Blackfin: acvilon: fix timeout usage for I2C
[linux-2.6/cjktty.git] / kernel / sched.c
blobd9c0368eeb2163815fd8b23ce08e22ce2ba90138
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 static inline int rt_policy(int policy)
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
130 static inline int task_has_rt_policy(struct task_struct *p)
132 return rt_policy(p->policy);
136 * This is the priority-queue data structure of the RT scheduling class:
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
151 static struct rt_bandwidth def_rt_bandwidth;
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167 if (!overrun)
168 break;
170 idle = do_sched_rt_period_timer(rt_b, overrun);
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 static inline int rt_bandwidth_enabled(void)
191 return sysctl_sched_rt_runtime >= 0;
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 ktime_t now;
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 hrtimer_cancel(&rt_b->rt_period_timer);
229 #endif
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
235 static DEFINE_MUTEX(sched_domains_mutex);
237 #ifdef CONFIG_CGROUP_SCHED
239 #include <linux/cgroup.h>
241 struct cfs_rq;
243 static LIST_HEAD(task_groups);
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
261 struct rt_bandwidth rt_bandwidth;
262 #endif
264 struct rcu_head rcu;
265 struct list_head list;
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
272 #define root_task_group init_task_group
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
277 static DEFINE_SPINLOCK(task_group_lock);
279 #ifdef CONFIG_FAIR_GROUP_SCHED
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
284 return list_empty(&root_task_group.children);
286 #endif
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group init_task_group;
309 /* return group to which a task belongs */
310 static inline struct task_group *task_group(struct task_struct *p)
312 struct task_group *tg;
314 #ifdef CONFIG_CGROUP_SCHED
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
317 #else
318 tg = &init_task_group;
319 #endif
320 return tg;
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
334 rcu_read_lock();
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
338 #endif
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
343 #endif
344 rcu_read_unlock();
347 #else
349 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 static inline struct task_group *task_group(struct task_struct *p)
352 return NULL;
355 #endif /* CONFIG_CGROUP_SCHED */
357 /* CFS-related fields in a runqueue */
358 struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
362 u64 exec_clock;
363 u64 min_vruntime;
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
368 struct list_head tasks;
369 struct list_head *balance_iterator;
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
375 struct sched_entity *curr, *next, *last;
377 unsigned int nr_spread_over;
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
393 #ifdef CONFIG_SMP
395 * the part of load.weight contributed by tasks
397 unsigned long task_weight;
400 * h_load = weight * f(tg)
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
405 unsigned long h_load;
408 * this cpu's part of tg->shares
410 unsigned long shares;
413 * load.weight at the time we set shares
415 unsigned long rq_weight;
416 #endif
417 #endif
420 /* Real-Time classes' related field in a runqueue: */
421 struct rt_rq {
422 struct rt_prio_array active;
423 unsigned long rt_nr_running;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 struct {
426 int curr; /* highest queued rt task prio */
427 #ifdef CONFIG_SMP
428 int next; /* next highest */
429 #endif
430 } highest_prio;
431 #endif
432 #ifdef CONFIG_SMP
433 unsigned long rt_nr_migratory;
434 unsigned long rt_nr_total;
435 int overloaded;
436 struct plist_head pushable_tasks;
437 #endif
438 int rt_throttled;
439 u64 rt_time;
440 u64 rt_runtime;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock;
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted;
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
450 #endif
453 #ifdef CONFIG_SMP
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
463 struct root_domain {
464 atomic_t refcount;
465 cpumask_var_t span;
466 cpumask_var_t online;
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
472 cpumask_var_t rto_mask;
473 atomic_t rto_count;
474 #ifdef CONFIG_SMP
475 struct cpupri cpupri;
476 #endif
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
483 static struct root_domain def_root_domain;
485 #endif
488 * This is the main, per-CPU runqueue data structure.
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
494 struct rq {
495 /* runqueue lock: */
496 raw_spinlock_t lock;
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
502 unsigned long nr_running;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505 #ifdef CONFIG_NO_HZ
506 u64 nohz_stamp;
507 unsigned char in_nohz_recently;
508 #endif
509 unsigned int skip_clock_update;
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load;
513 unsigned long nr_load_updates;
514 u64 nr_switches;
516 struct cfs_rq cfs;
517 struct rt_rq rt;
519 #ifdef CONFIG_FAIR_GROUP_SCHED
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list;
522 #endif
523 #ifdef CONFIG_RT_GROUP_SCHED
524 struct list_head leaf_rt_rq_list;
525 #endif
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
533 unsigned long nr_uninterruptible;
535 struct task_struct *curr, *idle;
536 unsigned long next_balance;
537 struct mm_struct *prev_mm;
539 u64 clock;
541 atomic_t nr_iowait;
543 #ifdef CONFIG_SMP
544 struct root_domain *rd;
545 struct sched_domain *sd;
547 unsigned char idle_at_tick;
548 /* For active balancing */
549 int post_schedule;
550 int active_balance;
551 int push_cpu;
552 struct cpu_stop_work active_balance_work;
553 /* cpu of this runqueue: */
554 int cpu;
555 int online;
557 unsigned long avg_load_per_task;
559 u64 rt_avg;
560 u64 age_stamp;
561 u64 idle_stamp;
562 u64 avg_idle;
563 #endif
565 /* calc_load related fields */
566 unsigned long calc_load_update;
567 long calc_load_active;
569 #ifdef CONFIG_SCHED_HRTICK
570 #ifdef CONFIG_SMP
571 int hrtick_csd_pending;
572 struct call_single_data hrtick_csd;
573 #endif
574 struct hrtimer hrtick_timer;
575 #endif
577 #ifdef CONFIG_SCHEDSTATS
578 /* latency stats */
579 struct sched_info rq_sched_info;
580 unsigned long long rq_cpu_time;
581 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
583 /* sys_sched_yield() stats */
584 unsigned int yld_count;
586 /* schedule() stats */
587 unsigned int sched_switch;
588 unsigned int sched_count;
589 unsigned int sched_goidle;
591 /* try_to_wake_up() stats */
592 unsigned int ttwu_count;
593 unsigned int ttwu_local;
595 /* BKL stats */
596 unsigned int bkl_count;
597 #endif
600 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
602 static inline
603 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
605 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
608 * A queue event has occurred, and we're going to schedule. In
609 * this case, we can save a useless back to back clock update.
611 if (test_tsk_need_resched(p))
612 rq->skip_clock_update = 1;
615 static inline int cpu_of(struct rq *rq)
617 #ifdef CONFIG_SMP
618 return rq->cpu;
619 #else
620 return 0;
621 #endif
624 #define rcu_dereference_check_sched_domain(p) \
625 rcu_dereference_check((p), \
626 rcu_read_lock_sched_held() || \
627 lockdep_is_held(&sched_domains_mutex))
630 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
631 * See detach_destroy_domains: synchronize_sched for details.
633 * The domain tree of any CPU may only be accessed from within
634 * preempt-disabled sections.
636 #define for_each_domain(cpu, __sd) \
637 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
639 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
640 #define this_rq() (&__get_cpu_var(runqueues))
641 #define task_rq(p) cpu_rq(task_cpu(p))
642 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
643 #define raw_rq() (&__raw_get_cpu_var(runqueues))
645 inline void update_rq_clock(struct rq *rq)
647 if (!rq->skip_clock_update)
648 rq->clock = sched_clock_cpu(cpu_of(rq));
652 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 #ifdef CONFIG_SCHED_DEBUG
655 # define const_debug __read_mostly
656 #else
657 # define const_debug static const
658 #endif
661 * runqueue_is_locked
662 * @cpu: the processor in question.
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
668 int runqueue_is_locked(int cpu)
670 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
680 enum {
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
693 #undef SCHED_FEAT
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
704 #undef SCHED_FEAT
706 static int sched_feat_show(struct seq_file *m, void *v)
708 int i;
710 for (i = 0; sched_feat_names[i]; i++) {
711 if (!(sysctl_sched_features & (1UL << i)))
712 seq_puts(m, "NO_");
713 seq_printf(m, "%s ", sched_feat_names[i]);
715 seq_puts(m, "\n");
717 return 0;
720 static ssize_t
721 sched_feat_write(struct file *filp, const char __user *ubuf,
722 size_t cnt, loff_t *ppos)
724 char buf[64];
725 char *cmp = buf;
726 int neg = 0;
727 int i;
729 if (cnt > 63)
730 cnt = 63;
732 if (copy_from_user(&buf, ubuf, cnt))
733 return -EFAULT;
735 buf[cnt] = 0;
737 if (strncmp(buf, "NO_", 3) == 0) {
738 neg = 1;
739 cmp += 3;
742 for (i = 0; sched_feat_names[i]; i++) {
743 int len = strlen(sched_feat_names[i]);
745 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
754 if (!sched_feat_names[i])
755 return -EINVAL;
757 *ppos += cnt;
759 return cnt;
762 static int sched_feat_open(struct inode *inode, struct file *filp)
764 return single_open(filp, sched_feat_show, NULL);
767 static const struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
775 static __init int sched_init_debug(void)
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
780 return 0;
782 late_initcall(sched_init_debug);
784 #endif
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
795 * ratelimit for updating the group shares.
796 * default: 0.25ms
798 unsigned int sysctl_sched_shares_ratelimit = 250000;
799 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
804 * default: 4
806 unsigned int sysctl_sched_shares_thresh = 4;
809 * period over which we average the RT time consumption, measured
810 * in ms.
812 * default: 1s
814 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
817 * period over which we measure -rt task cpu usage in us.
818 * default: 1s
820 unsigned int sysctl_sched_rt_period = 1000000;
822 static __read_mostly int scheduler_running;
825 * part of the period that we allow rt tasks to run in us.
826 * default: 0.95s
828 int sysctl_sched_rt_runtime = 950000;
830 static inline u64 global_rt_period(void)
832 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
835 static inline u64 global_rt_runtime(void)
837 if (sysctl_sched_rt_runtime < 0)
838 return RUNTIME_INF;
840 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
845 #endif
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
848 #endif
850 static inline int task_current(struct rq *rq, struct task_struct *p)
852 return rq->curr == p;
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq *rq, struct task_struct *p)
858 return task_current(rq, p);
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
865 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870 #endif
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878 raw_spin_unlock_irq(&rq->lock);
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq *rq, struct task_struct *p)
884 #ifdef CONFIG_SMP
885 return p->oncpu;
886 #else
887 return task_current(rq, p);
888 #endif
891 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
893 #ifdef CONFIG_SMP
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
897 * here.
899 next->oncpu = 1;
900 #endif
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 raw_spin_unlock_irq(&rq->lock);
903 #else
904 raw_spin_unlock(&rq->lock);
905 #endif
908 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910 #ifdef CONFIG_SMP
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
914 * finished.
916 smp_wmb();
917 prev->oncpu = 0;
918 #endif
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 local_irq_enable();
921 #endif
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
927 * against ttwu().
929 static inline int task_is_waking(struct task_struct *p)
931 return unlikely(p->state == TASK_WAKING);
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
938 static inline struct rq *__task_rq_lock(struct task_struct *p)
939 __acquires(rq->lock)
941 struct rq *rq;
943 for (;;) {
944 rq = task_rq(p);
945 raw_spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 raw_spin_unlock(&rq->lock);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
960 struct rq *rq;
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 raw_spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 raw_spin_unlock_irqrestore(&rq->lock, *flags);
972 void task_rq_unlock_wait(struct task_struct *p)
974 struct rq *rq = task_rq(p);
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 raw_spin_unlock_wait(&rq->lock);
980 static void __task_rq_unlock(struct rq *rq)
981 __releases(rq->lock)
983 raw_spin_unlock(&rq->lock);
986 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
987 __releases(rq->lock)
989 raw_spin_unlock_irqrestore(&rq->lock, *flags);
993 * this_rq_lock - lock this runqueue and disable interrupts.
995 static struct rq *this_rq_lock(void)
996 __acquires(rq->lock)
998 struct rq *rq;
1000 local_irq_disable();
1001 rq = this_rq();
1002 raw_spin_lock(&rq->lock);
1004 return rq;
1007 #ifdef CONFIG_SCHED_HRTICK
1009 * Use HR-timers to deliver accurate preemption points.
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1013 * reschedule event.
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * rq->lock.
1020 * Use hrtick when:
1021 * - enabled by features
1022 * - hrtimer is actually high res
1024 static inline int hrtick_enabled(struct rq *rq)
1026 if (!sched_feat(HRTICK))
1027 return 0;
1028 if (!cpu_active(cpu_of(rq)))
1029 return 0;
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1033 static void hrtick_clear(struct rq *rq)
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1043 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1049 raw_spin_lock(&rq->lock);
1050 update_rq_clock(rq);
1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052 raw_spin_unlock(&rq->lock);
1054 return HRTIMER_NORESTART;
1057 #ifdef CONFIG_SMP
1059 * called from hardirq (IPI) context
1061 static void __hrtick_start(void *arg)
1063 struct rq *rq = arg;
1065 raw_spin_lock(&rq->lock);
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
1068 raw_spin_unlock(&rq->lock);
1072 * Called to set the hrtick timer state.
1074 * called with rq->lock held and irqs disabled
1076 static void hrtick_start(struct rq *rq, u64 delay)
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1081 hrtimer_set_expires(timer, time);
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1087 rq->hrtick_csd_pending = 1;
1091 static int
1092 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1094 int cpu = (int)(long)hcpu;
1096 switch (action) {
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1101 case CPU_DEAD:
1102 case CPU_DEAD_FROZEN:
1103 hrtick_clear(cpu_rq(cpu));
1104 return NOTIFY_OK;
1107 return NOTIFY_DONE;
1110 static __init void init_hrtick(void)
1112 hotcpu_notifier(hotplug_hrtick, 0);
1114 #else
1116 * Called to set the hrtick timer state.
1118 * called with rq->lock held and irqs disabled
1120 static void hrtick_start(struct rq *rq, u64 delay)
1122 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1123 HRTIMER_MODE_REL_PINNED, 0);
1126 static inline void init_hrtick(void)
1129 #endif /* CONFIG_SMP */
1131 static void init_rq_hrtick(struct rq *rq)
1133 #ifdef CONFIG_SMP
1134 rq->hrtick_csd_pending = 0;
1136 rq->hrtick_csd.flags = 0;
1137 rq->hrtick_csd.func = __hrtick_start;
1138 rq->hrtick_csd.info = rq;
1139 #endif
1141 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1142 rq->hrtick_timer.function = hrtick;
1144 #else /* CONFIG_SCHED_HRTICK */
1145 static inline void hrtick_clear(struct rq *rq)
1149 static inline void init_rq_hrtick(struct rq *rq)
1153 static inline void init_hrtick(void)
1156 #endif /* CONFIG_SCHED_HRTICK */
1159 * resched_task - mark a task 'to be rescheduled now'.
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1163 * the target CPU.
1165 #ifdef CONFIG_SMP
1167 #ifndef tsk_is_polling
1168 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169 #endif
1171 static void resched_task(struct task_struct *p)
1173 int cpu;
1175 assert_raw_spin_locked(&task_rq(p)->lock);
1177 if (test_tsk_need_resched(p))
1178 return;
1180 set_tsk_need_resched(p);
1182 cpu = task_cpu(p);
1183 if (cpu == smp_processor_id())
1184 return;
1186 /* NEED_RESCHED must be visible before we test polling */
1187 smp_mb();
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1192 static void resched_cpu(int cpu)
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1197 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1198 return;
1199 resched_task(cpu_curr(cpu));
1200 raw_spin_unlock_irqrestore(&rq->lock, flags);
1203 #ifdef CONFIG_NO_HZ
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1214 void wake_up_idle_cpu(int cpu)
1216 struct rq *rq = cpu_rq(cpu);
1218 if (cpu == smp_processor_id())
1219 return;
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1228 if (rq->curr != rq->idle)
1229 return;
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1236 set_tsk_need_resched(rq->idle);
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1244 int nohz_ratelimit(int cpu)
1246 struct rq *rq = cpu_rq(cpu);
1247 u64 diff = rq->clock - rq->nohz_stamp;
1249 rq->nohz_stamp = rq->clock;
1251 return diff < (NSEC_PER_SEC / HZ) >> 1;
1254 #endif /* CONFIG_NO_HZ */
1256 static u64 sched_avg_period(void)
1258 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1261 static void sched_avg_update(struct rq *rq)
1263 s64 period = sched_avg_period();
1265 while ((s64)(rq->clock - rq->age_stamp) > period) {
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1271 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1277 #else /* !CONFIG_SMP */
1278 static void resched_task(struct task_struct *p)
1280 assert_raw_spin_locked(&task_rq(p)->lock);
1281 set_tsk_need_resched(p);
1284 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1287 #endif /* CONFIG_SMP */
1289 #if BITS_PER_LONG == 32
1290 # define WMULT_CONST (~0UL)
1291 #else
1292 # define WMULT_CONST (1UL << 32)
1293 #endif
1295 #define WMULT_SHIFT 32
1298 * Shift right and round:
1300 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1303 * delta *= weight / lw
1305 static unsigned long
1306 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1307 struct load_weight *lw)
1309 u64 tmp;
1311 if (!lw->inv_weight) {
1312 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1;
1314 else
1315 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1316 / (lw->weight+1);
1319 tmp = (u64)delta_exec * weight;
1321 * Check whether we'd overflow the 64-bit multiplication:
1323 if (unlikely(tmp > WMULT_CONST))
1324 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1325 WMULT_SHIFT/2);
1326 else
1327 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1329 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1332 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1334 lw->weight += inc;
1335 lw->inv_weight = 0;
1338 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1340 lw->weight -= dec;
1341 lw->inv_weight = 0;
1345 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1346 * of tasks with abnormal "nice" values across CPUs the contribution that
1347 * each task makes to its run queue's load is weighted according to its
1348 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1349 * scaled version of the new time slice allocation that they receive on time
1350 * slice expiry etc.
1353 #define WEIGHT_IDLEPRIO 3
1354 #define WMULT_IDLEPRIO 1431655765
1357 * Nice levels are multiplicative, with a gentle 10% change for every
1358 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1359 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1360 * that remained on nice 0.
1362 * The "10% effect" is relative and cumulative: from _any_ nice level,
1363 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1364 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1365 * If a task goes up by ~10% and another task goes down by ~10% then
1366 * the relative distance between them is ~25%.)
1368 static const int prio_to_weight[40] = {
1369 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1370 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1371 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1372 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1373 /* 0 */ 1024, 820, 655, 526, 423,
1374 /* 5 */ 335, 272, 215, 172, 137,
1375 /* 10 */ 110, 87, 70, 56, 45,
1376 /* 15 */ 36, 29, 23, 18, 15,
1380 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1382 * In cases where the weight does not change often, we can use the
1383 * precalculated inverse to speed up arithmetics by turning divisions
1384 * into multiplications:
1386 static const u32 prio_to_wmult[40] = {
1387 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1388 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1389 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1390 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1391 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1392 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1393 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1394 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1397 /* Time spent by the tasks of the cpu accounting group executing in ... */
1398 enum cpuacct_stat_index {
1399 CPUACCT_STAT_USER, /* ... user mode */
1400 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1402 CPUACCT_STAT_NSTATS,
1405 #ifdef CONFIG_CGROUP_CPUACCT
1406 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1407 static void cpuacct_update_stats(struct task_struct *tsk,
1408 enum cpuacct_stat_index idx, cputime_t val);
1409 #else
1410 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1411 static inline void cpuacct_update_stats(struct task_struct *tsk,
1412 enum cpuacct_stat_index idx, cputime_t val) {}
1413 #endif
1415 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1417 update_load_add(&rq->load, load);
1420 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1422 update_load_sub(&rq->load, load);
1425 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1426 typedef int (*tg_visitor)(struct task_group *, void *);
1429 * Iterate the full tree, calling @down when first entering a node and @up when
1430 * leaving it for the final time.
1432 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1434 struct task_group *parent, *child;
1435 int ret;
1437 rcu_read_lock();
1438 parent = &root_task_group;
1439 down:
1440 ret = (*down)(parent, data);
1441 if (ret)
1442 goto out_unlock;
1443 list_for_each_entry_rcu(child, &parent->children, siblings) {
1444 parent = child;
1445 goto down;
1448 continue;
1450 ret = (*up)(parent, data);
1451 if (ret)
1452 goto out_unlock;
1454 child = parent;
1455 parent = parent->parent;
1456 if (parent)
1457 goto up;
1458 out_unlock:
1459 rcu_read_unlock();
1461 return ret;
1464 static int tg_nop(struct task_group *tg, void *data)
1466 return 0;
1468 #endif
1470 #ifdef CONFIG_SMP
1471 /* Used instead of source_load when we know the type == 0 */
1472 static unsigned long weighted_cpuload(const int cpu)
1474 return cpu_rq(cpu)->load.weight;
1478 * Return a low guess at the load of a migration-source cpu weighted
1479 * according to the scheduling class and "nice" value.
1481 * We want to under-estimate the load of migration sources, to
1482 * balance conservatively.
1484 static unsigned long source_load(int cpu, int type)
1486 struct rq *rq = cpu_rq(cpu);
1487 unsigned long total = weighted_cpuload(cpu);
1489 if (type == 0 || !sched_feat(LB_BIAS))
1490 return total;
1492 return min(rq->cpu_load[type-1], total);
1496 * Return a high guess at the load of a migration-target cpu weighted
1497 * according to the scheduling class and "nice" value.
1499 static unsigned long target_load(int cpu, int type)
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long total = weighted_cpuload(cpu);
1504 if (type == 0 || !sched_feat(LB_BIAS))
1505 return total;
1507 return max(rq->cpu_load[type-1], total);
1510 static struct sched_group *group_of(int cpu)
1512 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1514 if (!sd)
1515 return NULL;
1517 return sd->groups;
1520 static unsigned long power_of(int cpu)
1522 struct sched_group *group = group_of(cpu);
1524 if (!group)
1525 return SCHED_LOAD_SCALE;
1527 return group->cpu_power;
1530 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1532 static unsigned long cpu_avg_load_per_task(int cpu)
1534 struct rq *rq = cpu_rq(cpu);
1535 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1537 if (nr_running)
1538 rq->avg_load_per_task = rq->load.weight / nr_running;
1539 else
1540 rq->avg_load_per_task = 0;
1542 return rq->avg_load_per_task;
1545 #ifdef CONFIG_FAIR_GROUP_SCHED
1547 static __read_mostly unsigned long __percpu *update_shares_data;
1549 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1552 * Calculate and set the cpu's group shares.
1554 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1555 unsigned long sd_shares,
1556 unsigned long sd_rq_weight,
1557 unsigned long *usd_rq_weight)
1559 unsigned long shares, rq_weight;
1560 int boost = 0;
1562 rq_weight = usd_rq_weight[cpu];
1563 if (!rq_weight) {
1564 boost = 1;
1565 rq_weight = NICE_0_LOAD;
1569 * \Sum_j shares_j * rq_weight_i
1570 * shares_i = -----------------------------
1571 * \Sum_j rq_weight_j
1573 shares = (sd_shares * rq_weight) / sd_rq_weight;
1574 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1576 if (abs(shares - tg->se[cpu]->load.weight) >
1577 sysctl_sched_shares_thresh) {
1578 struct rq *rq = cpu_rq(cpu);
1579 unsigned long flags;
1581 raw_spin_lock_irqsave(&rq->lock, flags);
1582 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1583 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1584 __set_se_shares(tg->se[cpu], shares);
1585 raw_spin_unlock_irqrestore(&rq->lock, flags);
1590 * Re-compute the task group their per cpu shares over the given domain.
