[PATCH] x86-64: White space and comment fixes for smp_call_function_single
[linux-2.6/cjktty.git] / arch / x86_64 / kernel / smp.c
blob82d38f145b4374c1674ab5f05c5985fab2c6e1ed
1 /*
2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 * (c) 2002,2003 Andi Kleen, SuSE Labs.
8 * This code is released under the GNU General Public License version 2 or
9 * later.
12 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/irq.h>
16 #include <linux/delay.h>
17 #include <linux/spinlock.h>
18 #include <linux/smp_lock.h>
19 #include <linux/smp.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mc146818rtc.h>
22 #include <linux/interrupt.h>
24 #include <asm/mtrr.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlbflush.h>
27 #include <asm/mach_apic.h>
28 #include <asm/mmu_context.h>
29 #include <asm/proto.h>
30 #include <asm/apicdef.h>
33 * Smarter SMP flushing macros.
34 * c/o Linus Torvalds.
36 * These mean you can really definitely utterly forget about
37 * writing to user space from interrupts. (Its not allowed anyway).
39 * Optimizations Manfred Spraul <manfred@colorfullife.com>
42 static cpumask_t flush_cpumask;
43 static struct mm_struct * flush_mm;
44 static unsigned long flush_va;
45 static DEFINE_SPINLOCK(tlbstate_lock);
46 #define FLUSH_ALL -1ULL
49 * We cannot call mmdrop() because we are in interrupt context,
50 * instead update mm->cpu_vm_mask.
52 static inline void leave_mm (unsigned long cpu)
54 if (read_pda(mmu_state) == TLBSTATE_OK)
55 BUG();
56 clear_bit(cpu, &read_pda(active_mm)->cpu_vm_mask);
57 load_cr3(swapper_pg_dir);
62 * The flush IPI assumes that a thread switch happens in this order:
63 * [cpu0: the cpu that switches]
64 * 1) switch_mm() either 1a) or 1b)
65 * 1a) thread switch to a different mm
66 * 1a1) clear_bit(cpu, &old_mm->cpu_vm_mask);
67 * Stop ipi delivery for the old mm. This is not synchronized with
68 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
69 * for the wrong mm, and in the worst case we perform a superfluous
70 * tlb flush.
71 * 1a2) set cpu mmu_state to TLBSTATE_OK
72 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
73 * was in lazy tlb mode.
74 * 1a3) update cpu active_mm
75 * Now cpu0 accepts tlb flushes for the new mm.
76 * 1a4) set_bit(cpu, &new_mm->cpu_vm_mask);
77 * Now the other cpus will send tlb flush ipis.
78 * 1a4) change cr3.
79 * 1b) thread switch without mm change
80 * cpu active_mm is correct, cpu0 already handles
81 * flush ipis.
82 * 1b1) set cpu mmu_state to TLBSTATE_OK
83 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
84 * Atomically set the bit [other cpus will start sending flush ipis],
85 * and test the bit.
86 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
87 * 2) switch %%esp, ie current
89 * The interrupt must handle 2 special cases:
90 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
91 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
92 * runs in kernel space, the cpu could load tlb entries for user space
93 * pages.
95 * The good news is that cpu mmu_state is local to each cpu, no
96 * write/read ordering problems.
100 * TLB flush IPI:
102 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
103 * 2) Leave the mm if we are in the lazy tlb mode.
106 asmlinkage void smp_invalidate_interrupt (void)
108 unsigned long cpu;
110 cpu = get_cpu();
112 if (!cpu_isset(cpu, flush_cpumask))
113 goto out;
115 * This was a BUG() but until someone can quote me the
116 * line from the intel manual that guarantees an IPI to
117 * multiple CPUs is retried _only_ on the erroring CPUs
118 * its staying as a return
120 * BUG();
123 if (flush_mm == read_pda(active_mm)) {
124 if (read_pda(mmu_state) == TLBSTATE_OK) {
125 if (flush_va == FLUSH_ALL)
126 local_flush_tlb();
127 else
128 __flush_tlb_one(flush_va);
129 } else
130 leave_mm(cpu);
132 out:
133 ack_APIC_irq();
134 cpu_clear(cpu, flush_cpumask);
135 put_cpu_no_resched();
138 static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
139 unsigned long va)
141 cpumask_t tmp;
143 * A couple of (to be removed) sanity checks:
145 * - we do not send IPIs to not-yet booted CPUs.
