CommandHeader
.Tag
.upper
= 0;
4003 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
4005 cmd
->Request
.CDBLen
= 16;
4006 cmd
->Request
.Type
.Type
= TYPE_MSG
;
4007 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
4008 cmd
->Request
.Type
.Direction
= XFER_NONE
;
4009 cmd
->Request
.Timeout
= 0; /* Don't time out */
4010 cmd
->Request
.CDB
[0] = opcode
;
4011 cmd
->Request
.CDB
[1] = type
;
4012 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
4014 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
4015 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
4016 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
4018 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
4020 for (i
= 0; i
< 10; i
++) {
4021 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
4022 if ((tag
& ~3) == paddr32
)
4024 schedule_timeout_uninterruptible(HZ
);
4029 /* we leak the DMA buffer here ... no choice since the controller could
4030 still complete the command. */
4032 printk(KERN_ERR
"cciss: controller message %02x:%02x timed out\n",
4037 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
4040 printk(KERN_ERR
"cciss: controller message %02x:%02x failed\n",
4045 printk(KERN_INFO
"cciss: controller message %02x:%02x succeeded\n",
4050 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4051 #define cciss_noop(p) cciss_message(p, 3, 0)
4053 static __devinit
int cciss_reset_msi(struct pci_dev
*pdev
)
4055 /* the #defines are stolen from drivers/pci/msi.h. */
4056 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4057 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4062 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSI
);
4064 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4065 if (control
& PCI_MSI_FLAGS_ENABLE
) {
4066 printk(KERN_INFO
"cciss: resetting MSI\n");
4067 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSI_FLAGS_ENABLE
);
4071 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
4073 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4074 if (control
& PCI_MSIX_FLAGS_ENABLE
) {
4075 printk(KERN_INFO
"cciss: resetting MSI-X\n");
4076 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSIX_FLAGS_ENABLE
);
4083 /* This does a hard reset of the controller using PCI power management
4085 static __devinit
int cciss_hard_reset_controller(struct pci_dev
*pdev
)
4087 u16 pmcsr
, saved_config_space
[32];
4090 printk(KERN_INFO
"cciss: using PCI PM to reset controller\n");
4092 /* This is very nearly the same thing as
4094 pci_save_state(pci_dev);
4095 pci_set_power_state(pci_dev, PCI_D3hot);
4096 pci_set_power_state(pci_dev, PCI_D0);
4097 pci_restore_state(pci_dev);
4099 but we can't use these nice canned kernel routines on
4100 kexec, because they also check the MSI/MSI-X state in PCI
4101 configuration space and do the wrong thing when it is
4102 set/cleared. Also, the pci_save/restore_state functions
4103 violate the ordering requirements for restoring the
4104 configuration space from the CCISS document (see the
4105 comment below). So we roll our own .... */
4107 for (i
= 0; i
< 32; i
++)
4108 pci_read_config_word(pdev
, 2*i
, &saved_config_space
[i
]);
4110 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
4112 printk(KERN_ERR
"cciss_reset_controller: PCI PM not supported\n");
4116 /* Quoting from the Open CISS Specification: "The Power
4117 * Management Control/Status Register (CSR) controls the power
4118 * state of the device. The normal operating state is D0,
4119 * CSR=00h. The software off state is D3, CSR=03h. To reset
4120 * the controller, place the interface device in D3 then to
4121 * D0, this causes a secondary PCI reset which will reset the
4124 /* enter the D3hot power management state */
4125 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
4126 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4128 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4130 schedule_timeout_uninterruptible(HZ
>> 1);
4132 /* enter the D0 power management state */
4133 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4135 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4137 schedule_timeout_uninterruptible(HZ
>> 1);
4139 /* Restore the PCI configuration space. The Open CISS
4140 * Specification says, "Restore the PCI Configuration
4141 * Registers, offsets 00h through 60h. It is important to
4142 * restore the command register, 16-bits at offset 04h,
4143 * last. Do not restore the configuration status register,
4144 * 16-bits at offset 06h." Note that the offset is 2*i. */
4145 for (i
= 0; i
< 32; i
++) {
4146 if (i
== 2 || i
== 3)
4148 pci_write_config_word(pdev
, 2*i
, saved_config_space
[i
]);
4151 pci_write_config_word(pdev
, 4, saved_config_space
[2]);
4157 * This is it. Find all the controllers and register them. I really hate
4158 * stealing all these major device numbers.
4159 * returns the number of block devices registered.
