i2c-ibm-iic: drop NO_IRQ
[linux-2.6/cjktty.git] / net / sctp / auth.c
blob86366390038a1cae0b536874fd037464f2a1678f
1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel implementation
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
23 * Please send any bug reports or fixes you make to the
24 * email address(es):
25 * lksctp developers <lksctp-developers@lists.sourceforge.net>
27 * Or submit a bug report through the following website:
28 * http://www.sf.net/projects/lksctp
30 * Written or modified by:
31 * Vlad Yasevich <vladislav.yasevich@hp.com>
33 * Any bugs reported given to us we will try to fix... any fixes shared will
34 * be incorporated into the next SCTP release.
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/crypto.h>
40 #include <linux/scatterlist.h>
41 #include <net/sctp/sctp.h>
42 #include <net/sctp/auth.h>
44 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
46 /* id 0 is reserved. as all 0 */
47 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
50 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
51 .hmac_name="hmac(sha1)",
52 .hmac_len = SCTP_SHA1_SIG_SIZE,
55 /* id 2 is reserved as well */
56 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
58 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
60 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
61 .hmac_name="hmac(sha256)",
62 .hmac_len = SCTP_SHA256_SIG_SIZE,
64 #endif
68 void sctp_auth_key_put(struct sctp_auth_bytes *key)
70 if (!key)
71 return;
73 if (atomic_dec_and_test(&key->refcnt)) {
74 kfree(key);
75 SCTP_DBG_OBJCNT_DEC(keys);
79 /* Create a new key structure of a given length */
80 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
82 struct sctp_auth_bytes *key;
84 /* Verify that we are not going to overflow INT_MAX */
85 if ((INT_MAX - key_len) < sizeof(struct sctp_auth_bytes))
86 return NULL;
88 /* Allocate the shared key */
89 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
90 if (!key)
91 return NULL;
93 key->len = key_len;
94 atomic_set(&key->refcnt, 1);
95 SCTP_DBG_OBJCNT_INC(keys);
97 return key;
100 /* Create a new shared key container with a give key id */
101 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
103 struct sctp_shared_key *new;
105 /* Allocate the shared key container */
106 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
107 if (!new)
108 return NULL;
110 INIT_LIST_HEAD(&new->key_list);
111 new->key_id = key_id;
113 return new;
116 /* Free the shared key stucture */
117 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
119 BUG_ON(!list_empty(&sh_key->key_list));
120 sctp_auth_key_put(sh_key->key);
121 sh_key->key = NULL;
122 kfree(sh_key);
125 /* Destory the entire key list. This is done during the
126 * associon and endpoint free process.
128 void sctp_auth_destroy_keys(struct list_head *keys)
130 struct sctp_shared_key *ep_key;
131 struct sctp_shared_key *tmp;
133 if (list_empty(keys))
134 return;
136 key_for_each_safe(ep_key, tmp, keys) {
137 list_del_init(&ep_key->key_list);
138 sctp_auth_shkey_free(ep_key);
142 /* Compare two byte vectors as numbers. Return values
143 * are:
144 * 0 - vectors are equal
145 * < 0 - vector 1 is smaller than vector2
146 * > 0 - vector 1 is greater than vector2
148 * Algorithm is:
149 * This is performed by selecting the numerically smaller key vector...
150 * If the key vectors are equal as numbers but differ in length ...
151 * the shorter vector is considered smaller
153 * Examples (with small values):
154 * 000123456789 > 123456789 (first number is longer)
155 * 000123456789 < 234567891 (second number is larger numerically)
156 * 123456789 > 2345678 (first number is both larger & longer)
158 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
159 struct sctp_auth_bytes *vector2)
161 int diff;
162 int i;
163 const __u8 *longer;
165 diff = vector1->len - vector2->len;
166 if (diff) {
167 longer = (diff > 0) ? vector1->data : vector2->data;
169 /* Check to see if the longer number is
170 * lead-zero padded. If it is not, it
171 * is automatically larger numerically.
