Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6/cjktty.git] / drivers / net / wireless / ath9k / main.c
blob7d7537e2738e8c77d7dfcbb0218831fb77e4845c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
20 #define ATH_PCI_VERSION "0.1"
22 static char *dev_info = "ath9k";
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
29 /* We use the hw_value as an index into our private channel structure */
31 #define CHAN2G(_freq, _idx) { \
32 .center_freq = (_freq), \
33 .hw_value = (_idx), \
34 .max_power = 30, \
37 #define CHAN5G(_freq, _idx) { \
38 .band = IEEE80211_BAND_5GHZ, \
39 .center_freq = (_freq), \
40 .hw_value = (_idx), \
41 .max_power = 30, \
44 /* Some 2 GHz radios are actually tunable on 2312-2732
45 * on 5 MHz steps, we support the channels which we know
46 * we have calibration data for all cards though to make
47 * this static */
48 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
49 CHAN2G(2412, 0), /* Channel 1 */
50 CHAN2G(2417, 1), /* Channel 2 */
51 CHAN2G(2422, 2), /* Channel 3 */
52 CHAN2G(2427, 3), /* Channel 4 */
53 CHAN2G(2432, 4), /* Channel 5 */
54 CHAN2G(2437, 5), /* Channel 6 */
55 CHAN2G(2442, 6), /* Channel 7 */
56 CHAN2G(2447, 7), /* Channel 8 */
57 CHAN2G(2452, 8), /* Channel 9 */
58 CHAN2G(2457, 9), /* Channel 10 */
59 CHAN2G(2462, 10), /* Channel 11 */
60 CHAN2G(2467, 11), /* Channel 12 */
61 CHAN2G(2472, 12), /* Channel 13 */
62 CHAN2G(2484, 13), /* Channel 14 */
65 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
66 * on 5 MHz steps, we support the channels which we know
67 * we have calibration data for all cards though to make
68 * this static */
69 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
70 /* _We_ call this UNII 1 */
71 CHAN5G(5180, 14), /* Channel 36 */
72 CHAN5G(5200, 15), /* Channel 40 */
73 CHAN5G(5220, 16), /* Channel 44 */
74 CHAN5G(5240, 17), /* Channel 48 */
75 /* _We_ call this UNII 2 */
76 CHAN5G(5260, 18), /* Channel 52 */
77 CHAN5G(5280, 19), /* Channel 56 */
78 CHAN5G(5300, 20), /* Channel 60 */
79 CHAN5G(5320, 21), /* Channel 64 */
80 /* _We_ call this "Middle band" */
81 CHAN5G(5500, 22), /* Channel 100 */
82 CHAN5G(5520, 23), /* Channel 104 */
83 CHAN5G(5540, 24), /* Channel 108 */
84 CHAN5G(5560, 25), /* Channel 112 */
85 CHAN5G(5580, 26), /* Channel 116 */
86 CHAN5G(5600, 27), /* Channel 120 */
87 CHAN5G(5620, 28), /* Channel 124 */
88 CHAN5G(5640, 29), /* Channel 128 */
89 CHAN5G(5660, 30), /* Channel 132 */
90 CHAN5G(5680, 31), /* Channel 136 */
91 CHAN5G(5700, 32), /* Channel 140 */
92 /* _We_ call this UNII 3 */
93 CHAN5G(5745, 33), /* Channel 149 */
94 CHAN5G(5765, 34), /* Channel 153 */
95 CHAN5G(5785, 35), /* Channel 157 */
96 CHAN5G(5805, 36), /* Channel 161 */
97 CHAN5G(5825, 37), /* Channel 165 */
100 static void ath_cache_conf_rate(struct ath_softc *sc,
101 struct ieee80211_conf *conf)
103 switch (conf->channel->band) {
104 case IEEE80211_BAND_2GHZ:
105 if (conf_is_ht20(conf))
106 sc->cur_rate_table =
107 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
108 else if (conf_is_ht40_minus(conf))
109 sc->cur_rate_table =
110 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
111 else if (conf_is_ht40_plus(conf))
112 sc->cur_rate_table =
113 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
114 else
115 sc->cur_rate_table =
116 sc->hw_rate_table[ATH9K_MODE_11G];
117 break;
118 case IEEE80211_BAND_5GHZ:
119 if (conf_is_ht20(conf))
120 sc->cur_rate_table =
121 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
122 else if (conf_is_ht40_minus(conf))
123 sc->cur_rate_table =
124 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
125 else if (conf_is_ht40_plus(conf))
126 sc->cur_rate_table =
127 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
128 else
129 sc->cur_rate_table =
130 sc->hw_rate_table[ATH9K_MODE_11A];
131 break;
132 default:
133 BUG_ON(1);
134 break;
138 static void ath_update_txpow(struct ath_softc *sc)
140 struct ath_hw *ah = sc->sc_ah;
141 u32 txpow;
143 if (sc->curtxpow != sc->config.txpowlimit) {
144 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
145 /* read back in case value is clamped */
146 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
147 sc->curtxpow = txpow;
151 static u8 parse_mpdudensity(u8 mpdudensity)
154 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
155 * 0 for no restriction
156 * 1 for 1/4 us
157 * 2 for 1/2 us
158 * 3 for 1 us
159 * 4 for 2 us
160 * 5 for 4 us
161 * 6 for 8 us
162 * 7 for 16 us
164 switch (mpdudensity) {
165 case 0:
166 return 0;
167 case 1:
168 case 2:
169 case 3:
170 /* Our lower layer calculations limit our precision to
171 1 microsecond */
172 return 1;
173 case 4:
174 return 2;
175 case 5:
176 return 4;
177 case 6:
178 return 8;
179 case 7:
180 return 16;
181 default:
182 return 0;
186 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
188 struct ath_rate_table *rate_table = NULL;
189 struct ieee80211_supported_band *sband;
190 struct ieee80211_rate *rate;
191 int i, maxrates;
193 switch (band) {
194 case IEEE80211_BAND_2GHZ:
195 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
196 break;
197 case IEEE80211_BAND_5GHZ:
198 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
199 break;
200 default:
201 break;
204 if (rate_table == NULL)
205 return;
207 sband = &sc->sbands[band];
208 rate = sc->rates[band];
210 if (rate_table->rate_cnt > ATH_RATE_MAX)
211 maxrates = ATH_RATE_MAX;
212 else
213 maxrates = rate_table->rate_cnt;
215 for (i = 0; i < maxrates; i++) {
216 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
217 rate[i].hw_value = rate_table->info[i].ratecode;
218 if (rate_table->info[i].short_preamble) {
219 rate[i].hw_value_short = rate_table->info[i].ratecode |
220 rate_table->info[i].short_preamble;
221 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
223 sband->n_bitrates++;
225 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
226 rate[i].bitrate / 10, rate[i].hw_value);
231 * Set/change channels. If the channel is really being changed, it's done
232 * by reseting the chip. To accomplish this we must first cleanup any pending
233 * DMA, then restart stuff.
235 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
237 struct ath_hw *ah = sc->sc_ah;
238 bool fastcc = true, stopped;
239 struct ieee80211_hw *hw = sc->hw;
240 struct ieee80211_channel *channel = hw->conf.channel;
241 int r;
243 if (sc->sc_flags & SC_OP_INVALID)
244 return -EIO;
246 ath9k_ps_wakeup(sc);
249 * This is only performed if the channel settings have
250 * actually changed.
252 * To switch channels clear any pending DMA operations;
253 * wait long enough for the RX fifo to drain, reset the
254 * hardware at the new frequency, and then re-enable
255 * the relevant bits of the h/w.
257 ath9k_hw_set_interrupts(ah, 0);
258 ath_drain_all_txq(sc, false);
259 stopped = ath_stoprecv(sc);
261 /* XXX: do not flush receive queue here. We don't want
262 * to flush data frames already in queue because of
263 * changing channel. */
265 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
266 fastcc = false;
268 DPRINTF(sc, ATH_DBG_CONFIG,
269 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
270 sc->sc_ah->curchan->channel,
271 channel->center_freq, sc->tx_chan_width);
273 spin_lock_bh(&sc->sc_resetlock);
275 r = ath9k_hw_reset(ah, hchan, fastcc);
276 if (r) {
277 DPRINTF(sc, ATH_DBG_FATAL,
278 "Unable to reset channel (%u Mhz) "
279 "reset status %u\n",
280 channel->center_freq, r);
281 spin_unlock_bh(&sc->sc_resetlock);
282 return r;
284 spin_unlock_bh(&sc->sc_resetlock);
286 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
287 sc->sc_flags &= ~SC_OP_FULL_RESET;
289 if (ath_startrecv(sc) != 0) {
290 DPRINTF(sc, ATH_DBG_FATAL,
291 "Unable to restart recv logic\n");
292 return -EIO;
295 ath_cache_conf_rate(sc, &hw->conf);
296 ath_update_txpow(sc);
297 ath9k_hw_set_interrupts(ah, sc->imask);
298 ath9k_ps_restore(sc);
299 return 0;
303 * This routine performs the periodic noise floor calibration function
304 * that is used to adjust and optimize the chip performance. This
305 * takes environmental changes (location, temperature) into account.
306 * When the task is complete, it reschedules itself depending on the
307 * appropriate interval that was calculated.