1591 * This needs to be done in a bottom-up fashion because the rq weight of a
1592 * parent group depends on the shares of its child groups.
1594 static int tg_shares_up(struct task_group *tg, void *data)
1596 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1597 unsigned long *usd_rq_weight;
1598 struct sched_domain *sd = data;
1599 unsigned long flags;
1600 int i;
1602 if (!tg->se[0])
1603 return 0;
1605 local_irq_save(flags);
1606 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1608 for_each_cpu(i, sched_domain_span(sd)) {
1609 weight = tg->cfs_rq[i]->load.weight;
1610 usd_rq_weight[i] = weight;
1612 rq_weight += weight;
1614 * If there are currently no tasks on the cpu pretend there
1615 * is one of average load so that when a new task gets to
1616 * run here it will not get delayed by group starvation.
1618 if (!weight)
1619 weight = NICE_0_LOAD;
1621 sum_weight += weight;
1622 shares += tg->cfs_rq[i]->shares;
1625 if (!rq_weight)
1626 rq_weight = sum_weight;
1628 if ((!shares && rq_weight) || shares > tg->shares)
1629 shares = tg->shares;
1631 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1632 shares = tg->shares;
1634 for_each_cpu(i, sched_domain_span(sd))
1635 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1637 local_irq_restore(flags);
1639 return 0;
1643 * Compute the cpu's hierarchical load factor for each task group.
1644 * This needs to be done in a top-down fashion because the load of a child
1645 * group is a fraction of its parents load.
1647 static int tg_load_down(struct task_group *tg, void *data)
1649 unsigned long load;
1650 long cpu = (long)data;
1652 if (!tg->parent) {
1653 load = cpu_rq(cpu)->load.weight;
1654 } else {
1655 load = tg->parent->cfs_rq[cpu]->h_load;
1656 load *= tg->cfs_rq[cpu]->shares;
1657 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1660 tg->cfs_rq[cpu]->h_load = load;
1662 return 0;
1665 static void update_shares(struct sched_domain *sd)
1667 s64 elapsed;
1668 u64 now;
1670 if (root_task_group_empty())
1671 return;
1673 now = cpu_clock(raw_smp_processor_id());
1674 elapsed = now - sd->last_update;
1676 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1677 sd->last_update = now;
1678 walk_tg_tree(tg_nop, tg_shares_up, sd);
1682 static void update_h_load(long cpu)
1684 if (root_task_group_empty())
1685 return;
1687 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1690 #else
1692 static inline void update_shares(struct sched_domain *sd)
1696 #endif
1698 #ifdef CONFIG_PREEMPT
1700 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1703 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1704 * way at the expense of forcing extra atomic operations in all
1705 * invocations. This assures that the double_lock is acquired using the
1706 * same underlying policy as the spinlock_t on this architecture, which
1707 * reduces latency compared to the unfair variant below. However, it
1708 * also adds more overhead and therefore may reduce throughput.
1710 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1711 __releases(this_rq->lock)
1712 __acquires(busiest->lock)
1713 __acquires(this_rq->lock)
1715 raw_spin_unlock(&this_rq->lock);
1716 double_rq_lock(this_rq, busiest);
1718 return 1;
1721 #else
1723 * Unfair double_lock_balance: Optimizes throughput at the expense of
1724 * latency by eliminating extra atomic operations when the locks are
1725 * already in proper order on entry. This favors lower cpu-ids and will
1726 * grant the double lock to lower cpus over higher ids under contention,
1727 * regardless of entry order into the function.
1729 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1730 __releases(this_rq->lock)
1731 __acquires(busiest->lock)
1732 __acquires(this_rq->lock)
1734 int ret = 0;
1736 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1737 if (busiest < this_rq) {
1738 raw_spin_unlock(&this_rq->lock);
1739 raw_spin_lock(&busiest->lock);
1740 raw_spin_lock_nested(&this_rq->lock,
1741 SINGLE_DEPTH_NESTING);
1742 ret = 1;
1743 } else
1744 raw_spin_lock_nested(&busiest->lock,
1745 SINGLE_DEPTH_NESTING);
1747 return ret;
1750 #endif /* CONFIG_PREEMPT */
1753 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1755 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1757 if (unlikely(!irqs_disabled())) {
1758 /* printk() doesn't work good under rq->lock */
1759 raw_spin_unlock(&this_rq->lock);
1760 BUG_ON(1);
1763 return _double_lock_balance(this_rq, busiest);
1766 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1767 __releases(busiest->lock)
1769 raw_spin_unlock(&busiest->lock);
1770 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1774 * double_rq_lock - safely lock two runqueues
1776 * Note this does not disable interrupts like task_rq_lock,
1777 * you need to do so manually before calling.
1779 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1780 __acquires(rq1->lock)
1781 __acquires(rq2->lock)
1783 BUG_ON(!irqs_disabled());
1784 if (rq1 == rq2) {
1785 raw_spin_lock(&rq1->lock);
1786 __acquire(rq2->lock); /* Fake it out ;) */
1787 } else {
1788 if (rq1 < rq2) {
1789 raw_spin_lock(&rq1->lock);
1790 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1791 } else {
1792 raw_spin_lock(&rq2->lock);
1793 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1799 * double_rq_unlock - safely unlock two runqueues
1801 * Note this does not restore interrupts like task_rq_unlock,
1802 * you need to do so manually after calling.
1804 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1805 __releases(rq1->lock)
1806 __releases(rq2->lock)
1808 raw_spin_unlock(&rq1->lock);
1809 if (rq1 != rq2)
1810 raw_spin_unlock(&rq2->lock);
1811 else
1812 __release(rq2->lock);
1815 #endif
1817 #ifdef CONFIG_FAIR_GROUP_SCHED
1818 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1820 #ifdef CONFIG_SMP
1821 cfs_rq->shares = shares;
1822 #endif
1824 #endif
1826 static void calc_load_account_idle(struct rq *this_rq);
1827 static void update_sysctl(void);
1828 static int get_update_sysctl_factor(void);
1830 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1832 set_task_rq(p, cpu);
1833 #ifdef CONFIG_SMP
1835 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1836 * successfuly executed on another CPU. We must ensure that updates of
1837 * per-task data have been completed by this moment.
1839 smp_wmb();
1840 task_thread_info(p)->cpu = cpu;
1841 #endif
1844 static const struct sched_class rt_sched_class;
1846 #define sched_class_highest (&rt_sched_class)
1847 #define for_each_class(class) \
1848 for (class = sched_class_highest; class; class = class->next)
1850 #include "sched_stats.h"
1852 static void inc_nr_running(struct rq *rq)
1854 rq->nr_running++;
1857 static void dec_nr_running(struct rq *rq)
1859 rq->nr_running--;
1862 static void set_load_weight(struct task_struct *p)
1864 if (task_has_rt_policy(p)) {
1865 p->se.load.weight = prio_to_weight[0] * 2;
1866 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1867 return;
1871 * SCHED_IDLE tasks get minimal weight:
1873 if (p->policy == SCHED_IDLE) {
1874 p->se.load.weight = WEIGHT_IDLEPRIO;
1875 p->se.load.inv_weight = WMULT_IDLEPRIO;
1876 return;
1879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1883 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1885 update_rq_clock(rq);
1886 sched_info_queued(p);
1887 p->sched_class->enqueue_task(rq, p, flags);
1888 p->se.on_rq = 1;
1891 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1893 update_rq_clock(rq);
1894 sched_info_dequeued(p);
1895 p->sched_class->dequeue_task(rq, p, flags);
1896 p->se.on_rq = 0;
1900 * activate_task - move a task to the runqueue.
1902 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1904 if (task_contributes_to_load(p))
1905 rq->nr_uninterruptible--;
1907 enqueue_task(rq, p, flags);
1908 inc_nr_running(rq);
1912 * deactivate_task - remove a task from the runqueue.
1914 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1916 if (task_contributes_to_load(p))
1917 rq->nr_uninterruptible++;
1919 dequeue_task(rq, p, flags);
1920 dec_nr_running(rq);
1923 #include "sched_idletask.c"
1924 #include "sched_fair.c"
1925 #include "sched_rt.c"
1926 #ifdef CONFIG_SCHED_DEBUG
1927 # include "sched_debug.c"
1928 #endif
1931 * __normal_prio - return the priority that is based on the static prio
1933 static inline int __normal_prio(struct task_struct *p)
1935 return p->static_prio;
1939 * Calculate the expected normal priority: i.e. priority
1940 * without taking RT-inheritance into account. Might be
1941 * boosted by interactivity modifiers. Changes upon fork,
1942 * setprio syscalls, and whenever the interactivity
1943 * estimator recalculates.
1945 static inline int normal_prio(struct task_struct *p)
1947 int prio;
1949 if (task_has_rt_policy(p))
1950 prio = MAX_RT_PRIO-1 - p->rt_priority;
1951 else
1952 prio = __normal_prio(p);
1953 return prio;
1957 * Calculate the current priority, i.e. the priority
1958 * taken into account by the scheduler. This value might
1959 * be boosted by RT tasks, or might be boosted by
1960 * interactivity modifiers. Will be RT if the task got
1961 * RT-boosted. If not then it returns p->normal_prio.
1963 static int effective_prio(struct task_struct *p)
1965 p->normal_prio = normal_prio(p);
1967 * If we are RT tasks or we were boosted to RT priority,
1968 * keep the priority unchanged. Otherwise, update priority
1969 * to the normal priority:
1971 if (!rt_prio(p->prio))
1972 return p->normal_prio;
1973 return p->prio;
1977 * task_curr - is this task currently executing on a CPU?
1978 * @p: the task in question.
1980 inline int task_curr(const struct task_struct *p)
1982 return cpu_curr(task_cpu(p)) == p;
1985 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1986 const struct sched_class *prev_class,
1987 int oldprio, int running)
1989 if (prev_class != p->sched_class) {
1990 if (prev_class->switched_from)
1991 prev_class->switched_from(rq, p, running);
1992 p->sched_class->switched_to(rq, p, running);
1993 } else
1994 p->sched_class->prio_changed(rq, p, oldprio, running);
1997 #ifdef CONFIG_SMP
1999 * Is this task likely cache-hot:
2001 static int
2002 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2004 s64 delta;
2006 if (p->sched_class != &fair_sched_class)
2007 return 0;
2010 * Buddy candidates are cache hot:
2012 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2013 (&p->se == cfs_rq_of(&p->se)->next ||
2014 &p->se == cfs_rq_of(&p->se)->last))
2015 return 1;
2017 if (sysctl_sched_migration_cost == -1)
2018 return 1;
2019 if (sysctl_sched_migration_cost == 0)
2020 return 0;
2022 delta = now - p->se.exec_start;
2024 return delta < (s64)sysctl_sched_migration_cost;
2027 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2029 #ifdef CONFIG_SCHED_DEBUG
2031 * We should never call set_task_cpu() on a blocked task,
2032 * ttwu() will sort out the placement.
2034 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2035 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2036 #endif
2038 trace_sched_migrate_task(p, new_cpu);
2040 if (task_cpu(p) != new_cpu) {
2041 p->se.nr_migrations++;
2042 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2045 __set_task_cpu(p, new_cpu);
2048 struct migration_arg {
2049 struct task_struct *task;
2050 int dest_cpu;
2053 static int migration_cpu_stop(void *data);
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2059 static bool migrate_task(struct task_struct *p, int dest_cpu)
2061 struct rq *rq = task_rq(p);
2064 * If the task is not on a runqueue (and not running), then
2065 * the next wake-up will properly place the task.
2067 return p->se.on_rq || task_running(rq, p);
2071 * wait_task_inactive - wait for a thread to unschedule.
2073 * If @match_state is nonzero, it's the @p->state value just checked and
2074 * not expected to change. If it changes, i.e. @p might have woken up,
2075 * then return zero. When we succeed in waiting for @p to be off its CPU,
2076 * we return a positive number (its total switch count). If a second call
2077 * a short while later returns the same number, the caller can be sure that
2078 * @p has remained unscheduled the whole time.
2080 * The caller must ensure that the task *will* unschedule sometime soon,
2081 * else this function might spin for a *long* time. This function can't
2082 * be called with interrupts off, or it may introduce deadlock with
2083 * smp_call_function() if an IPI is sent by the same process we are
2084 * waiting to become inactive.
2086 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2088 unsigned long flags;
2089 int running, on_rq;
2090 unsigned long ncsw;
2091 struct rq *rq;
2093 for (;;) {
2095 * We do the initial early heuristics without holding
2096 * any task-queue locks at all. We'll only try to get
2097 * the runqueue lock when things look like they will
2098 * work out!
2100 rq = task_rq(p);
2103 * If the task is actively running on another CPU
2104 * still, just relax and busy-wait without holding
2105 * any locks.
2107 * NOTE! Since we don't hold any locks, it's not
2108 * even sure that "rq" stays as the right runqueue!
2109 * But we don't care, since "task_running()" will
2110 * return false if the runqueue has changed and p
2111 * is actually now running somewhere else!
2113 while (task_running(rq, p)) {
2114 if (match_state && unlikely(p->state != match_state))
2115 return 0;
2116 cpu_relax();
2120 * Ok, time to look more closely! We need the rq
2121 * lock now, to be *sure*. If we're wrong, we'll
2122 * just go back and repeat.
2124 rq = task_rq_lock(p, &flags);
2125 trace_sched_wait_task(p);
2126 running = task_running(rq, p);
2127 on_rq = p->se.on_rq;
2128 ncsw = 0;
2129 if (!match_state || p->state == match_state)
2130 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2131 task_rq_unlock(rq, &flags);
2134 * If it changed from the expected state, bail out now.
2136 if (unlikely(!ncsw))
2137 break;
2140 * Was it really running after all now that we
2141 * checked with the proper locks actually held?
2143 * Oops. Go back and try again..
2145 if (unlikely(running)) {
2146 cpu_relax();
2147 continue;
2151 * It's not enough that it's not actively running,
2152 * it must be off the runqueue _entirely_, and not
2153 * preempted!
2155 * So if it was still runnable (but just not actively
2156 * running right now), it's preempted, and we should
2157 * yield - it could be a while.
2159 if (unlikely(on_rq)) {
2160 schedule_timeout_uninterruptible(1);
2161 continue;
2165 * Ahh, all good. It wasn't running, and it wasn't
2166 * runnable, which means that it will never become
2167 * running in the future either. We're all done!
2169 break;
2172 return ncsw;
2175 /***
2176 * kick_process - kick a running thread to enter/exit the kernel
2177 * @p: the to-be-kicked thread
2179 * Cause a process which is running on another CPU to enter
2180 * kernel-mode, without any delay. (to get signals handled.)
2182 * NOTE: this function doesnt have to take the runqueue lock,
2183 * because all it wants to ensure is that the remote task enters
2184 * the kernel. If the IPI races and the task has been migrated
2185 * to another CPU then no harm is done and the purpose has been
2186 * achieved as well.
2188 void kick_process(struct task_struct *p)
2190 int cpu;
2192 preempt_disable();
2193 cpu = task_cpu(p);
2194 if ((cpu != smp_processor_id()) && task_curr(p))
2195 smp_send_reschedule(cpu);
2196 preempt_enable();
2198 EXPORT_SYMBOL_GPL(kick_process);
2199 #endif /* CONFIG_SMP */
2202 * task_oncpu_function_call - call a function on the cpu on which a task runs
2203 * @p: the task to evaluate
2204 * @func: the function to be called
2205 * @info: the function call argument
2207 * Calls the function @func when the task is currently running. This might
2208 * be on the current CPU, which just calls the function directly
2210 void task_oncpu_function_call(struct task_struct *p,
2211 void (*func) (void *info), void *info)
2213 int cpu;
2215 preempt_disable();
2216 cpu = task_cpu(p);
2217 if (task_curr(p))
2218 smp_call_function_single(cpu, func, info, 1);
2219 preempt_enable();
2222 #ifdef CONFIG_SMP
2224 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2226 static int select_fallback_rq(int cpu, struct task_struct *p)
2228 int dest_cpu;
2229 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2231 /* Look for allowed, online CPU in same node. */
2232 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2233 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2234 return dest_cpu;
2236 /* Any allowed, online CPU? */
2237 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2238 if (dest_cpu < nr_cpu_ids)
2239 return dest_cpu;
2241 /* No more Mr. Nice Guy. */
2242 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2243 dest_cpu = cpuset_cpus_allowed_fallback(p);
2245 * Don't tell them about moving exiting tasks or
2246 * kernel threads (both mm NULL), since they never
2247 * leave kernel.
2249 if (p->mm && printk_ratelimit()) {
2250 printk(KERN_INFO "process %d (%s) no "
2251 "longer affine to cpu%d\n",
2252 task_pid_nr(p), p->comm, cpu);
2256 return dest_cpu;
2260 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2262 static inline
2263 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2265 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2268 * In order not to call set_task_cpu() on a blocking task we need
2269 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2270 * cpu.
2272 * Since this is common to all placement strategies, this lives here.
2274 * [ this allows ->select_task() to simply return task_cpu(p) and
2275 * not worry about this generic constraint ]
2277 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2278 !cpu_online(cpu)))
2279 cpu = select_fallback_rq(task_cpu(p), p);
2281 return cpu;
2284 static void update_avg(u64 *avg, u64 sample)
2286 s64 diff = sample - *avg;
2287 *avg += diff >> 3;
2289 #endif
2291 /***
2292 * try_to_wake_up - wake up a thread
2293 * @p: the to-be-woken-up thread
2294 * @state: the mask of task states that can be woken
2295 * @sync: do a synchronous wakeup?
2297 * Put it on the run-queue if it's not already there. The "current"
2298 * thread is always on the run-queue (except when the actual
2299 * re-schedule is in progress), and as such you're allowed to do
2300 * the simpler "current->state = TASK_RUNNING" to mark yourself
2301 * runnable without the overhead of this.
2303 * returns failure only if the task is already active.
2305 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2306 int wake_flags)
2308 int cpu, orig_cpu, this_cpu, success = 0;
2309 unsigned long flags;
2310 unsigned long en_flags = ENQUEUE_WAKEUP;
2311 struct rq *rq;
2313 this_cpu = get_cpu();
2315 smp_wmb();
2316 rq = task_rq_lock(p, &flags);
2317 if (!(p->state & state))
2318 goto out;
2320 if (p->se.on_rq)
2321 goto out_running;
2323 cpu = task_cpu(p);
2324 orig_cpu = cpu;
2326 #ifdef CONFIG_SMP
2327 if (unlikely(task_running(rq, p)))
2328 goto out_activate;
2331 * In order to handle concurrent wakeups and release the rq->lock
2332 * we put the task in TASK_WAKING state.
2334 * First fix up the nr_uninterruptible count:
2336 if (task_contributes_to_load(p)) {
2337 if (likely(cpu_online(orig_cpu)))
2338 rq->nr_uninterruptible--;
2339 else
2340 this_rq()->nr_uninterruptible--;
2342 p->state = TASK_WAKING;
2344 if (p->sched_class->task_waking) {
2345 p->sched_class->task_waking(rq, p);
2346 en_flags |= ENQUEUE_WAKING;
2349 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2350 if (cpu != orig_cpu)
2351 set_task_cpu(p, cpu);
2352 __task_rq_unlock(rq);
2354 rq = cpu_rq(cpu);
2355 raw_spin_lock(&rq->lock);
2358 * We migrated the task without holding either rq->lock, however
2359 * since the task is not on the task list itself, nobody else
2360 * will try and migrate the task, hence the rq should match the
2361 * cpu we just moved it to.
2363 WARN_ON(task_cpu(p) != cpu);
2364 WARN_ON(p->state != TASK_WAKING);
2366 #ifdef CONFIG_SCHEDSTATS
2367 schedstat_inc(rq, ttwu_count);
2368 if (cpu == this_cpu)
2369 schedstat_inc(rq, ttwu_local);
2370 else {
2371 struct sched_domain *sd;
2372 for_each_domain(this_cpu, sd) {
2373 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2374 schedstat_inc(sd, ttwu_wake_remote);
2375 break;
2379 #endif /* CONFIG_SCHEDSTATS */
2381 out_activate:
2382 #endif /* CONFIG_SMP */
2383 schedstat_inc(p, se.statistics.nr_wakeups);
2384 if (wake_flags & WF_SYNC)
2385 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2386 if (orig_cpu != cpu)
2387 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2388 if (cpu == this_cpu)
2389 schedstat_inc(p, se.statistics.nr_wakeups_local);
2390 else
2391 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2392 activate_task(rq, p, en_flags);
2393 success = 1;
2395 out_running:
2396 trace_sched_wakeup(p, success);
2397 check_preempt_curr(rq, p, wake_flags);
2399 p->state = TASK_RUNNING;
2400 #ifdef CONFIG_SMP
2401 if (p->sched_class->task_woken)
2402 p->sched_class->task_woken(rq, p);
2404 if (unlikely(rq->idle_stamp)) {
2405 u64 delta = rq->clock - rq->idle_stamp;
2406 u64 max = 2*sysctl_sched_migration_cost;
2408 if (delta > max)
2409 rq->avg_idle = max;
2410 else
2411 update_avg(&rq->avg_idle, delta);
2412 rq->idle_stamp = 0;
2414 #endif
2415 out:
2416 task_rq_unlock(rq, &flags);
2417 put_cpu();
2419 return success;
2423 * wake_up_process - Wake up a specific process
2424 * @p: The process to be woken up.
2426 * Attempt to wake up the nominated process and move it to the set of runnable
2427 * processes. Returns 1 if the process was woken up, 0 if it was already
2428 * running.
2430 * It may be assumed that this function implies a write memory barrier before
2431 * changing the task state if and only if any tasks are woken up.
2433 int wake_up_process(struct task_struct *p)
2435 return try_to_wake_up(p, TASK_ALL, 0);
2437 EXPORT_SYMBOL(wake_up_process);
2439 int wake_up_state(struct task_struct *p, unsigned int state)
2441 return try_to_wake_up(p, state, 0);
2445 * Perform scheduler related setup for a newly forked process p.
2446 * p is forked by current.
2448 * __sched_fork() is basic setup used by init_idle() too:
2450 static void __sched_fork(struct task_struct *p)
2452 p->se.exec_start = 0;
2453 p->se.sum_exec_runtime = 0;
2454 p->se.prev_sum_exec_runtime = 0;
2455 p->se.nr_migrations = 0;
2457 #ifdef CONFIG_SCHEDSTATS
2458 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2459 #endif
2461 INIT_LIST_HEAD(&p->rt.run_list);
2462 p->se.on_rq = 0;
2463 INIT_LIST_HEAD(&p->se.group_node);
2465 #ifdef CONFIG_PREEMPT_NOTIFIERS
2466 INIT_HLIST_HEAD(&p->preempt_notifiers);
2467 #endif
2471 * fork()/clone()-time setup:
2473 void sched_fork(struct task_struct *p, int clone_flags)
2475 int cpu = get_cpu();
2477 __sched_fork(p);
2479 * We mark the process as running here. This guarantees that
2480 * nobody will actually run it, and a signal or other external
2481 * event cannot wake it up and insert it on the runqueue either.