173 for (i = 0; i < abs(diff); i++ ) {
174 if (longer[i] != 0)
175 return diff;
179 /* lengths are the same, compare numbers */
180 return memcmp(vector1->data, vector2->data, vector1->len);
184 * Create a key vector as described in SCTP-AUTH, Section 6.1
185 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
186 * parameter sent by each endpoint are concatenated as byte vectors.
187 * These parameters include the parameter type, parameter length, and
188 * the parameter value, but padding is omitted; all padding MUST be
189 * removed from this concatenation before proceeding with further
190 * computation of keys. Parameters which were not sent are simply
191 * omitted from the concatenation process. The resulting two vectors
192 * are called the two key vectors.
194 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
195 sctp_random_param_t *random,
196 sctp_chunks_param_t *chunks,
197 sctp_hmac_algo_param_t *hmacs,
198 gfp_t gfp)
200 struct sctp_auth_bytes *new;
201 __u32 len;
202 __u32 offset = 0;
204 len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
205 if (chunks)
206 len += ntohs(chunks->param_hdr.length);
208 new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
209 if (!new)
210 return NULL;
212 new->len = len;
214 memcpy(new->data, random, ntohs(random->param_hdr.length));
215 offset += ntohs(random->param_hdr.length);
217 if (chunks) {
218 memcpy(new->data + offset, chunks,
219 ntohs(chunks->param_hdr.length));
220 offset += ntohs(chunks->param_hdr.length);
223 memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
225 return new;
229 /* Make a key vector based on our local parameters */
230 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
231 const struct sctp_association *asoc,
232 gfp_t gfp)
234 return sctp_auth_make_key_vector(
235 (sctp_random_param_t*)asoc->c.auth_random,
236 (sctp_chunks_param_t*)asoc->c.auth_chunks,
237 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
238 gfp);
241 /* Make a key vector based on peer's parameters */
242 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
243 const struct sctp_association *asoc,
244 gfp_t gfp)
246 return sctp_auth_make_key_vector(asoc->peer.peer_random,
247 asoc->peer.peer_chunks,
248 asoc->peer.peer_hmacs,
249 gfp);
253 /* Set the value of the association shared key base on the parameters
254 * given. The algorithm is:
255 * From the endpoint pair shared keys and the key vectors the
256 * association shared keys are computed. This is performed by selecting
257 * the numerically smaller key vector and concatenating it to the
258 * endpoint pair shared key, and then concatenating the numerically
259 * larger key vector to that. The result of the concatenation is the
260 * association shared key.
262 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
263 struct sctp_shared_key *ep_key,
264 struct sctp_auth_bytes *first_vector,
265 struct sctp_auth_bytes *last_vector,
266 gfp_t gfp)
268 struct sctp_auth_bytes *secret;
269 __u32 offset = 0;
270 __u32 auth_len;
272 auth_len = first_vector->len + last_vector->len;
273 if (ep_key->key)
274 auth_len += ep_key->key->len;
276 secret = sctp_auth_create_key(auth_len, gfp);
277 if (!secret)
278 return NULL;
280 if (ep_key->key) {
281 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
282 offset += ep_key->key->len;
285 memcpy(secret->data + offset, first_vector->data, first_vector->len);
286 offset += first_vector->len;
288 memcpy(secret->data + offset, last_vector->data, last_vector->len);
290 return secret;
293 /* Create an association shared key. Follow the algorithm
294 * described in SCTP-AUTH, Section 6.1
296 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
297 const struct sctp_association *asoc,
298 struct sctp_shared_key *ep_key,
299 gfp_t gfp)
301 struct sctp_auth_bytes *local_key_vector;
302 struct sctp_auth_bytes *peer_key_vector;
303 struct sctp_auth_bytes *first_vector,
304 *last_vector;
305 struct sctp_auth_bytes *secret = NULL;
306 int cmp;
309 /* Now we need to build the key vectors
310 * SCTP-AUTH , Section 6.1
311 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
312 * parameter sent by each endpoint are concatenated as byte vectors.
