i2c-ibm-iic: drop NO_IRQ
[linux-2.6/cjktty.git] / net / sctp / outqueue.c
blobabfc0b8dee74ea171c9f974e7a10fe4b9c66b2b9
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Perry Melange <pmelange@null.cc.uic.edu>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Jon Grimm <jgrimm@us.ibm.com>
45 * Any bugs reported given to us we will try to fix... any fixes shared will
46 * be incorporated into the next SCTP release.
49 #include <linux/types.h>
50 #include <linux/list.h> /* For struct list_head */
51 #include <linux/socket.h>
52 #include <linux/ip.h>
53 #include <linux/slab.h>
54 #include <net/sock.h> /* For skb_set_owner_w */
56 #include <net/sctp/sctp.h>
57 #include <net/sctp/sm.h>
59 /* Declare internal functions here. */
60 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
61 static void sctp_check_transmitted(struct sctp_outq *q,
62 struct list_head *transmitted_queue,
63 struct sctp_transport *transport,
64 struct sctp_sackhdr *sack,
65 __u32 highest_new_tsn);
67 static void sctp_mark_missing(struct sctp_outq *q,
68 struct list_head *transmitted_queue,
69 struct sctp_transport *transport,
70 __u32 highest_new_tsn,
71 int count_of_newacks);
73 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
75 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout);
77 /* Add data to the front of the queue. */
78 static inline void sctp_outq_head_data(struct sctp_outq *q,
79 struct sctp_chunk *ch)
81 list_add(&ch->list, &q->out_chunk_list);
82 q->out_qlen += ch->skb->len;
83 return;
86 /* Take data from the front of the queue. */
87 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
89 struct sctp_chunk *ch = NULL;
91 if (!list_empty(&q->out_chunk_list)) {
92 struct list_head *entry = q->out_chunk_list.next;
94 ch = list_entry(entry, struct sctp_chunk, list);
95 list_del_init(entry);
96 q->out_qlen -= ch->skb->len;
98 return ch;
100 /* Add data chunk to the end of the queue. */
101 static inline void sctp_outq_tail_data(struct sctp_outq *q,
102 struct sctp_chunk *ch)
104 list_add_tail(&ch->list, &q->out_chunk_list);
105 q->out_qlen += ch->skb->len;
106 return;
110 * SFR-CACC algorithm:
111 * D) If count_of_newacks is greater than or equal to 2
112 * and t was not sent to the current primary then the
113 * sender MUST NOT increment missing report count for t.
115 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
116 struct sctp_transport *transport,
117 int count_of_newacks)
119 if (count_of_newacks >=2 && transport != primary)
120 return 1;
121 return 0;
125 * SFR-CACC algorithm:
126 * F) If count_of_newacks is less than 2, let d be the
127 * destination to which t was sent. If cacc_saw_newack
128 * is 0 for destination d, then the sender MUST NOT
129 * increment missing report count for t.
131 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
132 int count_of_newacks)
134 if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack)
135 return 1;
136 return 0;
140 * SFR-CACC algorithm:
141 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
142 * execute steps C, D, F.
144 * C has been implemented in sctp_outq_sack
146 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
147 struct sctp_transport *transport,
148 int count_of_newacks)
150 if (!primary->cacc.cycling_changeover) {
151 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
152 return 1;
153 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
154 return 1;
155 return 0;
157 return 0;
161 * SFR-CACC algorithm:
162 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
163 * than next_tsn_at_change of the current primary, then
164 * the sender MUST NOT increment missing report count
165 * for t.
167 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
169 if (primary->cacc.cycling_changeover &&
170 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
171 return 1;
172 return 0;
176 * SFR-CACC algorithm:
177 * 3) If the missing report count for TSN t is to be
178 * incremented according to [RFC2960] and
179 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
180 * then the sender MUST futher execute steps 3.1 and
181 * 3.2 to determine if the missing report count for
182 * TSN t SHOULD NOT be incremented.
184 * 3.3) If 3.1 and 3.2 do not dictate that the missing
185 * report count for t should not be incremented, then
186 * the sender SOULD increment missing report count for
187 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
189 static inline int sctp_cacc_skip(struct sctp_transport *primary,
190 struct sctp_transport *transport,
191 int count_of_newacks,
192 __u32 tsn)
194 if (primary->cacc.changeover_active &&
195 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
196 sctp_cacc_skip_3_2(primary, tsn)))
197 return 1;
198 return 0;
201 /* Initialize an existing sctp_outq. This does the boring stuff.
202 * You still need to define handlers if you really want to DO
203 * something with this structure...
205 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
207 q->asoc = asoc;
208 INIT_LIST_HEAD(&q->out_chunk_list);
209 INIT_LIST_HEAD(&q->control_chunk_list);
210 INIT_LIST_HEAD(&q->retransmit);
211 INIT_LIST_HEAD(&q->sacked);
212 INIT_LIST_HEAD(&q->abandoned);
214 q->fast_rtx = 0;
215 q->outstanding_bytes = 0;
216 q->empty = 1;
217 q->cork = 0;
219 q->malloced = 0;
220 q->out_qlen = 0;
223 /* Free the outqueue structure and any related pending chunks.
225 void sctp_outq_teardown(struct sctp_outq *q)
227 struct sctp_transport *transport;
228 struct list_head *lchunk, *temp;
229 struct sctp_chunk *chunk, *tmp;
231 /* Throw away unacknowledged chunks. */
232 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
233 transports) {
234 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
235 chunk = list_entry(lchunk, struct sctp_chunk,
236 transmitted_list);
237 /* Mark as part of a failed message. */
238 sctp_chunk_fail(chunk, q->error);
239 sctp_chunk_free(chunk);
243 /* Throw away chunks that have been gap ACKed. */
244 list_for_each_safe(lchunk, temp, &q->sacked) {
245 list_del_init(lchunk);
246 chunk = list_entry(lchunk, struct sctp_chunk,
247 transmitted_list);
248 sctp_chunk_fail(chunk, q->error);
249 sctp_chunk_free(chunk);
252 /* Throw away any chunks in the retransmit queue. */
253 list_for_each_safe(lchunk, temp, &q->retransmit) {
254 list_del_init(lchunk);
255 chunk = list_entry(lchunk, struct sctp_chunk,
256 transmitted_list);
257 sctp_chunk_fail(chunk, q->error);
258 sctp_chunk_free(chunk);
261 /* Throw away any chunks that are in the abandoned queue. */
262 list_for_each_safe(lchunk, temp, &q->abandoned) {
263 list_del_init(lchunk);
264 chunk = list_entry(lchunk, struct sctp_chunk,
265 transmitted_list);
266 sctp_chunk_fail(chunk, q->error);
267 sctp_chunk_free(chunk);
270 /* Throw away any leftover data chunks. */
271 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
273 /* Mark as send failure. */
274 sctp_chunk_fail(chunk, q->error);
275 sctp_chunk_free(chunk);
278 q->error = 0;
280 /* Throw away any leftover control chunks. */
281 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
282 list_del_init(&chunk->list);
283 sctp_chunk_free(chunk);
287 /* Free the outqueue structure and any related pending chunks. */
288 void sctp_outq_free(struct sctp_outq *q)
290 /* Throw away leftover chunks. */
291 sctp_outq_teardown(q);
293 /* If we were kmalloc()'d, free the memory. */
294 if (q->malloced)
295 kfree(q);
298 /* Put a new chunk in an sctp_outq. */
299 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
301 int error = 0;
303 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
304 q, chunk, chunk && chunk->chunk_hdr ?