2483 p->state = TASK_RUNNING;
2486 * Revert to default priority/policy on fork if requested.
2488 if (unlikely(p->sched_reset_on_fork)) {
2489 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2490 p->policy = SCHED_NORMAL;
2491 p->normal_prio = p->static_prio;
2494 if (PRIO_TO_NICE(p->static_prio) < 0) {
2495 p->static_prio = NICE_TO_PRIO(0);
2496 p->normal_prio = p->static_prio;
2497 set_load_weight(p);
2501 * We don't need the reset flag anymore after the fork. It has
2502 * fulfilled its duty:
2504 p->sched_reset_on_fork = 0;
2508 * Make sure we do not leak PI boosting priority to the child.
2510 p->prio = current->normal_prio;
2512 if (!rt_prio(p->prio))
2513 p->sched_class = &fair_sched_class;
2515 if (p->sched_class->task_fork)
2516 p->sched_class->task_fork(p);
2518 set_task_cpu(p, cpu);
2520 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2521 if (likely(sched_info_on()))
2522 memset(&p->sched_info, 0, sizeof(p->sched_info));
2523 #endif
2524 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2525 p->oncpu = 0;
2526 #endif
2527 #ifdef CONFIG_PREEMPT
2528 /* Want to start with kernel preemption disabled. */
2529 task_thread_info(p)->preempt_count = 1;
2530 #endif
2531 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2533 put_cpu();
2537 * wake_up_new_task - wake up a newly created task for the first time.
2539 * This function will do some initial scheduler statistics housekeeping
2540 * that must be done for every newly created context, then puts the task
2541 * on the runqueue and wakes it.
2543 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2545 unsigned long flags;
2546 struct rq *rq;
2547 int cpu __maybe_unused = get_cpu();
2549 #ifdef CONFIG_SMP
2550 rq = task_rq_lock(p, &flags);
2551 p->state = TASK_WAKING;
2554 * Fork balancing, do it here and not earlier because:
2555 * - cpus_allowed can change in the fork path
2556 * - any previously selected cpu might disappear through hotplug
2558 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2559 * without people poking at ->cpus_allowed.
2561 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2562 set_task_cpu(p, cpu);
2564 p->state = TASK_RUNNING;
2565 task_rq_unlock(rq, &flags);
2566 #endif
2568 rq = task_rq_lock(p, &flags);
2569 activate_task(rq, p, 0);
2570 trace_sched_wakeup_new(p, 1);
2571 check_preempt_curr(rq, p, WF_FORK);
2572 #ifdef CONFIG_SMP
2573 if (p->sched_class->task_woken)
2574 p->sched_class->task_woken(rq, p);
2575 #endif
2576 task_rq_unlock(rq, &flags);
2577 put_cpu();
2580 #ifdef CONFIG_PREEMPT_NOTIFIERS
2583 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2584 * @notifier: notifier struct to register
2586 void preempt_notifier_register(struct preempt_notifier *notifier)
2588 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2590 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2593 * preempt_notifier_unregister - no longer interested in preemption notifications
2594 * @notifier: notifier struct to unregister
2596 * This is safe to call from within a preemption notifier.
2598 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2600 hlist_del(&notifier->link);
2602 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2604 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2606 struct preempt_notifier *notifier;
2607 struct hlist_node *node;
2609 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2610 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2613 static void
2614 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2615 struct task_struct *next)
2617 struct preempt_notifier *notifier;
2618 struct hlist_node *node;
2620 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2621 notifier->ops->sched_out(notifier, next);
2624 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2626 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2630 static void
2631 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2632 struct task_struct *next)
2636 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2639 * prepare_task_switch - prepare to switch tasks
2640 * @rq: the runqueue preparing to switch
2641 * @prev: the current task that is being switched out
2642 * @next: the task we are going to switch to.
2644 * This is called with the rq lock held and interrupts off. It must
2645 * be paired with a subsequent finish_task_switch after the context
2646 * switch.
2648 * prepare_task_switch sets up locking and calls architecture specific
2649 * hooks.
2651 static inline void
2652 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2653 struct task_struct *next)
2655 fire_sched_out_preempt_notifiers(prev, next);
2656 prepare_lock_switch(rq, next);
2657 prepare_arch_switch(next);
2661 * finish_task_switch - clean up after a task-switch
2662 * @rq: runqueue associated with task-switch
2663 * @prev: the thread we just switched away from.
2665 * finish_task_switch must be called after the context switch, paired
2666 * with a prepare_task_switch call before the context switch.
2667 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2668 * and do any other architecture-specific cleanup actions.
2670 * Note that we may have delayed dropping an mm in context_switch(). If
2671 * so, we finish that here outside of the runqueue lock. (Doing it
2672 * with the lock held can cause deadlocks; see schedule() for
2673 * details.)
2675 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2676 __releases(rq->lock)
2678 struct mm_struct *mm = rq->prev_mm;
2679 long prev_state;
2681 rq->prev_mm = NULL;
2684 * A task struct has one reference for the use as "current".
2685 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2686 * schedule one last time. The schedule call will never return, and
2687 * the scheduled task must drop that reference.
2688 * The test for TASK_DEAD must occur while the runqueue locks are
2689 * still held, otherwise prev could be scheduled on another cpu, die
2690 * there before we look at prev->state, and then the reference would
2691 * be dropped twice.
2692 * Manfred Spraul <manfred@colorfullife.com>
2694 prev_state = prev->state;
2695 finish_arch_switch(prev);
2696 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2697 local_irq_disable();
2698 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2699 perf_event_task_sched_in(current);
2700 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2701 local_irq_enable();
2702 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2703 finish_lock_switch(rq, prev);
2705 fire_sched_in_preempt_notifiers(current);
2706 if (mm)
2707 mmdrop(mm);
2708 if (unlikely(prev_state == TASK_DEAD)) {
2710 * Remove function-return probe instances associated with this
2711 * task and put them back on the free list.
2713 kprobe_flush_task(prev);
2714 put_task_struct(prev);
2718 #ifdef CONFIG_SMP
2720 /* assumes rq->lock is held */
2721 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2723 if (prev->sched_class->pre_schedule)
2724 prev->sched_class->pre_schedule(rq, prev);
2727 /* rq->lock is NOT held, but preemption is disabled */
2728 static inline void post_schedule(struct rq *rq)
2730 if (rq->post_schedule) {
2731 unsigned long flags;
2733 raw_spin_lock_irqsave(&rq->lock, flags);
2734 if (rq->curr->sched_class->post_schedule)
2735 rq->curr->sched_class->post_schedule(rq);
2736 raw_spin_unlock_irqrestore(&rq->lock, flags);
2738 rq->post_schedule = 0;
2742 #else
2744 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2748 static inline void post_schedule(struct rq *rq)
2752 #endif
2755 * schedule_tail - first thing a freshly forked thread must call.
2756 * @prev: the thread we just switched away from.
2758 asmlinkage void schedule_tail(struct task_struct *prev)
2759 __releases(rq->lock)
2761 struct rq *rq = this_rq();
2763 finish_task_switch(rq, prev);
2766 * FIXME: do we need to worry about rq being invalidated by the
2767 * task_switch?
2769 post_schedule(rq);
2771 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2772 /* In this case, finish_task_switch does not reenable preemption */
2773 preempt_enable();
2774 #endif
2775 if (current->set_child_tid)
2776 put_user(task_pid_vnr(current), current->set_child_tid);
2780 * context_switch - switch to the new MM and the new
2781 * thread's register state.
2783 static inline void
2784 context_switch(struct rq *rq, struct task_struct *prev,
2785 struct task_struct *next)
2787 struct mm_struct *mm, *oldmm;
2789 prepare_task_switch(rq, prev, next);
2790 trace_sched_switch(prev, next);
2791 mm = next->mm;
2792 oldmm = prev->active_mm;
2794 * For paravirt, this is coupled with an exit in switch_to to
2795 * combine the page table reload and the switch backend into
2796 * one hypercall.
2798 arch_start_context_switch(prev);
2800 if (likely(!mm)) {
2801 next->active_mm = oldmm;
2802 atomic_inc(&oldmm->mm_count);
2803 enter_lazy_tlb(oldmm, next);
2804 } else
2805 switch_mm(oldmm, mm, next);
2807 if (likely(!prev->mm)) {
2808 prev->active_mm = NULL;
2809 rq->prev_mm = oldmm;
2812 * Since the runqueue lock will be released by the next
2813 * task (which is an invalid locking op but in the case
2814 * of the scheduler it's an obvious special-case), so we
2815 * do an early lockdep release here:
2817 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2818 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2819 #endif
2821 /* Here we just switch the register state and the stack. */
2822 switch_to(prev, next, prev);
2824 barrier();
2826 * this_rq must be evaluated again because prev may have moved
2827 * CPUs since it called schedule(), thus the 'rq' on its stack
2828 * frame will be invalid.
2830 finish_task_switch(this_rq(), prev);
2834 * nr_running, nr_uninterruptible and nr_context_switches:
2836 * externally visible scheduler statistics: current number of runnable
2837 * threads, current number of uninterruptible-sleeping threads, total
2838 * number of context switches performed since bootup.
2840 unsigned long nr_running(void)
2842 unsigned long i, sum = 0;
2844 for_each_online_cpu(i)
2845 sum += cpu_rq(i)->nr_running;
2847 return sum;
2850 unsigned long nr_uninterruptible(void)
2852 unsigned long i, sum = 0;
2854 for_each_possible_cpu(i)
2855 sum += cpu_rq(i)->nr_uninterruptible;
2858 * Since we read the counters lockless, it might be slightly
2859 * inaccurate. Do not allow it to go below zero though:
2861 if (unlikely((long)sum < 0))
2862 sum = 0;
2864 return sum;
2867 unsigned long long nr_context_switches(void)
2869 int i;
2870 unsigned long long sum = 0;
2872 for_each_possible_cpu(i)
2873 sum += cpu_rq(i)->nr_switches;
2875 return sum;
2878 unsigned long nr_iowait(void)
2880 unsigned long i, sum = 0;
2882 for_each_possible_cpu(i)
2883 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2885 return sum;
2888 unsigned long nr_iowait_cpu(void)
2890 struct rq *this = this_rq();
2891 return atomic_read(&this->nr_iowait);
2894 unsigned long this_cpu_load(void)
2896 struct rq *this = this_rq();
2897 return this->cpu_load[0];
2901 /* Variables and functions for calc_load */
2902 static atomic_long_t calc_load_tasks;
2903 static unsigned long calc_load_update;
2904 unsigned long avenrun[3];
2905 EXPORT_SYMBOL(avenrun);
2907 static long calc_load_fold_active(struct rq *this_rq)
2909 long nr_active, delta = 0;
2911 nr_active = this_rq->nr_running;
2912 nr_active += (long) this_rq->nr_uninterruptible;
2914 if (nr_active != this_rq->calc_load_active) {
2915 delta = nr_active - this_rq->calc_load_active;
2916 this_rq->calc_load_active = nr_active;
2919 return delta;
2922 #ifdef CONFIG_NO_HZ
2924 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2926 * When making the ILB scale, we should try to pull this in as well.
2928 static atomic_long_t calc_load_tasks_idle;
2930 static void calc_load_account_idle(struct rq *this_rq)
2932 long delta;
2934 delta = calc_load_fold_active(this_rq);
2935 if (delta)
2936 atomic_long_add(delta, &calc_load_tasks_idle);
2939 static long calc_load_fold_idle(void)
2941 long delta = 0;
2944 * Its got a race, we don't care...
2946 if (atomic_long_read(&calc_load_tasks_idle))
2947 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2949 return delta;
2951 #else
2952 static void calc_load_account_idle(struct rq *this_rq)
2956 static inline long calc_load_fold_idle(void)
2958 return 0;
2960 #endif
2963 * get_avenrun - get the load average array
2964 * @loads: pointer to dest load array
2965 * @offset: offset to add
2966 * @shift: shift count to shift the result left
2968 * These values are estimates at best, so no need for locking.
2970 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2972 loads[0] = (avenrun[0] + offset) << shift;
2973 loads[1] = (avenrun[1] + offset) << shift;
2974 loads[2] = (avenrun[2] + offset) << shift;
2977 static unsigned long
2978 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2980 load *= exp;
2981 load += active * (FIXED_1 - exp);
2982 return load >> FSHIFT;
2986 * calc_load - update the avenrun load estimates 10 ticks after the
2987 * CPUs have updated calc_load_tasks.
2989 void calc_global_load(void)
2991 unsigned long upd = calc_load_update + 10;
2992 long active;
2994 if (time_before(jiffies, upd))
2995 return;
2997 active = atomic_long_read(&calc_load_tasks);
2998 active = active > 0 ? active * FIXED_1 : 0;
3000 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3001 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3002 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3004 calc_load_update += LOAD_FREQ;
3008 * Called from update_cpu_load() to periodically update this CPU's
3009 * active count.
3011 static void calc_load_account_active(struct rq *this_rq)
3013 long delta;
3015 if (time_before(jiffies, this_rq->calc_load_update))
3016 return;
3018 delta = calc_load_fold_active(this_rq);
3019 delta += calc_load_fold_idle();
3020 if (delta)
3021 atomic_long_add(delta, &calc_load_tasks);
3023 this_rq->calc_load_update += LOAD_FREQ;
3027 * Update rq->cpu_load[] statistics. This function is usually called every
3028 * scheduler tick (TICK_NSEC).
3030 static void update_cpu_load(struct rq *this_rq)
3032 unsigned long this_load = this_rq->load.weight;
3033 int i, scale;
3035 this_rq->nr_load_updates++;
3037 /* Update our load: */
3038 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3039 unsigned long old_load, new_load;
3041 /* scale is effectively 1 << i now, and >> i divides by scale */
3043 old_load = this_rq->cpu_load[i];
3044 new_load = this_load;
3046 * Round up the averaging division if load is increasing. This
3047 * prevents us from getting stuck on 9 if the load is 10, for
3048 * example.
3050 if (new_load > old_load)
3051 new_load += scale-1;
3052 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3055 calc_load_account_active(this_rq);
3058 #ifdef CONFIG_SMP
3061 * sched_exec - execve() is a valuable balancing opportunity, because at
3062 * this point the task has the smallest effective memory and cache footprint.
3064 void sched_exec(void)
3066 struct task_struct *p = current;
3067 unsigned long flags;
3068 struct rq *rq;
3069 int dest_cpu;
3071 rq = task_rq_lock(p, &flags);
3072 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3073 if (dest_cpu == smp_processor_id())
3074 goto unlock;
3077 * select_task_rq() can race against ->cpus_allowed
3079 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3080 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3081 struct migration_arg arg = { p, dest_cpu };
3083 task_rq_unlock(rq, &flags);
3084 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3085 return;
3087 unlock:
3088 task_rq_unlock(rq, &flags);
3091 #endif
3093 DEFINE_PER_CPU(struct kernel_stat, kstat);
3095 EXPORT_PER_CPU_SYMBOL(kstat);
3098 * Return any ns on the sched_clock that have not yet been accounted in
3099 * @p in case that task is currently running.
3101 * Called with task_rq_lock() held on @rq.
3103 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3105 u64 ns = 0;
3107 if (task_current(rq, p)) {
3108 update_rq_clock(rq);
3109 ns = rq->clock - p->se.exec_start;
3110 if ((s64)ns < 0)
3111 ns = 0;
3114 return ns;
3117 unsigned long long task_delta_exec(struct task_struct *p)
3119 unsigned long flags;
3120 struct rq *rq;
3121 u64 ns = 0;
3123 rq = task_rq_lock(p, &flags);
3124 ns = do_task_delta_exec(p, rq);
3125 task_rq_unlock(rq, &flags);
3127 return ns;
3131 * Return accounted runtime for the task.
3132 * In case the task is currently running, return the runtime plus current's
3133 * pending runtime that have not been accounted yet.
3135 unsigned long long task_sched_runtime(struct task_struct *p)
3137 unsigned long flags;
3138 struct rq *rq;
3139 u64 ns = 0;
3141 rq = task_rq_lock(p, &flags);
3142 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3143 task_rq_unlock(rq, &flags);
3145 return ns;
3149 * Return sum_exec_runtime for the thread group.
3150 * In case the task is currently running, return the sum plus current's
3151 * pending runtime that have not been accounted yet.
3153 * Note that the thread group might have other running tasks as well,
3154 * so the return value not includes other pending runtime that other
3155 * running tasks might have.
3157 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3159 struct task_cputime totals;
3160 unsigned long flags;
3161 struct rq *rq;
3162 u64 ns;
3164 rq = task_rq_lock(p, &flags);
3165 thread_group_cputime(p, &totals);
3166 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3167 task_rq_unlock(rq, &flags);
3169 return ns;
3173 * Account user cpu time to a process.
3174 * @p: the process that the cpu time gets accounted to
3175 * @cputime: the cpu time spent in user space since the last update
3176 * @cputime_scaled: cputime scaled by cpu frequency
3178 void account_user_time(struct task_struct *p, cputime_t cputime,
3179 cputime_t cputime_scaled)
3181 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3182 cputime64_t tmp;
3184 /* Add user time to process. */
3185 p->utime = cputime_add(p->utime, cputime);
3186 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3187 account_group_user_time(p, cputime);
3189 /* Add user time to cpustat. */
3190 tmp = cputime_to_cputime64(cputime);
3191 if (TASK_NICE(p) > 0)
3192 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3193 else
3194 cpustat->user = cputime64_add(cpustat->user, tmp);
3196 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3197 /* Account for user time used */
3198 acct_update_integrals(p);
3202 * Account guest cpu time to a process.
3203 * @p: the process that the cpu time gets accounted to
3204 * @cputime: the cpu time spent in virtual machine since the last update
3205 * @cputime_scaled: cputime scaled by cpu frequency
3207 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3208 cputime_t cputime_scaled)
3210 cputime64_t tmp;
3211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3213 tmp = cputime_to_cputime64(cputime);
3215 /* Add guest time to process. */
3216 p->utime = cputime_add(p->utime, cputime);
3217 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3218 account_group_user_time(p, cputime);
3219 p->gtime = cputime_add(p->gtime, cputime);
3221 /* Add guest time to cpustat. */
3222 if (TASK_NICE(p) > 0) {
3223 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3224 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3225 } else {
3226 cpustat->user = cputime64_add(cpustat->user, tmp);
3227 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3232 * Account system cpu time to a process.
3233 * @p: the process that the cpu time gets accounted to
3234 * @hardirq_offset: the offset to subtract from hardirq_count()
3235 * @cputime: the cpu time spent in kernel space since the last update
3236 * @cputime_scaled: cputime scaled by cpu frequency
3238 void account_system_time(struct task_struct *p, int hardirq_offset,
3239 cputime_t cputime, cputime_t cputime_scaled)
3241 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3242 cputime64_t tmp;
3244 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3245 account_guest_time(p, cputime, cputime_scaled);
3246 return;
3249 /* Add system time to process. */
3250 p->stime = cputime_add(p->stime, cputime);
3251 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3252 account_group_system_time(p, cputime);
3254 /* Add system time to cpustat. */
3255 tmp = cputime_to_cputime64(cputime);
3256 if (hardirq_count() - hardirq_offset)
3257 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3258 else if (softirq_count())
3259 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3260 else
3261 cpustat->system = cputime64_add(cpustat->system, tmp);
3263 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3265 /* Account for system time used */
3266 acct_update_integrals(p);
3270 * Account for involuntary wait time.
3271 * @steal: the cpu time spent in involuntary wait
3273 void account_steal_time(cputime_t cputime)
3275 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3276 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3278 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3282 * Account for idle time.
3283 * @cputime: the cpu time spent in idle wait
3285 void account_idle_time(cputime_t cputime)
3287 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3288 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3289 struct rq *rq = this_rq();
3291 if (atomic_read(&rq->nr_iowait) > 0)
3292 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3293 else
3294 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3297 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3300 * Account a single tick of cpu time.
3301 * @p: the process that the cpu time gets accounted to
3302 * @user_tick: indicates if the tick is a user or a system tick
3304 void account_process_tick(struct task_struct *p, int user_tick)
3306 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3307 struct rq *rq = this_rq();
3309 if (user_tick)
3310 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3311 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3312 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3313 one_jiffy_scaled);
3314 else
3315 account_idle_time(cputime_one_jiffy);
3319 * Account multiple ticks of steal time.
3320 * @p: the process from which the cpu time has been stolen
3321 * @ticks: number of stolen ticks
3323 void account_steal_ticks(unsigned long ticks)
3325 account_steal_time(jiffies_to_cputime(ticks));
3329 * Account multiple ticks of idle time.
3330 * @ticks: number of stolen ticks
3332 void account_idle_ticks(unsigned long ticks)
3334 account_idle_time(jiffies_to_cputime(ticks));
3337 #endif
3340 * Use precise platform statistics if available:
3342 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3343 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3345 *ut = p->utime;
3346 *st = p->stime;
3349 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3351 struct task_cputime cputime;
3353 thread_group_cputime(p, &cputime);
3355 *ut = cputime.utime;
3356 *st = cputime.stime;
3358 #else
3360 #ifndef nsecs_to_cputime
3361 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3362 #endif
3364 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3366 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3369 * Use CFS's precise accounting:
3371 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3373 if (total) {
3374 u64 temp;
3376 temp = (u64)(rtime * utime);
3377 do_div(temp, total);
3378 utime = (cputime_t)temp;
3379 } else
3380 utime = rtime;
3383 * Compare with previous values, to keep monotonicity:
3385 p->prev_utime = max(p->prev_utime, utime);
3386 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3388 *ut = p->prev_utime;
3389 *st = p->prev_stime;
3393 * Must be called with siglock held.
3395 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3397 struct signal_struct *sig = p->signal;
3398 struct task_cputime cputime;
3399 cputime_t rtime, utime, total;
3401 thread_group_cputime(p, &cputime);
3403 total = cputime_add(cputime.utime, cputime.stime);
3404 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3406 if (total) {
3407 u64 temp;
3409 temp = (u64)(rtime * cputime.utime);
3410 do_div(temp, total);
3411 utime = (cputime_t)temp;
3412 } else
3413 utime = rtime;
3415 sig->prev_utime = max(sig->prev_utime, utime);
3416 sig->prev_stime = max(sig->prev_stime,
3417 cputime_sub(rtime, sig->prev_utime));
3419 *ut = sig->prev_utime;
3420 *st = sig->prev_stime;
3422 #endif
3425 * This function gets called by the timer code, with HZ frequency.
3426 * We call it with interrupts disabled.
3428 * It also gets called by the fork code, when changing the parent's
3429 * timeslices.
3431 void scheduler_tick(void)
3433 int cpu = smp_processor_id();
3434 struct rq *rq = cpu_rq(cpu);
3435 struct task_struct *curr = rq->curr;
3437 sched_clock_tick();
3439 raw_spin_lock(&rq->lock);
3440 update_rq_clock(rq);
3441 update_cpu_load(rq);
3442 curr->sched_class->task_tick(rq, curr, 0);
3443 raw_spin_unlock(&rq->lock);
3445 perf_event_task_tick(curr);
3447 #ifdef CONFIG_SMP
3448 rq->idle_at_tick = idle_cpu(cpu);
3449 trigger_load_balance(rq, cpu);
3450 #endif
3453 notrace unsigned long get_parent_ip(unsigned long addr)
3455 if (in_lock_functions(addr)) {
3456 addr = CALLER_ADDR2;
3457 if (in_lock_functions(addr))
3458 addr = CALLER_ADDR3;
3460 return addr;
3463 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3464 defined(CONFIG_PREEMPT_TRACER))
3466 void __kprobes add_preempt_count(int val)
3468 #ifdef CONFIG_DEBUG_PREEMPT
3470 * Underflow?