313 * These parameters include the parameter type, parameter length, and
314 * the parameter value, but padding is omitted; all padding MUST be
315 * removed from this concatenation before proceeding with further
316 * computation of keys. Parameters which were not sent are simply
317 * omitted from the concatenation process. The resulting two vectors
318 * are called the two key vectors.
321 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
322 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
324 if (!peer_key_vector || !local_key_vector)
325 goto out;
327 /* Figure out the order in wich the key_vectors will be
328 * added to the endpoint shared key.
329 * SCTP-AUTH, Section 6.1:
330 * This is performed by selecting the numerically smaller key
331 * vector and concatenating it to the endpoint pair shared
332 * key, and then concatenating the numerically larger key
333 * vector to that. If the key vectors are equal as numbers
334 * but differ in length, then the concatenation order is the
335 * endpoint shared key, followed by the shorter key vector,
336 * followed by the longer key vector. Otherwise, the key
337 * vectors are identical, and may be concatenated to the
338 * endpoint pair key in any order.
340 cmp = sctp_auth_compare_vectors(local_key_vector,
341 peer_key_vector);
342 if (cmp < 0) {
343 first_vector = local_key_vector;
344 last_vector = peer_key_vector;
345 } else {
346 first_vector = peer_key_vector;
347 last_vector = local_key_vector;
350 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
351 gfp);
352 out:
353 kfree(local_key_vector);
354 kfree(peer_key_vector);
356 return secret;
360 * Populate the association overlay list with the list
361 * from the endpoint.
363 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
364 struct sctp_association *asoc,
365 gfp_t gfp)
367 struct sctp_shared_key *sh_key;
368 struct sctp_shared_key *new;
370 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
372 key_for_each(sh_key, &ep->endpoint_shared_keys) {
373 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
374 if (!new)
375 goto nomem;
377 new->key = sh_key->key;
378 sctp_auth_key_hold(new->key);
379 list_add(&new->key_list, &asoc->endpoint_shared_keys);
382 return 0;
384 nomem:
385 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
386 return -ENOMEM;
390 /* Public interface to creat the association shared key.
391 * See code above for the algorithm.
393 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
395 struct sctp_auth_bytes *secret;
396 struct sctp_shared_key *ep_key;
398 /* If we don't support AUTH, or peer is not capable
399 * we don't need to do anything.
401 if (!sctp_auth_enable || !asoc->peer.auth_capable)
402 return 0;
404 /* If the key_id is non-zero and we couldn't find an
405 * endpoint pair shared key, we can't compute the
406 * secret.
407 * For key_id 0, endpoint pair shared key is a NULL key.
409 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
410 BUG_ON(!ep_key);
412 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
413 if (!secret)
414 return -ENOMEM;
416 sctp_auth_key_put(asoc->asoc_shared_key);
417 asoc->asoc_shared_key = secret;
419 return 0;
423 /* Find the endpoint pair shared key based on the key_id */
424 struct sctp_shared_key *sctp_auth_get_shkey(
425 const struct sctp_association *asoc,
426 __u16 key_id)
428 struct sctp_shared_key *key;
430 /* First search associations set of endpoint pair shared keys */
431 key_for_each(key, &asoc->endpoint_shared_keys) {
432 if (key->key_id == key_id)
433 return key;
436 return NULL;
440 * Initialize all the possible digest transforms that we can use. Right now
441 * now, the supported digests are SHA1 and SHA256. We do this here once
442 * because of the restrictiong that transforms may only be allocated in
443 * user context. This forces us to pre-allocated all possible transforms
444 * at the endpoint init time.