309 static void ath_ani_calibrate(unsigned long data)
311 struct ath_softc *sc;
312 struct ath_hw *ah;
313 bool longcal = false;
314 bool shortcal = false;
315 bool aniflag = false;
316 unsigned int timestamp = jiffies_to_msecs(jiffies);
317 u32 cal_interval;
319 sc = (struct ath_softc *)data;
320 ah = sc->sc_ah;
323 * don't calibrate when we're scanning.
324 * we are most likely not on our home channel.
326 if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
327 return;
329 /* Long calibration runs independently of short calibration. */
330 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
331 longcal = true;
332 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
333 sc->ani.longcal_timer = timestamp;
336 /* Short calibration applies only while caldone is false */
337 if (!sc->ani.caldone) {
338 if ((timestamp - sc->ani.shortcal_timer) >=
339 ATH_SHORT_CALINTERVAL) {
340 shortcal = true;
341 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
342 sc->ani.shortcal_timer = timestamp;
343 sc->ani.resetcal_timer = timestamp;
345 } else {
346 if ((timestamp - sc->ani.resetcal_timer) >=
347 ATH_RESTART_CALINTERVAL) {
348 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
349 if (sc->ani.caldone)
350 sc->ani.resetcal_timer = timestamp;
354 /* Verify whether we must check ANI */
355 if ((timestamp - sc->ani.checkani_timer) >=
356 ATH_ANI_POLLINTERVAL) {
357 aniflag = true;
358 sc->ani.checkani_timer = timestamp;
361 /* Skip all processing if there's nothing to do. */
362 if (longcal || shortcal || aniflag) {
363 /* Call ANI routine if necessary */
364 if (aniflag)
365 ath9k_hw_ani_monitor(ah, &sc->nodestats,
366 ah->curchan);
368 /* Perform calibration if necessary */
369 if (longcal || shortcal) {
370 bool iscaldone = false;
372 if (ath9k_hw_calibrate(ah, ah->curchan,
373 sc->rx_chainmask, longcal,
374 &iscaldone)) {
375 if (longcal)
376 sc->ani.noise_floor =
377 ath9k_hw_getchan_noise(ah,
378 ah->curchan);
380 DPRINTF(sc, ATH_DBG_ANI,
381 "calibrate chan %u/%x nf: %d\n",
382 ah->curchan->channel,
383 ah->curchan->channelFlags,
384 sc->ani.noise_floor);
385 } else {
386 DPRINTF(sc, ATH_DBG_ANY,
387 "calibrate chan %u/%x failed\n",
388 ah->curchan->channel,
389 ah->curchan->channelFlags);
391 sc->ani.caldone = iscaldone;
396 * Set timer interval based on previous results.
397 * The interval must be the shortest necessary to satisfy ANI,
398 * short calibration and long calibration.
400 cal_interval = ATH_LONG_CALINTERVAL;
401 if (sc->sc_ah->config.enable_ani)
402 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
403 if (!sc->ani.caldone)
404 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
406 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
410 * Update tx/rx chainmask. For legacy association,
411 * hard code chainmask to 1x1, for 11n association, use
412 * the chainmask configuration, for bt coexistence, use
413 * the chainmask configuration even in legacy mode.
415 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
417 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
418 if (is_ht ||
419 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
420 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
421 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
422 } else {
423 sc->tx_chainmask = 1;
424 sc->rx_chainmask = 1;
427 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
428 sc->tx_chainmask, sc->rx_chainmask);
431 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
433 struct ath_node *an;
435 an = (struct ath_node *)sta->drv_priv;
437 if (sc->sc_flags & SC_OP_TXAGGR)
438 ath_tx_node_init(sc, an);
440 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
441 sta->ht_cap.ampdu_factor);
442 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
445 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
447 struct ath_node *an = (struct ath_node *)sta->drv_priv;
449 if (sc->sc_flags & SC_OP_TXAGGR)
450 ath_tx_node_cleanup(sc, an);
453 static void ath9k_tasklet(unsigned long data)
455 struct ath_softc *sc = (struct ath_softc *)data;
456 u32 status = sc->intrstatus;
458 if (status & ATH9K_INT_FATAL) {
459 /* need a chip reset */
460 ath_reset(sc, false);
461 return;
462 } else {
464 if (status &
465 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
466 spin_lock_bh(&sc->rx.rxflushlock);
467 ath_rx_tasklet(sc, 0);
468 spin_unlock_bh(&sc->rx.rxflushlock);
470 /* XXX: optimize this */
471 if (status & ATH9K_INT_TX)
472 ath_tx_tasklet(sc);
475 /* re-enable hardware interrupt */
476 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
479 irqreturn_t ath_isr(int irq, void *dev)
481 struct ath_softc *sc = dev;
482 struct ath_hw *ah = sc->sc_ah;
483 enum ath9k_int status;
484 bool sched = false;
486 do {
487 if (sc->sc_flags & SC_OP_INVALID) {
489 * The hardware is not ready/present, don't
490 * touch anything. Note this can happen early
491 * on if the IRQ is shared.
493 return IRQ_NONE;
495 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
496 return IRQ_NONE;
500 * Figure out the reason(s) for the interrupt. Note
501 * that the hal returns a pseudo-ISR that may include
502 * bits we haven't explicitly enabled so we mask the
503 * value to insure we only process bits we requested.
505 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
507 status &= sc->imask; /* discard unasked-for bits */
510 * If there are no status bits set, then this interrupt was not
511 * for me (should have been caught above).
513 if (!status)
514 return IRQ_NONE;
516 sc->intrstatus = status;
518 if (status & ATH9K_INT_FATAL) {
519 /* need a chip reset */
520 sched = true;
521 } else if (status & ATH9K_INT_RXORN) {
522 /* need a chip reset */
523 sched = true;
524 } else {
525 if (status & ATH9K_INT_SWBA) {
526 /* schedule a tasklet for beacon handling */
527 tasklet_schedule(&sc->bcon_tasklet);
529 if (status & ATH9K_INT_RXEOL) {
531 * NB: the hardware should re-read the link when
532 * RXE bit is written, but it doesn't work
533 * at least on older hardware revs.
535 sched = true;
538 if (status & ATH9K_INT_TXURN)
539 /* bump tx trigger level */
540 ath9k_hw_updatetxtriglevel(ah, true);
541 /* XXX: optimize this */
542 if (status & ATH9K_INT_RX)
543 sched = true;
544 if (status & ATH9K_INT_TX)
545 sched = true;
546 if (status & ATH9K_INT_BMISS)
547 sched = true;
548 /* carrier sense timeout */
549 if (status & ATH9K_INT_CST)
550 sched = true;
551 if (status & ATH9K_INT_MIB) {
553 * Disable interrupts until we service the MIB
554 * interrupt; otherwise it will continue to
555 * fire.
557 ath9k_hw_set_interrupts(ah, 0);
559 * Let the hal handle the event. We assume
560 * it will clear whatever condition caused
561 * the interrupt.
563 ath9k_hw_procmibevent(ah, &sc->nodestats);
564 ath9k_hw_set_interrupts(ah, sc->imask);
566 if (status & ATH9K_INT_TIM_TIMER) {
567 if (!(ah->caps.hw_caps &
568 ATH9K_HW_CAP_AUTOSLEEP)) {
569 /* Clear RxAbort bit so that we can
570 * receive frames */
571 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
572 ath9k_hw_setrxabort(ah, 0);
573 sched = true;
574 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
578 } while (0);
580 ath_debug_stat_interrupt(sc, status);
582 if (sched) {
583 /* turn off every interrupt except SWBA */
584 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
585 tasklet_schedule(&sc->intr_tq);
588 return IRQ_HANDLED;
591 static u32 ath_get_extchanmode(struct ath_softc *sc,
592 struct ieee80211_channel *chan,
593 enum nl80211_channel_type channel_type)
595 u32 chanmode = 0;
597 switch (chan->band) {
598 case IEEE80211_BAND_2GHZ:
599 switch(channel_type) {
600 case NL80211_CHAN_NO_HT:
601 case NL80211_CHAN_HT20:
602 chanmode = CHANNEL_G_HT20;
603 break;
604 case NL80211_CHAN_HT40PLUS:
605 chanmode = CHANNEL_G_HT40PLUS;
606 break;
607 case NL80211_CHAN_HT40MINUS:
608 chanmode = CHANNEL_G_HT40MINUS;
609 break;
611 break;
612 case IEEE80211_BAND_5GHZ:
613 switch(channel_type) {
614 case NL80211_CHAN_NO_HT:
615 case NL80211_CHAN_HT20:
616 chanmode = CHANNEL_A_HT20;
617 break;
618 case NL80211_CHAN_HT40PLUS:
619 chanmode = CHANNEL_A_HT40PLUS;
620 break;
621 case NL80211_CHAN_HT40MINUS:
622 chanmode = CHANNEL_A_HT40MINUS;
623 break;
625 break;
626 default:
627 break;
630 return chanmode;
633 static int ath_keyset(struct ath_softc *sc, u16 keyix,
634 struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
636 bool status;
638 status = ath9k_hw_set_keycache_entry(sc->sc_ah,
639 keyix, hk, mac, false);
641 return status != false;
644 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
645 struct ath9k_keyval *hk,
646 const u8 *addr)
648 const u8 *key_rxmic;
649 const u8 *key_txmic;
651 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
652 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
654 if (addr == NULL) {
655 /* Group key installation */
656 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
657 return ath_keyset(sc, keyix, hk, addr);
659 if (!sc->splitmic) {
661 * data key goes at first index,
662 * the hal handles the MIC keys at index+64.