3472 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3473 return;
3474 #endif
3475 preempt_count() += val;
3476 #ifdef CONFIG_DEBUG_PREEMPT
3478 * Spinlock count overflowing soon?
3480 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3481 PREEMPT_MASK - 10);
3482 #endif
3483 if (preempt_count() == val)
3484 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3486 EXPORT_SYMBOL(add_preempt_count);
3488 void __kprobes sub_preempt_count(int val)
3490 #ifdef CONFIG_DEBUG_PREEMPT
3492 * Underflow?
3494 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3495 return;
3497 * Is the spinlock portion underflowing?
3499 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3500 !(preempt_count() & PREEMPT_MASK)))
3501 return;
3502 #endif
3504 if (preempt_count() == val)
3505 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3506 preempt_count() -= val;
3508 EXPORT_SYMBOL(sub_preempt_count);
3510 #endif
3513 * Print scheduling while atomic bug:
3515 static noinline void __schedule_bug(struct task_struct *prev)
3517 struct pt_regs *regs = get_irq_regs();
3519 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3520 prev->comm, prev->pid, preempt_count());
3522 debug_show_held_locks(prev);
3523 print_modules();
3524 if (irqs_disabled())
3525 print_irqtrace_events(prev);
3527 if (regs)
3528 show_regs(regs);
3529 else
3530 dump_stack();
3534 * Various schedule()-time debugging checks and statistics:
3536 static inline void schedule_debug(struct task_struct *prev)
3539 * Test if we are atomic. Since do_exit() needs to call into
3540 * schedule() atomically, we ignore that path for now.
3541 * Otherwise, whine if we are scheduling when we should not be.
3543 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3544 __schedule_bug(prev);
3546 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3548 schedstat_inc(this_rq(), sched_count);
3549 #ifdef CONFIG_SCHEDSTATS
3550 if (unlikely(prev->lock_depth >= 0)) {
3551 schedstat_inc(this_rq(), bkl_count);
3552 schedstat_inc(prev, sched_info.bkl_count);
3554 #endif
3557 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3559 if (prev->se.on_rq)
3560 update_rq_clock(rq);
3561 rq->skip_clock_update = 0;
3562 prev->sched_class->put_prev_task(rq, prev);
3566 * Pick up the highest-prio task:
3568 static inline struct task_struct *
3569 pick_next_task(struct rq *rq)
3571 const struct sched_class *class;
3572 struct task_struct *p;
3575 * Optimization: we know that if all tasks are in
3576 * the fair class we can call that function directly:
3578 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3579 p = fair_sched_class.pick_next_task(rq);
3580 if (likely(p))
3581 return p;
3584 class = sched_class_highest;
3585 for ( ; ; ) {
3586 p = class->pick_next_task(rq);
3587 if (p)
3588 return p;
3590 * Will never be NULL as the idle class always
3591 * returns a non-NULL p:
3593 class = class->next;
3598 * schedule() is the main scheduler function.
3600 asmlinkage void __sched schedule(void)
3602 struct task_struct *prev, *next;
3603 unsigned long *switch_count;
3604 struct rq *rq;
3605 int cpu;
3607 need_resched:
3608 preempt_disable();
3609 cpu = smp_processor_id();
3610 rq = cpu_rq(cpu);
3611 rcu_note_context_switch(cpu);
3612 prev = rq->curr;
3613 switch_count = &prev->nivcsw;
3615 release_kernel_lock(prev);
3616 need_resched_nonpreemptible:
3618 schedule_debug(prev);
3620 if (sched_feat(HRTICK))
3621 hrtick_clear(rq);
3623 raw_spin_lock_irq(&rq->lock);
3624 clear_tsk_need_resched(prev);
3626 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3627 if (unlikely(signal_pending_state(prev->state, prev)))
3628 prev->state = TASK_RUNNING;
3629 else
3630 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3631 switch_count = &prev->nvcsw;
3634 pre_schedule(rq, prev);
3636 if (unlikely(!rq->nr_running))
3637 idle_balance(cpu, rq);
3639 put_prev_task(rq, prev);
3640 next = pick_next_task(rq);
3642 if (likely(prev != next)) {
3643 sched_info_switch(prev, next);
3644 perf_event_task_sched_out(prev, next);
3646 rq->nr_switches++;
3647 rq->curr = next;
3648 ++*switch_count;
3650 context_switch(rq, prev, next); /* unlocks the rq */
3652 * the context switch might have flipped the stack from under
3653 * us, hence refresh the local variables.
3655 cpu = smp_processor_id();
3656 rq = cpu_rq(cpu);
3657 } else
3658 raw_spin_unlock_irq(&rq->lock);
3660 post_schedule(rq);
3662 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3663 prev = rq->curr;
3664 switch_count = &prev->nivcsw;
3665 goto need_resched_nonpreemptible;
3668 preempt_enable_no_resched();
3669 if (need_resched())
3670 goto need_resched;
3672 EXPORT_SYMBOL(schedule);
3674 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3676 * Look out! "owner" is an entirely speculative pointer
3677 * access and not reliable.
3679 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3681 unsigned int cpu;
3682 struct rq *rq;
3684 if (!sched_feat(OWNER_SPIN))
3685 return 0;
3687 #ifdef CONFIG_DEBUG_PAGEALLOC
3689 * Need to access the cpu field knowing that
3690 * DEBUG_PAGEALLOC could have unmapped it if
3691 * the mutex owner just released it and exited.
3693 if (probe_kernel_address(&owner->cpu, cpu))
3694 return 0;
3695 #else
3696 cpu = owner->cpu;
3697 #endif
3700 * Even if the access succeeded (likely case),
3701 * the cpu field may no longer be valid.
3703 if (cpu >= nr_cpumask_bits)
3704 return 0;
3707 * We need to validate that we can do a
3708 * get_cpu() and that we have the percpu area.
3710 if (!cpu_online(cpu))
3711 return 0;
3713 rq = cpu_rq(cpu);
3715 for (;;) {
3717 * Owner changed, break to re-assess state.
3719 if (lock->owner != owner)
3720 break;
3723 * Is that owner really running on that cpu?
3725 if (task_thread_info(rq->curr) != owner || need_resched())
3726 return 0;
3728 cpu_relax();
3731 return 1;
3733 #endif
3735 #ifdef CONFIG_PREEMPT
3737 * this is the entry point to schedule() from in-kernel preemption
3738 * off of preempt_enable. Kernel preemptions off return from interrupt
3739 * occur there and call schedule directly.
3741 asmlinkage void __sched preempt_schedule(void)
3743 struct thread_info *ti = current_thread_info();
3746 * If there is a non-zero preempt_count or interrupts are disabled,
3747 * we do not want to preempt the current task. Just return..
3749 if (likely(ti->preempt_count || irqs_disabled()))
3750 return;
3752 do {
3753 add_preempt_count(PREEMPT_ACTIVE);
3754 schedule();
3755 sub_preempt_count(PREEMPT_ACTIVE);
3758 * Check again in case we missed a preemption opportunity
3759 * between schedule and now.
3761 barrier();
3762 } while (need_resched());
3764 EXPORT_SYMBOL(preempt_schedule);
3767 * this is the entry point to schedule() from kernel preemption
3768 * off of irq context.
3769 * Note, that this is called and return with irqs disabled. This will
3770 * protect us against recursive calling from irq.
3772 asmlinkage void __sched preempt_schedule_irq(void)
3774 struct thread_info *ti = current_thread_info();
3776 /* Catch callers which need to be fixed */
3777 BUG_ON(ti->preempt_count || !irqs_disabled());
3779 do {
3780 add_preempt_count(PREEMPT_ACTIVE);
3781 local_irq_enable();
3782 schedule();
3783 local_irq_disable();
3784 sub_preempt_count(PREEMPT_ACTIVE);
3787 * Check again in case we missed a preemption opportunity
3788 * between schedule and now.
3790 barrier();
3791 } while (need_resched());
3794 #endif /* CONFIG_PREEMPT */
3796 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3797 void *key)
3799 return try_to_wake_up(curr->private, mode, wake_flags);
3801 EXPORT_SYMBOL(default_wake_function);
3804 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3805 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3806 * number) then we wake all the non-exclusive tasks and one exclusive task.
3808 * There are circumstances in which we can try to wake a task which has already
3809 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3810 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3812 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3813 int nr_exclusive, int wake_flags, void *key)
3815 wait_queue_t *curr, *next;
3817 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3818 unsigned flags = curr->flags;
3820 if (curr->func(curr, mode, wake_flags, key) &&
3821 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3822 break;
3827 * __wake_up - wake up threads blocked on a waitqueue.
3828 * @q: the waitqueue
3829 * @mode: which threads
3830 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3831 * @key: is directly passed to the wakeup function
3833 * It may be assumed that this function implies a write memory barrier before
3834 * changing the task state if and only if any tasks are woken up.
3836 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3837 int nr_exclusive, void *key)
3839 unsigned long flags;
3841 spin_lock_irqsave(&q->lock, flags);
3842 __wake_up_common(q, mode, nr_exclusive, 0, key);
3843 spin_unlock_irqrestore(&q->lock, flags);
3845 EXPORT_SYMBOL(__wake_up);
3848 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3850 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3852 __wake_up_common(q, mode, 1, 0, NULL);
3854 EXPORT_SYMBOL_GPL(__wake_up_locked);
3856 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3858 __wake_up_common(q, mode, 1, 0, key);
3862 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3863 * @q: the waitqueue
3864 * @mode: which threads
3865 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3866 * @key: opaque value to be passed to wakeup targets
3868 * The sync wakeup differs that the waker knows that it will schedule
3869 * away soon, so while the target thread will be woken up, it will not
3870 * be migrated to another CPU - ie. the two threads are 'synchronized'
3871 * with each other. This can prevent needless bouncing between CPUs.
3873 * On UP it can prevent extra preemption.
3875 * It may be assumed that this function implies a write memory barrier before
3876 * changing the task state if and only if any tasks are woken up.
3878 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3879 int nr_exclusive, void *key)
3881 unsigned long flags;
3882 int wake_flags = WF_SYNC;
3884 if (unlikely(!q))
3885 return;
3887 if (unlikely(!nr_exclusive))
3888 wake_flags = 0;
3890 spin_lock_irqsave(&q->lock, flags);
3891 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3892 spin_unlock_irqrestore(&q->lock, flags);
3894 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3897 * __wake_up_sync - see __wake_up_sync_key()
3899 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3901 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3903 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3906 * complete: - signals a single thread waiting on this completion
3907 * @x: holds the state of this particular completion
3909 * This will wake up a single thread waiting on this completion. Threads will be
3910 * awakened in the same order in which they were queued.
3912 * See also complete_all(), wait_for_completion() and related routines.
3914 * It may be assumed that this function implies a write memory barrier before
3915 * changing the task state if and only if any tasks are woken up.
3917 void complete(struct completion *x)
3919 unsigned long flags;
3921 spin_lock_irqsave(&x->wait.lock, flags);
3922 x->done++;
3923 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3924 spin_unlock_irqrestore(&x->wait.lock, flags);
3926 EXPORT_SYMBOL(complete);
3929 * complete_all: - signals all threads waiting on this completion
3930 * @x: holds the state of this particular completion
3932 * This will wake up all threads waiting on this particular completion event.
3934 * It may be assumed that this function implies a write memory barrier before
3935 * changing the task state if and only if any tasks are woken up.
3937 void complete_all(struct completion *x)
3939 unsigned long flags;
3941 spin_lock_irqsave(&x->wait.lock, flags);
3942 x->done += UINT_MAX/2;
3943 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3944 spin_unlock_irqrestore(&x->wait.lock, flags);
3946 EXPORT_SYMBOL(complete_all);
3948 static inline long __sched
3949 do_wait_for_common(struct completion *x, long timeout, int state)
3951 if (!x->done) {
3952 DECLARE_WAITQUEUE(wait, current);
3954 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3955 do {
3956 if (signal_pending_state(state, current)) {
3957 timeout = -ERESTARTSYS;
3958 break;
3960 __set_current_state(state);
3961 spin_unlock_irq(&x->wait.lock);
3962 timeout = schedule_timeout(timeout);
3963 spin_lock_irq(&x->wait.lock);
3964 } while (!x->done && timeout);
3965 __remove_wait_queue(&x->wait, &wait);
3966 if (!x->done)
3967 return timeout;
3969 x->done--;
3970 return timeout ?: 1;
3973 static long __sched
3974 wait_for_common(struct completion *x, long timeout, int state)
3976 might_sleep();
3978 spin_lock_irq(&x->wait.lock);
3979 timeout = do_wait_for_common(x, timeout, state);
3980 spin_unlock_irq(&x->wait.lock);
3981 return timeout;
3985 * wait_for_completion: - waits for completion of a task
3986 * @x: holds the state of this particular completion
3988 * This waits to be signaled for completion of a specific task. It is NOT
3989 * interruptible and there is no timeout.
3991 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3992 * and interrupt capability. Also see complete().
3994 void __sched wait_for_completion(struct completion *x)
3996 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3998 EXPORT_SYMBOL(wait_for_completion);
4001 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4002 * @x: holds the state of this particular completion
4003 * @timeout: timeout value in jiffies
4005 * This waits for either a completion of a specific task to be signaled or for a
4006 * specified timeout to expire. The timeout is in jiffies. It is not
4007 * interruptible.
4009 unsigned long __sched
4010 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4012 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4014 EXPORT_SYMBOL(wait_for_completion_timeout);
4017 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4018 * @x: holds the state of this particular completion
4020 * This waits for completion of a specific task to be signaled. It is
4021 * interruptible.
4023 int __sched wait_for_completion_interruptible(struct completion *x)
4025 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4026 if (t == -ERESTARTSYS)
4027 return t;
4028 return 0;
4030 EXPORT_SYMBOL(wait_for_completion_interruptible);
4033 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4034 * @x: holds the state of this particular completion
4035 * @timeout: timeout value in jiffies
4037 * This waits for either a completion of a specific task to be signaled or for a
4038 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4040 unsigned long __sched
4041 wait_for_completion_interruptible_timeout(struct completion *x,
4042 unsigned long timeout)
4044 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4046 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4049 * wait_for_completion_killable: - waits for completion of a task (killable)
4050 * @x: holds the state of this particular completion
4052 * This waits to be signaled for completion of a specific task. It can be
4053 * interrupted by a kill signal.
4055 int __sched wait_for_completion_killable(struct completion *x)
4057 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4058 if (t == -ERESTARTSYS)
4059 return t;
4060 return 0;
4062 EXPORT_SYMBOL(wait_for_completion_killable);
4065 * try_wait_for_completion - try to decrement a completion without blocking
4066 * @x: completion structure
4068 * Returns: 0 if a decrement cannot be done without blocking
4069 * 1 if a decrement succeeded.
4071 * If a completion is being used as a counting completion,
4072 * attempt to decrement the counter without blocking. This
4073 * enables us to avoid waiting if the resource the completion
4074 * is protecting is not available.
4076 bool try_wait_for_completion(struct completion *x)
4078 unsigned long flags;
4079 int ret = 1;
4081 spin_lock_irqsave(&x->wait.lock, flags);
4082 if (!x->done)
4083 ret = 0;
4084 else
4085 x->done--;
4086 spin_unlock_irqrestore(&x->wait.lock, flags);
4087 return ret;
4089 EXPORT_SYMBOL(try_wait_for_completion);
4092 * completion_done - Test to see if a completion has any waiters
4093 * @x: completion structure
4095 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4096 * 1 if there are no waiters.
4099 bool completion_done(struct completion *x)
4101 unsigned long flags;
4102 int ret = 1;
4104 spin_lock_irqsave(&x->wait.lock, flags);
4105 if (!x->done)
4106 ret = 0;
4107 spin_unlock_irqrestore(&x->wait.lock, flags);
4108 return ret;
4110 EXPORT_SYMBOL(completion_done);
4112 static long __sched
4113 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4115 unsigned long flags;
4116 wait_queue_t wait;
4118 init_waitqueue_entry(&wait, current);
4120 __set_current_state(state);
4122 spin_lock_irqsave(&q->lock, flags);
4123 __add_wait_queue(q, &wait);
4124 spin_unlock(&q->lock);
4125 timeout = schedule_timeout(timeout);
4126 spin_lock_irq(&q->lock);
4127 __remove_wait_queue(q, &wait);
4128 spin_unlock_irqrestore(&q->lock, flags);
4130 return timeout;
4133 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4135 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4137 EXPORT_SYMBOL(interruptible_sleep_on);
4139 long __sched
4140 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4142 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4144 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4146 void __sched sleep_on(wait_queue_head_t *q)
4148 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4150 EXPORT_SYMBOL(sleep_on);
4152 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4154 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4156 EXPORT_SYMBOL(sleep_on_timeout);
4158 #ifdef CONFIG_RT_MUTEXES
4161 * rt_mutex_setprio - set the current priority of a task
4162 * @p: task
4163 * @prio: prio value (kernel-internal form)
4165 * This function changes the 'effective' priority of a task. It does
4166 * not touch ->normal_prio like __setscheduler().
4168 * Used by the rt_mutex code to implement priority inheritance logic.
4170 void rt_mutex_setprio(struct task_struct *p, int prio)
4172 unsigned long flags;
4173 int oldprio, on_rq, running;
4174 struct rq *rq;
4175 const struct sched_class *prev_class;
4177 BUG_ON(prio < 0 || prio > MAX_PRIO);
4179 rq = task_rq_lock(p, &flags);
4181 oldprio = p->prio;
4182 prev_class = p->sched_class;
4183 on_rq = p->se.on_rq;
4184 running = task_current(rq, p);
4185 if (on_rq)
4186 dequeue_task(rq, p, 0);
4187 if (running)
4188 p->sched_class->put_prev_task(rq, p);
4190 if (rt_prio(prio))
4191 p->sched_class = &rt_sched_class;
4192 else
4193 p->sched_class = &fair_sched_class;
4195 p->prio = prio;
4197 if (running)
4198 p->sched_class->set_curr_task(rq);
4199 if (on_rq) {
4200 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4202 check_class_changed(rq, p, prev_class, oldprio, running);
4204 task_rq_unlock(rq, &flags);
4207 #endif
4209 void set_user_nice(struct task_struct *p, long nice)
4211 int old_prio, delta, on_rq;
4212 unsigned long flags;
4213 struct rq *rq;
4215 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4216 return;
4218 * We have to be careful, if called from sys_setpriority(),
4219 * the task might be in the middle of scheduling on another CPU.
4221 rq = task_rq_lock(p, &flags);
4223 * The RT priorities are set via sched_setscheduler(), but we still
4224 * allow the 'normal' nice value to be set - but as expected
4225 * it wont have any effect on scheduling until the task is
4226 * SCHED_FIFO/SCHED_RR:
4228 if (task_has_rt_policy(p)) {
4229 p->static_prio = NICE_TO_PRIO(nice);
4230 goto out_unlock;
4232 on_rq = p->se.on_rq;
4233 if (on_rq)
4234 dequeue_task(rq, p, 0);
4236 p->static_prio = NICE_TO_PRIO(nice);
4237 set_load_weight(p);
4238 old_prio = p->prio;
4239 p->prio = effective_prio(p);
4240 delta = p->prio - old_prio;
4242 if (on_rq) {
4243 enqueue_task(rq, p, 0);
4245 * If the task increased its priority or is running and
4246 * lowered its priority, then reschedule its CPU:
4248 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4249 resched_task(rq->curr);
4251 out_unlock:
4252 task_rq_unlock(rq, &flags);
4254 EXPORT_SYMBOL(set_user_nice);
4257 * can_nice - check if a task can reduce its nice value
4258 * @p: task
4259 * @nice: nice value
4261 int can_nice(const struct task_struct *p, const int nice)
4263 /* convert nice value [19,-20] to rlimit style value [1,40] */
4264 int nice_rlim = 20 - nice;
4266 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4267 capable(CAP_SYS_NICE));
4270 #ifdef __ARCH_WANT_SYS_NICE
4273 * sys_nice - change the priority of the current process.
4274 * @increment: priority increment
4276 * sys_setpriority is a more generic, but much slower function that
4277 * does similar things.
4279 SYSCALL_DEFINE1(nice, int, increment)
4281 long nice, retval;
4284 * Setpriority might change our priority at the same moment.
4285 * We don't have to worry. Conceptually one call occurs first
4286 * and we have a single winner.
4288 if (increment < -40)
4289 increment = -40;
4290 if (increment > 40)
4291 increment = 40;
4293 nice = TASK_NICE(current) + increment;
4294 if (nice < -20)
4295 nice = -20;
4296 if (nice > 19)
4297 nice = 19;
4299 if (increment < 0 && !can_nice(current, nice))
4300 return -EPERM;
4302 retval = security_task_setnice(current, nice);
4303 if (retval)
4304 return retval;
4306 set_user_nice(current, nice);
4307 return 0;
4310 #endif
4313 * task_prio - return the priority value of a given task.
4314 * @p: the task in question.
4316 * This is the priority value as seen by users in /proc.
4317 * RT tasks are offset by -200. Normal tasks are centered
4318 * around 0, value goes from -16 to +15.
4320 int task_prio(const struct task_struct *p)
4322 return p->prio - MAX_RT_PRIO;
4326 * task_nice - return the nice value of a given task.
4327 * @p: the task in question.
4329 int task_nice(const struct task_struct *p)
4331 return TASK_NICE(p);
4333 EXPORT_SYMBOL(task_nice);
4336 * idle_cpu - is a given cpu idle currently?
4337 * @cpu: the processor in question.
4339 int idle_cpu(int cpu)
4341 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4345 * idle_task - return the idle task for a given cpu.
4346 * @cpu: the processor in question.
4348 struct task_struct *idle_task(int cpu)
4350 return cpu_rq(cpu)->idle;
4354 * find_process_by_pid - find a process with a matching PID value.
4355 * @pid: the pid in question.
4357 static struct task_struct *find_process_by_pid(pid_t pid)
4359 return pid ? find_task_by_vpid(pid) : current;
4362 /* Actually do priority change: must hold rq lock. */
4363 static void
4364 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4366 BUG_ON(p->se.on_rq);
4368 p->policy = policy;
4369 p->rt_priority = prio;
4370 p->normal_prio = normal_prio(p);
4371 /* we are holding p->pi_lock already */
4372 p->prio = rt_mutex_getprio(p);
4373 if (rt_prio(p->prio))
4374 p->sched_class = &rt_sched_class;
4375 else
4376 p->sched_class = &fair_sched_class;
4377 set_load_weight(p);
4381 * check the target process has a UID that matches the current process's
4383 static bool check_same_owner(struct task_struct *p)
4385 const struct cred *cred = current_cred(), *pcred;
4386 bool match;
4388 rcu_read_lock();
4389 pcred = __task_cred(p);
4390 match = (cred->euid == pcred->euid ||
4391 cred->euid == pcred->uid);
4392 rcu_read_unlock();
4393 return match;
4396 static int __sched_setscheduler(struct task_struct *p, int policy,
4397 struct sched_param *param, bool user)
4399 int retval, oldprio, oldpolicy = -1, on_rq, running;
4400 unsigned long flags;
4401 const struct sched_class *prev_class;
4402 struct rq *rq;
4403 int reset_on_fork;
4405 /* may grab non-irq protected spin_locks */
4406 BUG_ON(in_interrupt());
4407 recheck:
4408 /* double check policy once rq lock held */
4409 if (policy < 0) {
4410 reset_on_fork = p->sched_reset_on_fork;
4411 policy = oldpolicy = p->policy;
4412 } else {
4413 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4414 policy &= ~SCHED_RESET_ON_FORK;
4416 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4417 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4418 policy != SCHED_IDLE)
4419 return -EINVAL;
4423 * Valid priorities for SCHED_FIFO and SCHED_RR are
4424 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4425 * SCHED_BATCH and SCHED_IDLE is 0.