4161 static int __devinit
cciss_init_one(struct pci_dev
*pdev
,
4162 const struct pci_device_id
*ent
)
4168 int dac
, return_code
;
4169 InquiryData_struct
*inq_buff
;
4171 if (reset_devices
) {
4172 /* Reset the controller with a PCI power-cycle */
4173 if (cciss_hard_reset_controller(pdev
) || cciss_reset_msi(pdev
))
4176 /* Now try to get the controller to respond to a no-op. Some
4177 devices (notably the HP Smart Array 5i Controller) need
4178 up to 30 seconds to respond. */
4179 for (i
=0; i
<30; i
++) {
4180 if (cciss_noop(pdev
) == 0)
4183 schedule_timeout_uninterruptible(HZ
);
4186 printk(KERN_ERR
"cciss: controller seems dead\n");
4191 i
= alloc_cciss_hba();
4195 hba
[i
]->busy_initializing
= 1;
4196 INIT_HLIST_HEAD(&hba
[i
]->cmpQ
);
4197 INIT_HLIST_HEAD(&hba
[i
]->reqQ
);
4198 mutex_init(&hba
[i
]->busy_shutting_down
);
4200 if (cciss_pci_init(hba
[i
], pdev
) != 0)
4201 goto clean_no_release_regions
;
4203 sprintf(hba
[i
]->devname
, "cciss%d", i
);
4205 hba
[i
]->pdev
= pdev
;
4207 init_completion(&hba
[i
]->scan_wait
);
4209 if (cciss_create_hba_sysfs_entry(hba
[i
]))
4212 /* configure PCI DMA stuff */
4213 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
4215 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
4218 printk(KERN_ERR
"cciss: no suitable DMA available\n");
4223 * register with the major number, or get a dynamic major number
4224 * by passing 0 as argument. This is done for greater than
4225 * 8 controller support.
4227 if (i
< MAX_CTLR_ORIG
)
4228 hba
[i
]->major
= COMPAQ_CISS_MAJOR
+ i
;
4229 rc
= register_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4230 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
4232 "cciss: Unable to get major number %d for %s "
4233 "on hba %d\n", hba
[i
]->major
, hba
[i
]->devname
, i
);
4236 if (i
>= MAX_CTLR_ORIG
)
4240 /* make sure the board interrupts are off */
4241 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_OFF
);
4242 if (request_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], do_cciss_intr
,
4243 IRQF_DISABLED
| IRQF_SHARED
, hba
[i
]->devname
, hba
[i
])) {
4244 printk(KERN_ERR
"cciss: Unable to get irq %d for %s\n",
4245 hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]->devname
);
4249 printk(KERN_INFO
"%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4250 hba
[i
]->devname
, pdev
->device
, pci_name(pdev
),
4251 hba
[i
]->intr
[SIMPLE_MODE_INT
], dac
? "" : " not");
4253 hba
[i
]->cmd_pool_bits
=
4254 kmalloc(DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
4255 * sizeof(unsigned long), GFP_KERNEL
);
4256 hba
[i
]->cmd_pool
= (CommandList_struct
*)
4257 pci_alloc_consistent(hba
[i
]->pdev
,
4258 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4259 &(hba
[i
]->cmd_pool_dhandle
));
4260 hba
[i
]->errinfo_pool
= (ErrorInfo_struct
*)
4261 pci_alloc_consistent(hba
[i
]->pdev
,
4262 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4263 &(hba
[i
]->errinfo_pool_dhandle
));
4264 if ((hba
[i
]->cmd_pool_bits
== NULL
)
4265 || (hba
[i
]->cmd_pool
== NULL
)
4266 || (hba
[i
]->errinfo_pool
== NULL
)) {
4267 printk(KERN_ERR
"cciss: out of memory");
4271 /* Need space for temp scatter list */
4272 hba
[i
]->scatter_list
= kmalloc(hba
[i
]->max_commands
*
4273 sizeof(struct scatterlist
*),
4275 for (k
= 0; k
< hba
[i
]->nr_cmds
; k
++) {
4276 hba
[i
]->scatter_list
[k
] = kmalloc(sizeof(struct scatterlist
) *
4277 hba
[i
]->maxsgentries
,
4279 if (hba
[i
]->scatter_list
[k
] == NULL
) {
4280 printk(KERN_ERR
"cciss%d: could not allocate "
4285 hba
[i
]->cmd_sg_list
= cciss_allocate_sg_chain_blocks(hba
[i
],
4286 hba
[i
]->chainsize
, hba
[i
]->nr_cmds
);
4287 if (!hba
[i
]->cmd_sg_list
&& hba
[i
]->chainsize
> 0)
4290 spin_lock_init(&hba
[i
]->lock
);
4292 /* Initialize the pdev driver private data.