664 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
665 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
666 return ath_keyset(sc, keyix, hk, addr);
669 * TX key goes at first index, RX key at +32.
670 * The hal handles the MIC keys at index+64.
672 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
673 if (!ath_keyset(sc, keyix, hk, NULL)) {
674 /* Txmic entry failed. No need to proceed further */
675 DPRINTF(sc, ATH_DBG_KEYCACHE,
676 "Setting TX MIC Key Failed\n");
677 return 0;
680 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
681 /* XXX delete tx key on failure? */
682 return ath_keyset(sc, keyix + 32, hk, addr);
685 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
687 int i;
689 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
690 if (test_bit(i, sc->keymap) ||
691 test_bit(i + 64, sc->keymap))
692 continue; /* At least one part of TKIP key allocated */
693 if (sc->splitmic &&
694 (test_bit(i + 32, sc->keymap) ||
695 test_bit(i + 64 + 32, sc->keymap)))
696 continue; /* At least one part of TKIP key allocated */
698 /* Found a free slot for a TKIP key */
699 return i;
701 return -1;
704 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
706 int i;
708 /* First, try to find slots that would not be available for TKIP. */
709 if (sc->splitmic) {
710 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
711 if (!test_bit(i, sc->keymap) &&
712 (test_bit(i + 32, sc->keymap) ||
713 test_bit(i + 64, sc->keymap) ||
714 test_bit(i + 64 + 32, sc->keymap)))
715 return i;
716 if (!test_bit(i + 32, sc->keymap) &&
717 (test_bit(i, sc->keymap) ||
718 test_bit(i + 64, sc->keymap) ||
719 test_bit(i + 64 + 32, sc->keymap)))
720 return i + 32;
721 if (!test_bit(i + 64, sc->keymap) &&
722 (test_bit(i , sc->keymap) ||
723 test_bit(i + 32, sc->keymap) ||
724 test_bit(i + 64 + 32, sc->keymap)))
725 return i + 64;
726 if (!test_bit(i + 64 + 32, sc->keymap) &&
727 (test_bit(i, sc->keymap) ||
728 test_bit(i + 32, sc->keymap) ||
729 test_bit(i + 64, sc->keymap)))
730 return i + 64 + 32;
732 } else {
733 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
734 if (!test_bit(i, sc->keymap) &&
735 test_bit(i + 64, sc->keymap))
736 return i;
737 if (test_bit(i, sc->keymap) &&
738 !test_bit(i + 64, sc->keymap))
739 return i + 64;
743 /* No partially used TKIP slots, pick any available slot */
744 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
745 /* Do not allow slots that could be needed for TKIP group keys
746 * to be used. This limitation could be removed if we know that
747 * TKIP will not be used. */
748 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
749 continue;
750 if (sc->splitmic) {
751 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
752 continue;
753 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
754 continue;
757 if (!test_bit(i, sc->keymap))
758 return i; /* Found a free slot for a key */
761 /* No free slot found */
762 return -1;
765 static int ath_key_config(struct ath_softc *sc,
766 struct ieee80211_sta *sta,
767 struct ieee80211_key_conf *key)
769 struct ath9k_keyval hk;
770 const u8 *mac = NULL;
771 int ret = 0;
772 int idx;
774 memset(&hk, 0, sizeof(hk));
776 switch (key->alg) {
777 case ALG_WEP:
778 hk.kv_type = ATH9K_CIPHER_WEP;
779 break;
780 case ALG_TKIP:
781 hk.kv_type = ATH9K_CIPHER_TKIP;
782 break;
783 case ALG_CCMP:
784 hk.kv_type = ATH9K_CIPHER_AES_CCM;
785 break;
786 default:
787 return -EOPNOTSUPP;
790 hk.kv_len = key->keylen;
791 memcpy(hk.kv_val, key->key, key->keylen);
793 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
794 /* For now, use the default keys for broadcast keys. This may
795 * need to change with virtual interfaces. */
796 idx = key->keyidx;
797 } else if (key->keyidx) {
798 struct ieee80211_vif *vif;
800 if (WARN_ON(!sta))
801 return -EOPNOTSUPP;
802 mac = sta->addr;
804 vif = sc->vifs[0];
805 if (vif->type != NL80211_IFTYPE_AP) {
806 /* Only keyidx 0 should be used with unicast key, but
807 * allow this for client mode for now. */
808 idx = key->keyidx;
809 } else
810 return -EIO;
811 } else {
812 if (WARN_ON(!sta))
813 return -EOPNOTSUPP;
814 mac = sta->addr;
816 if (key->alg == ALG_TKIP)
817 idx = ath_reserve_key_cache_slot_tkip(sc);
818 else
819 idx = ath_reserve_key_cache_slot(sc);
820 if (idx < 0)
821 return -ENOSPC; /* no free key cache entries */
824 if (key->alg == ALG_TKIP)
825 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
826 else
827 ret = ath_keyset(sc, idx, &hk, mac);
829 if (!ret)
830 return -EIO;
832 set_bit(idx, sc->keymap);
833 if (key->alg == ALG_TKIP) {
834 set_bit(idx + 64, sc->keymap);
835 if (sc->splitmic) {
836 set_bit(idx + 32, sc->keymap);
837 set_bit(idx + 64 + 32, sc->keymap);
841 return idx;
844 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
846 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
847 if (key->hw_key_idx < IEEE80211_WEP_NKID)
848 return;
850 clear_bit(key->hw_key_idx, sc->keymap);
851 if (key->alg != ALG_TKIP)
852 return;
854 clear_bit(key->hw_key_idx + 64, sc->keymap);
855 if (sc->splitmic) {
856 clear_bit(key->hw_key_idx + 32, sc->keymap);
857 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
861 static void setup_ht_cap(struct ath_softc *sc,
862 struct ieee80211_sta_ht_cap *ht_info)
864 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
865 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
867 ht_info->ht_supported = true;
868 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
869 IEEE80211_HT_CAP_SM_PS |
870 IEEE80211_HT_CAP_SGI_40 |
871 IEEE80211_HT_CAP_DSSSCCK40;
873 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
874 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
876 /* set up supported mcs set */
877 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
879 switch(sc->rx_chainmask) {
880 case 1:
881 ht_info->mcs.rx_mask[0] = 0xff;
882 break;
883 case 3:
884 case 5:
885 case 7:
886 default:
887 ht_info->mcs.rx_mask[0] = 0xff;
888 ht_info->mcs.rx_mask[1] = 0xff;
889 break;
892 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
895 static void ath9k_bss_assoc_info(struct ath_softc *sc,
896 struct ieee80211_vif *vif,
897 struct ieee80211_bss_conf *bss_conf)
899 struct ath_vif *avp = (void *)vif->drv_priv;
901 if (bss_conf->assoc) {
902 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
903 bss_conf->aid, sc->curbssid);
905 /* New association, store aid */
906 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
907 sc->curaid = bss_conf->aid;
908 ath9k_hw_write_associd(sc);
911 /* Configure the beacon */
912 ath_beacon_config(sc, 0);
913 sc->sc_flags |= SC_OP_BEACONS;
915 /* Reset rssi stats */
916 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
917 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
918 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
919 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
921 /* Start ANI */
922 mod_timer(&sc->ani.timer,
923 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
925 } else {
926 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
927 sc->curaid = 0;
931 /********************************/
932 /* LED functions */
933 /********************************/
935 static void ath_led_blink_work(struct work_struct *work)
937 struct ath_softc *sc = container_of(work, struct ath_softc,
938 ath_led_blink_work.work);
940 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
941 return;
942 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
943 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
945 queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
946 (sc->sc_flags & SC_OP_LED_ON) ?