305 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
306 : "Illegal Chunk");
308 /* If it is data, queue it up, otherwise, send it
309 * immediately.
311 if (SCTP_CID_DATA == chunk->chunk_hdr->type) {
312 /* Is it OK to queue data chunks? */
313 /* From 9. Termination of Association
315 * When either endpoint performs a shutdown, the
316 * association on each peer will stop accepting new
317 * data from its user and only deliver data in queue
318 * at the time of sending or receiving the SHUTDOWN
319 * chunk.
321 switch (q->asoc->state) {
322 case SCTP_STATE_EMPTY:
323 case SCTP_STATE_CLOSED:
324 case SCTP_STATE_SHUTDOWN_PENDING:
325 case SCTP_STATE_SHUTDOWN_SENT:
326 case SCTP_STATE_SHUTDOWN_RECEIVED:
327 case SCTP_STATE_SHUTDOWN_ACK_SENT:
328 /* Cannot send after transport endpoint shutdown */
329 error = -ESHUTDOWN;
330 break;
332 default:
333 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
334 q, chunk, chunk && chunk->chunk_hdr ?
335 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
336 : "Illegal Chunk");
338 sctp_outq_tail_data(q, chunk);
339 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
340 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS);
341 else
342 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS);
343 q->empty = 0;
344 break;
346 } else {
347 list_add_tail(&chunk->list, &q->control_chunk_list);
348 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
351 if (error < 0)
352 return error;
354 if (!q->cork)
355 error = sctp_outq_flush(q, 0);
357 return error;
360 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
361 * and the abandoned list are in ascending order.
363 static void sctp_insert_list(struct list_head *head, struct list_head *new)
365 struct list_head *pos;
366 struct sctp_chunk *nchunk, *lchunk;
367 __u32 ntsn, ltsn;
368 int done = 0;
370 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
371 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
373 list_for_each(pos, head) {
374 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
375 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
376 if (TSN_lt(ntsn, ltsn)) {
377 list_add(new, pos->prev);
378 done = 1;
379 break;
382 if (!done)
383 list_add_tail(new, head);
386 /* Mark all the eligible packets on a transport for retransmission. */
387 void sctp_retransmit_mark(struct sctp_outq *q,
388 struct sctp_transport *transport,
389 __u8 reason)
391 struct list_head *lchunk, *ltemp;
392 struct sctp_chunk *chunk;
394 /* Walk through the specified transmitted queue. */
395 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
396 chunk = list_entry(lchunk, struct sctp_chunk,
397 transmitted_list);
399 /* If the chunk is abandoned, move it to abandoned list. */
400 if (sctp_chunk_abandoned(chunk)) {
401 list_del_init(lchunk);
402 sctp_insert_list(&q->abandoned, lchunk);
404 /* If this chunk has not been previousely acked,
405 * stop considering it 'outstanding'. Our peer
406 * will most likely never see it since it will
407 * not be retransmitted
409 if (!chunk->tsn_gap_acked) {
410 if (chunk->transport)
411 chunk->transport->flight_size -=
412 sctp_data_size(chunk);
413 q->outstanding_bytes -= sctp_data_size(chunk);
414 q->asoc->peer.rwnd += (sctp_data_size(chunk) +
415 sizeof(struct sk_buff));
417 continue;
420 /* If we are doing retransmission due to a timeout or pmtu
421 * discovery, only the chunks that are not yet acked should
422 * be added to the retransmit queue.
424 if ((reason == SCTP_RTXR_FAST_RTX &&
425 (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
426 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
427 /* RFC 2960 6.2.1 Processing a Received SACK
429 * C) Any time a DATA chunk is marked for
430 * retransmission (via either T3-rtx timer expiration
431 * (Section 6.3.3) or via fast retransmit
432 * (Section 7.2.4)), add the data size of those
433 * chunks to the rwnd.
435 q->asoc->peer.rwnd += (sctp_data_size(chunk) +
436 sizeof(struct sk_buff));
437 q->outstanding_bytes -= sctp_data_size(chunk);
438 if (chunk->transport)
439 transport->flight_size -= sctp_data_size(chunk);
441 /* sctpimpguide-05 Section 2.8.2
442 * M5) If a T3-rtx timer expires, the
443 * 'TSN.Missing.Report' of all affected TSNs is set
444 * to 0.
446 chunk->tsn_missing_report = 0;
448 /* If a chunk that is being used for RTT measurement
449 * has to be retransmitted, we cannot use this chunk
450 * anymore for RTT measurements. Reset rto_pending so
451 * that a new RTT measurement is started when a new
452 * data chunk is sent.
454 if (chunk->rtt_in_progress) {
455 chunk->rtt_in_progress = 0;
456 transport->rto_pending = 0;
459 /* Move the chunk to the retransmit queue. The chunks
460 * on the retransmit queue are always kept in order.
462 list_del_init(lchunk);
463 sctp_insert_list(&q->retransmit, lchunk);
467 SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
468 "cwnd: %d, ssthresh: %d, flight_size: %d, "
469 "pba: %d\n", __func__,
470 transport, reason,
471 transport->cwnd, transport->ssthresh,
472 transport->flight_size,
473 transport->partial_bytes_acked);
477 /* Mark all the eligible packets on a transport for retransmission and force
478 * one packet out.
480 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
481 sctp_retransmit_reason_t reason)
483 int error = 0;
485 switch(reason) {
486 case SCTP_RTXR_T3_RTX:
487 SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS);
488 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
489 /* Update the retran path if the T3-rtx timer has expired for
490 * the current retran path.
492 if (transport == transport->asoc->peer.retran_path)
493 sctp_assoc_update_retran_path(transport->asoc);
494 transport->asoc->rtx_data_chunks +=
495 transport->asoc->unack_data;
496 break;
497 case SCTP_RTXR_FAST_RTX:
498 SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS);
499 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
500 q->fast_rtx = 1;
501 break;
502 case SCTP_RTXR_PMTUD:
503 SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS);
504 break;
505 case SCTP_RTXR_T1_RTX:
506 SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS);
507 transport->asoc->init_retries++;
508 break;
509 default:
510 BUG();
513 sctp_retransmit_mark(q, transport, reason);
515 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
516 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
517 * following the procedures outlined in C1 - C5.
519 if (reason == SCTP_RTXR_T3_RTX)
520 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
522 /* Flush the queues only on timeout, since fast_rtx is only
523 * triggered during sack processing and the queue
524 * will be flushed at the end.