4293 have it point to hba[i]. */
4294 pci_set_drvdata(pdev
, hba
[i
]);
4295 /* command and error info recs zeroed out before
4297 memset(hba
[i
]->cmd_pool_bits
, 0,
4298 DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
4299 * sizeof(unsigned long));
4301 hba
[i
]->num_luns
= 0;
4302 hba
[i
]->highest_lun
= -1;
4303 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4304 hba
[i
]->drv
[j
] = NULL
;
4305 hba
[i
]->gendisk
[j
] = NULL
;
4308 cciss_scsi_setup(i
);
4310 /* Turn the interrupts on so we can service requests */
4311 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_ON
);
4313 /* Get the firmware version */
4314 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
4315 if (inq_buff
== NULL
) {
4316 printk(KERN_ERR
"cciss: out of memory\n");
4320 return_code
= sendcmd_withirq(CISS_INQUIRY
, i
, inq_buff
,
4321 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
4322 if (return_code
== IO_OK
) {
4323 hba
[i
]->firm_ver
[0] = inq_buff
->data_byte
[32];
4324 hba
[i
]->firm_ver
[1] = inq_buff
->data_byte
[33];
4325 hba
[i
]->firm_ver
[2] = inq_buff
->data_byte
[34];
4326 hba
[i
]->firm_ver
[3] = inq_buff
->data_byte
[35];
4327 } else { /* send command failed */
4328 printk(KERN_WARNING
"cciss: unable to determine firmware"
4329 " version of controller\n");
4335 hba
[i
]->cciss_max_sectors
= 8192;
4337 rebuild_lun_table(hba
[i
], 1, 0);
4338 hba
[i
]->busy_initializing
= 0;
4342 kfree(hba
[i
]->cmd_pool_bits
);
4343 /* Free up sg elements */
4344 for (k
= 0; k
< hba
[i
]->nr_cmds
; k
++)
4345 kfree(hba
[i
]->scatter_list
[k
]);
4346 kfree(hba
[i
]->scatter_list
);
4347 cciss_free_sg_chain_blocks(hba
[i
]->cmd_sg_list
, hba
[i
]->nr_cmds
);
4348 if (hba
[i
]->cmd_pool
)
4349 pci_free_consistent(hba
[i
]->pdev
,
4350 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4351 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4352 if (hba
[i
]->errinfo_pool
)
4353 pci_free_consistent(hba
[i
]->pdev
,
4354 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4355 hba
[i
]->errinfo_pool
,
4356 hba
[i
]->errinfo_pool_dhandle
);
4357 free_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]);
4359 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4361 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4363 pci_release_regions(pdev
);
4364 clean_no_release_regions
:
4365 hba
[i
]->busy_initializing
= 0;
4368 * Deliberately omit pci_disable_device(): it does something nasty to
4369 * Smart Array controllers that pci_enable_device does not undo
4371 pci_set_drvdata(pdev
, NULL
);
4376 static void cciss_shutdown(struct pci_dev
*pdev
)
4382 h
= pci_get_drvdata(pdev
);
4383 flush_buf
= kzalloc(4, GFP_KERNEL
);
4386 "cciss:%d cache not flushed, out of memory.\n",
4390 /* write all data in the battery backed cache to disk */
4391 memset(flush_buf
, 0, 4);
4392 return_code
= sendcmd_withirq(CCISS_CACHE_FLUSH
, h
->ctlr
, flush_buf
,
4393 4, 0, CTLR_LUNID
, TYPE_CMD
);
4395 if (return_code
!= IO_OK
)
4396 printk(KERN_WARNING
"cciss%d: Error flushing cache\n",
4398 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
4399 free_irq(h
->intr
[2], h
);
4402 static void __devexit
cciss_remove_one(struct pci_dev
*pdev
)
4404 ctlr_info_t
*tmp_ptr
;
4407 if (pci_get_drvdata(pdev
) == NULL
) {
4408 printk(KERN_ERR
"cciss: Unable to remove device \n");
4412 tmp_ptr
= pci_get_drvdata(pdev
);
4414 if (hba
[i
] == NULL
) {
4415 printk(KERN_ERR
"cciss: device appears to "
4416 "already be removed \n");
4420 mutex_lock(&hba
[i
]->busy_shutting_down
);
4422 remove_from_scan_list(hba
[i
]);
4423 remove_proc_entry(hba
[i
]->devname
, proc_cciss
);
4424 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4426 /* remove it from the disk list */
4427 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4428 struct gendisk
*disk
= hba
[i
]->gendisk
[j
];
4430 struct request_queue
*q
= disk
->queue
;
4432 if (disk
->flags
& GENHD_FL_UP
) {
4433 cciss_destroy_ld_sysfs_entry(hba
[i
], j
, 1);
4437 blk_cleanup_queue(q
);
4441 #ifdef CONFIG_CISS_SCSI_TAPE
4442 cciss_unregister_scsi(i
); /* unhook from SCSI subsystem */