947 msecs_to_jiffies(sc->led_off_duration) :
948 msecs_to_jiffies(sc->led_on_duration));
950 sc->led_on_duration =
951 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25);
952 sc->led_off_duration =
953 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10);
954 sc->led_on_cnt = sc->led_off_cnt = 0;
955 if (sc->sc_flags & SC_OP_LED_ON)
956 sc->sc_flags &= ~SC_OP_LED_ON;
957 else
958 sc->sc_flags |= SC_OP_LED_ON;
961 static void ath_led_brightness(struct led_classdev *led_cdev,
962 enum led_brightness brightness)
964 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
965 struct ath_softc *sc = led->sc;
967 switch (brightness) {
968 case LED_OFF:
969 if (led->led_type == ATH_LED_ASSOC ||
970 led->led_type == ATH_LED_RADIO) {
971 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
972 (led->led_type == ATH_LED_RADIO));
973 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
974 if (led->led_type == ATH_LED_RADIO)
975 sc->sc_flags &= ~SC_OP_LED_ON;
976 } else {
977 sc->led_off_cnt++;
979 break;
980 case LED_FULL:
981 if (led->led_type == ATH_LED_ASSOC) {
982 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
983 queue_delayed_work(sc->hw->workqueue,
984 &sc->ath_led_blink_work, 0);
985 } else if (led->led_type == ATH_LED_RADIO) {
986 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
987 sc->sc_flags |= SC_OP_LED_ON;
988 } else {
989 sc->led_on_cnt++;
991 break;
992 default:
993 break;
997 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
998 char *trigger)
1000 int ret;
1002 led->sc = sc;
1003 led->led_cdev.name = led->name;
1004 led->led_cdev.default_trigger = trigger;
1005 led->led_cdev.brightness_set = ath_led_brightness;
1007 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1008 if (ret)
1009 DPRINTF(sc, ATH_DBG_FATAL,
1010 "Failed to register led:%s", led->name);
1011 else
1012 led->registered = 1;
1013 return ret;
1016 static void ath_unregister_led(struct ath_led *led)
1018 if (led->registered) {
1019 led_classdev_unregister(&led->led_cdev);
1020 led->registered = 0;
1024 static void ath_deinit_leds(struct ath_softc *sc)
1026 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1027 ath_unregister_led(&sc->assoc_led);
1028 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1029 ath_unregister_led(&sc->tx_led);
1030 ath_unregister_led(&sc->rx_led);
1031 ath_unregister_led(&sc->radio_led);
1032 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1035 static void ath_init_leds(struct ath_softc *sc)
1037 char *trigger;
1038 int ret;
1040 /* Configure gpio 1 for output */
1041 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1042 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1043 /* LED off, active low */
1044 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1046 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1048 trigger = ieee80211_get_radio_led_name(sc->hw);
1049 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1050 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1051 ret = ath_register_led(sc, &sc->radio_led, trigger);
1052 sc->radio_led.led_type = ATH_LED_RADIO;
1053 if (ret)
1054 goto fail;
1056 trigger = ieee80211_get_assoc_led_name(sc->hw);
1057 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1058 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1059 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1060 sc->assoc_led.led_type = ATH_LED_ASSOC;
1061 if (ret)
1062 goto fail;
1064 trigger = ieee80211_get_tx_led_name(sc->hw);
1065 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1066 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1067 ret = ath_register_led(sc, &sc->tx_led, trigger);
1068 sc->tx_led.led_type = ATH_LED_TX;
1069 if (ret)
1070 goto fail;
1072 trigger = ieee80211_get_rx_led_name(sc->hw);
1073 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1074 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1075 ret = ath_register_led(sc, &sc->rx_led, trigger);
1076 sc->rx_led.led_type = ATH_LED_RX;
1077 if (ret)
1078 goto fail;
1080 return;
1082 fail:
1083 ath_deinit_leds(sc);
1086 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1088 /*******************/
1089 /* Rfkill */
1090 /*******************/
1092 static void ath_radio_enable(struct ath_softc *sc)
1094 struct ath_hw *ah = sc->sc_ah;
1095 struct ieee80211_channel *channel = sc->hw->conf.channel;
1096 int r;
1098 ath9k_ps_wakeup(sc);
1099 spin_lock_bh(&sc->sc_resetlock);
1101 r = ath9k_hw_reset(ah, ah->curchan, false);
1103 if (r) {
1104 DPRINTF(sc, ATH_DBG_FATAL,
1105 "Unable to reset channel %u (%uMhz) ",
1106 "reset status %u\n",
1107 channel->center_freq, r);
1109 spin_unlock_bh(&sc->sc_resetlock);
1111 ath_update_txpow(sc);
1112 if (ath_startrecv(sc) != 0) {
1113 DPRINTF(sc, ATH_DBG_FATAL,
1114 "Unable to restart recv logic\n");
1115 return;
1118 if (sc->sc_flags & SC_OP_BEACONS)
1119 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1121 /* Re-Enable interrupts */
1122 ath9k_hw_set_interrupts(ah, sc->imask);
1124 /* Enable LED */
1125 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1126 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1127 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1129 ieee80211_wake_queues(sc->hw);
1130 ath9k_ps_restore(sc);
1133 static void ath_radio_disable(struct ath_softc *sc)
1135 struct ath_hw *ah = sc->sc_ah;
1136 struct ieee80211_channel *channel = sc->hw->conf.channel;
1137 int r;
1139 ath9k_ps_wakeup(sc);
1140 ieee80211_stop_queues(sc->hw);
1142 /* Disable LED */
1143 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1144 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1146 /* Disable interrupts */
1147 ath9k_hw_set_interrupts(ah, 0);
1149 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1150 ath_stoprecv(sc); /* turn off frame recv */
1151 ath_flushrecv(sc); /* flush recv queue */
1153 spin_lock_bh(&sc->sc_resetlock);
1154 r = ath9k_hw_reset(ah, ah->curchan, false);
1155 if (r) {
1156 DPRINTF(sc, ATH_DBG_FATAL,
1157 "Unable to reset channel %u (%uMhz) "
1158 "reset status %u\n",
1159 channel->center_freq, r);
1161 spin_unlock_bh(&sc->sc_resetlock);
1163 ath9k_hw_phy_disable(ah);
1164 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1165 ath9k_ps_restore(sc);
1168 static bool ath_is_rfkill_set(struct ath_softc *sc)
1170 struct ath_hw *ah = sc->sc_ah;
1172 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1173 ah->rfkill_polarity;
1176 /* h/w rfkill poll function */
1177 static void ath_rfkill_poll(struct work_struct *work)
1179 struct ath_softc *sc = container_of(work, struct ath_softc,
1180 rf_kill.rfkill_poll.work);
1181 bool radio_on;
1183 if (sc->sc_flags & SC_OP_INVALID)
1184 return;
1186 radio_on = !ath_is_rfkill_set(sc);
1189 * enable/disable radio only when there is a
1190 * state change in RF switch
1192 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1193 enum rfkill_state state;
1195 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1196 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1197 : RFKILL_STATE_HARD_BLOCKED;
1198 } else if (radio_on) {
1199 ath_radio_enable(sc);
1200 state = RFKILL_STATE_UNBLOCKED;
1201 } else {
1202 ath_radio_disable(sc);
1203 state = RFKILL_STATE_HARD_BLOCKED;
1206 if (state == RFKILL_STATE_HARD_BLOCKED)
1207 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1208 else
1209 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1211 rfkill_force_state(sc->rf_kill.rfkill, state);
1214 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1215 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1218 /* s/w rfkill handler */
1219 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1221 struct ath_softc *sc = data;
1223 switch (state) {
1224 case RFKILL_STATE_SOFT_BLOCKED:
1225 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1226 SC_OP_RFKILL_SW_BLOCKED)))
1227 ath_radio_disable(sc);
1228 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1229 return 0;
1230 case RFKILL_STATE_UNBLOCKED:
1231 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1232 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1233 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1234 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1235 "radio as it is disabled by h/w\n");
1236 return -EPERM;
1238 ath_radio_enable(sc);
1240 return 0;
1241 default:
1242 return -EINVAL;
1246 /* Init s/w rfkill */
1247 static int ath_init_sw_rfkill(struct ath_softc *sc)
1249 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1250 RFKILL_TYPE_WLAN);
1251 if (!sc->rf_kill.rfkill) {
1252 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1253 return -ENOMEM;
1256 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1257 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1258 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1259 sc->rf_kill.rfkill->data = sc;
1260 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1261 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1262 sc->rf_kill.rfkill->user_claim_unsupported = 1;
1264 return 0;
1267 /* Deinitialize rfkill */
1268 static void ath_deinit_rfkill(struct ath_softc *sc)
1270 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1271 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1273 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1274 rfkill_unregister(sc->rf_kill.rfkill);
1275 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1276 sc->rf_kill.rfkill = NULL;
1280 static int ath_start_rfkill_poll(struct ath_softc *sc)
1282 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1283 queue_delayed_work(sc->hw->workqueue,
1284 &sc->rf_kill.rfkill_poll, 0);
1286 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1287 if (rfkill_register(sc->rf_kill.rfkill)) {
1288 DPRINTF(sc, ATH_DBG_FATAL,
1289 "Unable to register rfkill\n");
1290 rfkill_free(sc->rf_kill.rfkill);
1292 /* Deinitialize the device */
1293 ath_cleanup(sc);
1294 return -EIO;
1295 } else {
1296 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1300 return 0;
1302 #endif /* CONFIG_RFKILL */
1304 void ath_cleanup(struct ath_softc *sc)
1306 ath_detach(sc);
1307 free_irq(sc->irq, sc);
1308 ath_bus_cleanup(sc);
1309 ieee80211_free_hw(sc->hw);
1312 void ath_detach(struct ath_softc *sc)
1314 struct ieee80211_hw *hw = sc->hw;
1315 int i = 0;
1317 ath9k_ps_wakeup(sc);
1319 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1321 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1322 ath_deinit_rfkill(sc);
1323 #endif
1324 ath_deinit_leds(sc);
1326 ieee80211_unregister_hw(hw);
1327 ath_rx_cleanup(sc);
1328 ath_tx_cleanup(sc);
1330 tasklet_kill(&sc->intr_tq);
1331 tasklet_kill(&sc->bcon_tasklet);
1333 if (!(sc->sc_flags & SC_OP_INVALID))
1334 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1336 /* cleanup tx queues */
1337 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1338 if (ATH_TXQ_SETUP(sc, i))
1339 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1341 ath9k_hw_detach(sc->sc_ah);
1342 ath9k_exit_debug(sc);
1343 ath9k_ps_restore(sc);
1346 static int ath_init(u16 devid, struct ath_softc *sc)
1348 struct ath_hw *ah = NULL;
1349 int status;
1350 int error = 0, i;
1351 int csz = 0;
1353 /* XXX: hardware will not be ready until ath_open() being called */
1354 sc->sc_flags |= SC_OP_INVALID;
1356 if (ath9k_init_debug(sc) < 0)
1357 printk(KERN_ERR "Unable to create debugfs files\n");
1359 spin_lock_init(&sc->sc_resetlock);
1360 mutex_init(&sc->mutex);
1361 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1362 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1363 (unsigned long)sc);
1366 * Cache line size is used to size and align various
1367 * structures used to communicate with the hardware.