446 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
448 struct crypto_hash *tfm = NULL;
449 __u16 id;
451 /* if the transforms are already allocted, we are done */
452 if (!sctp_auth_enable) {
453 ep->auth_hmacs = NULL;
454 return 0;
457 if (ep->auth_hmacs)
458 return 0;
460 /* Allocated the array of pointers to transorms */
461 ep->auth_hmacs = kzalloc(
462 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
463 gfp);
464 if (!ep->auth_hmacs)
465 return -ENOMEM;
467 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
469 /* See is we support the id. Supported IDs have name and
470 * length fields set, so that we can allocated and use
471 * them. We can safely just check for name, for without the
472 * name, we can't allocate the TFM.
474 if (!sctp_hmac_list[id].hmac_name)
475 continue;
477 /* If this TFM has been allocated, we are all set */
478 if (ep->auth_hmacs[id])
479 continue;
481 /* Allocate the ID */
482 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
483 CRYPTO_ALG_ASYNC);
484 if (IS_ERR(tfm))
485 goto out_err;
487 ep->auth_hmacs[id] = tfm;
490 return 0;
492 out_err:
493 /* Clean up any successful allocations */
494 sctp_auth_destroy_hmacs(ep->auth_hmacs);
495 return -ENOMEM;
498 /* Destroy the hmac tfm array */
499 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
501 int i;
503 if (!auth_hmacs)
504 return;
506 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
508 if (auth_hmacs[i])
509 crypto_free_hash(auth_hmacs[i]);
511 kfree(auth_hmacs);
515 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
517 return &sctp_hmac_list[hmac_id];
520 /* Get an hmac description information that we can use to build
521 * the AUTH chunk
523 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
525 struct sctp_hmac_algo_param *hmacs;
526 __u16 n_elt;
527 __u16 id = 0;
528 int i;
530 /* If we have a default entry, use it */
531 if (asoc->default_hmac_id)
532 return &sctp_hmac_list[asoc->default_hmac_id];
534 /* Since we do not have a default entry, find the first entry
535 * we support and return that. Do not cache that id.
537 hmacs = asoc->peer.peer_hmacs;
538 if (!hmacs)
539 return NULL;
541 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
542 for (i = 0; i < n_elt; i++) {
543 id = ntohs(hmacs->hmac_ids[i]);
545 /* Check the id is in the supported range */
546 if (id > SCTP_AUTH_HMAC_ID_MAX)
547 continue;
549 /* See is we support the id. Supported IDs have name and
550 * length fields set, so that we can allocated and use
551 * them. We can safely just check for name, for without the
552 * name, we can't allocate the TFM.
554 if (!sctp_hmac_list[id].hmac_name)
555 continue;
557 break;
560 if (id == 0)
561 return NULL;
563 return &sctp_hmac_list[id];
566 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
568 int found = 0;
569 int i;
571 for (i = 0; i < n_elts; i++) {
572 if (hmac_id == hmacs[i]) {
573 found = 1;
574 break;
578 return found;
581 /* See if the HMAC_ID is one that we claim as supported */
582 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
583 __be16 hmac_id)
585 struct sctp_hmac_algo_param *hmacs;
586 __u16 n_elt;
588 if (!asoc)
589 return 0;
591 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
592 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
594 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
598 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
599 * Section 6.1:
600 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
601 * algorithm it supports.