4427 if (param->sched_priority < 0 ||
4428 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4429 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4430 return -EINVAL;
4431 if (rt_policy(policy) != (param->sched_priority != 0))
4432 return -EINVAL;
4435 * Allow unprivileged RT tasks to decrease priority:
4437 if (user && !capable(CAP_SYS_NICE)) {
4438 if (rt_policy(policy)) {
4439 unsigned long rlim_rtprio;
4441 if (!lock_task_sighand(p, &flags))
4442 return -ESRCH;
4443 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4444 unlock_task_sighand(p, &flags);
4446 /* can't set/change the rt policy */
4447 if (policy != p->policy && !rlim_rtprio)
4448 return -EPERM;
4450 /* can't increase priority */
4451 if (param->sched_priority > p->rt_priority &&
4452 param->sched_priority > rlim_rtprio)
4453 return -EPERM;
4456 * Like positive nice levels, dont allow tasks to
4457 * move out of SCHED_IDLE either:
4459 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4460 return -EPERM;
4462 /* can't change other user's priorities */
4463 if (!check_same_owner(p))
4464 return -EPERM;
4466 /* Normal users shall not reset the sched_reset_on_fork flag */
4467 if (p->sched_reset_on_fork && !reset_on_fork)
4468 return -EPERM;
4471 if (user) {
4472 #ifdef CONFIG_RT_GROUP_SCHED
4474 * Do not allow realtime tasks into groups that have no runtime
4475 * assigned.
4477 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4478 task_group(p)->rt_bandwidth.rt_runtime == 0)
4479 return -EPERM;
4480 #endif
4482 retval = security_task_setscheduler(p, policy, param);
4483 if (retval)
4484 return retval;
4488 * make sure no PI-waiters arrive (or leave) while we are
4489 * changing the priority of the task:
4491 raw_spin_lock_irqsave(&p->pi_lock, flags);
4493 * To be able to change p->policy safely, the apropriate
4494 * runqueue lock must be held.
4496 rq = __task_rq_lock(p);
4497 /* recheck policy now with rq lock held */
4498 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4499 policy = oldpolicy = -1;
4500 __task_rq_unlock(rq);
4501 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4502 goto recheck;
4504 on_rq = p->se.on_rq;
4505 running = task_current(rq, p);
4506 if (on_rq)
4507 deactivate_task(rq, p, 0);
4508 if (running)
4509 p->sched_class->put_prev_task(rq, p);
4511 p->sched_reset_on_fork = reset_on_fork;
4513 oldprio = p->prio;
4514 prev_class = p->sched_class;
4515 __setscheduler(rq, p, policy, param->sched_priority);
4517 if (running)
4518 p->sched_class->set_curr_task(rq);
4519 if (on_rq) {
4520 activate_task(rq, p, 0);
4522 check_class_changed(rq, p, prev_class, oldprio, running);
4524 __task_rq_unlock(rq);
4525 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4527 rt_mutex_adjust_pi(p);
4529 return 0;
4533 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4534 * @p: the task in question.
4535 * @policy: new policy.
4536 * @param: structure containing the new RT priority.
4538 * NOTE that the task may be already dead.
4540 int sched_setscheduler(struct task_struct *p, int policy,
4541 struct sched_param *param)
4543 return __sched_setscheduler(p, policy, param, true);
4545 EXPORT_SYMBOL_GPL(sched_setscheduler);
4548 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4549 * @p: the task in question.
4550 * @policy: new policy.
4551 * @param: structure containing the new RT priority.
4553 * Just like sched_setscheduler, only don't bother checking if the
4554 * current context has permission. For example, this is needed in
4555 * stop_machine(): we create temporary high priority worker threads,
4556 * but our caller might not have that capability.
4558 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4559 struct sched_param *param)
4561 return __sched_setscheduler(p, policy, param, false);
4564 static int
4565 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4567 struct sched_param lparam;
4568 struct task_struct *p;
4569 int retval;
4571 if (!param || pid < 0)
4572 return -EINVAL;
4573 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4574 return -EFAULT;
4576 rcu_read_lock();
4577 retval = -ESRCH;
4578 p = find_process_by_pid(pid);
4579 if (p != NULL)
4580 retval = sched_setscheduler(p, policy, &lparam);
4581 rcu_read_unlock();
4583 return retval;
4587 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4588 * @pid: the pid in question.
4589 * @policy: new policy.
4590 * @param: structure containing the new RT priority.
4592 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4593 struct sched_param __user *, param)
4595 /* negative values for policy are not valid */
4596 if (policy < 0)
4597 return -EINVAL;
4599 return do_sched_setscheduler(pid, policy, param);
4603 * sys_sched_setparam - set/change the RT priority of a thread
4604 * @pid: the pid in question.
4605 * @param: structure containing the new RT priority.
4607 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4609 return do_sched_setscheduler(pid, -1, param);
4613 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4614 * @pid: the pid in question.
4616 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4618 struct task_struct *p;
4619 int retval;
4621 if (pid < 0)
4622 return -EINVAL;
4624 retval = -ESRCH;
4625 rcu_read_lock();
4626 p = find_process_by_pid(pid);
4627 if (p) {
4628 retval = security_task_getscheduler(p);
4629 if (!retval)
4630 retval = p->policy
4631 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4633 rcu_read_unlock();
4634 return retval;
4638 * sys_sched_getparam - get the RT priority of a thread
4639 * @pid: the pid in question.
4640 * @param: structure containing the RT priority.
4642 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4644 struct sched_param lp;
4645 struct task_struct *p;
4646 int retval;
4648 if (!param || pid < 0)
4649 return -EINVAL;
4651 rcu_read_lock();
4652 p = find_process_by_pid(pid);
4653 retval = -ESRCH;
4654 if (!p)
4655 goto out_unlock;
4657 retval = security_task_getscheduler(p);
4658 if (retval)
4659 goto out_unlock;
4661 lp.sched_priority = p->rt_priority;
4662 rcu_read_unlock();
4665 * This one might sleep, we cannot do it with a spinlock held ...
4667 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4669 return retval;
4671 out_unlock:
4672 rcu_read_unlock();
4673 return retval;
4676 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4678 cpumask_var_t cpus_allowed, new_mask;
4679 struct task_struct *p;
4680 int retval;
4682 get_online_cpus();
4683 rcu_read_lock();
4685 p = find_process_by_pid(pid);
4686 if (!p) {
4687 rcu_read_unlock();
4688 put_online_cpus();
4689 return -ESRCH;
4692 /* Prevent p going away */
4693 get_task_struct(p);
4694 rcu_read_unlock();
4696 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4697 retval = -ENOMEM;
4698 goto out_put_task;
4700 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4701 retval = -ENOMEM;
4702 goto out_free_cpus_allowed;
4704 retval = -EPERM;
4705 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4706 goto out_unlock;
4708 retval = security_task_setscheduler(p, 0, NULL);
4709 if (retval)
4710 goto out_unlock;
4712 cpuset_cpus_allowed(p, cpus_allowed);
4713 cpumask_and(new_mask, in_mask, cpus_allowed);
4714 again:
4715 retval = set_cpus_allowed_ptr(p, new_mask);
4717 if (!retval) {
4718 cpuset_cpus_allowed(p, cpus_allowed);
4719 if (!cpumask_subset(new_mask, cpus_allowed)) {
4721 * We must have raced with a concurrent cpuset
4722 * update. Just reset the cpus_allowed to the
4723 * cpuset's cpus_allowed
4725 cpumask_copy(new_mask, cpus_allowed);
4726 goto again;
4729 out_unlock:
4730 free_cpumask_var(new_mask);
4731 out_free_cpus_allowed:
4732 free_cpumask_var(cpus_allowed);
4733 out_put_task:
4734 put_task_struct(p);
4735 put_online_cpus();
4736 return retval;
4739 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4740 struct cpumask *new_mask)
4742 if (len < cpumask_size())
4743 cpumask_clear(new_mask);
4744 else if (len > cpumask_size())
4745 len = cpumask_size();
4747 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4751 * sys_sched_setaffinity - set the cpu affinity of a process
4752 * @pid: pid of the process
4753 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4754 * @user_mask_ptr: user-space pointer to the new cpu mask
4756 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4757 unsigned long __user *, user_mask_ptr)
4759 cpumask_var_t new_mask;
4760 int retval;
4762 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4763 return -ENOMEM;
4765 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4766 if (retval == 0)
4767 retval = sched_setaffinity(pid, new_mask);
4768 free_cpumask_var(new_mask);
4769 return retval;
4772 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4774 struct task_struct *p;
4775 unsigned long flags;
4776 struct rq *rq;
4777 int retval;
4779 get_online_cpus();
4780 rcu_read_lock();
4782 retval = -ESRCH;
4783 p = find_process_by_pid(pid);
4784 if (!p)
4785 goto out_unlock;
4787 retval = security_task_getscheduler(p);
4788 if (retval)
4789 goto out_unlock;
4791 rq = task_rq_lock(p, &flags);
4792 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4793 task_rq_unlock(rq, &flags);
4795 out_unlock:
4796 rcu_read_unlock();
4797 put_online_cpus();
4799 return retval;
4803 * sys_sched_getaffinity - get the cpu affinity of a process
4804 * @pid: pid of the process
4805 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4806 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4808 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4809 unsigned long __user *, user_mask_ptr)
4811 int ret;
4812 cpumask_var_t mask;
4814 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4815 return -EINVAL;
4816 if (len & (sizeof(unsigned long)-1))
4817 return -EINVAL;
4819 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4820 return -ENOMEM;
4822 ret = sched_getaffinity(pid, mask);
4823 if (ret == 0) {
4824 size_t retlen = min_t(size_t, len, cpumask_size());
4826 if (copy_to_user(user_mask_ptr, mask, retlen))
4827 ret = -EFAULT;
4828 else
4829 ret = retlen;
4831 free_cpumask_var(mask);
4833 return ret;
4837 * sys_sched_yield - yield the current processor to other threads.
4839 * This function yields the current CPU to other tasks. If there are no
4840 * other threads running on this CPU then this function will return.
4842 SYSCALL_DEFINE0(sched_yield)
4844 struct rq *rq = this_rq_lock();
4846 schedstat_inc(rq, yld_count);
4847 current->sched_class->yield_task(rq);
4850 * Since we are going to call schedule() anyway, there's
4851 * no need to preempt or enable interrupts:
4853 __release(rq->lock);
4854 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4855 do_raw_spin_unlock(&rq->lock);
4856 preempt_enable_no_resched();
4858 schedule();
4860 return 0;
4863 static inline int should_resched(void)
4865 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4868 static void __cond_resched(void)
4870 add_preempt_count(PREEMPT_ACTIVE);
4871 schedule();
4872 sub_preempt_count(PREEMPT_ACTIVE);
4875 int __sched _cond_resched(void)
4877 if (should_resched()) {
4878 __cond_resched();
4879 return 1;
4881 return 0;
4883 EXPORT_SYMBOL(_cond_resched);
4886 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4887 * call schedule, and on return reacquire the lock.
4889 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4890 * operations here to prevent schedule() from being called twice (once via
4891 * spin_unlock(), once by hand).
4893 int __cond_resched_lock(spinlock_t *lock)
4895 int resched = should_resched();
4896 int ret = 0;
4898 lockdep_assert_held(lock);
4900 if (spin_needbreak(lock) || resched) {
4901 spin_unlock(lock);
4902 if (resched)
4903 __cond_resched();
4904 else
4905 cpu_relax();
4906 ret = 1;
4907 spin_lock(lock);
4909 return ret;
4911 EXPORT_SYMBOL(__cond_resched_lock);
4913 int __sched __cond_resched_softirq(void)
4915 BUG_ON(!in_softirq());
4917 if (should_resched()) {
4918 local_bh_enable();
4919 __cond_resched();
4920 local_bh_disable();
4921 return 1;
4923 return 0;
4925 EXPORT_SYMBOL(__cond_resched_softirq);
4928 * yield - yield the current processor to other threads.
4930 * This is a shortcut for kernel-space yielding - it marks the
4931 * thread runnable and calls sys_sched_yield().
4933 void __sched yield(void)
4935 set_current_state(TASK_RUNNING);
4936 sys_sched_yield();
4938 EXPORT_SYMBOL(yield);
4941 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4942 * that process accounting knows that this is a task in IO wait state.
4944 void __sched io_schedule(void)
4946 struct rq *rq = raw_rq();
4948 delayacct_blkio_start();
4949 atomic_inc(&rq->nr_iowait);
4950 current->in_iowait = 1;
4951 schedule();
4952 current->in_iowait = 0;
4953 atomic_dec(&rq->nr_iowait);
4954 delayacct_blkio_end();
4956 EXPORT_SYMBOL(io_schedule);
4958 long __sched io_schedule_timeout(long timeout)
4960 struct rq *rq = raw_rq();
4961 long ret;
4963 delayacct_blkio_start();
4964 atomic_inc(&rq->nr_iowait);
4965 current->in_iowait = 1;
4966 ret = schedule_timeout(timeout);
4967 current->in_iowait = 0;
4968 atomic_dec(&rq->nr_iowait);
4969 delayacct_blkio_end();
4970 return ret;
4974 * sys_sched_get_priority_max - return maximum RT priority.
4975 * @policy: scheduling class.
4977 * this syscall returns the maximum rt_priority that can be used
4978 * by a given scheduling class.
4980 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4982 int ret = -EINVAL;
4984 switch (policy) {
4985 case SCHED_FIFO:
4986 case SCHED_RR:
4987 ret = MAX_USER_RT_PRIO-1;
4988 break;
4989 case SCHED_NORMAL:
4990 case SCHED_BATCH:
4991 case SCHED_IDLE:
4992 ret = 0;
4993 break;
4995 return ret;
4999 * sys_sched_get_priority_min - return minimum RT priority.
5000 * @policy: scheduling class.
5002 * this syscall returns the minimum rt_priority that can be used
5003 * by a given scheduling class.
5005 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5007 int ret = -EINVAL;
5009 switch (policy) {
5010 case SCHED_FIFO:
5011 case SCHED_RR:
5012 ret = 1;
5013 break;
5014 case SCHED_NORMAL:
5015 case SCHED_BATCH:
5016 case SCHED_IDLE:
5017 ret = 0;
5019 return ret;
5023 * sys_sched_rr_get_interval - return the default timeslice of a process.
5024 * @pid: pid of the process.
5025 * @interval: userspace pointer to the timeslice value.
5027 * this syscall writes the default timeslice value of a given process
5028 * into the user-space timespec buffer. A value of '0' means infinity.
5030 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5031 struct timespec __user *, interval)
5033 struct task_struct *p;
5034 unsigned int time_slice;
5035 unsigned long flags;
5036 struct rq *rq;
5037 int retval;
5038 struct timespec t;
5040 if (pid < 0)
5041 return -EINVAL;
5043 retval = -ESRCH;
5044 rcu_read_lock();
5045 p = find_process_by_pid(pid);
5046 if (!p)
5047 goto out_unlock;
5049 retval = security_task_getscheduler(p);
5050 if (retval)
5051 goto out_unlock;
5053 rq = task_rq_lock(p, &flags);
5054 time_slice = p->sched_class->get_rr_interval(rq, p);
5055 task_rq_unlock(rq, &flags);
5057 rcu_read_unlock();
5058 jiffies_to_timespec(time_slice, &t);
5059 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5060 return retval;
5062 out_unlock:
5063 rcu_read_unlock();
5064 return retval;
5067 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5069 void sched_show_task(struct task_struct *p)
5071 unsigned long free = 0;
5072 unsigned state;
5074 state = p->state ? __ffs(p->state) + 1 : 0;
5075 printk(KERN_INFO "%-13.13s %c", p->comm,
5076 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5077 #if BITS_PER_LONG == 32
5078 if (state == TASK_RUNNING)
5079 printk(KERN_CONT " running ");
5080 else
5081 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5082 #else
5083 if (state == TASK_RUNNING)
5084 printk(KERN_CONT " running task ");
5085 else
5086 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5087 #endif
5088 #ifdef CONFIG_DEBUG_STACK_USAGE
5089 free = stack_not_used(p);
5090 #endif
5091 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5092 task_pid_nr(p), task_pid_nr(p->real_parent),
5093 (unsigned long)task_thread_info(p)->flags);
5095 show_stack(p, NULL);
5098 void show_state_filter(unsigned long state_filter)
5100 struct task_struct *g, *p;
5102 #if BITS_PER_LONG == 32
5103 printk(KERN_INFO
5104 " task PC stack pid father\n");
5105 #else
5106 printk(KERN_INFO
5107 " task PC stack pid father\n");
5108 #endif
5109 read_lock(&tasklist_lock);
5110 do_each_thread(g, p) {
5112 * reset the NMI-timeout, listing all files on a slow
5113 * console might take alot of time:
5115 touch_nmi_watchdog();
5116 if (!state_filter || (p->state & state_filter))
5117 sched_show_task(p);
5118 } while_each_thread(g, p);
5120 touch_all_softlockup_watchdogs();
5122 #ifdef CONFIG_SCHED_DEBUG
5123 sysrq_sched_debug_show();
5124 #endif
5125 read_unlock(&tasklist_lock);
5127 * Only show locks if all tasks are dumped:
5129 if (!state_filter)
5130 debug_show_all_locks();
5133 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5135 idle->sched_class = &idle_sched_class;
5139 * init_idle - set up an idle thread for a given CPU
5140 * @idle: task in question
5141 * @cpu: cpu the idle task belongs to
5143 * NOTE: this function does not set the idle thread's NEED_RESCHED
5144 * flag, to make booting more robust.
5146 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5148 struct rq *rq = cpu_rq(cpu);
5149 unsigned long flags;
5151 raw_spin_lock_irqsave(&rq->lock, flags);
5153 __sched_fork(idle);
5154 idle->state = TASK_RUNNING;
5155 idle->se.exec_start = sched_clock();
5157 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5158 __set_task_cpu(idle, cpu);
5160 rq->curr = rq->idle = idle;
5161 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5162 idle->oncpu = 1;
5163 #endif
5164 raw_spin_unlock_irqrestore(&rq->lock, flags);
5166 /* Set the preempt count _outside_ the spinlocks! */
5167 #if defined(CONFIG_PREEMPT)
5168 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5169 #else
5170 task_thread_info(idle)->preempt_count = 0;
5171 #endif
5173 * The idle tasks have their own, simple scheduling class:
5175 idle->sched_class = &idle_sched_class;
5176 ftrace_graph_init_task(idle);
5180 * In a system that switches off the HZ timer nohz_cpu_mask
5181 * indicates which cpus entered this state. This is used
5182 * in the rcu update to wait only for active cpus. For system
5183 * which do not switch off the HZ timer nohz_cpu_mask should
5184 * always be CPU_BITS_NONE.
5186 cpumask_var_t nohz_cpu_mask;
5189 * Increase the granularity value when there are more CPUs,
5190 * because with more CPUs the 'effective latency' as visible
5191 * to users decreases. But the relationship is not linear,
5192 * so pick a second-best guess by going with the log2 of the
5193 * number of CPUs.
5195 * This idea comes from the SD scheduler of Con Kolivas:
5197 static int get_update_sysctl_factor(void)
5199 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5200 unsigned int factor;
5202 switch (sysctl_sched_tunable_scaling) {
5203 case SCHED_TUNABLESCALING_NONE:
5204 factor = 1;
5205 break;
5206 case SCHED_TUNABLESCALING_LINEAR:
5207 factor = cpus;
5208 break;
5209 case SCHED_TUNABLESCALING_LOG:
5210 default:
5211 factor = 1 + ilog2(cpus);
5212 break;
5215 return factor;
5218 static void update_sysctl(void)
5220 unsigned int factor = get_update_sysctl_factor();
5222 #define SET_SYSCTL(name) \
5223 (sysctl_##name = (factor) * normalized_sysctl_##name)
5224 SET_SYSCTL(sched_min_granularity);
5225 SET_SYSCTL(sched_latency);
5226 SET_SYSCTL(sched_wakeup_granularity);
5227 SET_SYSCTL(sched_shares_ratelimit);
5228 #undef SET_SYSCTL
5231 static inline void sched_init_granularity(void)
5233 update_sysctl();
5236 #ifdef CONFIG_SMP
5238 * This is how migration works:
5240 * 1) we invoke migration_cpu_stop() on the target CPU using
5241 * stop_one_cpu().
5242 * 2) stopper starts to run (implicitly forcing the migrated thread
5243 * off the CPU)
5244 * 3) it checks whether the migrated task is still in the wrong runqueue.
5245 * 4) if it's in the wrong runqueue then the migration thread removes
5246 * it and puts it into the right queue.
5247 * 5) stopper completes and stop_one_cpu() returns and the migration
5248 * is done.
5252 * Change a given task's CPU affinity. Migrate the thread to a
5253 * proper CPU and schedule it away if the CPU it's executing on
5254 * is removed from the allowed bitmask.
5256 * NOTE: the caller must have a valid reference to the task, the
5257 * task must not exit() & deallocate itself prematurely. The
5258 * call is not atomic; no spinlocks may be held.
5260 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5262 unsigned long flags;
5263 struct rq *rq;
5264 unsigned int dest_cpu;
5265 int ret = 0;
5268 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5269 * drop the rq->lock and still rely on ->cpus_allowed.
5271 again:
5272 while (task_is_waking(p))
5273 cpu_relax();
5274 rq = task_rq_lock(p, &flags);
5275 if (task_is_waking(p)) {
5276 task_rq_unlock(rq, &flags);
5277 goto again;
5280 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5281 ret = -EINVAL;
5282 goto out;
5285 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5286 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5287 ret = -EINVAL;
5288 goto out;
5291 if (p->sched_class->set_cpus_allowed)
5292 p->sched_class->set_cpus_allowed(p, new_mask);
5293 else {
5294 cpumask_copy(&p->cpus_allowed, new_mask);
5295 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5298 /* Can the task run on the task's current CPU? If so, we're done */
5299 if (cpumask_test_cpu(task_cpu(p), new_mask))
5300 goto out;
5302 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5303 if (migrate_task(p, dest_cpu)) {
5304 struct migration_arg arg = { p, dest_cpu };
5305 /* Need help from migration thread: drop lock and wait. */
5306 task_rq_unlock(rq, &flags);
5307 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5308 tlb_migrate_finish(p->mm);
5309 return 0;
5311 out:
5312 task_rq_unlock(rq, &flags);
5314 return ret;
5316 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5319 * Move (not current) task off this cpu, onto dest cpu. We're doing
5320 * this because either it can't run here any more (set_cpus_allowed()
5321 * away from this CPU, or CPU going down), or because we're
5322 * attempting to rebalance this task on exec (sched_exec).