1369 ath_read_cachesize(sc, &csz);
1370 /* XXX assert csz is non-zero */
1371 sc->cachelsz = csz << 2; /* convert to bytes */
1373 ah = ath9k_hw_attach(devid, sc, &status);
1374 if (ah == NULL) {
1375 DPRINTF(sc, ATH_DBG_FATAL,
1376 "Unable to attach hardware; HAL status %d\n", status);
1377 error = -ENXIO;
1378 goto bad;
1380 sc->sc_ah = ah;
1382 /* Get the hardware key cache size. */
1383 sc->keymax = ah->caps.keycache_size;
1384 if (sc->keymax > ATH_KEYMAX) {
1385 DPRINTF(sc, ATH_DBG_KEYCACHE,
1386 "Warning, using only %u entries in %u key cache\n",
1387 ATH_KEYMAX, sc->keymax);
1388 sc->keymax = ATH_KEYMAX;
1392 * Reset the key cache since some parts do not
1393 * reset the contents on initial power up.
1395 for (i = 0; i < sc->keymax; i++)
1396 ath9k_hw_keyreset(ah, (u16) i);
1398 if (ath9k_regd_init(sc->sc_ah))
1399 goto bad;
1401 /* default to MONITOR mode */
1402 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1404 /* Setup rate tables */
1406 ath_rate_attach(sc);
1407 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1408 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1411 * Allocate hardware transmit queues: one queue for
1412 * beacon frames and one data queue for each QoS
1413 * priority. Note that the hal handles reseting
1414 * these queues at the needed time.
1416 sc->beacon.beaconq = ath_beaconq_setup(ah);
1417 if (sc->beacon.beaconq == -1) {
1418 DPRINTF(sc, ATH_DBG_FATAL,
1419 "Unable to setup a beacon xmit queue\n");
1420 error = -EIO;
1421 goto bad2;
1423 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1424 if (sc->beacon.cabq == NULL) {
1425 DPRINTF(sc, ATH_DBG_FATAL,
1426 "Unable to setup CAB xmit queue\n");
1427 error = -EIO;
1428 goto bad2;
1431 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1432 ath_cabq_update(sc);
1434 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1435 sc->tx.hwq_map[i] = -1;
1437 /* Setup data queues */
1438 /* NB: ensure BK queue is the lowest priority h/w queue */
1439 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1440 DPRINTF(sc, ATH_DBG_FATAL,
1441 "Unable to setup xmit queue for BK traffic\n");
1442 error = -EIO;
1443 goto bad2;
1446 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1447 DPRINTF(sc, ATH_DBG_FATAL,
1448 "Unable to setup xmit queue for BE traffic\n");
1449 error = -EIO;
1450 goto bad2;
1452 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1453 DPRINTF(sc, ATH_DBG_FATAL,
1454 "Unable to setup xmit queue for VI traffic\n");
1455 error = -EIO;
1456 goto bad2;
1458 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1459 DPRINTF(sc, ATH_DBG_FATAL,
1460 "Unable to setup xmit queue for VO traffic\n");
1461 error = -EIO;
1462 goto bad2;
1465 /* Initializes the noise floor to a reasonable default value.
1466 * Later on this will be updated during ANI processing. */
1468 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1469 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1471 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1472 ATH9K_CIPHER_TKIP, NULL)) {
1474 * Whether we should enable h/w TKIP MIC.
1475 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1476 * report WMM capable, so it's always safe to turn on
1477 * TKIP MIC in this case.
1479 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1480 0, 1, NULL);
1484 * Check whether the separate key cache entries
1485 * are required to handle both tx+rx MIC keys.
1486 * With split mic keys the number of stations is limited
1487 * to 27 otherwise 59.
1489 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1490 ATH9K_CIPHER_TKIP, NULL)
1491 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1492 ATH9K_CIPHER_MIC, NULL)
1493 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1494 0, NULL))
1495 sc->splitmic = 1;
1497 /* turn on mcast key search if possible */
1498 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1499 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1500 1, NULL);
1502 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1504 /* 11n Capabilities */
1505 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1506 sc->sc_flags |= SC_OP_TXAGGR;
1507 sc->sc_flags |= SC_OP_RXAGGR;
1510 sc->tx_chainmask = ah->caps.tx_chainmask;
1511 sc->rx_chainmask = ah->caps.rx_chainmask;
1513 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1514 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1516 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1517 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1518 ATH_SET_VIF_BSSID_MASK(sc->bssidmask);
1519 ath9k_hw_setbssidmask(sc);
1522 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1524 /* initialize beacon slots */
1525 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1526 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1528 /* save MISC configurations */
1529 sc->config.swBeaconProcess = 1;
1531 /* setup channels and rates */
1533 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1534 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1535 sc->rates[IEEE80211_BAND_2GHZ];
1536 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1537 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1538 ARRAY_SIZE(ath9k_2ghz_chantable);
1540 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1541 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1542 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1543 sc->rates[IEEE80211_BAND_5GHZ];
1544 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1545 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1546 ARRAY_SIZE(ath9k_5ghz_chantable);
1549 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1550 ath9k_hw_btcoex_enable(sc->sc_ah);
1552 return 0;
1553 bad2:
1554 /* cleanup tx queues */
1555 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1556 if (ATH_TXQ_SETUP(sc, i))
1557 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1558 bad:
1559 if (ah)
1560 ath9k_hw_detach(ah);
1561 ath9k_exit_debug(sc);
1563 return error;
1566 int ath_attach(u16 devid, struct ath_softc *sc)
1568 struct ieee80211_hw *hw = sc->hw;
1569 int error = 0, i;
1571 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1573 error = ath_init(devid, sc);
1574 if (error != 0)
1575 return error;
1577 /* get mac address from hardware and set in mac80211 */
1579 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1581 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1582 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1583 IEEE80211_HW_SIGNAL_DBM |
1584 IEEE80211_HW_AMPDU_AGGREGATION |
1585 IEEE80211_HW_SUPPORTS_PS |
1586 IEEE80211_HW_PS_NULLFUNC_STACK;
1588 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah))
1589 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1591 hw->wiphy->interface_modes =
1592 BIT(NL80211_IFTYPE_AP) |
1593 BIT(NL80211_IFTYPE_STATION) |
1594 BIT(NL80211_IFTYPE_ADHOC);
1596 hw->wiphy->reg_notifier = ath9k_reg_notifier;
1597 hw->wiphy->strict_regulatory = true;
1599 hw->queues = 4;
1600 hw->max_rates = 4;
1601 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1602 hw->sta_data_size = sizeof(struct ath_node);
1603 hw->vif_data_size = sizeof(struct ath_vif);
1605 hw->rate_control_algorithm = "ath9k_rate_control";
1607 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1608 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1609 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1610 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1613 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1614 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1615 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1616 &sc->sbands[IEEE80211_BAND_5GHZ];
1618 /* initialize tx/rx engine */
1619 error = ath_tx_init(sc, ATH_TXBUF);
1620 if (error != 0)
1621 goto error_attach;
1623 error = ath_rx_init(sc, ATH_RXBUF);
1624 if (error != 0)
1625 goto error_attach;
1627 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1628 /* Initialze h/w Rfkill */
1629 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1630 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1632 /* Initialize s/w rfkill */
1633 error = ath_init_sw_rfkill(sc);
1634 if (error)
1635 goto error_attach;
1636 #endif
1638 if (ath9k_is_world_regd(sc->sc_ah)) {
1639 /* Anything applied here (prior to wiphy registratoin) gets
1640 * saved on the wiphy orig_* parameters */
1641 const struct ieee80211_regdomain *regd =
1642 ath9k_world_regdomain(sc->sc_ah);
1643 hw->wiphy->custom_regulatory = true;
1644 hw->wiphy->strict_regulatory = false;
1645 wiphy_apply_custom_regulatory(sc->hw->wiphy, regd);
1646 ath9k_reg_apply_radar_flags(hw->wiphy);
1647 ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT);
1648 } else {
1649 /* This gets applied in the case of the absense of CRDA,
1650 * its our own custom world regulatory domain, similar to
1651 * cfg80211's but we enable passive scanning */
1652 const struct ieee80211_regdomain *regd =
1653 ath9k_default_world_regdomain();
1654 wiphy_apply_custom_regulatory(sc->hw->wiphy, regd);
1655 ath9k_reg_apply_radar_flags(hw->wiphy);
1656 ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT);
1659 error = ieee80211_register_hw(hw);
1661 if (!ath9k_is_world_regd(sc->sc_ah))
1662 regulatory_hint(hw->wiphy, sc->sc_ah->regulatory.alpha2);
1664 /* Initialize LED control */
1665 ath_init_leds(sc);
1668 return 0;
1670 error_attach:
1671 /* cleanup tx queues */
1672 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1673 if (ATH_TXQ_SETUP(sc, i))
1674 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1676 ath9k_hw_detach(sc->sc_ah);
1677 ath9k_exit_debug(sc);
1679 return error;
1682 int ath_reset(struct ath_softc *sc, bool retry_tx)
1684 struct ath_hw *ah = sc->sc_ah;
1685 struct ieee80211_hw *hw = sc->hw;
1686 int r;
1688 ath9k_hw_set_interrupts(ah, 0);
1689 ath_drain_all_txq(sc, retry_tx);
1690 ath_stoprecv(sc);
1691 ath_flushrecv(sc);
1693 spin_lock_bh(&sc->sc_resetlock);
1694 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1695 if (r)
1696 DPRINTF(sc, ATH_DBG_FATAL,
1697 "Unable to reset hardware; reset status %u\n", r);
1698 spin_unlock_bh(&sc->sc_resetlock);
1700 if (ath_startrecv(sc) != 0)
1701 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1704 * We may be doing a reset in response to a request
1705 * that changes the channel so update any state that
1706 * might change as a result.