146 * - current CPU must not be in mask
147 * - mask must exist :)
149 BUG_ON(cpus_empty(cpumask));
150 cpus_and(tmp, cpumask, cpu_online_map);
151 BUG_ON(!cpus_equal(tmp, cpumask));
152 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
153 if (!mm)
154 BUG();
157 * I'm not happy about this global shared spinlock in the
158 * MM hot path, but we'll see how contended it is.
159 * Temporarily this turns IRQs off, so that lockups are
160 * detected by the NMI watchdog.
162 spin_lock(&tlbstate_lock);
164 flush_mm = mm;
165 flush_va = va;
166 cpus_or(flush_cpumask, cpumask, flush_cpumask);
169 * We have to send the IPI only to
170 * CPUs affected.
172 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
174 while (!cpus_empty(flush_cpumask))
175 mb(); /* nothing. lockup detection does not belong here */;
177 flush_mm = NULL;
178 flush_va = 0;
179 spin_unlock(&tlbstate_lock);
182 void flush_tlb_current_task(void)
184 struct mm_struct *mm = current->mm;
185 cpumask_t cpu_mask;
187 preempt_disable();
188 cpu_mask = mm->cpu_vm_mask;
189 cpu_clear(smp_processor_id(), cpu_mask);
191 local_flush_tlb();
192 if (!cpus_empty(cpu_mask))
193 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
194 preempt_enable();
197 void flush_tlb_mm (struct mm_struct * mm)
199 cpumask_t cpu_mask;
201 preempt_disable();
202 cpu_mask = mm->cpu_vm_mask;
203 cpu_clear(smp_processor_id(), cpu_mask);
205 if (current->active_mm == mm) {
206 if (current->mm)
207 local_flush_tlb();
208 else
209 leave_mm(smp_processor_id());
211 if (!cpus_empty(cpu_mask))
212 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
214 preempt_enable();
217 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
219 struct mm_struct *mm = vma->vm_mm;
220 cpumask_t cpu_mask;
222 preempt_disable();
223 cpu_mask = mm->cpu_vm_mask;
224 cpu_clear(smp_processor_id(), cpu_mask);
226 if (current->active_mm == mm) {
227 if(current->mm)
228 __flush_tlb_one(va);
229 else
230 leave_mm(smp_processor_id());
233 if (!cpus_empty(cpu_mask))
234 flush_tlb_others(cpu_mask, mm, va);
236 preempt_enable();
239 static void do_flush_tlb_all(void* info)
241 unsigned long cpu = smp_processor_id();
243 __flush_tlb_all();
244 if (read_pda(mmu_state) == TLBSTATE_LAZY)
245 leave_mm(cpu);
248 void flush_tlb_all(void)
250 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
253 void smp_kdb_stop(void)
255 send_IPI_allbutself(KDB_VECTOR);
259 * this function sends a 'reschedule' IPI to another CPU.
260 * it goes straight through and wastes no time serializing
261 * anything. Worst case is that we lose a reschedule ...
264 void smp_send_reschedule(int cpu)
266 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
270 * Structure and data for smp_call_function(). This is designed to minimise
271 * static memory requirements. It also looks cleaner.
273 static DEFINE_SPINLOCK(call_lock);
275 struct call_data_struct {
276 void (*func) (void *info);
277 void *info;
278 atomic_t started;
279 atomic_t finished;
280 int wait;
283 static struct call_data_struct * call_data;
285 void lock_ipi_call_lock(void)
287 spin_lock_irq(&call_lock);
290 void unlock_ipi_call_lock(void)
292 spin_unlock_irq(&call_lock);
296 * this function sends a 'generic call function' IPI to one other CPU
297 * in the system.
299 * cpu is a standard Linux logical CPU number.
301 static void
302 __smp_call_function_single(int cpu, void (*func) (void *info), void *info,
303 int nonatomic, int wait)
305 struct call_data_struct data;
306 int cpus = 1;
308 data.func = func;
309 data.info = info;
310 atomic_set(&data.started, 0);
311 data.wait = wait;
312 if (wait)
313 atomic_set(&data.finished, 0);
315 call_data = &data;
316 wmb();
317 /* Send a message to all other CPUs and wait for them to respond */
318 send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_VECTOR);
320 /* Wait for response */
321 while (atomic_read(&data.started) != cpus)
322 cpu_relax();
324 if (!wait)
325 return;
327 while (atomic_read(&data.finished) != cpus)
328 cpu_relax();
332 * smp_call_function_single - Run a function on another CPU
333 * @func: The function to run. This must be fast and non-blocking.
334 * @info: An arbitrary pointer to pass to the function.
335 * @nonatomic: Currently unused.
336 * @wait: If true, wait until function has completed on other CPUs.