5324 * So we race with normal scheduler movements, but that's OK, as long
5325 * as the task is no longer on this CPU.
5327 * Returns non-zero if task was successfully migrated.
5329 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5331 struct rq *rq_dest, *rq_src;
5332 int ret = 0;
5334 if (unlikely(!cpu_active(dest_cpu)))
5335 return ret;
5337 rq_src = cpu_rq(src_cpu);
5338 rq_dest = cpu_rq(dest_cpu);
5340 double_rq_lock(rq_src, rq_dest);
5341 /* Already moved. */
5342 if (task_cpu(p) != src_cpu)
5343 goto done;
5344 /* Affinity changed (again). */
5345 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5346 goto fail;
5349 * If we're not on a rq, the next wake-up will ensure we're
5350 * placed properly.
5352 if (p->se.on_rq) {
5353 deactivate_task(rq_src, p, 0);
5354 set_task_cpu(p, dest_cpu);
5355 activate_task(rq_dest, p, 0);
5356 check_preempt_curr(rq_dest, p, 0);
5358 done:
5359 ret = 1;
5360 fail:
5361 double_rq_unlock(rq_src, rq_dest);
5362 return ret;
5366 * migration_cpu_stop - this will be executed by a highprio stopper thread
5367 * and performs thread migration by bumping thread off CPU then
5368 * 'pushing' onto another runqueue.
5370 static int migration_cpu_stop(void *data)
5372 struct migration_arg *arg = data;
5375 * The original target cpu might have gone down and we might
5376 * be on another cpu but it doesn't matter.
5378 local_irq_disable();
5379 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5380 local_irq_enable();
5381 return 0;
5384 #ifdef CONFIG_HOTPLUG_CPU
5386 * Figure out where task on dead CPU should go, use force if necessary.
5388 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5390 struct rq *rq = cpu_rq(dead_cpu);
5391 int needs_cpu, uninitialized_var(dest_cpu);
5392 unsigned long flags;
5394 local_irq_save(flags);
5396 raw_spin_lock(&rq->lock);
5397 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5398 if (needs_cpu)
5399 dest_cpu = select_fallback_rq(dead_cpu, p);
5400 raw_spin_unlock(&rq->lock);
5402 * It can only fail if we race with set_cpus_allowed(),
5403 * in the racer should migrate the task anyway.
5405 if (needs_cpu)
5406 __migrate_task(p, dead_cpu, dest_cpu);
5407 local_irq_restore(flags);
5411 * While a dead CPU has no uninterruptible tasks queued at this point,
5412 * it might still have a nonzero ->nr_uninterruptible counter, because
5413 * for performance reasons the counter is not stricly tracking tasks to
5414 * their home CPUs. So we just add the counter to another CPU's counter,
5415 * to keep the global sum constant after CPU-down:
5417 static void migrate_nr_uninterruptible(struct rq *rq_src)
5419 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5420 unsigned long flags;
5422 local_irq_save(flags);
5423 double_rq_lock(rq_src, rq_dest);
5424 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5425 rq_src->nr_uninterruptible = 0;
5426 double_rq_unlock(rq_src, rq_dest);
5427 local_irq_restore(flags);
5430 /* Run through task list and migrate tasks from the dead cpu. */
5431 static void migrate_live_tasks(int src_cpu)
5433 struct task_struct *p, *t;
5435 read_lock(&tasklist_lock);
5437 do_each_thread(t, p) {
5438 if (p == current)
5439 continue;
5441 if (task_cpu(p) == src_cpu)
5442 move_task_off_dead_cpu(src_cpu, p);
5443 } while_each_thread(t, p);
5445 read_unlock(&tasklist_lock);
5449 * Schedules idle task to be the next runnable task on current CPU.
5450 * It does so by boosting its priority to highest possible.
5451 * Used by CPU offline code.
5453 void sched_idle_next(void)
5455 int this_cpu = smp_processor_id();
5456 struct rq *rq = cpu_rq(this_cpu);
5457 struct task_struct *p = rq->idle;
5458 unsigned long flags;
5460 /* cpu has to be offline */
5461 BUG_ON(cpu_online(this_cpu));
5464 * Strictly not necessary since rest of the CPUs are stopped by now
5465 * and interrupts disabled on the current cpu.
5467 raw_spin_lock_irqsave(&rq->lock, flags);
5469 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5471 activate_task(rq, p, 0);
5473 raw_spin_unlock_irqrestore(&rq->lock, flags);
5477 * Ensures that the idle task is using init_mm right before its cpu goes
5478 * offline.
5480 void idle_task_exit(void)
5482 struct mm_struct *mm = current->active_mm;
5484 BUG_ON(cpu_online(smp_processor_id()));
5486 if (mm != &init_mm)
5487 switch_mm(mm, &init_mm, current);
5488 mmdrop(mm);
5491 /* called under rq->lock with disabled interrupts */
5492 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5494 struct rq *rq = cpu_rq(dead_cpu);
5496 /* Must be exiting, otherwise would be on tasklist. */
5497 BUG_ON(!p->exit_state);
5499 /* Cannot have done final schedule yet: would have vanished. */
5500 BUG_ON(p->state == TASK_DEAD);
5502 get_task_struct(p);
5505 * Drop lock around migration; if someone else moves it,
5506 * that's OK. No task can be added to this CPU, so iteration is
5507 * fine.
5509 raw_spin_unlock_irq(&rq->lock);
5510 move_task_off_dead_cpu(dead_cpu, p);
5511 raw_spin_lock_irq(&rq->lock);
5513 put_task_struct(p);
5516 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5517 static void migrate_dead_tasks(unsigned int dead_cpu)
5519 struct rq *rq = cpu_rq(dead_cpu);
5520 struct task_struct *next;
5522 for ( ; ; ) {
5523 if (!rq->nr_running)
5524 break;
5525 next = pick_next_task(rq);
5526 if (!next)
5527 break;
5528 next->sched_class->put_prev_task(rq, next);
5529 migrate_dead(dead_cpu, next);
5535 * remove the tasks which were accounted by rq from calc_load_tasks.
5537 static void calc_global_load_remove(struct rq *rq)
5539 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5540 rq->calc_load_active = 0;
5542 #endif /* CONFIG_HOTPLUG_CPU */
5544 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5546 static struct ctl_table sd_ctl_dir[] = {
5548 .procname = "sched_domain",
5549 .mode = 0555,
5554 static struct ctl_table sd_ctl_root[] = {
5556 .procname = "kernel",
5557 .mode = 0555,
5558 .child = sd_ctl_dir,
5563 static struct ctl_table *sd_alloc_ctl_entry(int n)
5565 struct ctl_table *entry =
5566 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5568 return entry;
5571 static void sd_free_ctl_entry(struct ctl_table **tablep)
5573 struct ctl_table *entry;
5576 * In the intermediate directories, both the child directory and
5577 * procname are dynamically allocated and could fail but the mode
5578 * will always be set. In the lowest directory the names are
5579 * static strings and all have proc handlers.
5581 for (entry = *tablep; entry->mode; entry++) {
5582 if (entry->child)
5583 sd_free_ctl_entry(&entry->child);
5584 if (entry->proc_handler == NULL)
5585 kfree(entry->procname);
5588 kfree(*tablep);
5589 *tablep = NULL;
5592 static void
5593 set_table_entry(struct ctl_table *entry,
5594 const char *procname, void *data, int maxlen,
5595 mode_t mode, proc_handler *proc_handler)
5597 entry->procname = procname;
5598 entry->data = data;
5599 entry->maxlen = maxlen;
5600 entry->mode = mode;
5601 entry->proc_handler = proc_handler;
5604 static struct ctl_table *
5605 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5607 struct ctl_table *table = sd_alloc_ctl_entry(13);
5609 if (table == NULL)
5610 return NULL;
5612 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5613 sizeof(long), 0644, proc_doulongvec_minmax);
5614 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5615 sizeof(long), 0644, proc_doulongvec_minmax);
5616 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5617 sizeof(int), 0644, proc_dointvec_minmax);
5618 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5619 sizeof(int), 0644, proc_dointvec_minmax);
5620 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5621 sizeof(int), 0644, proc_dointvec_minmax);
5622 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5623 sizeof(int), 0644, proc_dointvec_minmax);
5624 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5625 sizeof(int), 0644, proc_dointvec_minmax);
5626 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5627 sizeof(int), 0644, proc_dointvec_minmax);
5628 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5629 sizeof(int), 0644, proc_dointvec_minmax);
5630 set_table_entry(&table[9], "cache_nice_tries",
5631 &sd->cache_nice_tries,
5632 sizeof(int), 0644, proc_dointvec_minmax);
5633 set_table_entry(&table[10], "flags", &sd->flags,
5634 sizeof(int), 0644, proc_dointvec_minmax);
5635 set_table_entry(&table[11], "name", sd->name,
5636 CORENAME_MAX_SIZE, 0444, proc_dostring);
5637 /* &table[12] is terminator */
5639 return table;
5642 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5644 struct ctl_table *entry, *table;
5645 struct sched_domain *sd;
5646 int domain_num = 0, i;
5647 char buf[32];
5649 for_each_domain(cpu, sd)
5650 domain_num++;
5651 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5652 if (table == NULL)
5653 return NULL;
5655 i = 0;
5656 for_each_domain(cpu, sd) {
5657 snprintf(buf, 32, "domain%d", i);
5658 entry->procname = kstrdup(buf, GFP_KERNEL);
5659 entry->mode = 0555;
5660 entry->child = sd_alloc_ctl_domain_table(sd);
5661 entry++;
5662 i++;
5664 return table;
5667 static struct ctl_table_header *sd_sysctl_header;
5668 static void register_sched_domain_sysctl(void)
5670 int i, cpu_num = num_possible_cpus();
5671 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5672 char buf[32];
5674 WARN_ON(sd_ctl_dir[0].child);
5675 sd_ctl_dir[0].child = entry;
5677 if (entry == NULL)
5678 return;
5680 for_each_possible_cpu(i) {
5681 snprintf(buf, 32, "cpu%d", i);
5682 entry->procname = kstrdup(buf, GFP_KERNEL);
5683 entry->mode = 0555;
5684 entry->child = sd_alloc_ctl_cpu_table(i);
5685 entry++;
5688 WARN_ON(sd_sysctl_header);
5689 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5692 /* may be called multiple times per register */
5693 static void unregister_sched_domain_sysctl(void)
5695 if (sd_sysctl_header)
5696 unregister_sysctl_table(sd_sysctl_header);
5697 sd_sysctl_header = NULL;
5698 if (sd_ctl_dir[0].child)
5699 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5701 #else
5702 static void register_sched_domain_sysctl(void)
5705 static void unregister_sched_domain_sysctl(void)
5708 #endif
5710 static void set_rq_online(struct rq *rq)
5712 if (!rq->online) {
5713 const struct sched_class *class;
5715 cpumask_set_cpu(rq->cpu, rq->rd->online);
5716 rq->online = 1;
5718 for_each_class(class) {
5719 if (class->rq_online)
5720 class->rq_online(rq);
5725 static void set_rq_offline(struct rq *rq)
5727 if (rq->online) {
5728 const struct sched_class *class;
5730 for_each_class(class) {
5731 if (class->rq_offline)
5732 class->rq_offline(rq);
5735 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5736 rq->online = 0;
5741 * migration_call - callback that gets triggered when a CPU is added.
5742 * Here we can start up the necessary migration thread for the new CPU.
5744 static int __cpuinit
5745 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5747 int cpu = (long)hcpu;
5748 unsigned long flags;
5749 struct rq *rq = cpu_rq(cpu);
5751 switch (action) {
5753 case CPU_UP_PREPARE:
5754 case CPU_UP_PREPARE_FROZEN:
5755 rq->calc_load_update = calc_load_update;
5756 break;
5758 case CPU_ONLINE:
5759 case CPU_ONLINE_FROZEN:
5760 /* Update our root-domain */
5761 raw_spin_lock_irqsave(&rq->lock, flags);
5762 if (rq->rd) {
5763 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5765 set_rq_online(rq);
5767 raw_spin_unlock_irqrestore(&rq->lock, flags);
5768 break;
5770 #ifdef CONFIG_HOTPLUG_CPU
5771 case CPU_DEAD:
5772 case CPU_DEAD_FROZEN:
5773 migrate_live_tasks(cpu);
5774 /* Idle task back to normal (off runqueue, low prio) */
5775 raw_spin_lock_irq(&rq->lock);
5776 deactivate_task(rq, rq->idle, 0);
5777 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5778 rq->idle->sched_class = &idle_sched_class;
5779 migrate_dead_tasks(cpu);
5780 raw_spin_unlock_irq(&rq->lock);
5781 migrate_nr_uninterruptible(rq);
5782 BUG_ON(rq->nr_running != 0);
5783 calc_global_load_remove(rq);
5784 break;
5786 case CPU_DYING:
5787 case CPU_DYING_FROZEN:
5788 /* Update our root-domain */
5789 raw_spin_lock_irqsave(&rq->lock, flags);
5790 if (rq->rd) {
5791 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5792 set_rq_offline(rq);
5794 raw_spin_unlock_irqrestore(&rq->lock, flags);
5795 break;
5796 #endif
5798 return NOTIFY_OK;
5802 * Register at high priority so that task migration (migrate_all_tasks)
5803 * happens before everything else. This has to be lower priority than
5804 * the notifier in the perf_event subsystem, though.
5806 static struct notifier_block __cpuinitdata migration_notifier = {
5807 .notifier_call = migration_call,
5808 .priority = 10
5811 static int __init migration_init(void)
5813 void *cpu = (void *)(long)smp_processor_id();
5814 int err;
5816 /* Start one for the boot CPU: */
5817 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5818 BUG_ON(err == NOTIFY_BAD);
5819 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5820 register_cpu_notifier(&migration_notifier);
5822 return 0;
5824 early_initcall(migration_init);
5825 #endif
5827 #ifdef CONFIG_SMP
5829 #ifdef CONFIG_SCHED_DEBUG
5831 static __read_mostly int sched_domain_debug_enabled;
5833 static int __init sched_domain_debug_setup(char *str)
5835 sched_domain_debug_enabled = 1;
5837 return 0;
5839 early_param("sched_debug", sched_domain_debug_setup);
5841 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5842 struct cpumask *groupmask)
5844 struct sched_group *group = sd->groups;
5845 char str[256];
5847 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5848 cpumask_clear(groupmask);
5850 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5852 if (!(sd->flags & SD_LOAD_BALANCE)) {
5853 printk("does not load-balance\n");
5854 if (sd->parent)
5855 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5856 " has parent");
5857 return -1;
5860 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5862 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5863 printk(KERN_ERR "ERROR: domain->span does not contain "
5864 "CPU%d\n", cpu);
5866 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5867 printk(KERN_ERR "ERROR: domain->groups does not contain"
5868 " CPU%d\n", cpu);
5871 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5872 do {
5873 if (!group) {
5874 printk("\n");
5875 printk(KERN_ERR "ERROR: group is NULL\n");
5876 break;
5879 if (!group->cpu_power) {
5880 printk(KERN_CONT "\n");
5881 printk(KERN_ERR "ERROR: domain->cpu_power not "
5882 "set\n");
5883 break;
5886 if (!cpumask_weight(sched_group_cpus(group))) {
5887 printk(KERN_CONT "\n");
5888 printk(KERN_ERR "ERROR: empty group\n");
5889 break;
5892 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5893 printk(KERN_CONT "\n");
5894 printk(KERN_ERR "ERROR: repeated CPUs\n");
5895 break;
5898 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5900 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5902 printk(KERN_CONT " %s", str);
5903 if (group->cpu_power != SCHED_LOAD_SCALE) {
5904 printk(KERN_CONT " (cpu_power = %d)",
5905 group->cpu_power);
5908 group = group->next;
5909 } while (group != sd->groups);
5910 printk(KERN_CONT "\n");
5912 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5913 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5915 if (sd->parent &&
5916 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5917 printk(KERN_ERR "ERROR: parent span is not a superset "
5918 "of domain->span\n");
5919 return 0;
5922 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5924 cpumask_var_t groupmask;
5925 int level = 0;
5927 if (!sched_domain_debug_enabled)
5928 return;
5930 if (!sd) {
5931 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5932 return;
5935 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5937 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5938 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5939 return;
5942 for (;;) {
5943 if (sched_domain_debug_one(sd, cpu, level, groupmask))
5944 break;
5945 level++;
5946 sd = sd->parent;
5947 if (!sd)
5948 break;
5950 free_cpumask_var(groupmask);
5952 #else /* !CONFIG_SCHED_DEBUG */
5953 # define sched_domain_debug(sd, cpu) do { } while (0)
5954 #endif /* CONFIG_SCHED_DEBUG */
5956 static int sd_degenerate(struct sched_domain *sd)
5958 if (cpumask_weight(sched_domain_span(sd)) == 1)
5959 return 1;
5961 /* Following flags need at least 2 groups */
5962 if (sd->flags & (SD_LOAD_BALANCE |
5963 SD_BALANCE_NEWIDLE |
5964 SD_BALANCE_FORK |
5965 SD_BALANCE_EXEC |
5966 SD_SHARE_CPUPOWER |
5967 SD_SHARE_PKG_RESOURCES)) {
5968 if (sd->groups != sd->groups->next)
5969 return 0;
5972 /* Following flags don't use groups */
5973 if (sd->flags & (SD_WAKE_AFFINE))
5974 return 0;
5976 return 1;
5979 static int
5980 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5982 unsigned long cflags = sd->flags, pflags = parent->flags;
5984 if (sd_degenerate(parent))
5985 return 1;
5987 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5988 return 0;
5990 /* Flags needing groups don't count if only 1 group in parent */
5991 if (parent->groups == parent->groups->next) {
5992 pflags &= ~(SD_LOAD_BALANCE |
5993 SD_BALANCE_NEWIDLE |
5994 SD_BALANCE_FORK |
5995 SD_BALANCE_EXEC |
5996 SD_SHARE_CPUPOWER |
5997 SD_SHARE_PKG_RESOURCES);
5998 if (nr_node_ids == 1)
5999 pflags &= ~SD_SERIALIZE;
6001 if (~cflags & pflags)
6002 return 0;
6004 return 1;
6007 static void free_rootdomain(struct root_domain *rd)
6009 synchronize_sched();
6011 cpupri_cleanup(&rd->cpupri);
6013 free_cpumask_var(rd->rto_mask);
6014 free_cpumask_var(rd->online);
6015 free_cpumask_var(rd->span);
6016 kfree(rd);
6019 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6021 struct root_domain *old_rd = NULL;
6022 unsigned long flags;
6024 raw_spin_lock_irqsave(&rq->lock, flags);
6026 if (rq->rd) {
6027 old_rd = rq->rd;
6029 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6030 set_rq_offline(rq);
6032 cpumask_clear_cpu(rq->cpu, old_rd->span);
6035 * If we dont want to free the old_rt yet then
6036 * set old_rd to NULL to skip the freeing later
6037 * in this function:
6039 if (!atomic_dec_and_test(&old_rd->refcount))
6040 old_rd = NULL;
6043 atomic_inc(&rd->refcount);
6044 rq->rd = rd;
6046 cpumask_set_cpu(rq->cpu, rd->span);
6047 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6048 set_rq_online(rq);
6050 raw_spin_unlock_irqrestore(&rq->lock, flags);
6052 if (old_rd)
6053 free_rootdomain(old_rd);
6056 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6058 gfp_t gfp = GFP_KERNEL;
6060 memset(rd, 0, sizeof(*rd));
6062 if (bootmem)
6063 gfp = GFP_NOWAIT;
6065 if (!alloc_cpumask_var(&rd->span, gfp))
6066 goto out;
6067 if (!alloc_cpumask_var(&rd->online, gfp))
6068 goto free_span;
6069 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6070 goto free_online;
6072 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6073 goto free_rto_mask;
6074 return 0;
6076 free_rto_mask:
6077 free_cpumask_var(rd->rto_mask);
6078 free_online:
6079 free_cpumask_var(rd->online);
6080 free_span:
6081 free_cpumask_var(rd->span);
6082 out:
6083 return -ENOMEM;
6086 static void init_defrootdomain(void)
6088 init_rootdomain(&def_root_domain, true);
6090 atomic_set(&def_root_domain.refcount, 1);
6093 static struct root_domain *alloc_rootdomain(void)
6095 struct root_domain *rd;
6097 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6098 if (!rd)
6099 return NULL;
6101 if (init_rootdomain(rd, false) != 0) {
6102 kfree(rd);
6103 return NULL;
6106 return rd;
6110 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6111 * hold the hotplug lock.
6113 static void
6114 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6116 struct rq *rq = cpu_rq(cpu);
6117 struct sched_domain *tmp;
6119 for (tmp = sd; tmp; tmp = tmp->parent)
6120 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6122 /* Remove the sched domains which do not contribute to scheduling. */
6123 for (tmp = sd; tmp; ) {
6124 struct sched_domain *parent = tmp->parent;
6125 if (!parent)
6126 break;
6128 if (sd_parent_degenerate(tmp, parent)) {
6129 tmp->parent = parent->parent;
6130 if (parent->parent)
6131 parent->parent->child = tmp;
6132 } else
6133 tmp = tmp->parent;
6136 if (sd && sd_degenerate(sd)) {
6137 sd = sd->parent;
6138 if (sd)
6139 sd->child = NULL;
6142 sched_domain_debug(sd, cpu);
6144 rq_attach_root(rq, rd);
6145 rcu_assign_pointer(rq->sd, sd);
6148 /* cpus with isolated domains */
6149 static cpumask_var_t cpu_isolated_map;
6151 /* Setup the mask of cpus configured for isolated domains */
6152 static int __init isolated_cpu_setup(char *str)
6154 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6155 cpulist_parse(str, cpu_isolated_map);
6156 return 1;
6159 __setup("isolcpus=", isolated_cpu_setup);
6162 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6163 * to a function which identifies what group(along with sched group) a CPU
6164 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6165 * (due to the fact that we keep track of groups covered with a struct cpumask).
6167 * init_sched_build_groups will build a circular linked list of the groups
6168 * covered by the given span, and will set each group's ->cpumask correctly,
6169 * and ->cpu_power to 0.
6171 static void
6172 init_sched_build_groups(const struct cpumask *span,
6173 const struct cpumask *cpu_map,
6174 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6175 struct sched_group **sg,
6176 struct cpumask *tmpmask),
6177 struct cpumask *covered, struct cpumask *tmpmask)
6179 struct sched_group *first = NULL, *last = NULL;
6180 int i;
6182 cpumask_clear(covered);
6184 for_each_cpu(i, span) {
6185 struct sched_group *sg;
6186 int group = group_fn(i, cpu_map, &sg, tmpmask);
6187 int j;
6189 if (cpumask_test_cpu(i, covered))
6190 continue;
6192 cpumask_clear(sched_group_cpus(sg));
6193 sg->cpu_power = 0;
6195 for_each_cpu(j, span) {
6196 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6197 continue;
6199 cpumask_set_cpu(j, covered);
6200 cpumask_set_cpu(j, sched_group_cpus(sg));
6202 if (!first)
6203 first = sg;
6204 if (last)
6205 last->next = sg;
6206 last = sg;
6208 last->next = first;
6211 #define SD_NODES_PER_DOMAIN 16
6213 #ifdef CONFIG_NUMA
6216 * find_next_best_node - find the next node to include in a sched_domain
6217 * @node: node whose sched_domain we're building
6218 * @used_nodes: nodes already in the sched_domain
6220 * Find the next node to include in a given scheduling domain. Simply
6221 * finds the closest node not already in the @used_nodes map.