526 if (reason != SCTP_RTXR_FAST_RTX)
527 error = sctp_outq_flush(q, /* rtx_timeout */ 1);
529 if (error)
530 q->asoc->base.sk->sk_err = -error;
534 * Transmit DATA chunks on the retransmit queue. Upon return from
535 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
536 * need to be transmitted by the caller.
537 * We assume that pkt->transport has already been set.
539 * The return value is a normal kernel error return value.
541 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
542 int rtx_timeout, int *start_timer)
544 struct list_head *lqueue;
545 struct sctp_transport *transport = pkt->transport;
546 sctp_xmit_t status;
547 struct sctp_chunk *chunk, *chunk1;
548 struct sctp_association *asoc;
549 int fast_rtx;
550 int error = 0;
551 int timer = 0;
552 int done = 0;
554 asoc = q->asoc;
555 lqueue = &q->retransmit;
556 fast_rtx = q->fast_rtx;
558 /* This loop handles time-out retransmissions, fast retransmissions,
559 * and retransmissions due to opening of whindow.
561 * RFC 2960 6.3.3 Handle T3-rtx Expiration
563 * E3) Determine how many of the earliest (i.e., lowest TSN)
564 * outstanding DATA chunks for the address for which the
565 * T3-rtx has expired will fit into a single packet, subject
566 * to the MTU constraint for the path corresponding to the
567 * destination transport address to which the retransmission
568 * is being sent (this may be different from the address for
569 * which the timer expires [see Section 6.4]). Call this value
570 * K. Bundle and retransmit those K DATA chunks in a single
571 * packet to the destination endpoint.
573 * [Just to be painfully clear, if we are retransmitting
574 * because a timeout just happened, we should send only ONE
575 * packet of retransmitted data.]
577 * For fast retransmissions we also send only ONE packet. However,
578 * if we are just flushing the queue due to open window, we'll
579 * try to send as much as possible.
581 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
583 /* Make sure that Gap Acked TSNs are not retransmitted. A
584 * simple approach is just to move such TSNs out of the
585 * way and into a 'transmitted' queue and skip to the
586 * next chunk.
588 if (chunk->tsn_gap_acked) {
589 list_del(&chunk->transmitted_list);
590 list_add_tail(&chunk->transmitted_list,
591 &transport->transmitted);
592 continue;
595 /* If we are doing fast retransmit, ignore non-fast_rtransmit
596 * chunks
598 if (fast_rtx && !chunk->fast_retransmit)
599 continue;
601 /* Attempt to append this chunk to the packet. */
602 status = sctp_packet_append_chunk(pkt, chunk);
604 switch (status) {
605 case SCTP_XMIT_PMTU_FULL:
606 /* Send this packet. */
607 error = sctp_packet_transmit(pkt);
609 /* If we are retransmitting, we should only
610 * send a single packet.
612 if (rtx_timeout || fast_rtx)
613 done = 1;
615 /* Bundle next chunk in the next round. */
616 break;
618 case SCTP_XMIT_RWND_FULL:
619 /* Send this packet. */
620 error = sctp_packet_transmit(pkt);
622 /* Stop sending DATA as there is no more room
623 * at the receiver.
625 done = 1;
626 break;
628 case SCTP_XMIT_NAGLE_DELAY:
629 /* Send this packet. */
630 error = sctp_packet_transmit(pkt);
632 /* Stop sending DATA because of nagle delay. */
633 done = 1;
634 break;
636 default:
637 /* The append was successful, so add this chunk to
638 * the transmitted list.
640 list_del(&chunk->transmitted_list);
641 list_add_tail(&chunk->transmitted_list,
642 &transport->transmitted);
644 /* Mark the chunk as ineligible for fast retransmit
645 * after it is retransmitted.
647 if (chunk->fast_retransmit == SCTP_NEED_FRTX)
648 chunk->fast_retransmit = SCTP_DONT_FRTX;
650 /* Force start T3-rtx timer when fast retransmitting
651 * the earliest outstanding TSN
653 if (!timer && fast_rtx &&
654 ntohl(chunk->subh.data_hdr->tsn) ==
655 asoc->ctsn_ack_point + 1)
656 timer = 2;
658 q->empty = 0;
659 break;
662 /* Set the timer if there were no errors */
663 if (!error && !timer)
664 timer = 1;
666 if (done)
667 break;
670 /* If we are here due to a retransmit timeout or a fast
671 * retransmit and if there are any chunks left in the retransmit
672 * queue that could not fit in the PMTU sized packet, they need
673 * to be marked as ineligible for a subsequent fast retransmit.
675 if (rtx_timeout || fast_rtx) {
676 list_for_each_entry(chunk1, lqueue, transmitted_list) {
677 if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
678 chunk1->fast_retransmit = SCTP_DONT_FRTX;
682 *start_timer = timer;
684 /* Clear fast retransmit hint */
685 if (fast_rtx)
686 q->fast_rtx = 0;
688 return error;
691 /* Cork the outqueue so queued chunks are really queued. */
692 int sctp_outq_uncork(struct sctp_outq *q)
694 int error = 0;
695 if (q->cork)
696 q->cork = 0;
697 error = sctp_outq_flush(q, 0);
698 return error;
703 * Try to flush an outqueue.
705 * Description: Send everything in q which we legally can, subject to
706 * congestion limitations.
707 * * Note: This function can be called from multiple contexts so appropriate
708 * locking concerns must be made. Today we use the sock lock to protect
709 * this function.
711 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
713 struct sctp_packet *packet;
714 struct sctp_packet singleton;
715 struct sctp_association *asoc = q->asoc;
716 __u16 sport = asoc->base.bind_addr.port;
717 __u16 dport = asoc->peer.port;
718 __u32 vtag = asoc->peer.i.init_tag;
719 struct sctp_transport *transport = NULL;
720 struct sctp_transport *new_transport;
721 struct sctp_chunk *chunk, *tmp;
722 sctp_xmit_t status;
723 int error = 0;
724 int start_timer = 0;
725 int one_packet = 0;
727 /* These transports have chunks to send. */
728 struct list_head transport_list;
729 struct list_head *ltransport;
731 INIT_LIST_HEAD(&transport_list);
732 packet = NULL;
735 * 6.10 Bundling
736 * ...
737 * When bundling control chunks with DATA chunks, an
738 * endpoint MUST place control chunks first in the outbound
739 * SCTP packet. The transmitter MUST transmit DATA chunks
740 * within a SCTP packet in increasing order of TSN.
741 * ...
744 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
745 list_del_init(&chunk->list);
747 /* Pick the right transport to use. */
748 new_transport = chunk->transport;
750 if (!new_transport) {
752 * If we have a prior transport pointer, see if
753 * the destination address of the chunk
754 * matches the destination address of the
755 * current transport. If not a match, then
756 * try to look up the transport with a given
757 * destination address. We do this because
758 * after processing ASCONFs, we may have new
759 * transports created.