4445 cciss_shutdown(pdev
);
4447 #ifdef CONFIG_PCI_MSI
4448 if (hba
[i
]->msix_vector
)
4449 pci_disable_msix(hba
[i
]->pdev
);
4450 else if (hba
[i
]->msi_vector
)
4451 pci_disable_msi(hba
[i
]->pdev
);
4452 #endif /* CONFIG_PCI_MSI */
4454 iounmap(hba
[i
]->vaddr
);
4456 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4457 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4458 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4459 hba
[i
]->errinfo_pool
, hba
[i
]->errinfo_pool_dhandle
);
4460 kfree(hba
[i
]->cmd_pool_bits
);
4461 /* Free up sg elements */
4462 for (j
= 0; j
< hba
[i
]->nr_cmds
; j
++)
4463 kfree(hba
[i
]->scatter_list
[j
]);
4464 kfree(hba
[i
]->scatter_list
);
4465 cciss_free_sg_chain_blocks(hba
[i
]->cmd_sg_list
, hba
[i
]->nr_cmds
);
4467 * Deliberately omit pci_disable_device(): it does something nasty to
4468 * Smart Array controllers that pci_enable_device does not undo
4470 pci_release_regions(pdev
);
4471 pci_set_drvdata(pdev
, NULL
);
4472 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4473 mutex_unlock(&hba
[i
]->busy_shutting_down
);
4477 static struct pci_driver cciss_pci_driver
= {
4479 .probe
= cciss_init_one
,
4480 .remove
= __devexit_p(cciss_remove_one
),
4481 .id_table
= cciss_pci_device_id
, /* id_table */
4482 .shutdown
= cciss_shutdown
,
4486 * This is it. Register the PCI driver information for the cards we control
4487 * the OS will call our registered routines when it finds one of our cards.
4489 static int __init
cciss_init(void)
4494 * The hardware requires that commands are aligned on a 64-bit
4495 * boundary. Given that we use pci_alloc_consistent() to allocate an
4496 * array of them, the size must be a multiple of 8 bytes.
4498 BUILD_BUG_ON(sizeof(CommandList_struct
) % COMMANDLIST_ALIGNMENT
);
4500 printk(KERN_INFO DRIVER_NAME
"\n");
4502 err
= bus_register(&cciss_bus_type
);
4506 /* Start the scan thread */
4507 cciss_scan_thread
= kthread_run(scan_thread
, NULL
, "cciss_scan");
4508 if (IS_ERR(cciss_scan_thread
)) {
4509 err
= PTR_ERR(cciss_scan_thread
);
4510 goto err_bus_unregister
;
4513 /* Register for our PCI devices */
4514 err
= pci_register_driver(&cciss_pci_driver
);
4516 goto err_thread_stop
;
4521 kthread_stop(cciss_scan_thread
);
4523 bus_unregister(&cciss_bus_type
);
4528 static void __exit
cciss_cleanup(void)
4532 pci_unregister_driver(&cciss_pci_driver
);
4533 /* double check that all controller entrys have been removed */
4534 for (i
= 0; i
< MAX_CTLR
; i
++) {
4535 if (hba
[i
] != NULL
) {
4536 printk(KERN_WARNING
"cciss: had to remove"
4537 " controller %d\n", i
);
4538 cciss_remove_one(hba
[i
]->pdev
);
4541 kthread_stop(cciss_scan_thread
);
4542 remove_proc_entry("driver/cciss", NULL
);
4543 bus_unregister(&cciss_bus_type
);
4546 static void fail_all_cmds(unsigned long ctlr
)
4548 /* If we get here, the board is apparently dead. */
4549 ctlr_info_t
*h
= hba
[ctlr
];
4550 CommandList_struct
*c
;
4551 unsigned long flags
;
4553 printk(KERN_WARNING
"cciss%d: controller not responding.\n", h
->ctlr
);
4554 h
->alive
= 0; /* the controller apparently died... */
4556 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
4558 pci_disable_device(h
->pdev
); /* Make sure it is really dead. */
4560 /* move everything off the request queue onto the completed queue */
4561 while (!hlist_empty(&h
->reqQ
)) {
4562 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
4568 /* Now, fail everything on the completed queue with a HW error */
4569 while (!hlist_empty(&h
->cmpQ
)) {
4570 c
= hlist_entry(h
->cmpQ
.first
, CommandList_struct
, list
);
4572 if (c
->cmd_type
!= CMD_MSG_STALE
)
4573 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
4574 if (c
->cmd_type
== CMD_RWREQ
) {
4575 complete_command(h
, c
, 0);
4576 } else if (c
->cmd_type
== CMD_IOCTL_PEND
)
4577 complete(c
->waiting
);
4578 #ifdef CONFIG_CISS_SCSI_TAPE
4579 else if (c
->cmd_type
== CMD_SCSI
)
4580 complete_scsi_command(c
, 0, 0);
4583 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
4587 module_init(cciss_init
);
4588 module_exit(cciss_cleanup
);