6223 * Should use nodemask_t.
6225 static int find_next_best_node(int node, nodemask_t *used_nodes)
6227 int i, n, val, min_val, best_node = 0;
6229 min_val = INT_MAX;
6231 for (i = 0; i < nr_node_ids; i++) {
6232 /* Start at @node */
6233 n = (node + i) % nr_node_ids;
6235 if (!nr_cpus_node(n))
6236 continue;
6238 /* Skip already used nodes */
6239 if (node_isset(n, *used_nodes))
6240 continue;
6242 /* Simple min distance search */
6243 val = node_distance(node, n);
6245 if (val < min_val) {
6246 min_val = val;
6247 best_node = n;
6251 node_set(best_node, *used_nodes);
6252 return best_node;
6256 * sched_domain_node_span - get a cpumask for a node's sched_domain
6257 * @node: node whose cpumask we're constructing
6258 * @span: resulting cpumask
6260 * Given a node, construct a good cpumask for its sched_domain to span. It
6261 * should be one that prevents unnecessary balancing, but also spreads tasks
6262 * out optimally.
6264 static void sched_domain_node_span(int node, struct cpumask *span)
6266 nodemask_t used_nodes;
6267 int i;
6269 cpumask_clear(span);
6270 nodes_clear(used_nodes);
6272 cpumask_or(span, span, cpumask_of_node(node));
6273 node_set(node, used_nodes);
6275 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6276 int next_node = find_next_best_node(node, &used_nodes);
6278 cpumask_or(span, span, cpumask_of_node(next_node));
6281 #endif /* CONFIG_NUMA */
6283 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6286 * The cpus mask in sched_group and sched_domain hangs off the end.
6288 * ( See the the comments in include/linux/sched.h:struct sched_group
6289 * and struct sched_domain. )
6291 struct static_sched_group {
6292 struct sched_group sg;
6293 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6296 struct static_sched_domain {
6297 struct sched_domain sd;
6298 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6301 struct s_data {
6302 #ifdef CONFIG_NUMA
6303 int sd_allnodes;
6304 cpumask_var_t domainspan;
6305 cpumask_var_t covered;
6306 cpumask_var_t notcovered;
6307 #endif
6308 cpumask_var_t nodemask;
6309 cpumask_var_t this_sibling_map;
6310 cpumask_var_t this_core_map;
6311 cpumask_var_t send_covered;
6312 cpumask_var_t tmpmask;
6313 struct sched_group **sched_group_nodes;
6314 struct root_domain *rd;
6317 enum s_alloc {
6318 sa_sched_groups = 0,
6319 sa_rootdomain,
6320 sa_tmpmask,
6321 sa_send_covered,
6322 sa_this_core_map,
6323 sa_this_sibling_map,
6324 sa_nodemask,
6325 sa_sched_group_nodes,
6326 #ifdef CONFIG_NUMA
6327 sa_notcovered,
6328 sa_covered,
6329 sa_domainspan,
6330 #endif
6331 sa_none,
6335 * SMT sched-domains:
6337 #ifdef CONFIG_SCHED_SMT
6338 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6339 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6341 static int
6342 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6343 struct sched_group **sg, struct cpumask *unused)
6345 if (sg)
6346 *sg = &per_cpu(sched_groups, cpu).sg;
6347 return cpu;
6349 #endif /* CONFIG_SCHED_SMT */
6352 * multi-core sched-domains:
6354 #ifdef CONFIG_SCHED_MC
6355 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6356 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6357 #endif /* CONFIG_SCHED_MC */
6359 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6360 static int
6361 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6362 struct sched_group **sg, struct cpumask *mask)
6364 int group;
6366 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6367 group = cpumask_first(mask);
6368 if (sg)
6369 *sg = &per_cpu(sched_group_core, group).sg;
6370 return group;
6372 #elif defined(CONFIG_SCHED_MC)
6373 static int
6374 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6375 struct sched_group **sg, struct cpumask *unused)
6377 if (sg)
6378 *sg = &per_cpu(sched_group_core, cpu).sg;
6379 return cpu;
6381 #endif
6383 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6384 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6386 static int
6387 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6388 struct sched_group **sg, struct cpumask *mask)
6390 int group;
6391 #ifdef CONFIG_SCHED_MC
6392 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6393 group = cpumask_first(mask);
6394 #elif defined(CONFIG_SCHED_SMT)
6395 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6396 group = cpumask_first(mask);
6397 #else
6398 group = cpu;
6399 #endif
6400 if (sg)
6401 *sg = &per_cpu(sched_group_phys, group).sg;
6402 return group;
6405 #ifdef CONFIG_NUMA
6407 * The init_sched_build_groups can't handle what we want to do with node
6408 * groups, so roll our own. Now each node has its own list of groups which
6409 * gets dynamically allocated.
6411 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6412 static struct sched_group ***sched_group_nodes_bycpu;
6414 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6415 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6417 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6418 struct sched_group **sg,
6419 struct cpumask *nodemask)
6421 int group;
6423 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6424 group = cpumask_first(nodemask);
6426 if (sg)
6427 *sg = &per_cpu(sched_group_allnodes, group).sg;
6428 return group;
6431 static void init_numa_sched_groups_power(struct sched_group *group_head)
6433 struct sched_group *sg = group_head;
6434 int j;
6436 if (!sg)
6437 return;
6438 do {
6439 for_each_cpu(j, sched_group_cpus(sg)) {
6440 struct sched_domain *sd;
6442 sd = &per_cpu(phys_domains, j).sd;
6443 if (j != group_first_cpu(sd->groups)) {
6445 * Only add "power" once for each
6446 * physical package.
6448 continue;
6451 sg->cpu_power += sd->groups->cpu_power;
6453 sg = sg->next;
6454 } while (sg != group_head);
6457 static int build_numa_sched_groups(struct s_data *d,
6458 const struct cpumask *cpu_map, int num)
6460 struct sched_domain *sd;
6461 struct sched_group *sg, *prev;
6462 int n, j;
6464 cpumask_clear(d->covered);
6465 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6466 if (cpumask_empty(d->nodemask)) {
6467 d->sched_group_nodes[num] = NULL;
6468 goto out;
6471 sched_domain_node_span(num, d->domainspan);
6472 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6474 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6475 GFP_KERNEL, num);
6476 if (!sg) {
6477 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6478 num);
6479 return -ENOMEM;
6481 d->sched_group_nodes[num] = sg;
6483 for_each_cpu(j, d->nodemask) {
6484 sd = &per_cpu(node_domains, j).sd;
6485 sd->groups = sg;
6488 sg->cpu_power = 0;
6489 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6490 sg->next = sg;
6491 cpumask_or(d->covered, d->covered, d->nodemask);
6493 prev = sg;
6494 for (j = 0; j < nr_node_ids; j++) {
6495 n = (num + j) % nr_node_ids;
6496 cpumask_complement(d->notcovered, d->covered);
6497 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6498 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6499 if (cpumask_empty(d->tmpmask))
6500 break;
6501 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6502 if (cpumask_empty(d->tmpmask))
6503 continue;
6504 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6505 GFP_KERNEL, num);
6506 if (!sg) {
6507 printk(KERN_WARNING
6508 "Can not alloc domain group for node %d\n", j);
6509 return -ENOMEM;
6511 sg->cpu_power = 0;
6512 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6513 sg->next = prev->next;
6514 cpumask_or(d->covered, d->covered, d->tmpmask);
6515 prev->next = sg;
6516 prev = sg;
6518 out:
6519 return 0;
6521 #endif /* CONFIG_NUMA */
6523 #ifdef CONFIG_NUMA
6524 /* Free memory allocated for various sched_group structures */
6525 static void free_sched_groups(const struct cpumask *cpu_map,
6526 struct cpumask *nodemask)
6528 int cpu, i;
6530 for_each_cpu(cpu, cpu_map) {
6531 struct sched_group **sched_group_nodes
6532 = sched_group_nodes_bycpu[cpu];
6534 if (!sched_group_nodes)
6535 continue;
6537 for (i = 0; i < nr_node_ids; i++) {
6538 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6540 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6541 if (cpumask_empty(nodemask))
6542 continue;
6544 if (sg == NULL)
6545 continue;
6546 sg = sg->next;
6547 next_sg:
6548 oldsg = sg;
6549 sg = sg->next;
6550 kfree(oldsg);
6551 if (oldsg != sched_group_nodes[i])
6552 goto next_sg;
6554 kfree(sched_group_nodes);
6555 sched_group_nodes_bycpu[cpu] = NULL;
6558 #else /* !CONFIG_NUMA */
6559 static void free_sched_groups(const struct cpumask *cpu_map,
6560 struct cpumask *nodemask)
6563 #endif /* CONFIG_NUMA */
6566 * Initialize sched groups cpu_power.
6568 * cpu_power indicates the capacity of sched group, which is used while
6569 * distributing the load between different sched groups in a sched domain.
6570 * Typically cpu_power for all the groups in a sched domain will be same unless
6571 * there are asymmetries in the topology. If there are asymmetries, group
6572 * having more cpu_power will pickup more load compared to the group having
6573 * less cpu_power.
6575 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6577 struct sched_domain *child;
6578 struct sched_group *group;
6579 long power;
6580 int weight;
6582 WARN_ON(!sd || !sd->groups);
6584 if (cpu != group_first_cpu(sd->groups))
6585 return;
6587 child = sd->child;
6589 sd->groups->cpu_power = 0;
6591 if (!child) {
6592 power = SCHED_LOAD_SCALE;
6593 weight = cpumask_weight(sched_domain_span(sd));
6595 * SMT siblings share the power of a single core.
6596 * Usually multiple threads get a better yield out of
6597 * that one core than a single thread would have,
6598 * reflect that in sd->smt_gain.
6600 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6601 power *= sd->smt_gain;
6602 power /= weight;
6603 power >>= SCHED_LOAD_SHIFT;
6605 sd->groups->cpu_power += power;
6606 return;
6610 * Add cpu_power of each child group to this groups cpu_power.
6612 group = child->groups;
6613 do {
6614 sd->groups->cpu_power += group->cpu_power;
6615 group = group->next;
6616 } while (group != child->groups);
6620 * Initializers for schedule domains
6621 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6624 #ifdef CONFIG_SCHED_DEBUG
6625 # define SD_INIT_NAME(sd, type) sd->name = #type
6626 #else
6627 # define SD_INIT_NAME(sd, type) do { } while (0)
6628 #endif
6630 #define SD_INIT(sd, type) sd_init_##type(sd)
6632 #define SD_INIT_FUNC(type) \
6633 static noinline void sd_init_##type(struct sched_domain *sd) \
6635 memset(sd, 0, sizeof(*sd)); \
6636 *sd = SD_##type##_INIT; \
6637 sd->level = SD_LV_##type; \
6638 SD_INIT_NAME(sd, type); \
6641 SD_INIT_FUNC(CPU)
6642 #ifdef CONFIG_NUMA
6643 SD_INIT_FUNC(ALLNODES)
6644 SD_INIT_FUNC(NODE)
6645 #endif
6646 #ifdef CONFIG_SCHED_SMT
6647 SD_INIT_FUNC(SIBLING)
6648 #endif
6649 #ifdef CONFIG_SCHED_MC
6650 SD_INIT_FUNC(MC)
6651 #endif
6653 static int default_relax_domain_level = -1;
6655 static int __init setup_relax_domain_level(char *str)
6657 unsigned long val;
6659 val = simple_strtoul(str, NULL, 0);
6660 if (val < SD_LV_MAX)
6661 default_relax_domain_level = val;
6663 return 1;
6665 __setup("relax_domain_level=", setup_relax_domain_level);
6667 static void set_domain_attribute(struct sched_domain *sd,
6668 struct sched_domain_attr *attr)
6670 int request;
6672 if (!attr || attr->relax_domain_level < 0) {
6673 if (default_relax_domain_level < 0)
6674 return;
6675 else
6676 request = default_relax_domain_level;
6677 } else
6678 request = attr->relax_domain_level;
6679 if (request < sd->level) {
6680 /* turn off idle balance on this domain */
6681 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6682 } else {
6683 /* turn on idle balance on this domain */
6684 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6688 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6689 const struct cpumask *cpu_map)
6691 switch (what) {
6692 case sa_sched_groups:
6693 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6694 d->sched_group_nodes = NULL;
6695 case sa_rootdomain:
6696 free_rootdomain(d->rd); /* fall through */
6697 case sa_tmpmask:
6698 free_cpumask_var(d->tmpmask); /* fall through */
6699 case sa_send_covered:
6700 free_cpumask_var(d->send_covered); /* fall through */
6701 case sa_this_core_map:
6702 free_cpumask_var(d->this_core_map); /* fall through */
6703 case sa_this_sibling_map:
6704 free_cpumask_var(d->this_sibling_map); /* fall through */
6705 case sa_nodemask:
6706 free_cpumask_var(d->nodemask); /* fall through */
6707 case sa_sched_group_nodes:
6708 #ifdef CONFIG_NUMA
6709 kfree(d->sched_group_nodes); /* fall through */
6710 case sa_notcovered:
6711 free_cpumask_var(d->notcovered); /* fall through */
6712 case sa_covered:
6713 free_cpumask_var(d->covered); /* fall through */
6714 case sa_domainspan:
6715 free_cpumask_var(d->domainspan); /* fall through */
6716 #endif
6717 case sa_none:
6718 break;
6722 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6723 const struct cpumask *cpu_map)
6725 #ifdef CONFIG_NUMA
6726 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6727 return sa_none;
6728 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6729 return sa_domainspan;
6730 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6731 return sa_covered;
6732 /* Allocate the per-node list of sched groups */
6733 d->sched_group_nodes = kcalloc(nr_node_ids,
6734 sizeof(struct sched_group *), GFP_KERNEL);
6735 if (!d->sched_group_nodes) {
6736 printk(KERN_WARNING "Can not alloc sched group node list\n");
6737 return sa_notcovered;
6739 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6740 #endif
6741 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6742 return sa_sched_group_nodes;
6743 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6744 return sa_nodemask;
6745 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6746 return sa_this_sibling_map;
6747 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6748 return sa_this_core_map;
6749 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6750 return sa_send_covered;
6751 d->rd = alloc_rootdomain();
6752 if (!d->rd) {
6753 printk(KERN_WARNING "Cannot alloc root domain\n");
6754 return sa_tmpmask;
6756 return sa_rootdomain;
6759 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6760 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6762 struct sched_domain *sd = NULL;
6763 #ifdef CONFIG_NUMA
6764 struct sched_domain *parent;
6766 d->sd_allnodes = 0;
6767 if (cpumask_weight(cpu_map) >
6768 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6769 sd = &per_cpu(allnodes_domains, i).sd;
6770 SD_INIT(sd, ALLNODES);
6771 set_domain_attribute(sd, attr);
6772 cpumask_copy(sched_domain_span(sd), cpu_map);
6773 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6774 d->sd_allnodes = 1;
6776 parent = sd;
6778 sd = &per_cpu(node_domains, i).sd;
6779 SD_INIT(sd, NODE);
6780 set_domain_attribute(sd, attr);
6781 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6782 sd->parent = parent;
6783 if (parent)
6784 parent->child = sd;
6785 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6786 #endif
6787 return sd;
6790 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6791 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6792 struct sched_domain *parent, int i)
6794 struct sched_domain *sd;
6795 sd = &per_cpu(phys_domains, i).sd;
6796 SD_INIT(sd, CPU);
6797 set_domain_attribute(sd, attr);
6798 cpumask_copy(sched_domain_span(sd), d->nodemask);
6799 sd->parent = parent;
6800 if (parent)
6801 parent->child = sd;
6802 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6803 return sd;
6806 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6807 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6808 struct sched_domain *parent, int i)
6810 struct sched_domain *sd = parent;
6811 #ifdef CONFIG_SCHED_MC
6812 sd = &per_cpu(core_domains, i).sd;
6813 SD_INIT(sd, MC);
6814 set_domain_attribute(sd, attr);
6815 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6816 sd->parent = parent;
6817 parent->child = sd;
6818 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6819 #endif
6820 return sd;
6823 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6824 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6825 struct sched_domain *parent, int i)
6827 struct sched_domain *sd = parent;
6828 #ifdef CONFIG_SCHED_SMT
6829 sd = &per_cpu(cpu_domains, i).sd;
6830 SD_INIT(sd, SIBLING);
6831 set_domain_attribute(sd, attr);
6832 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6833 sd->parent = parent;
6834 parent->child = sd;
6835 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6836 #endif
6837 return sd;
6840 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6841 const struct cpumask *cpu_map, int cpu)
6843 switch (l) {
6844 #ifdef CONFIG_SCHED_SMT
6845 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6846 cpumask_and(d->this_sibling_map, cpu_map,
6847 topology_thread_cpumask(cpu));
6848 if (cpu == cpumask_first(d->this_sibling_map))
6849 init_sched_build_groups(d->this_sibling_map, cpu_map,
6850 &cpu_to_cpu_group,
6851 d->send_covered, d->tmpmask);
6852 break;
6853 #endif
6854 #ifdef CONFIG_SCHED_MC
6855 case SD_LV_MC: /* set up multi-core groups */
6856 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6857 if (cpu == cpumask_first(d->this_core_map))
6858 init_sched_build_groups(d->this_core_map, cpu_map,
6859 &cpu_to_core_group,
6860 d->send_covered, d->tmpmask);
6861 break;
6862 #endif
6863 case SD_LV_CPU: /* set up physical groups */
6864 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6865 if (!cpumask_empty(d->nodemask))
6866 init_sched_build_groups(d->nodemask, cpu_map,
6867 &cpu_to_phys_group,
6868 d->send_covered, d->tmpmask);
6869 break;
6870 #ifdef CONFIG_NUMA
6871 case SD_LV_ALLNODES:
6872 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6873 d->send_covered, d->tmpmask);
6874 break;
6875 #endif
6876 default:
6877 break;
6882 * Build sched domains for a given set of cpus and attach the sched domains
6883 * to the individual cpus
6885 static int __build_sched_domains(const struct cpumask *cpu_map,
6886 struct sched_domain_attr *attr)
6888 enum s_alloc alloc_state = sa_none;
6889 struct s_data d;
6890 struct sched_domain *sd;
6891 int i;
6892 #ifdef CONFIG_NUMA
6893 d.sd_allnodes = 0;
6894 #endif
6896 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6897 if (alloc_state != sa_rootdomain)
6898 goto error;
6899 alloc_state = sa_sched_groups;
6902 * Set up domains for cpus specified by the cpu_map.
6904 for_each_cpu(i, cpu_map) {
6905 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6906 cpu_map);
6908 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6909 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6910 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6911 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
6914 for_each_cpu(i, cpu_map) {
6915 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6916 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
6919 /* Set up physical groups */
6920 for (i = 0; i < nr_node_ids; i++)
6921 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6923 #ifdef CONFIG_NUMA
6924 /* Set up node groups */
6925 if (d.sd_allnodes)
6926 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6928 for (i = 0; i < nr_node_ids; i++)
6929 if (build_numa_sched_groups(&d, cpu_map, i))
6930 goto error;
6931 #endif
6933 /* Calculate CPU power for physical packages and nodes */
6934 #ifdef CONFIG_SCHED_SMT
6935 for_each_cpu(i, cpu_map) {
6936 sd = &per_cpu(cpu_domains, i).sd;
6937 init_sched_groups_power(i, sd);
6939 #endif
6940 #ifdef CONFIG_SCHED_MC
6941 for_each_cpu(i, cpu_map) {
6942 sd = &per_cpu(core_domains, i).sd;
6943 init_sched_groups_power(i, sd);
6945 #endif
6947 for_each_cpu(i, cpu_map) {
6948 sd = &per_cpu(phys_domains, i).sd;
6949 init_sched_groups_power(i, sd);
6952 #ifdef CONFIG_NUMA
6953 for (i = 0; i < nr_node_ids; i++)
6954 init_numa_sched_groups_power(d.sched_group_nodes[i]);
6956 if (d.sd_allnodes) {
6957 struct sched_group *sg;
6959 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6960 d.tmpmask);
6961 init_numa_sched_groups_power(sg);
6963 #endif
6965 /* Attach the domains */
6966 for_each_cpu(i, cpu_map) {
6967 #ifdef CONFIG_SCHED_SMT
6968 sd = &per_cpu(cpu_domains, i).sd;
6969 #elif defined(CONFIG_SCHED_MC)
6970 sd = &per_cpu(core_domains, i).sd;
6971 #else
6972 sd = &per_cpu(phys_domains, i).sd;
6973 #endif
6974 cpu_attach_domain(sd, d.rd, i);
6977 d.sched_group_nodes = NULL; /* don't free this we still need it */
6978 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6979 return 0;
6981 error:
6982 __free_domain_allocs(&d, alloc_state, cpu_map);
6983 return -ENOMEM;
6986 static int build_sched_domains(const struct cpumask *cpu_map)
6988 return __build_sched_domains(cpu_map, NULL);
6991 static cpumask_var_t *doms_cur; /* current sched domains */
6992 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6993 static struct sched_domain_attr *dattr_cur;
6994 /* attribues of custom domains in 'doms_cur' */
6997 * Special case: If a kmalloc of a doms_cur partition (array of
6998 * cpumask) fails, then fallback to a single sched domain,
6999 * as determined by the single cpumask fallback_doms.
7001 static cpumask_var_t fallback_doms;
7004 * arch_update_cpu_topology lets virtualized architectures update the
7005 * cpu core maps. It is supposed to return 1 if the topology changed
7006 * or 0 if it stayed the same.
7008 int __attribute__((weak)) arch_update_cpu_topology(void)
7010 return 0;
7013 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7015 int i;
7016 cpumask_var_t *doms;
7018 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7019 if (!doms)
7020 return NULL;
7021 for (i = 0; i < ndoms; i++) {
7022 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7023 free_sched_domains(doms, i);
7024 return NULL;
7027 return doms;
7030 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7032 unsigned int i;
7033 for (i = 0; i < ndoms; i++)
7034 free_cpumask_var(doms[i]);
7035 kfree(doms);
7039 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7040 * For now this just excludes isolated cpus, but could be used to
7041 * exclude other special cases in the future.