761 if (transport &&
762 sctp_cmp_addr_exact(&chunk->dest,
763 &transport->ipaddr))
764 new_transport = transport;
765 else
766 new_transport = sctp_assoc_lookup_paddr(asoc,
767 &chunk->dest);
769 /* if we still don't have a new transport, then
770 * use the current active path.
772 if (!new_transport)
773 new_transport = asoc->peer.active_path;
774 } else if ((new_transport->state == SCTP_INACTIVE) ||
775 (new_transport->state == SCTP_UNCONFIRMED)) {
776 /* If the chunk is Heartbeat or Heartbeat Ack,
777 * send it to chunk->transport, even if it's
778 * inactive.
780 * 3.3.6 Heartbeat Acknowledgement:
781 * ...
782 * A HEARTBEAT ACK is always sent to the source IP
783 * address of the IP datagram containing the
784 * HEARTBEAT chunk to which this ack is responding.
785 * ...
787 * ASCONF_ACKs also must be sent to the source.
789 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
790 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
791 chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
792 new_transport = asoc->peer.active_path;
795 /* Are we switching transports?
796 * Take care of transport locks.
798 if (new_transport != transport) {
799 transport = new_transport;
800 if (list_empty(&transport->send_ready)) {
801 list_add_tail(&transport->send_ready,
802 &transport_list);
804 packet = &transport->packet;
805 sctp_packet_config(packet, vtag,
806 asoc->peer.ecn_capable);
809 switch (chunk->chunk_hdr->type) {
811 * 6.10 Bundling
812 * ...
813 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
814 * COMPLETE with any other chunks. [Send them immediately.]
816 case SCTP_CID_INIT:
817 case SCTP_CID_INIT_ACK:
818 case SCTP_CID_SHUTDOWN_COMPLETE:
819 sctp_packet_init(&singleton, transport, sport, dport);
820 sctp_packet_config(&singleton, vtag, 0);
821 sctp_packet_append_chunk(&singleton, chunk);
822 error = sctp_packet_transmit(&singleton);
823 if (error < 0)
824 return error;
825 break;
827 case SCTP_CID_ABORT:
828 if (sctp_test_T_bit(chunk)) {
829 packet->vtag = asoc->c.my_vtag;
831 /* The following chunks are "response" chunks, i.e.
832 * they are generated in response to something we
833 * received. If we are sending these, then we can
834 * send only 1 packet containing these chunks.
836 case SCTP_CID_HEARTBEAT_ACK:
837 case SCTP_CID_SHUTDOWN_ACK:
838 case SCTP_CID_COOKIE_ACK:
839 case SCTP_CID_COOKIE_ECHO:
840 case SCTP_CID_ERROR:
841 case SCTP_CID_ECN_CWR:
842 case SCTP_CID_ASCONF_ACK:
843 one_packet = 1;
844 /* Fall throught */
846 case SCTP_CID_SACK:
847 case SCTP_CID_HEARTBEAT:
848 case SCTP_CID_SHUTDOWN:
849 case SCTP_CID_ECN_ECNE:
850 case SCTP_CID_ASCONF:
851 case SCTP_CID_FWD_TSN:
852 status = sctp_packet_transmit_chunk(packet, chunk,
853 one_packet);
854 if (status != SCTP_XMIT_OK) {
855 /* put the chunk back */
856 list_add(&chunk->list, &q->control_chunk_list);
858 break;
860 default:
861 /* We built a chunk with an illegal type! */
862 BUG();
866 /* Is it OK to send data chunks? */
867 switch (asoc->state) {
868 case SCTP_STATE_COOKIE_ECHOED:
869 /* Only allow bundling when this packet has a COOKIE-ECHO
870 * chunk.
872 if (!packet || !packet->has_cookie_echo)
873 break;
875 /* fallthru */
876 case SCTP_STATE_ESTABLISHED:
877 case SCTP_STATE_SHUTDOWN_PENDING:
878 case SCTP_STATE_SHUTDOWN_RECEIVED:
880 * RFC 2960 6.1 Transmission of DATA Chunks
882 * C) When the time comes for the sender to transmit,
883 * before sending new DATA chunks, the sender MUST
884 * first transmit any outstanding DATA chunks which
885 * are marked for retransmission (limited by the
886 * current cwnd).
888 if (!list_empty(&q->retransmit)) {
889 if (transport == asoc->peer.retran_path)
890 goto retran;
892 /* Switch transports & prepare the packet. */
894 transport = asoc->peer.retran_path;
896 if (list_empty(&transport->send_ready)) {
897 list_add_tail(&transport->send_ready,
898 &transport_list);
901 packet = &transport->packet;
902 sctp_packet_config(packet, vtag,
903 asoc->peer.ecn_capable);
904 retran:
905 error = sctp_outq_flush_rtx(q, packet,
906 rtx_timeout, &start_timer);
908 if (start_timer)
909 sctp_transport_reset_timers(transport,
910 start_timer-1);
912 /* This can happen on COOKIE-ECHO resend. Only
913 * one chunk can get bundled with a COOKIE-ECHO.
915 if (packet->has_cookie_echo)
916 goto sctp_flush_out;
918 /* Don't send new data if there is still data
919 * waiting to retransmit.
921 if (!list_empty(&q->retransmit))
922 goto sctp_flush_out;
925 /* Apply Max.Burst limitation to the current transport in
926 * case it will be used for new data. We are going to
927 * rest it before we return, but we want to apply the limit
928 * to the currently queued data.
930 if (transport)
931 sctp_transport_burst_limited(transport);
933 /* Finally, transmit new packets. */
934 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
935 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
936 * stream identifier.
938 if (chunk->sinfo.sinfo_stream >=
939 asoc->c.sinit_num_ostreams) {
941 /* Mark as failed send. */
942 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
943 sctp_chunk_free(chunk);
944 continue;
947 /* Has this chunk expired? */
948 if (sctp_chunk_abandoned(chunk)) {
949 sctp_chunk_fail(chunk, 0);
950 sctp_chunk_free(chunk);
951 continue;
954 /* If there is a specified transport, use it.
955 * Otherwise, we want to use the active path.
957 new_transport = chunk->transport;
958 if (!new_transport ||
959 ((new_transport->state == SCTP_INACTIVE) ||
960 (new_transport->state == SCTP_UNCONFIRMED)))
961 new_transport = asoc->peer.active_path;
963 /* Change packets if necessary. */
964 if (new_transport != transport) {
965 transport = new_transport;
967 /* Schedule to have this transport's
968 * packet flushed.
970 if (list_empty(&transport->send_ready)) {
971 list_add_tail(&transport->send_ready,
972 &transport_list);
975 packet = &transport->packet;
976 sctp_packet_config(packet, vtag,
977 asoc->peer.ecn_capable);
978 /* We've switched transports, so apply the
979 * Burst limit to the new transport.
981 sctp_transport_burst_limited(transport);
984 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
985 q, chunk,
986 chunk && chunk->chunk_hdr ?
987 sctp_cname(SCTP_ST_CHUNK(
988 chunk->chunk_hdr->type))
989 : "Illegal Chunk");
991 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
992 "%p skb->users %d.\n",
993 ntohl(chunk->subh.data_hdr->tsn),
994 chunk->skb ?chunk->skb->head : NULL,
995 chunk->skb ?