603 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
604 struct sctp_hmac_algo_param *hmacs)
606 struct sctp_endpoint *ep;
607 __u16 id;
608 int i;
609 int n_params;
611 /* if the default id is already set, use it */
612 if (asoc->default_hmac_id)
613 return;
615 n_params = (ntohs(hmacs->param_hdr.length)
616 - sizeof(sctp_paramhdr_t)) >> 1;
617 ep = asoc->ep;
618 for (i = 0; i < n_params; i++) {
619 id = ntohs(hmacs->hmac_ids[i]);
621 /* Check the id is in the supported range */
622 if (id > SCTP_AUTH_HMAC_ID_MAX)
623 continue;
625 /* If this TFM has been allocated, use this id */
626 if (ep->auth_hmacs[id]) {
627 asoc->default_hmac_id = id;
628 break;
634 /* Check to see if the given chunk is supposed to be authenticated */
635 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
637 unsigned short len;
638 int found = 0;
639 int i;
641 if (!param || param->param_hdr.length == 0)
642 return 0;
644 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
646 /* SCTP-AUTH, Section 3.2
647 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
648 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
649 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
650 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
652 for (i = 0; !found && i < len; i++) {
653 switch (param->chunks[i]) {
654 case SCTP_CID_INIT:
655 case SCTP_CID_INIT_ACK:
656 case SCTP_CID_SHUTDOWN_COMPLETE:
657 case SCTP_CID_AUTH:
658 break;
660 default:
661 if (param->chunks[i] == chunk)
662 found = 1;
663 break;
667 return found;
670 /* Check if peer requested that this chunk is authenticated */
671 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
673 if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
674 return 0;
676 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
679 /* Check if we requested that peer authenticate this chunk. */
680 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
682 if (!sctp_auth_enable || !asoc)
683 return 0;
685 return __sctp_auth_cid(chunk,
686 (struct sctp_chunks_param *)asoc->c.auth_chunks);
689 /* SCTP-AUTH: Section 6.2:
690 * The sender MUST calculate the MAC as described in RFC2104 [2] using
691 * the hash function H as described by the MAC Identifier and the shared
692 * association key K based on the endpoint pair shared key described by
693 * the shared key identifier. The 'data' used for the computation of
694 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
695 * zero (as shown in Figure 6) followed by all chunks that are placed
696 * after the AUTH chunk in the SCTP packet.
698 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
699 struct sk_buff *skb,
700 struct sctp_auth_chunk *auth,
701 gfp_t gfp)
703 struct scatterlist sg;
704 struct hash_desc desc;
705 struct sctp_auth_bytes *asoc_key;
706 __u16 key_id, hmac_id;
707 __u8 *digest;
708 unsigned char *end;
709 int free_key = 0;
711 /* Extract the info we need:
712 * - hmac id
713 * - key id
715 key_id = ntohs(auth->auth_hdr.shkey_id);
716 hmac_id = ntohs(auth->auth_hdr.hmac_id);
718 if (key_id == asoc->active_key_id)
719 asoc_key = asoc->asoc_shared_key;
720 else {
721 struct sctp_shared_key *ep_key;
723 ep_key = sctp_auth_get_shkey(asoc, key_id);
724 if (!ep_key)
725 return;
727 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
728 if (!asoc_key)
729 return;
731 free_key = 1;
734 /* set up scatter list */
735 end = skb_tail_pointer(skb);
736 sg_init_one(&sg, auth, end - (unsigned char *)auth);
738 desc.tfm = asoc->ep->auth_hmacs[hmac_id];
739 desc.flags = 0;
741 digest = auth->auth_hdr.hmac;
742 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
743 goto free;
745 crypto_hash_digest(&desc, &sg, sg.length, digest);
747 free:
748 if (free_key)
749 sctp_auth_key_put(asoc_key);
752 /* API Helpers */
754 /* Add a chunk to the endpoint authenticated chunk list */
755 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
757 struct sctp_chunks_param *p = ep->auth_chunk_list;
758 __u16 nchunks;
759 __u16 param_len;
761 /* If this chunk is already specified, we are done */
762 if (__sctp_auth_cid(chunk_id, p))
763 return 0;
765 /* Check if we can add this chunk to the array */
766 param_len = ntohs(p->param_hdr.length);
767 nchunks = param_len - sizeof(sctp_paramhdr_t);
768 if (nchunks == SCTP_NUM_CHUNK_TYPES)
769 return -EINVAL;
771 p->chunks[nchunks] = chunk_id;
772 p->param_hdr.length = htons(param_len + 1);
773 return 0;
776 /* Add hmac identifires to the endpoint list of supported hmac ids */
777 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
778 struct sctp_hmacalgo *hmacs)
780 int has_sha1 = 0;
781 __u16 id;
782 int i;
784 /* Scan the list looking for unsupported id. Also make sure that
785 * SHA1 is specified.