338 * Retrurns 0 on success, else a negative status code.
340 * Does not return until the remote CPU is nearly ready to execute <func>
341 * or is or has executed.
344 int smp_call_function_single (int cpu, void (*func) (void *info), void *info,
345 int nonatomic, int wait)
347 /* prevent preemption and reschedule on another processor */
348 int me = get_cpu();
349 if (cpu == me) {
350 WARN_ON(1);
351 put_cpu();
352 return -EBUSY;
354 spin_lock_bh(&call_lock);
355 __smp_call_function_single(cpu, func, info, nonatomic, wait);
356 spin_unlock_bh(&call_lock);
357 put_cpu();
358 return 0;
362 * this function sends a 'generic call function' IPI to all other CPUs
363 * in the system.
365 static void __smp_call_function (void (*func) (void *info), void *info,
366 int nonatomic, int wait)
368 struct call_data_struct data;
369 int cpus = num_online_cpus()-1;
371 if (!cpus)
372 return;
374 data.func = func;
375 data.info = info;
376 atomic_set(&data.started, 0);
377 data.wait = wait;
378 if (wait)
379 atomic_set(&data.finished, 0);
381 call_data = &data;
382 wmb();
383 /* Send a message to all other CPUs and wait for them to respond */
384 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
386 /* Wait for response */
387 while (atomic_read(&data.started) != cpus)
388 cpu_relax();
390 if (!wait)
391 return;
393 while (atomic_read(&data.finished) != cpus)
394 cpu_relax();
398 * smp_call_function - run a function on all other CPUs.
399 * @func: The function to run. This must be fast and non-blocking.
400 * @info: An arbitrary pointer to pass to the function.
401 * @nonatomic: currently unused.
402 * @wait: If true, wait (atomically) until function has completed on other
403 * CPUs.
405 * Returns 0 on success, else a negative status code. Does not return until
406 * remote CPUs are nearly ready to execute func or are or have executed.
408 * You must not call this function with disabled interrupts or from a
409 * hardware interrupt handler or from a bottom half handler.
410 * Actually there are a few legal cases, like panic.
412 int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
413 int wait)
415 spin_lock(&call_lock);
416 __smp_call_function(func,info,nonatomic,wait);
417 spin_unlock(&call_lock);
418 return 0;
421 void smp_stop_cpu(void)
424 * Remove this CPU:
426 cpu_clear(smp_processor_id(), cpu_online_map);
427 local_irq_disable();
428 disable_local_APIC();
429 local_irq_enable();
432 static void smp_really_stop_cpu(void *dummy)
434 smp_stop_cpu();
435 for (;;)
436 asm("hlt");
439 void smp_send_stop(void)
441 int nolock = 0;
442 if (reboot_force)
443 return;
444 /* Don't deadlock on the call lock in panic */
445 if (!spin_trylock(&call_lock)) {
446 /* ignore locking because we have paniced anyways */
447 nolock = 1;
449 __smp_call_function(smp_really_stop_cpu, NULL, 0, 0);
450 if (!nolock)
451 spin_unlock(&call_lock);
453 local_irq_disable();
454 disable_local_APIC();
455 local_irq_enable();
459 * Reschedule call back. Nothing to do,
460 * all the work is done automatically when
461 * we return from the interrupt.
463 asmlinkage void smp_reschedule_interrupt(void)
465 ack_APIC_irq();
468 asmlinkage void smp_call_function_interrupt(void)
470 void (*func) (void *info) = call_data->func;
471 void *info = call_data->info;
472 int wait = call_data->wait;
474 ack_APIC_irq();
476 * Notify initiating CPU that I've grabbed the data and am
477 * about to execute the function
479 mb();
480 atomic_inc(&call_data->started);
482 * At this point the info structure may be out of scope unless wait==1
484 irq_enter();
485 (*func)(info);
486 irq_exit();
487 if (wait) {
488 mb();
489 atomic_inc(&call_data->finished);
493 int safe_smp_processor_id(void)
495 int apicid, i;
497 if (disable_apic)
498 return 0;
500 apicid = hard_smp_processor_id();
501 if (x86_cpu_to_apicid[apicid] == apicid)
502 return apicid;
504 for (i = 0; i < NR_CPUS; ++i) {
505 if (x86_cpu_to_apicid[i] == apicid)
506 return i;
509 /* No entries in x86_cpu_to_apicid? Either no MPS|ACPI,
510 * or called too early. Either way, we must be CPU 0. */
511 if (x86_cpu_to_apicid[0] == BAD_APICID)
512 return 0;
514 return 0; /* Should not happen */