996 atomic_read(&chunk->skb->users) : -1);
998 /* Add the chunk to the packet. */
999 status = sctp_packet_transmit_chunk(packet, chunk, 0);
1001 switch (status) {
1002 case SCTP_XMIT_PMTU_FULL:
1003 case SCTP_XMIT_RWND_FULL:
1004 case SCTP_XMIT_NAGLE_DELAY:
1005 /* We could not append this chunk, so put
1006 * the chunk back on the output queue.
1008 SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
1009 "not transmit TSN: 0x%x, status: %d\n",
1010 ntohl(chunk->subh.data_hdr->tsn),
1011 status);
1012 sctp_outq_head_data(q, chunk);
1013 goto sctp_flush_out;
1014 break;
1016 case SCTP_XMIT_OK:
1017 /* The sender is in the SHUTDOWN-PENDING state,
1018 * The sender MAY set the I-bit in the DATA
1019 * chunk header.
1021 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1022 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1024 break;
1026 default:
1027 BUG();
1030 /* BUG: We assume that the sctp_packet_transmit()
1031 * call below will succeed all the time and add the
1032 * chunk to the transmitted list and restart the
1033 * timers.
1034 * It is possible that the call can fail under OOM
1035 * conditions.
1037 * Is this really a problem? Won't this behave
1038 * like a lost TSN?
1040 list_add_tail(&chunk->transmitted_list,
1041 &transport->transmitted);
1043 sctp_transport_reset_timers(transport, 0);
1045 q->empty = 0;
1047 /* Only let one DATA chunk get bundled with a
1048 * COOKIE-ECHO chunk.
1050 if (packet->has_cookie_echo)
1051 goto sctp_flush_out;
1053 break;
1055 default:
1056 /* Do nothing. */
1057 break;
1060 sctp_flush_out:
1062 /* Before returning, examine all the transports touched in
1063 * this call. Right now, we bluntly force clear all the
1064 * transports. Things might change after we implement Nagle.
1065 * But such an examination is still required.
1067 * --xguo
1069 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
1070 struct sctp_transport *t = list_entry(ltransport,
1071 struct sctp_transport,
1072 send_ready);
1073 packet = &t->packet;
1074 if (!sctp_packet_empty(packet))
1075 error = sctp_packet_transmit(packet);
1077 /* Clear the burst limited state, if any */
1078 sctp_transport_burst_reset(t);
1081 return error;
1084 /* Update unack_data based on the incoming SACK chunk */
1085 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1086 struct sctp_sackhdr *sack)
1088 sctp_sack_variable_t *frags;
1089 __u16 unack_data;
1090 int i;
1092 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1094 frags = sack->variable;
1095 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1096 unack_data -= ((ntohs(frags[i].gab.end) -
1097 ntohs(frags[i].gab.start) + 1));
1100 assoc->unack_data = unack_data;
1103 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */
1104 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack,
1105 struct sctp_association *asoc)
1107 struct sctp_transport *transport;
1108 struct sctp_chunk *chunk;
1109 __u32 highest_new_tsn, tsn;
1110 struct list_head *transport_list = &asoc->peer.transport_addr_list;
1112 highest_new_tsn = ntohl(sack->cum_tsn_ack);
1114 list_for_each_entry(transport, transport_list, transports) {
1115 list_for_each_entry(chunk, &transport->transmitted,
1116 transmitted_list) {
1117 tsn = ntohl(chunk->subh.data_hdr->tsn);
1119 if (!chunk->tsn_gap_acked &&
1120 TSN_lt(highest_new_tsn, tsn) &&
1121 sctp_acked(sack, tsn))
1122 highest_new_tsn = tsn;
1126 return highest_new_tsn;
1129 /* This is where we REALLY process a SACK.
1131 * Process the SACK against the outqueue. Mostly, this just frees
1132 * things off the transmitted queue.
1134 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack)
1136 struct sctp_association *asoc = q->asoc;
1137 struct sctp_transport *transport;
1138 struct sctp_chunk *tchunk = NULL;
1139 struct list_head *lchunk, *transport_list, *temp;
1140 sctp_sack_variable_t *frags = sack->variable;
1141 __u32 sack_ctsn, ctsn, tsn;
1142 __u32 highest_tsn, highest_new_tsn;
1143 __u32 sack_a_rwnd;
1144 unsigned outstanding;
1145 struct sctp_transport *primary = asoc->peer.primary_path;
1146 int count_of_newacks = 0;
1147 int gap_ack_blocks;
1149 /* Grab the association's destination address list. */
1150 transport_list = &asoc->peer.transport_addr_list;
1152 sack_ctsn = ntohl(sack->cum_tsn_ack);
1153 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1155 * SFR-CACC algorithm:
1156 * On receipt of a SACK the sender SHOULD execute the
1157 * following statements.
1159 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1160 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1161 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1162 * all destinations.
1163 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1164 * is set the receiver of the SACK MUST take the following actions:
1166 * A) Initialize the cacc_saw_newack to 0 for all destination
1167 * addresses.
1169 * Only bother if changeover_active is set. Otherwise, this is
1170 * totally suboptimal to do on every SACK.
1172 if (primary->cacc.changeover_active) {
1173 u8 clear_cycling = 0;
1175 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1176 primary->cacc.changeover_active = 0;
1177 clear_cycling = 1;
1180 if (clear_cycling || gap_ack_blocks) {
1181 list_for_each_entry(transport, transport_list,
1182 transports) {
1183 if (clear_cycling)
1184 transport->cacc.cycling_changeover = 0;
1185 if (gap_ack_blocks)
1186 transport->cacc.cacc_saw_newack = 0;
1191 /* Get the highest TSN in the sack. */
1192 highest_tsn = sack_ctsn;
1193 if (gap_ack_blocks)
1194 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1196 if (TSN_lt(asoc->highest_sacked, highest_tsn)) {
1197 highest_new_tsn = highest_tsn;
1198 asoc->highest_sacked = highest_tsn;
1199 } else {
1200 highest_new_tsn = sctp_highest_new_tsn(sack, asoc);
1204 /* Run through the retransmit queue. Credit bytes received
1205 * and free those chunks that we can.
1207 sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn);
1209 /* Run through the transmitted queue.
1210 * Credit bytes received and free those chunks which we can.
1212 * This is a MASSIVE candidate for optimization.
1214 list_for_each_entry(transport, transport_list, transports) {
1215 sctp_check_transmitted(q, &transport->transmitted,
1216 transport, sack, highest_new_tsn);
1218 * SFR-CACC algorithm:
1219 * C) Let count_of_newacks be the number of
1220 * destinations for which cacc_saw_newack is set.