1708 ath_cache_conf_rate(sc, &hw->conf);
1710 ath_update_txpow(sc);
1712 if (sc->sc_flags & SC_OP_BEACONS)
1713 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1715 ath9k_hw_set_interrupts(ah, sc->imask);
1717 if (retry_tx) {
1718 int i;
1719 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1720 if (ATH_TXQ_SETUP(sc, i)) {
1721 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1722 ath_txq_schedule(sc, &sc->tx.txq[i]);
1723 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1728 return r;
1732 * This function will allocate both the DMA descriptor structure, and the
1733 * buffers it contains. These are used to contain the descriptors used
1734 * by the system.
1736 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1737 struct list_head *head, const char *name,
1738 int nbuf, int ndesc)
1740 #define DS2PHYS(_dd, _ds) \
1741 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1742 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1743 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1745 struct ath_desc *ds;
1746 struct ath_buf *bf;
1747 int i, bsize, error;
1749 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1750 name, nbuf, ndesc);
1752 /* ath_desc must be a multiple of DWORDs */
1753 if ((sizeof(struct ath_desc) % 4) != 0) {
1754 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1755 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1756 error = -ENOMEM;
1757 goto fail;
1760 dd->dd_name = name;
1761 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1764 * Need additional DMA memory because we can't use
1765 * descriptors that cross the 4K page boundary. Assume
1766 * one skipped descriptor per 4K page.
1768 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1769 u32 ndesc_skipped =
1770 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1771 u32 dma_len;
1773 while (ndesc_skipped) {
1774 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1775 dd->dd_desc_len += dma_len;
1777 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1781 /* allocate descriptors */
1782 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1783 &dd->dd_desc_paddr, GFP_ATOMIC);
1784 if (dd->dd_desc == NULL) {
1785 error = -ENOMEM;
1786 goto fail;
1788 ds = dd->dd_desc;
1789 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1790 dd->dd_name, ds, (u32) dd->dd_desc_len,
1791 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1793 /* allocate buffers */
1794 bsize = sizeof(struct ath_buf) * nbuf;
1795 bf = kmalloc(bsize, GFP_KERNEL);
1796 if (bf == NULL) {
1797 error = -ENOMEM;
1798 goto fail2;
1800 memset(bf, 0, bsize);
1801 dd->dd_bufptr = bf;
1803 INIT_LIST_HEAD(head);
1804 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1805 bf->bf_desc = ds;
1806 bf->bf_daddr = DS2PHYS(dd, ds);
1808 if (!(sc->sc_ah->caps.hw_caps &
1809 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1811 * Skip descriptor addresses which can cause 4KB
1812 * boundary crossing (addr + length) with a 32 dword
1813 * descriptor fetch.
1815 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1816 ASSERT((caddr_t) bf->bf_desc <
1817 ((caddr_t) dd->dd_desc +
1818 dd->dd_desc_len));
1820 ds += ndesc;
1821 bf->bf_desc = ds;
1822 bf->bf_daddr = DS2PHYS(dd, ds);
1825 list_add_tail(&bf->list, head);
1827 return 0;
1828 fail2:
1829 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1830 dd->dd_desc_paddr);
1831 fail:
1832 memset(dd, 0, sizeof(*dd));
1833 return error;
1834 #undef ATH_DESC_4KB_BOUND_CHECK
1835 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1836 #undef DS2PHYS
1839 void ath_descdma_cleanup(struct ath_softc *sc,
1840 struct ath_descdma *dd,
1841 struct list_head *head)
1843 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1844 dd->dd_desc_paddr);
1846 INIT_LIST_HEAD(head);
1847 kfree(dd->dd_bufptr);
1848 memset(dd, 0, sizeof(*dd));
1851 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1853 int qnum;
1855 switch (queue) {
1856 case 0:
1857 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1858 break;
1859 case 1:
1860 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1861 break;
1862 case 2:
1863 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1864 break;
1865 case 3:
1866 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1867 break;
1868 default:
1869 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1870 break;
1873 return qnum;
1876 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1878 int qnum;
1880 switch (queue) {
1881 case ATH9K_WME_AC_VO:
1882 qnum = 0;
1883 break;
1884 case ATH9K_WME_AC_VI:
1885 qnum = 1;
1886 break;
1887 case ATH9K_WME_AC_BE:
1888 qnum = 2;
1889 break;
1890 case ATH9K_WME_AC_BK:
1891 qnum = 3;
1892 break;
1893 default:
1894 qnum = -1;
1895 break;
1898 return qnum;
1901 /* XXX: Remove me once we don't depend on ath9k_channel for all
1902 * this redundant data */
1903 static void ath9k_update_ichannel(struct ath_softc *sc,
1904 struct ath9k_channel *ichan)
1906 struct ieee80211_hw *hw = sc->hw;
1907 struct ieee80211_channel *chan = hw->conf.channel;
1908 struct ieee80211_conf *conf = &hw->conf;
1910 ichan->channel = chan->center_freq;
1911 ichan->chan = chan;
1913 if (chan->band == IEEE80211_BAND_2GHZ) {
1914 ichan->chanmode = CHANNEL_G;
1915 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1916 } else {
1917 ichan->chanmode = CHANNEL_A;
1918 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1921 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1923 if (conf_is_ht(conf)) {
1924 if (conf_is_ht40(conf))
1925 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1927 ichan->chanmode = ath_get_extchanmode(sc, chan,
1928 conf->channel_type);
1932 /**********************/
1933 /* mac80211 callbacks */
1934 /**********************/
1936 static int ath9k_start(struct ieee80211_hw *hw)
1938 struct ath_softc *sc = hw->priv;
1939 struct ieee80211_channel *curchan = hw->conf.channel;
1940 struct ath9k_channel *init_channel;
1941 int r, pos;
1943 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1944 "initial channel: %d MHz\n", curchan->center_freq);
1946 mutex_lock(&sc->mutex);
1948 /* setup initial channel */
1950 pos = curchan->hw_value;
1952 init_channel = &sc->sc_ah->channels[pos];
1953 ath9k_update_ichannel(sc, init_channel);
1955 /* Reset SERDES registers */
1956 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1959 * The basic interface to setting the hardware in a good
1960 * state is ``reset''. On return the hardware is known to
1961 * be powered up and with interrupts disabled. This must
1962 * be followed by initialization of the appropriate bits
1963 * and then setup of the interrupt mask.
1965 spin_lock_bh(&sc->sc_resetlock);
1966 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1967 if (r) {
1968 DPRINTF(sc, ATH_DBG_FATAL,
1969 "Unable to reset hardware; reset status %u "
1970 "(freq %u MHz)\n", r,
1971 curchan->center_freq);
1972 spin_unlock_bh(&sc->sc_resetlock);
1973 goto mutex_unlock;
1975 spin_unlock_bh(&sc->sc_resetlock);
1978 * This is needed only to setup initial state
1979 * but it's best done after a reset.
1981 ath_update_txpow(sc);
1984 * Setup the hardware after reset:
1985 * The receive engine is set going.
1986 * Frame transmit is handled entirely
1987 * in the frame output path; there's nothing to do
1988 * here except setup the interrupt mask.
1990 if (ath_startrecv(sc) != 0) {
1991 DPRINTF(sc, ATH_DBG_FATAL,
1992 "Unable to start recv logic\n");
1993 r = -EIO;
1994 goto mutex_unlock;
1997 /* Setup our intr mask. */
1998 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
1999 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2000 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2002 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2003 sc->imask |= ATH9K_INT_GTT;
2005 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2006 sc->imask |= ATH9K_INT_CST;
2008 ath_cache_conf_rate(sc, &hw->conf);
2010 sc->sc_flags &= ~SC_OP_INVALID;
2012 /* Disable BMISS interrupt when we're not associated */
2013 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2014 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2016 ieee80211_wake_queues(sc->hw);
2018 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2019 r = ath_start_rfkill_poll(sc);
2020 #endif
2022 mutex_unlock:
2023 mutex_unlock(&sc->mutex);
2025 return r;
2028 static int ath9k_tx(struct ieee80211_hw *hw,
2029 struct sk_buff *skb)
2031 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2032 struct ath_softc *sc = hw->priv;
2033 struct ath_tx_control txctl;
2034 int hdrlen, padsize;
2036 memset(&txctl, 0, sizeof(struct ath_tx_control));
2039 * As a temporary workaround, assign seq# here; this will likely need
2040 * to be cleaned up to work better with Beacon transmission and virtual
2041 * BSSes.