787 for (i = 0; i < hmacs->shmac_num_idents; i++) {
788 id = hmacs->shmac_idents[i];
790 if (id > SCTP_AUTH_HMAC_ID_MAX)
791 return -EOPNOTSUPP;
793 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
794 has_sha1 = 1;
796 if (!sctp_hmac_list[id].hmac_name)
797 return -EOPNOTSUPP;
800 if (!has_sha1)
801 return -EINVAL;
803 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
804 hmacs->shmac_num_idents * sizeof(__u16));
805 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
806 hmacs->shmac_num_idents * sizeof(__u16));
807 return 0;
810 /* Set a new shared key on either endpoint or association. If the
811 * the key with a same ID already exists, replace the key (remove the
812 * old key and add a new one).
814 int sctp_auth_set_key(struct sctp_endpoint *ep,
815 struct sctp_association *asoc,
816 struct sctp_authkey *auth_key)
818 struct sctp_shared_key *cur_key = NULL;
819 struct sctp_auth_bytes *key;
820 struct list_head *sh_keys;
821 int replace = 0;
823 /* Try to find the given key id to see if
824 * we are doing a replace, or adding a new key
826 if (asoc)
827 sh_keys = &asoc->endpoint_shared_keys;
828 else
829 sh_keys = &ep->endpoint_shared_keys;
831 key_for_each(cur_key, sh_keys) {
832 if (cur_key->key_id == auth_key->sca_keynumber) {
833 replace = 1;
834 break;
838 /* If we are not replacing a key id, we need to allocate
839 * a shared key.
841 if (!replace) {
842 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
843 GFP_KERNEL);
844 if (!cur_key)
845 return -ENOMEM;
848 /* Create a new key data based on the info passed in */
849 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
850 if (!key)
851 goto nomem;
853 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
855 /* If we are replacing, remove the old keys data from the
856 * key id. If we are adding new key id, add it to the
857 * list.
859 if (replace)
860 sctp_auth_key_put(cur_key->key);
861 else
862 list_add(&cur_key->key_list, sh_keys);
864 cur_key->key = key;
865 sctp_auth_key_hold(key);
867 return 0;
868 nomem:
869 if (!replace)
870 sctp_auth_shkey_free(cur_key);
872 return -ENOMEM;
875 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
876 struct sctp_association *asoc,
877 __u16 key_id)
879 struct sctp_shared_key *key;
880 struct list_head *sh_keys;
881 int found = 0;
883 /* The key identifier MUST correst to an existing key */
884 if (asoc)
885 sh_keys = &asoc->endpoint_shared_keys;
886 else
887 sh_keys = &ep->endpoint_shared_keys;
889 key_for_each(key, sh_keys) {
890 if (key->key_id == key_id) {
891 found = 1;
892 break;
896 if (!found)
897 return -EINVAL;
899 if (asoc) {
900 asoc->active_key_id = key_id;
901 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
902 } else
903 ep->active_key_id = key_id;
905 return 0;
908 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
909 struct sctp_association *asoc,
910 __u16 key_id)
912 struct sctp_shared_key *key;
913 struct list_head *sh_keys;
914 int found = 0;
916 /* The key identifier MUST NOT be the current active key
917 * The key identifier MUST correst to an existing key
919 if (asoc) {
920 if (asoc->active_key_id == key_id)
921 return -EINVAL;
923 sh_keys = &asoc->endpoint_shared_keys;
924 } else {
925 if (ep->active_key_id == key_id)
926 return -EINVAL;
928 sh_keys = &ep->endpoint_shared_keys;
931 key_for_each(key, sh_keys) {
932 if (key->key_id == key_id) {
933 found = 1;
934 break;
938 if (!found)
939 return -EINVAL;
941 /* Delete the shared key */
942 list_del_init(&key->key_list);
943 sctp_auth_shkey_free(key);
945 return 0;