1222 if (transport->cacc.cacc_saw_newack)
1223 count_of_newacks ++;
1226 if (gap_ack_blocks) {
1227 list_for_each_entry(transport, transport_list, transports)
1228 sctp_mark_missing(q, &transport->transmitted, transport,
1229 highest_new_tsn, count_of_newacks);
1232 /* Move the Cumulative TSN Ack Point if appropriate. */
1233 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn))
1234 asoc->ctsn_ack_point = sack_ctsn;
1236 /* Update unack_data field in the assoc. */
1237 sctp_sack_update_unack_data(asoc, sack);
1239 ctsn = asoc->ctsn_ack_point;
1241 /* Throw away stuff rotting on the sack queue. */
1242 list_for_each_safe(lchunk, temp, &q->sacked) {
1243 tchunk = list_entry(lchunk, struct sctp_chunk,
1244 transmitted_list);
1245 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1246 if (TSN_lte(tsn, ctsn)) {
1247 list_del_init(&tchunk->transmitted_list);
1248 sctp_chunk_free(tchunk);
1252 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1253 * number of bytes still outstanding after processing the
1254 * Cumulative TSN Ack and the Gap Ack Blocks.
1257 sack_a_rwnd = ntohl(sack->a_rwnd);
1258 outstanding = q->outstanding_bytes;
1260 if (outstanding < sack_a_rwnd)
1261 sack_a_rwnd -= outstanding;
1262 else
1263 sack_a_rwnd = 0;
1265 asoc->peer.rwnd = sack_a_rwnd;
1267 sctp_generate_fwdtsn(q, sack_ctsn);
1269 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1270 __func__, sack_ctsn);
1271 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1272 "%p is 0x%x. Adv peer ack point: 0x%x\n",
1273 __func__, asoc, ctsn, asoc->adv_peer_ack_point);
1275 /* See if all chunks are acked.
1276 * Make sure the empty queue handler will get run later.
1278 q->empty = (list_empty(&q->out_chunk_list) &&
1279 list_empty(&q->retransmit));
1280 if (!q->empty)
1281 goto finish;
1283 list_for_each_entry(transport, transport_list, transports) {
1284 q->empty = q->empty && list_empty(&transport->transmitted);
1285 if (!q->empty)
1286 goto finish;
1289 SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1290 finish:
1291 return q->empty;
1294 /* Is the outqueue empty? */
1295 int sctp_outq_is_empty(const struct sctp_outq *q)
1297 return q->empty;
1300 /********************************************************************
1301 * 2nd Level Abstractions
1302 ********************************************************************/
1304 /* Go through a transport's transmitted list or the association's retransmit
1305 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1306 * The retransmit list will not have an associated transport.
1308 * I added coherent debug information output. --xguo
1310 * Instead of printing 'sacked' or 'kept' for each TSN on the
1311 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1312 * KEPT TSN6-TSN7, etc.
1314 static void sctp_check_transmitted(struct sctp_outq *q,
1315 struct list_head *transmitted_queue,
1316 struct sctp_transport *transport,
1317 struct sctp_sackhdr *sack,
1318 __u32 highest_new_tsn_in_sack)
1320 struct list_head *lchunk;
1321 struct sctp_chunk *tchunk;
1322 struct list_head tlist;
1323 __u32 tsn;
1324 __u32 sack_ctsn;
1325 __u32 rtt;
1326 __u8 restart_timer = 0;
1327 int bytes_acked = 0;
1328 int migrate_bytes = 0;
1330 /* These state variables are for coherent debug output. --xguo */
1332 #if SCTP_DEBUG
1333 __u32 dbg_ack_tsn = 0; /* An ACKed TSN range starts here... */
1334 __u32 dbg_last_ack_tsn = 0; /* ...and finishes here. */
1335 __u32 dbg_kept_tsn = 0; /* An un-ACKed range starts here... */
1336 __u32 dbg_last_kept_tsn = 0; /* ...and finishes here. */
1338 /* 0 : The last TSN was ACKed.
1339 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1340 * -1: We need to initialize.
1342 int dbg_prt_state = -1;
1343 #endif /* SCTP_DEBUG */
1345 sack_ctsn = ntohl(sack->cum_tsn_ack);
1347 INIT_LIST_HEAD(&tlist);
1349 /* The while loop will skip empty transmitted queues. */
1350 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1351 tchunk = list_entry(lchunk, struct sctp_chunk,
1352 transmitted_list);
1354 if (sctp_chunk_abandoned(tchunk)) {
1355 /* Move the chunk to abandoned list. */
1356 sctp_insert_list(&q->abandoned, lchunk);
1358 /* If this chunk has not been acked, stop
1359 * considering it as 'outstanding'.
1361 if (!tchunk->tsn_gap_acked) {
1362 if (tchunk->transport)
1363 tchunk->transport->flight_size -=
1364 sctp_data_size(tchunk);
1365 q->outstanding_bytes -= sctp_data_size(tchunk);
1367 continue;
1370 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1371 if (sctp_acked(sack, tsn)) {
1372 /* If this queue is the retransmit queue, the
1373 * retransmit timer has already reclaimed
1374 * the outstanding bytes for this chunk, so only
1375 * count bytes associated with a transport.
1377 if (transport) {
1378 /* If this chunk is being used for RTT
1379 * measurement, calculate the RTT and update
1380 * the RTO using this value.
1382 * 6.3.1 C5) Karn's algorithm: RTT measurements
1383 * MUST NOT be made using packets that were
1384 * retransmitted (and thus for which it is
1385 * ambiguous whether the reply was for the
1386 * first instance of the packet or a later
1387 * instance).
1389 if (!tchunk->tsn_gap_acked &&
1390 !tchunk->resent &&
1391 tchunk->rtt_in_progress) {
1392 tchunk->rtt_in_progress = 0;
1393 rtt = jiffies - tchunk->sent_at;
1394 sctp_transport_update_rto(transport,
1395 rtt);
1399 /* If the chunk hasn't been marked as ACKED,
1400 * mark it and account bytes_acked if the
1401 * chunk had a valid transport (it will not
1402 * have a transport if ASCONF had deleted it
1403 * while DATA was outstanding).
1405 if (!tchunk->tsn_gap_acked) {
1406 tchunk->tsn_gap_acked = 1;
1407 bytes_acked += sctp_data_size(tchunk);
1408 if (!tchunk->transport)
1409 migrate_bytes += sctp_data_size(tchunk);
1412 if (TSN_lte(tsn, sack_ctsn)) {
1413 /* RFC 2960 6.3.2 Retransmission Timer Rules
1415 * R3) Whenever a SACK is received
1416 * that acknowledges the DATA chunk
1417 * with the earliest outstanding TSN
1418 * for that address, restart T3-rtx
1419 * timer for that address with its
1420 * current RTO.
1422 restart_timer = 1;
1424 if (!tchunk->tsn_gap_acked) {
1426 * SFR-CACC algorithm:
1427 * 2) If the SACK contains gap acks
1428 * and the flag CHANGEOVER_ACTIVE is
1429 * set the receiver of the SACK MUST
1430 * take the following action:
1432 * B) For each TSN t being acked that
1433 * has not been acked in any SACK so
1434 * far, set cacc_saw_newack to 1 for
1435 * the destination that the TSN was
1436 * sent to.