2043 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2044 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2045 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2046 sc->tx.seq_no += 0x10;
2047 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2048 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2051 /* Add the padding after the header if this is not already done */
2052 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2053 if (hdrlen & 3) {
2054 padsize = hdrlen % 4;
2055 if (skb_headroom(skb) < padsize)
2056 return -1;
2057 skb_push(skb, padsize);
2058 memmove(skb->data, skb->data + padsize, hdrlen);
2061 /* Check if a tx queue is available */
2063 txctl.txq = ath_test_get_txq(sc, skb);
2064 if (!txctl.txq)
2065 goto exit;
2067 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2069 if (ath_tx_start(sc, skb, &txctl) != 0) {
2070 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2071 goto exit;
2074 return 0;
2075 exit:
2076 dev_kfree_skb_any(skb);
2077 return 0;
2080 static void ath9k_stop(struct ieee80211_hw *hw)
2082 struct ath_softc *sc = hw->priv;
2084 if (sc->sc_flags & SC_OP_INVALID) {
2085 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2086 return;
2089 mutex_lock(&sc->mutex);
2091 ieee80211_stop_queues(sc->hw);
2093 /* make sure h/w will not generate any interrupt
2094 * before setting the invalid flag. */
2095 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2097 if (!(sc->sc_flags & SC_OP_INVALID)) {
2098 ath_drain_all_txq(sc, false);
2099 ath_stoprecv(sc);
2100 ath9k_hw_phy_disable(sc->sc_ah);
2101 } else
2102 sc->rx.rxlink = NULL;
2104 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2105 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2106 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2107 #endif
2108 /* disable HAL and put h/w to sleep */
2109 ath9k_hw_disable(sc->sc_ah);
2110 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2112 sc->sc_flags |= SC_OP_INVALID;
2114 mutex_unlock(&sc->mutex);
2116 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2119 static int ath9k_add_interface(struct ieee80211_hw *hw,
2120 struct ieee80211_if_init_conf *conf)
2122 struct ath_softc *sc = hw->priv;
2123 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2124 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2126 /* Support only vif for now */
2128 if (sc->nvifs)
2129 return -ENOBUFS;
2131 mutex_lock(&sc->mutex);
2133 switch (conf->type) {
2134 case NL80211_IFTYPE_STATION:
2135 ic_opmode = NL80211_IFTYPE_STATION;
2136 break;
2137 case NL80211_IFTYPE_ADHOC:
2138 ic_opmode = NL80211_IFTYPE_ADHOC;
2139 break;
2140 case NL80211_IFTYPE_AP:
2141 ic_opmode = NL80211_IFTYPE_AP;
2142 break;
2143 default:
2144 DPRINTF(sc, ATH_DBG_FATAL,
2145 "Interface type %d not yet supported\n", conf->type);
2146 return -EOPNOTSUPP;
2149 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2151 /* Set the VIF opmode */
2152 avp->av_opmode = ic_opmode;
2153 avp->av_bslot = -1;
2155 if (ic_opmode == NL80211_IFTYPE_AP)
2156 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2158 sc->vifs[0] = conf->vif;
2159 sc->nvifs++;
2161 /* Set the device opmode */
2162 sc->sc_ah->opmode = ic_opmode;
2165 * Enable MIB interrupts when there are hardware phy counters.
2166 * Note we only do this (at the moment) for station mode.
2168 if (ath9k_hw_phycounters(sc->sc_ah) &&
2169 ((conf->type == NL80211_IFTYPE_STATION) ||
2170 (conf->type == NL80211_IFTYPE_ADHOC)))
2171 sc->imask |= ATH9K_INT_MIB;
2173 * Some hardware processes the TIM IE and fires an
2174 * interrupt when the TIM bit is set. For hardware
2175 * that does, if not overridden by configuration,
2176 * enable the TIM interrupt when operating as station.
2178 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
2179 (conf->type == NL80211_IFTYPE_STATION) &&
2180 !sc->config.swBeaconProcess)
2181 sc->imask |= ATH9K_INT_TIM;
2183 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2185 if (conf->type == NL80211_IFTYPE_AP) {
2186 /* TODO: is this a suitable place to start ANI for AP mode? */
2187 /* Start ANI */
2188 mod_timer(&sc->ani.timer,
2189 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2192 mutex_unlock(&sc->mutex);
2194 return 0;
2197 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2198 struct ieee80211_if_init_conf *conf)
2200 struct ath_softc *sc = hw->priv;
2201 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2203 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2205 mutex_lock(&sc->mutex);
2207 /* Stop ANI */
2208 del_timer_sync(&sc->ani.timer);
2210 /* Reclaim beacon resources */
2211 if (sc->sc_ah->opmode == NL80211_IFTYPE_AP ||
2212 sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) {
2213 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2214 ath_beacon_return(sc, avp);
2217 sc->sc_flags &= ~SC_OP_BEACONS;
2219 sc->vifs[0] = NULL;
2220 sc->nvifs--;
2222 mutex_unlock(&sc->mutex);
2225 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2227 struct ath_softc *sc = hw->priv;
2228 struct ieee80211_conf *conf = &hw->conf;
2230 mutex_lock(&sc->mutex);
2232 if (changed & IEEE80211_CONF_CHANGE_PS) {
2233 if (conf->flags & IEEE80211_CONF_PS) {
2234 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2235 sc->imask |= ATH9K_INT_TIM_TIMER;
2236 ath9k_hw_set_interrupts(sc->sc_ah,
2237 sc->imask);
2239 ath9k_hw_setrxabort(sc->sc_ah, 1);
2240 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2241 } else {
2242 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2243 ath9k_hw_setrxabort(sc->sc_ah, 0);
2244 sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2245 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2246 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2247 ath9k_hw_set_interrupts(sc->sc_ah,
2248 sc->imask);
2253 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2254 struct ieee80211_channel *curchan = hw->conf.channel;
2255 int pos = curchan->hw_value;
2257 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2258 curchan->center_freq);
2260 /* XXX: remove me eventualy */
2261 ath9k_update_ichannel(sc, &sc->sc_ah->channels[pos]);
2263 ath_update_chainmask(sc, conf_is_ht(conf));
2265 if (ath_set_channel(sc, &sc->sc_ah->channels[pos]) < 0) {
2266 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2267 mutex_unlock(&sc->mutex);
2268 return -EINVAL;
2272 if (changed & IEEE80211_CONF_CHANGE_POWER)
2273 sc->config.txpowlimit = 2 * conf->power_level;
2275 mutex_unlock(&sc->mutex);
2277 return 0;
2280 static int ath9k_config_interface(struct ieee80211_hw *hw,
2281 struct ieee80211_vif *vif,
2282 struct ieee80211_if_conf *conf)
2284 struct ath_softc *sc = hw->priv;
2285 struct ath_hw *ah = sc->sc_ah;
2286 struct ath_vif *avp = (void *)vif->drv_priv;
2287 u32 rfilt = 0;
2288 int error, i;
2290 /* TODO: Need to decide which hw opmode to use for multi-interface
2291 * cases */
2292 if (vif->type == NL80211_IFTYPE_AP &&
2293 ah->opmode != NL80211_IFTYPE_AP) {
2294 ah->opmode = NL80211_IFTYPE_STATION;
2295 ath9k_hw_setopmode(ah);
2296 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2297 sc->curaid = 0;
2298 ath9k_hw_write_associd(sc);
2299 /* Request full reset to get hw opmode changed properly */
2300 sc->sc_flags |= SC_OP_FULL_RESET;
2303 if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2304 !is_zero_ether_addr(conf->bssid)) {
2305 switch (vif->type) {
2306 case NL80211_IFTYPE_STATION:
2307 case NL80211_IFTYPE_ADHOC:
2308 /* Set BSSID */
2309 memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
2310 sc->curaid = 0;
2311 ath9k_hw_write_associd(sc);
2313 /* Set aggregation protection mode parameters */
2314 sc->config.ath_aggr_prot = 0;
2316 DPRINTF(sc, ATH_DBG_CONFIG,
2317 "RX filter 0x%x bssid %pM aid 0x%x\n",
2318 rfilt, sc->curbssid, sc->curaid);
2320 /* need to reconfigure the beacon */
2321 sc->sc_flags &= ~SC_OP_BEACONS ;
2323 break;
2324 default:
2325 break;
2329 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2330 (vif->type == NL80211_IFTYPE_AP)) {
2331 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2332 (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2333 conf->enable_beacon)) {
2335 * Allocate and setup the beacon frame.
2337 * Stop any previous beacon DMA. This may be
2338 * necessary, for example, when an ibss merge
2339 * causes reconfiguration; we may be called
2340 * with beacon transmission active.