1438 if (transport &&
1439 sack->num_gap_ack_blocks &&
1440 q->asoc->peer.primary_path->cacc.
1441 changeover_active)
1442 transport->cacc.cacc_saw_newack
1443 = 1;
1446 list_add_tail(&tchunk->transmitted_list,
1447 &q->sacked);
1448 } else {
1449 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1450 * M2) Each time a SACK arrives reporting
1451 * 'Stray DATA chunk(s)' record the highest TSN
1452 * reported as newly acknowledged, call this
1453 * value 'HighestTSNinSack'. A newly
1454 * acknowledged DATA chunk is one not
1455 * previously acknowledged in a SACK.
1457 * When the SCTP sender of data receives a SACK
1458 * chunk that acknowledges, for the first time,
1459 * the receipt of a DATA chunk, all the still
1460 * unacknowledged DATA chunks whose TSN is
1461 * older than that newly acknowledged DATA
1462 * chunk, are qualified as 'Stray DATA chunks'.
1464 list_add_tail(lchunk, &tlist);
1467 #if SCTP_DEBUG
1468 switch (dbg_prt_state) {
1469 case 0: /* last TSN was ACKed */
1470 if (dbg_last_ack_tsn + 1 == tsn) {
1471 /* This TSN belongs to the
1472 * current ACK range.
1474 break;
1477 if (dbg_last_ack_tsn != dbg_ack_tsn) {
1478 /* Display the end of the
1479 * current range.
1481 SCTP_DEBUG_PRINTK("-%08x",
1482 dbg_last_ack_tsn);
1485 /* Start a new range. */
1486 SCTP_DEBUG_PRINTK(",%08x", tsn);
1487 dbg_ack_tsn = tsn;
1488 break;
1490 case 1: /* The last TSN was NOT ACKed. */
1491 if (dbg_last_kept_tsn != dbg_kept_tsn) {
1492 /* Display the end of current range. */
1493 SCTP_DEBUG_PRINTK("-%08x",
1494 dbg_last_kept_tsn);
1497 SCTP_DEBUG_PRINTK("\n");
1499 /* FALL THROUGH... */
1500 default:
1501 /* This is the first-ever TSN we examined. */
1502 /* Start a new range of ACK-ed TSNs. */
1503 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
1504 dbg_prt_state = 0;
1505 dbg_ack_tsn = tsn;
1508 dbg_last_ack_tsn = tsn;
1509 #endif /* SCTP_DEBUG */
1511 } else {
1512 if (tchunk->tsn_gap_acked) {
1513 SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1514 "data TSN: 0x%x\n",
1515 __func__,
1516 tsn);
1517 tchunk->tsn_gap_acked = 0;
1519 if (tchunk->transport)
1520 bytes_acked -= sctp_data_size(tchunk);
1522 /* RFC 2960 6.3.2 Retransmission Timer Rules
1524 * R4) Whenever a SACK is received missing a
1525 * TSN that was previously acknowledged via a
1526 * Gap Ack Block, start T3-rtx for the
1527 * destination address to which the DATA
1528 * chunk was originally
1529 * transmitted if it is not already running.
1531 restart_timer = 1;
1534 list_add_tail(lchunk, &tlist);
1536 #if SCTP_DEBUG
1537 /* See the above comments on ACK-ed TSNs. */
1538 switch (dbg_prt_state) {
1539 case 1:
1540 if (dbg_last_kept_tsn + 1 == tsn)
1541 break;
1543 if (dbg_last_kept_tsn != dbg_kept_tsn)
1544 SCTP_DEBUG_PRINTK("-%08x",
1545 dbg_last_kept_tsn);
1547 SCTP_DEBUG_PRINTK(",%08x", tsn);
1548 dbg_kept_tsn = tsn;
1549 break;
1551 case 0:
1552 if (dbg_last_ack_tsn != dbg_ack_tsn)
1553 SCTP_DEBUG_PRINTK("-%08x",
1554 dbg_last_ack_tsn);
1555 SCTP_DEBUG_PRINTK("\n");
1557 /* FALL THROUGH... */
1558 default:
1559 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
1560 dbg_prt_state = 1;
1561 dbg_kept_tsn = tsn;
1564 dbg_last_kept_tsn = tsn;
1565 #endif /* SCTP_DEBUG */
1569 #if SCTP_DEBUG
1570 /* Finish off the last range, displaying its ending TSN. */
1571 switch (dbg_prt_state) {
1572 case 0:
1573 if (dbg_last_ack_tsn != dbg_ack_tsn) {
1574 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn);
1575 } else {
1576 SCTP_DEBUG_PRINTK("\n");
1578 break;
1580 case 1:
1581 if (dbg_last_kept_tsn != dbg_kept_tsn) {
1582 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn);
1583 } else {
1584 SCTP_DEBUG_PRINTK("\n");
1587 #endif /* SCTP_DEBUG */
1588 if (transport) {
1589 if (bytes_acked) {
1590 /* We may have counted DATA that was migrated
1591 * to this transport due to DEL-IP operation.
1592 * Subtract those bytes, since the were never
1593 * send on this transport and shouldn't be
1594 * credited to this transport.
1596 bytes_acked -= migrate_bytes;
1598 /* 8.2. When an outstanding TSN is acknowledged,
1599 * the endpoint shall clear the error counter of
1600 * the destination transport address to which the
1601 * DATA chunk was last sent.
1602 * The association's overall error counter is
1603 * also cleared.
1605 transport->error_count = 0;
1606 transport->asoc->overall_error_count = 0;
1608 /* Mark the destination transport address as
1609 * active if it is not so marked.
1611 if ((transport->state == SCTP_INACTIVE) ||
1612 (transport->state == SCTP_UNCONFIRMED)) {
1613 sctp_assoc_control_transport(
1614 transport->asoc,
1615 transport,
1616 SCTP_TRANSPORT_UP,
1617 SCTP_RECEIVED_SACK);
1620 sctp_transport_raise_cwnd(transport, sack_ctsn,
1621 bytes_acked);
1623 transport->flight_size -= bytes_acked;
1624 if (transport->flight_size == 0)
1625 transport->partial_bytes_acked = 0;
1626 q->outstanding_bytes -= bytes_acked + migrate_bytes;
1627 } else {
1628 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1629 * When a sender is doing zero window probing, it
1630 * should not timeout the association if it continues
1631 * to receive new packets from the receiver. The
1632 * reason is that the receiver MAY keep its window
1633 * closed for an indefinite time.
1634 * A sender is doing zero window probing when the
1635 * receiver's advertised window is zero, and there is
1636 * only one data chunk in flight to the receiver.
1638 if (!q->asoc->peer.rwnd &&
1639 !list_empty(&tlist) &&
1640 (sack_ctsn+2 == q->asoc->next_tsn)) {
1641 SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1642 "window probe: %u\n",
1643 __func__, sack_ctsn);
1644 q->asoc->overall_error_count = 0;
1645 transport->error_count = 0;
1649 /* RFC 2960 6.3.2 Retransmission Timer Rules
1651 * R2) Whenever all outstanding data sent to an address have
1652 * been acknowledged, turn off the T3-rtx timer of that
1653 * address.
1655 if (!transport->flight_size) {
1656 if (timer_pending(&transport->T3_rtx_timer) &&
1657 del_timer(&transport->T3_rtx_timer)) {
1658 sctp_transport_put(transport);
1660 } else if (restart_timer) {
1661 if (!mod_timer(&transport->T3_rtx_timer,
1662 jiffies + transport->rto))
1663 sctp_transport_hold(transport);
1667 list_splice(&tlist, transmitted_queue);
1670 /* Mark chunks as missing and consequently may get retransmitted. */
1671 static void sctp_mark_missing(struct sctp_outq *q,
1672 struct list_head *transmitted_queue,
1673 struct sctp_transport *transport,
1674 __u32 highest_new_tsn_in_sack,
1675 int count_of_newacks)
1677 struct sctp_chunk *chunk;
1678 __u32 tsn;
1679 char do_fast_retransmit = 0;
1680 struct sctp_transport *primary = q->asoc->peer.primary_path;
1682 list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1684 tsn = ntohl(chunk->subh.data_hdr->tsn);
1686 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1687 * 'Unacknowledged TSN's', if the TSN number of an
1688 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1689 * value, increment the 'TSN.Missing.Report' count on that
1690 * chunk if it has NOT been fast retransmitted or marked for
1691 * fast retransmit already.
1693 if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1694 !chunk->tsn_gap_acked &&
1695 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1697 /* SFR-CACC may require us to skip marking
1698 * this chunk as missing.
1700 if (!transport || !sctp_cacc_skip(primary, transport,
1701 count_of_newacks, tsn)) {
1702 chunk->tsn_missing_report++;
1704 SCTP_DEBUG_PRINTK(
1705 "%s: TSN 0x%x missing counter: %d\n",
1706 __func__, tsn,
1707 chunk->tsn_missing_report);
1711 * M4) If any DATA chunk is found to have a
1712 * 'TSN.Missing.Report'
1713 * value larger than or equal to 3, mark that chunk for
1714 * retransmission and start the fast retransmit procedure.
1717 if (chunk->tsn_missing_report >= 3) {
1718 chunk->fast_retransmit = SCTP_NEED_FRTX;
1719 do_fast_retransmit = 1;
1723 if (transport) {
1724 if (do_fast_retransmit)
1725 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1727 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1728 "ssthresh: %d, flight_size: %d, pba: %d\n",
1729 __func__, transport, transport->cwnd,
1730 transport->ssthresh, transport->flight_size,
1731 transport->partial_bytes_acked);
1735 /* Is the given TSN acked by this packet? */
1736 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1738 int i;
1739 sctp_sack_variable_t *frags;
1740 __u16 gap;
1741 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1743 if (TSN_lte(tsn, ctsn))
1744 goto pass;
1746 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1748 * Gap Ack Blocks:
1749 * These fields contain the Gap Ack Blocks. They are repeated
1750 * for each Gap Ack Block up to the number of Gap Ack Blocks
1751 * defined in the Number of Gap Ack Blocks field. All DATA
1752 * chunks with TSNs greater than or equal to (Cumulative TSN
1753 * Ack + Gap Ack Block Start) and less than or equal to
1754 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1755 * Block are assumed to have been received correctly.
1758 frags = sack->variable;
1759 gap = tsn - ctsn;
1760 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1761 if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1762 TSN_lte(gap, ntohs(frags[i].gab.end)))
1763 goto pass;
1766 return 0;
1767 pass:
1768 return 1;
1771 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1772 int nskips, __be16 stream)
1774 int i;
1776 for (i = 0; i < nskips; i++) {
1777 if (skiplist[i].stream == stream)
1778 return i;
1780 return i;
1783 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1784 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1786 struct sctp_association *asoc = q->asoc;
1787 struct sctp_chunk *ftsn_chunk = NULL;
1788 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1789 int nskips = 0;
1790 int skip_pos = 0;
1791 __u32 tsn;
1792 struct sctp_chunk *chunk;
1793 struct list_head *lchunk, *temp;
1795 if (!asoc->peer.prsctp_capable)
1796 return;
1798 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1799 * received SACK.
1801 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1802 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1804 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1805 asoc->adv_peer_ack_point = ctsn;
1807 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1808 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1809 * the chunk next in the out-queue space is marked as "abandoned" as
1810 * shown in the following example:
1812 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1813 * and the Advanced.Peer.Ack.Point is updated to this value:
1815 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1816 * normal SACK processing local advancement
1817 * ... ...
1818 * Adv.Ack.Pt-> 102 acked 102 acked
1819 * 103 abandoned 103 abandoned
1820 * 104 abandoned Adv.Ack.P-> 104 abandoned
1821 * 105 105
1822 * 106 acked 106 acked
1823 * ... ...
1825 * In this example, the data sender successfully advanced the
1826 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1828 list_for_each_safe(lchunk, temp, &q->abandoned) {
1829 chunk = list_entry(lchunk, struct sctp_chunk,
1830 transmitted_list);
1831 tsn = ntohl(chunk->subh.data_hdr->tsn);
1833 /* Remove any chunks in the abandoned queue that are acked by
1834 * the ctsn.
1836 if (TSN_lte(tsn, ctsn)) {
1837 list_del_init(lchunk);
1838 sctp_chunk_free(chunk);
1839 } else {
1840 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1841 asoc->adv_peer_ack_point = tsn;
1842 if (chunk->chunk_hdr->flags &
1843 SCTP_DATA_UNORDERED)
1844 continue;
1845 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1846 nskips,
1847 chunk->subh.data_hdr->stream);
1848 ftsn_skip_arr[skip_pos].stream =
1849 chunk->subh.data_hdr->stream;
1850 ftsn_skip_arr[skip_pos].ssn =
1851 chunk->subh.data_hdr->ssn;
1852 if (skip_pos == nskips)
1853 nskips++;
1854 if (nskips == 10)
1855 break;
1856 } else
1857 break;
1861 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1862 * is greater than the Cumulative TSN ACK carried in the received
1863 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1864 * chunk containing the latest value of the
1865 * "Advanced.Peer.Ack.Point".
1867 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1868 * list each stream and sequence number in the forwarded TSN. This
1869 * information will enable the receiver to easily find any
1870 * stranded TSN's waiting on stream reorder queues. Each stream
1871 * SHOULD only be reported once; this means that if multiple
1872 * abandoned messages occur in the same stream then only the
1873 * highest abandoned stream sequence number is reported. If the
1874 * total size of the FORWARD TSN does NOT fit in a single MTU then
1875 * the sender of the FORWARD TSN SHOULD lower the
1876 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1877 * single MTU.
1879 if (asoc->adv_peer_ack_point > ctsn)
1880 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1881 nskips, &ftsn_skip_arr[0]);
1883 if (ftsn_chunk) {
1884 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1885 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);