2342 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2344 error = ath_beacon_alloc(sc, 0);
2345 if (error != 0)
2346 return error;
2348 ath_beacon_sync(sc, 0);
2352 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2353 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2354 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2355 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2356 ath9k_hw_keysetmac(sc->sc_ah,
2357 (u16)i,
2358 sc->curbssid);
2361 /* Only legacy IBSS for now */
2362 if (vif->type == NL80211_IFTYPE_ADHOC)
2363 ath_update_chainmask(sc, 0);
2365 return 0;
2368 #define SUPPORTED_FILTERS \
2369 (FIF_PROMISC_IN_BSS | \
2370 FIF_ALLMULTI | \
2371 FIF_CONTROL | \
2372 FIF_OTHER_BSS | \
2373 FIF_BCN_PRBRESP_PROMISC | \
2374 FIF_FCSFAIL)
2376 /* FIXME: sc->sc_full_reset ? */
2377 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2378 unsigned int changed_flags,
2379 unsigned int *total_flags,
2380 int mc_count,
2381 struct dev_mc_list *mclist)
2383 struct ath_softc *sc = hw->priv;
2384 u32 rfilt;
2386 changed_flags &= SUPPORTED_FILTERS;
2387 *total_flags &= SUPPORTED_FILTERS;
2389 sc->rx.rxfilter = *total_flags;
2390 rfilt = ath_calcrxfilter(sc);
2391 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2393 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2394 if (*total_flags & FIF_BCN_PRBRESP_PROMISC) {
2395 memcpy(sc->curbssid, ath_bcast_mac, ETH_ALEN);
2396 sc->curaid = 0;
2397 ath9k_hw_write_associd(sc);
2401 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2404 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2405 struct ieee80211_vif *vif,
2406 enum sta_notify_cmd cmd,
2407 struct ieee80211_sta *sta)
2409 struct ath_softc *sc = hw->priv;
2411 switch (cmd) {
2412 case STA_NOTIFY_ADD:
2413 ath_node_attach(sc, sta);
2414 break;
2415 case STA_NOTIFY_REMOVE:
2416 ath_node_detach(sc, sta);
2417 break;
2418 default:
2419 break;
2423 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2424 const struct ieee80211_tx_queue_params *params)
2426 struct ath_softc *sc = hw->priv;
2427 struct ath9k_tx_queue_info qi;
2428 int ret = 0, qnum;
2430 if (queue >= WME_NUM_AC)
2431 return 0;
2433 mutex_lock(&sc->mutex);
2435 qi.tqi_aifs = params->aifs;
2436 qi.tqi_cwmin = params->cw_min;
2437 qi.tqi_cwmax = params->cw_max;
2438 qi.tqi_burstTime = params->txop;
2439 qnum = ath_get_hal_qnum(queue, sc);
2441 DPRINTF(sc, ATH_DBG_CONFIG,
2442 "Configure tx [queue/halq] [%d/%d], "
2443 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2444 queue, qnum, params->aifs, params->cw_min,
2445 params->cw_max, params->txop);
2447 ret = ath_txq_update(sc, qnum, &qi);
2448 if (ret)
2449 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2451 mutex_unlock(&sc->mutex);
2453 return ret;
2456 static int ath9k_set_key(struct ieee80211_hw *hw,
2457 enum set_key_cmd cmd,
2458 struct ieee80211_vif *vif,
2459 struct ieee80211_sta *sta,
2460 struct ieee80211_key_conf *key)
2462 struct ath_softc *sc = hw->priv;
2463 int ret = 0;
2465 mutex_lock(&sc->mutex);
2466 ath9k_ps_wakeup(sc);
2467 DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2469 switch (cmd) {
2470 case SET_KEY:
2471 ret = ath_key_config(sc, sta, key);
2472 if (ret >= 0) {
2473 key->hw_key_idx = ret;
2474 /* push IV and Michael MIC generation to stack */
2475 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2476 if (key->alg == ALG_TKIP)
2477 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2478 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2479 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2480 ret = 0;
2482 break;
2483 case DISABLE_KEY:
2484 ath_key_delete(sc, key);
2485 break;
2486 default:
2487 ret = -EINVAL;
2490 ath9k_ps_restore(sc);
2491 mutex_unlock(&sc->mutex);
2493 return ret;
2496 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2497 struct ieee80211_vif *vif,
2498 struct ieee80211_bss_conf *bss_conf,
2499 u32 changed)
2501 struct ath_softc *sc = hw->priv;
2503 mutex_lock(&sc->mutex);
2505 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2506 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2507 bss_conf->use_short_preamble);
2508 if (bss_conf->use_short_preamble)
2509 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2510 else
2511 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2514 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2515 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2516 bss_conf->use_cts_prot);
2517 if (bss_conf->use_cts_prot &&
2518 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2519 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2520 else
2521 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2524 if (changed & BSS_CHANGED_ASSOC) {
2525 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2526 bss_conf->assoc);
2527 ath9k_bss_assoc_info(sc, vif, bss_conf);
2530 mutex_unlock(&sc->mutex);
2533 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2535 u64 tsf;
2536 struct ath_softc *sc = hw->priv;
2538 mutex_lock(&sc->mutex);
2539 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2540 mutex_unlock(&sc->mutex);
2542 return tsf;
2545 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2547 struct ath_softc *sc = hw->priv;
2549 mutex_lock(&sc->mutex);
2550 ath9k_hw_settsf64(sc->sc_ah, tsf);
2551 mutex_unlock(&sc->mutex);
2554 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2556 struct ath_softc *sc = hw->priv;
2558 mutex_lock(&sc->mutex);
2559 ath9k_hw_reset_tsf(sc->sc_ah);
2560 mutex_unlock(&sc->mutex);
2563 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2564 enum ieee80211_ampdu_mlme_action action,
2565 struct ieee80211_sta *sta,
2566 u16 tid, u16 *ssn)
2568 struct ath_softc *sc = hw->priv;
2569 int ret = 0;
2571 switch (action) {
2572 case IEEE80211_AMPDU_RX_START:
2573 if (!(sc->sc_flags & SC_OP_RXAGGR))
2574 ret = -ENOTSUPP;
2575 break;
2576 case IEEE80211_AMPDU_RX_STOP:
2577 break;
2578 case IEEE80211_AMPDU_TX_START:
2579 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2580 if (ret < 0)
2581 DPRINTF(sc, ATH_DBG_FATAL,
2582 "Unable to start TX aggregation\n");
2583 else
2584 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2585 break;
2586 case IEEE80211_AMPDU_TX_STOP:
2587 ret = ath_tx_aggr_stop(sc, sta, tid);
2588 if (ret < 0)
2589 DPRINTF(sc, ATH_DBG_FATAL,
2590 "Unable to stop TX aggregation\n");
2592 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2593 break;
2594 case IEEE80211_AMPDU_TX_RESUME:
2595 ath_tx_aggr_resume(sc, sta, tid);
2596 break;
2597 default:
2598 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2601 return ret;
2604 struct ieee80211_ops ath9k_ops = {
2605 .tx = ath9k_tx,
2606 .start = ath9k_start,
2607 .stop = ath9k_stop,
2608 .add_interface = ath9k_add_interface,
2609 .remove_interface = ath9k_remove_interface,
2610 .config = ath9k_config,
2611 .config_interface = ath9k_config_interface,
2612 .configure_filter = ath9k_configure_filter,
2613 .sta_notify = ath9k_sta_notify,
2614 .conf_tx = ath9k_conf_tx,
2615 .bss_info_changed = ath9k_bss_info_changed,
2616 .set_key = ath9k_set_key,
2617 .get_tsf = ath9k_get_tsf,
2618 .set_tsf = ath9k_set_tsf,
2619 .reset_tsf = ath9k_reset_tsf,
2620 .ampdu_action = ath9k_ampdu_action,
2623 static struct {
2624 u32 version;
2625 const char * name;
2626 } ath_mac_bb_names[] = {
2627 { AR_SREV_VERSION_5416_PCI, "5416" },
2628 { AR_SREV_VERSION_5416_PCIE, "5418" },
2629 { AR_SREV_VERSION_9100, "9100" },
2630 { AR_SREV_VERSION_9160, "9160" },
2631 { AR_SREV_VERSION_9280, "9280" },
2632 { AR_SREV_VERSION_9285, "9285" }
2635 static struct {
2636 u16 version;
2637 const char * name;
2638 } ath_rf_names[] = {
2639 { 0, "5133" },
2640 { AR_RAD5133_SREV_MAJOR, "5133" },
2641 { AR_RAD5122_SREV_MAJOR, "5122" },
2642 { AR_RAD2133_SREV_MAJOR, "2133" },
2643 { AR_RAD2122_SREV_MAJOR, "2122" }
2647 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2649 const char *
2650 ath_mac_bb_name(u32 mac_bb_version)
2652 int i;
2654 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2655 if (ath_mac_bb_names[i].version == mac_bb_version) {
2656 return ath_mac_bb_names[i].name;
2660 return "????";
2664 * Return the RF name. "????" is returned if the RF is unknown.
2666 const char *
2667 ath_rf_name(u16 rf_version)
2669 int i;
2671 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2672 if (ath_rf_names[i].version == rf_version) {
2673 return ath_rf_names[i].name;
2677 return "????";
2680 static int __init ath9k_init(void)
2682 int error;
2684 /* Register rate control algorithm */
2685 error = ath_rate_control_register();
2686 if (error != 0) {
2687 printk(KERN_ERR
2688 "ath9k: Unable to register rate control "
2689 "algorithm: %d\n",
2690 error);
2691 goto err_out;
2694 error = ath_pci_init();
2695 if (error < 0) {
2696 printk(KERN_ERR
2697 "ath9k: No PCI devices found, driver not installed.\n");
2698 error = -ENODEV;
2699 goto err_rate_unregister;
2702 error = ath_ahb_init();
2703 if (error < 0) {
2704 error = -ENODEV;
2705 goto err_pci_exit;
2708 return 0;
2710 err_pci_exit:
2711 ath_pci_exit();
2713 err_rate_unregister:
2714 ath_rate_control_unregister();
2715 err_out:
2716 return error;
2718 module_init(ath9k_init);
2720 static void __exit ath9k_exit(void)
2722 ath_ahb_exit();
2723 ath_pci_exit();
2724 ath_rate_control_unregister();
2725 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2727 module_exit(ath9k_exit);