7043 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7045 int err;
7047 arch_update_cpu_topology();
7048 ndoms_cur = 1;
7049 doms_cur = alloc_sched_domains(ndoms_cur);
7050 if (!doms_cur)
7051 doms_cur = &fallback_doms;
7052 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7053 dattr_cur = NULL;
7054 err = build_sched_domains(doms_cur[0]);
7055 register_sched_domain_sysctl();
7057 return err;
7060 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7061 struct cpumask *tmpmask)
7063 free_sched_groups(cpu_map, tmpmask);
7067 * Detach sched domains from a group of cpus specified in cpu_map
7068 * These cpus will now be attached to the NULL domain
7070 static void detach_destroy_domains(const struct cpumask *cpu_map)
7072 /* Save because hotplug lock held. */
7073 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7074 int i;
7076 for_each_cpu(i, cpu_map)
7077 cpu_attach_domain(NULL, &def_root_domain, i);
7078 synchronize_sched();
7079 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7082 /* handle null as "default" */
7083 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7084 struct sched_domain_attr *new, int idx_new)
7086 struct sched_domain_attr tmp;
7088 /* fast path */
7089 if (!new && !cur)
7090 return 1;
7092 tmp = SD_ATTR_INIT;
7093 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7094 new ? (new + idx_new) : &tmp,
7095 sizeof(struct sched_domain_attr));
7099 * Partition sched domains as specified by the 'ndoms_new'
7100 * cpumasks in the array doms_new[] of cpumasks. This compares
7101 * doms_new[] to the current sched domain partitioning, doms_cur[].
7102 * It destroys each deleted domain and builds each new domain.
7104 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7105 * The masks don't intersect (don't overlap.) We should setup one
7106 * sched domain for each mask. CPUs not in any of the cpumasks will
7107 * not be load balanced. If the same cpumask appears both in the
7108 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7109 * it as it is.
7111 * The passed in 'doms_new' should be allocated using
7112 * alloc_sched_domains. This routine takes ownership of it and will
7113 * free_sched_domains it when done with it. If the caller failed the
7114 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7115 * and partition_sched_domains() will fallback to the single partition
7116 * 'fallback_doms', it also forces the domains to be rebuilt.
7118 * If doms_new == NULL it will be replaced with cpu_online_mask.
7119 * ndoms_new == 0 is a special case for destroying existing domains,
7120 * and it will not create the default domain.
7122 * Call with hotplug lock held
7124 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7125 struct sched_domain_attr *dattr_new)
7127 int i, j, n;
7128 int new_topology;
7130 mutex_lock(&sched_domains_mutex);
7132 /* always unregister in case we don't destroy any domains */
7133 unregister_sched_domain_sysctl();
7135 /* Let architecture update cpu core mappings. */
7136 new_topology = arch_update_cpu_topology();
7138 n = doms_new ? ndoms_new : 0;
7140 /* Destroy deleted domains */
7141 for (i = 0; i < ndoms_cur; i++) {
7142 for (j = 0; j < n && !new_topology; j++) {
7143 if (cpumask_equal(doms_cur[i], doms_new[j])
7144 && dattrs_equal(dattr_cur, i, dattr_new, j))
7145 goto match1;
7147 /* no match - a current sched domain not in new doms_new[] */
7148 detach_destroy_domains(doms_cur[i]);
7149 match1:
7153 if (doms_new == NULL) {
7154 ndoms_cur = 0;
7155 doms_new = &fallback_doms;
7156 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7157 WARN_ON_ONCE(dattr_new);
7160 /* Build new domains */
7161 for (i = 0; i < ndoms_new; i++) {
7162 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7163 if (cpumask_equal(doms_new[i], doms_cur[j])
7164 && dattrs_equal(dattr_new, i, dattr_cur, j))
7165 goto match2;
7167 /* no match - add a new doms_new */
7168 __build_sched_domains(doms_new[i],
7169 dattr_new ? dattr_new + i : NULL);
7170 match2:
7174 /* Remember the new sched domains */
7175 if (doms_cur != &fallback_doms)
7176 free_sched_domains(doms_cur, ndoms_cur);
7177 kfree(dattr_cur); /* kfree(NULL) is safe */
7178 doms_cur = doms_new;
7179 dattr_cur = dattr_new;
7180 ndoms_cur = ndoms_new;
7182 register_sched_domain_sysctl();
7184 mutex_unlock(&sched_domains_mutex);
7187 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7188 static void arch_reinit_sched_domains(void)
7190 get_online_cpus();
7192 /* Destroy domains first to force the rebuild */
7193 partition_sched_domains(0, NULL, NULL);
7195 rebuild_sched_domains();
7196 put_online_cpus();
7199 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7201 unsigned int level = 0;
7203 if (sscanf(buf, "%u", &level) != 1)
7204 return -EINVAL;
7207 * level is always be positive so don't check for
7208 * level < POWERSAVINGS_BALANCE_NONE which is 0
7209 * What happens on 0 or 1 byte write,
7210 * need to check for count as well?
7213 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7214 return -EINVAL;
7216 if (smt)
7217 sched_smt_power_savings = level;
7218 else
7219 sched_mc_power_savings = level;
7221 arch_reinit_sched_domains();
7223 return count;
7226 #ifdef CONFIG_SCHED_MC
7227 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7228 struct sysdev_class_attribute *attr,
7229 char *page)
7231 return sprintf(page, "%u\n", sched_mc_power_savings);
7233 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7234 struct sysdev_class_attribute *attr,
7235 const char *buf, size_t count)
7237 return sched_power_savings_store(buf, count, 0);
7239 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7240 sched_mc_power_savings_show,
7241 sched_mc_power_savings_store);
7242 #endif
7244 #ifdef CONFIG_SCHED_SMT
7245 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7246 struct sysdev_class_attribute *attr,
7247 char *page)
7249 return sprintf(page, "%u\n", sched_smt_power_savings);
7251 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7252 struct sysdev_class_attribute *attr,
7253 const char *buf, size_t count)
7255 return sched_power_savings_store(buf, count, 1);
7257 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7258 sched_smt_power_savings_show,
7259 sched_smt_power_savings_store);
7260 #endif
7262 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7264 int err = 0;
7266 #ifdef CONFIG_SCHED_SMT
7267 if (smt_capable())
7268 err = sysfs_create_file(&cls->kset.kobj,
7269 &attr_sched_smt_power_savings.attr);
7270 #endif
7271 #ifdef CONFIG_SCHED_MC
7272 if (!err && mc_capable())
7273 err = sysfs_create_file(&cls->kset.kobj,
7274 &attr_sched_mc_power_savings.attr);
7275 #endif
7276 return err;
7278 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7280 #ifndef CONFIG_CPUSETS
7282 * Add online and remove offline CPUs from the scheduler domains.
7283 * When cpusets are enabled they take over this function.
7285 static int update_sched_domains(struct notifier_block *nfb,
7286 unsigned long action, void *hcpu)
7288 switch (action) {
7289 case CPU_ONLINE:
7290 case CPU_ONLINE_FROZEN:
7291 case CPU_DOWN_PREPARE:
7292 case CPU_DOWN_PREPARE_FROZEN:
7293 case CPU_DOWN_FAILED:
7294 case CPU_DOWN_FAILED_FROZEN:
7295 partition_sched_domains(1, NULL, NULL);
7296 return NOTIFY_OK;
7298 default:
7299 return NOTIFY_DONE;
7302 #endif
7304 static int update_runtime(struct notifier_block *nfb,
7305 unsigned long action, void *hcpu)
7307 int cpu = (int)(long)hcpu;
7309 switch (action) {
7310 case CPU_DOWN_PREPARE:
7311 case CPU_DOWN_PREPARE_FROZEN:
7312 disable_runtime(cpu_rq(cpu));
7313 return NOTIFY_OK;
7315 case CPU_DOWN_FAILED:
7316 case CPU_DOWN_FAILED_FROZEN:
7317 case CPU_ONLINE:
7318 case CPU_ONLINE_FROZEN:
7319 enable_runtime(cpu_rq(cpu));
7320 return NOTIFY_OK;
7322 default:
7323 return NOTIFY_DONE;
7327 void __init sched_init_smp(void)
7329 cpumask_var_t non_isolated_cpus;
7331 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7332 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7334 #if defined(CONFIG_NUMA)
7335 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7336 GFP_KERNEL);
7337 BUG_ON(sched_group_nodes_bycpu == NULL);
7338 #endif
7339 get_online_cpus();
7340 mutex_lock(&sched_domains_mutex);
7341 arch_init_sched_domains(cpu_active_mask);
7342 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7343 if (cpumask_empty(non_isolated_cpus))
7344 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7345 mutex_unlock(&sched_domains_mutex);
7346 put_online_cpus();
7348 #ifndef CONFIG_CPUSETS
7349 /* XXX: Theoretical race here - CPU may be hotplugged now */
7350 hotcpu_notifier(update_sched_domains, 0);
7351 #endif
7353 /* RT runtime code needs to handle some hotplug events */
7354 hotcpu_notifier(update_runtime, 0);
7356 init_hrtick();
7358 /* Move init over to a non-isolated CPU */
7359 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7360 BUG();
7361 sched_init_granularity();
7362 free_cpumask_var(non_isolated_cpus);
7364 init_sched_rt_class();
7366 #else
7367 void __init sched_init_smp(void)
7369 sched_init_granularity();
7371 #endif /* CONFIG_SMP */
7373 const_debug unsigned int sysctl_timer_migration = 1;
7375 int in_sched_functions(unsigned long addr)
7377 return in_lock_functions(addr) ||
7378 (addr >= (unsigned long)__sched_text_start
7379 && addr < (unsigned long)__sched_text_end);
7382 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7384 cfs_rq->tasks_timeline = RB_ROOT;
7385 INIT_LIST_HEAD(&cfs_rq->tasks);
7386 #ifdef CONFIG_FAIR_GROUP_SCHED
7387 cfs_rq->rq = rq;
7388 #endif
7389 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7392 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7394 struct rt_prio_array *array;
7395 int i;
7397 array = &rt_rq->active;
7398 for (i = 0; i < MAX_RT_PRIO; i++) {
7399 INIT_LIST_HEAD(array->queue + i);
7400 __clear_bit(i, array->bitmap);
7402 /* delimiter for bitsearch: */
7403 __set_bit(MAX_RT_PRIO, array->bitmap);
7405 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7406 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7407 #ifdef CONFIG_SMP
7408 rt_rq->highest_prio.next = MAX_RT_PRIO;
7409 #endif
7410 #endif
7411 #ifdef CONFIG_SMP
7412 rt_rq->rt_nr_migratory = 0;
7413 rt_rq->overloaded = 0;
7414 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7415 #endif
7417 rt_rq->rt_time = 0;
7418 rt_rq->rt_throttled = 0;
7419 rt_rq->rt_runtime = 0;
7420 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7422 #ifdef CONFIG_RT_GROUP_SCHED
7423 rt_rq->rt_nr_boosted = 0;
7424 rt_rq->rq = rq;
7425 #endif
7428 #ifdef CONFIG_FAIR_GROUP_SCHED
7429 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7430 struct sched_entity *se, int cpu, int add,
7431 struct sched_entity *parent)
7433 struct rq *rq = cpu_rq(cpu);
7434 tg->cfs_rq[cpu] = cfs_rq;
7435 init_cfs_rq(cfs_rq, rq);
7436 cfs_rq->tg = tg;
7437 if (add)
7438 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7440 tg->se[cpu] = se;
7441 /* se could be NULL for init_task_group */
7442 if (!se)
7443 return;
7445 if (!parent)
7446 se->cfs_rq = &rq->cfs;
7447 else
7448 se->cfs_rq = parent->my_q;
7450 se->my_q = cfs_rq;
7451 se->load.weight = tg->shares;
7452 se->load.inv_weight = 0;
7453 se->parent = parent;
7455 #endif
7457 #ifdef CONFIG_RT_GROUP_SCHED
7458 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7459 struct sched_rt_entity *rt_se, int cpu, int add,
7460 struct sched_rt_entity *parent)
7462 struct rq *rq = cpu_rq(cpu);
7464 tg->rt_rq[cpu] = rt_rq;
7465 init_rt_rq(rt_rq, rq);
7466 rt_rq->tg = tg;
7467 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7468 if (add)
7469 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7471 tg->rt_se[cpu] = rt_se;
7472 if (!rt_se)
7473 return;
7475 if (!parent)
7476 rt_se->rt_rq = &rq->rt;
7477 else
7478 rt_se->rt_rq = parent->my_q;
7480 rt_se->my_q = rt_rq;
7481 rt_se->parent = parent;
7482 INIT_LIST_HEAD(&rt_se->run_list);
7484 #endif
7486 void __init sched_init(void)
7488 int i, j;
7489 unsigned long alloc_size = 0, ptr;
7491 #ifdef CONFIG_FAIR_GROUP_SCHED
7492 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7493 #endif
7494 #ifdef CONFIG_RT_GROUP_SCHED
7495 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7496 #endif
7497 #ifdef CONFIG_CPUMASK_OFFSTACK
7498 alloc_size += num_possible_cpus() * cpumask_size();
7499 #endif
7500 if (alloc_size) {
7501 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7503 #ifdef CONFIG_FAIR_GROUP_SCHED
7504 init_task_group.se = (struct sched_entity **)ptr;
7505 ptr += nr_cpu_ids * sizeof(void **);
7507 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7508 ptr += nr_cpu_ids * sizeof(void **);
7510 #endif /* CONFIG_FAIR_GROUP_SCHED */
7511 #ifdef CONFIG_RT_GROUP_SCHED
7512 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7513 ptr += nr_cpu_ids * sizeof(void **);
7515 init_task_group.rt_rq = (struct rt_rq **)ptr;
7516 ptr += nr_cpu_ids * sizeof(void **);
7518 #endif /* CONFIG_RT_GROUP_SCHED */
7519 #ifdef CONFIG_CPUMASK_OFFSTACK
7520 for_each_possible_cpu(i) {
7521 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7522 ptr += cpumask_size();
7524 #endif /* CONFIG_CPUMASK_OFFSTACK */
7527 #ifdef CONFIG_SMP
7528 init_defrootdomain();
7529 #endif
7531 init_rt_bandwidth(&def_rt_bandwidth,
7532 global_rt_period(), global_rt_runtime());
7534 #ifdef CONFIG_RT_GROUP_SCHED
7535 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7536 global_rt_period(), global_rt_runtime());
7537 #endif /* CONFIG_RT_GROUP_SCHED */
7539 #ifdef CONFIG_CGROUP_SCHED
7540 list_add(&init_task_group.list, &task_groups);
7541 INIT_LIST_HEAD(&init_task_group.children);
7543 #endif /* CONFIG_CGROUP_SCHED */
7545 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7546 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7547 __alignof__(unsigned long));
7548 #endif
7549 for_each_possible_cpu(i) {
7550 struct rq *rq;
7552 rq = cpu_rq(i);
7553 raw_spin_lock_init(&rq->lock);
7554 rq->nr_running = 0;
7555 rq->calc_load_active = 0;
7556 rq->calc_load_update = jiffies + LOAD_FREQ;
7557 init_cfs_rq(&rq->cfs, rq);
7558 init_rt_rq(&rq->rt, rq);
7559 #ifdef CONFIG_FAIR_GROUP_SCHED
7560 init_task_group.shares = init_task_group_load;
7561 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7562 #ifdef CONFIG_CGROUP_SCHED
7564 * How much cpu bandwidth does init_task_group get?
7566 * In case of task-groups formed thr' the cgroup filesystem, it
7567 * gets 100% of the cpu resources in the system. This overall
7568 * system cpu resource is divided among the tasks of
7569 * init_task_group and its child task-groups in a fair manner,
7570 * based on each entity's (task or task-group's) weight
7571 * (se->load.weight).
7573 * In other words, if init_task_group has 10 tasks of weight
7574 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7575 * then A0's share of the cpu resource is:
7577 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7579 * We achieve this by letting init_task_group's tasks sit
7580 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7582 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7583 #endif
7584 #endif /* CONFIG_FAIR_GROUP_SCHED */
7586 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7587 #ifdef CONFIG_RT_GROUP_SCHED
7588 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7589 #ifdef CONFIG_CGROUP_SCHED
7590 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7591 #endif
7592 #endif
7594 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7595 rq->cpu_load[j] = 0;
7596 #ifdef CONFIG_SMP
7597 rq->sd = NULL;
7598 rq->rd = NULL;
7599 rq->post_schedule = 0;
7600 rq->active_balance = 0;
7601 rq->next_balance = jiffies;
7602 rq->push_cpu = 0;
7603 rq->cpu = i;
7604 rq->online = 0;
7605 rq->idle_stamp = 0;
7606 rq->avg_idle = 2*sysctl_sched_migration_cost;
7607 rq_attach_root(rq, &def_root_domain);
7608 #endif
7609 init_rq_hrtick(rq);
7610 atomic_set(&rq->nr_iowait, 0);
7613 set_load_weight(&init_task);
7615 #ifdef CONFIG_PREEMPT_NOTIFIERS
7616 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7617 #endif
7619 #ifdef CONFIG_SMP
7620 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7621 #endif
7623 #ifdef CONFIG_RT_MUTEXES
7624 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7625 #endif
7628 * The boot idle thread does lazy MMU switching as well:
7630 atomic_inc(&init_mm.mm_count);
7631 enter_lazy_tlb(&init_mm, current);
7634 * Make us the idle thread. Technically, schedule() should not be
7635 * called from this thread, however somewhere below it might be,
7636 * but because we are the idle thread, we just pick up running again
7637 * when this runqueue becomes "idle".
7639 init_idle(current, smp_processor_id());
7641 calc_load_update = jiffies + LOAD_FREQ;
7644 * During early bootup we pretend to be a normal task:
7646 current->sched_class = &fair_sched_class;
7648 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7649 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7650 #ifdef CONFIG_SMP
7651 #ifdef CONFIG_NO_HZ
7652 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7653 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7654 #endif
7655 /* May be allocated at isolcpus cmdline parse time */
7656 if (cpu_isolated_map == NULL)
7657 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7658 #endif /* SMP */
7660 perf_event_init();
7662 scheduler_running = 1;
7665 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7666 static inline int preempt_count_equals(int preempt_offset)
7668 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7670 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7673 void __might_sleep(const char *file, int line, int preempt_offset)
7675 #ifdef in_atomic
7676 static unsigned long prev_jiffy; /* ratelimiting */
7678 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7679 system_state != SYSTEM_RUNNING || oops_in_progress)
7680 return;
7681 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7682 return;
7683 prev_jiffy = jiffies;
7685 printk(KERN_ERR
7686 "BUG: sleeping function called from invalid context at %s:%d\n",
7687 file, line);
7688 printk(KERN_ERR
7689 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7690 in_atomic(), irqs_disabled(),
7691 current->pid, current->comm);
7693 debug_show_held_locks(current);
7694 if (irqs_disabled())
7695 print_irqtrace_events(current);
7696 dump_stack();
7697 #endif
7699 EXPORT_SYMBOL(__might_sleep);
7700 #endif
7702 #ifdef CONFIG_MAGIC_SYSRQ
7703 static void normalize_task(struct rq *rq, struct task_struct *p)
7705 int on_rq;
7707 on_rq = p->se.on_rq;
7708 if (on_rq)
7709 deactivate_task(rq, p, 0);
7710 __setscheduler(rq, p, SCHED_NORMAL, 0);
7711 if (on_rq) {
7712 activate_task(rq, p, 0);
7713 resched_task(rq->curr);
7717 void normalize_rt_tasks(void)
7719 struct task_struct *g, *p;
7720 unsigned long flags;
7721 struct rq *rq;
7723 read_lock_irqsave(&tasklist_lock, flags);
7724 do_each_thread(g, p) {
7726 * Only normalize user tasks:
7728 if (!p->mm)
7729 continue;
7731 p->se.exec_start = 0;
7732 #ifdef CONFIG_SCHEDSTATS
7733 p->se.statistics.wait_start = 0;
7734 p->se.statistics.sleep_start = 0;
7735 p->se.statistics.block_start = 0;
7736 #endif
7738 if (!rt_task(p)) {
7740 * Renice negative nice level userspace
7741 * tasks back to 0:
7743 if (TASK_NICE(p) < 0 && p->mm)
7744 set_user_nice(p, 0);
7745 continue;
7748 raw_spin_lock(&p->pi_lock);
7749 rq = __task_rq_lock(p);
7751 normalize_task(rq, p);
7753 __task_rq_unlock(rq);
7754 raw_spin_unlock(&p->pi_lock);
7755 } while_each_thread(g, p);
7757 read_unlock_irqrestore(&tasklist_lock, flags);
7760 #endif /* CONFIG_MAGIC_SYSRQ */
7762 #ifdef CONFIG_IA64
7764 * These functions are only useful for the IA64 MCA handling.
7766 * They can only be called when the whole system has been
7767 * stopped - every CPU needs to be quiescent, and no scheduling
7768 * activity can take place. Using them for anything else would
7769 * be a serious bug, and as a result, they aren't even visible
7770 * under any other configuration.
7774 * curr_task - return the current task for a given cpu.
7775 * @cpu: the processor in question.
7777 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7779 struct task_struct *curr_task(int cpu)
7781 return cpu_curr(cpu);
7785 * set_curr_task - set the current task for a given cpu.
7786 * @cpu: the processor in question.
7787 * @p: the task pointer to set.
7789 * Description: This function must only be used when non-maskable interrupts
7790 * are serviced on a separate stack. It allows the architecture to switch the
7791 * notion of the current task on a cpu in a non-blocking manner. This function
7792 * must be called with all CPU's synchronized, and interrupts disabled, the
7793 * and caller must save the original value of the current task (see
7794 * curr_task() above) and restore that value before reenabling interrupts and
7795 * re-starting the system.
7797 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7799 void set_curr_task(int cpu, struct task_struct *p)
7801 cpu_curr(cpu) = p;
7804 #endif
7806 #ifdef CONFIG_FAIR_GROUP_SCHED
7807 static void free_fair_sched_group(struct task_group *tg)
7809 int i;
7811 for_each_possible_cpu(i) {
7812 if (tg->cfs_rq)
7813 kfree(tg->cfs_rq[i]);
7814 if (tg->se)
7815 kfree(tg->se[i]);
7818 kfree(tg->cfs_rq);
7819 kfree(tg->se);
7822 static
7823 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7825 struct cfs_rq *cfs_rq;
7826 struct sched_entity *se;
7827 struct rq *rq;
7828 int i;
7830 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7831 if (!tg->cfs_rq)
7832 goto err;
7833 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7834 if (!tg->se)
7835 goto err;
7837 tg->shares = NICE_0_LOAD;
7839 for_each_possible_cpu(i) {
7840 rq = cpu_rq(i);
7842 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7843 GFP_KERNEL, cpu_to_node(i));
7844 if (!cfs_rq)
7845 goto err;
7847 se = kzalloc_node(sizeof(struct sched_entity),
7848 GFP_KERNEL, cpu_to_node(i));
7849 if (!se)
7850 goto err_free_rq;
7852 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7855 return 1;
7857 err_free_rq:
7858 kfree(cfs_rq);
7859 err:
7860 return 0;
7863 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7865 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7866 &cpu_rq(cpu)->leaf_cfs_rq_list);
7869 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7871 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7873 #else /* !CONFG_FAIR_GROUP_SCHED */
7874 static inline void free_fair_sched_group(struct task_group *tg)
7878 static inline
7879 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7881 return 1;
7884 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7888 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7891 #endif /* CONFIG_FAIR_GROUP_SCHED */
7893 #ifdef CONFIG_RT_GROUP_SCHED
7894 static void free_rt_sched_group(struct task_group *tg)
7896 int i;
7898 destroy_rt_bandwidth(&tg->rt_bandwidth);
7900 for_each_possible_cpu(i) {
7901 if (tg->rt_rq)
7902 kfree(tg->rt_rq[i]);
7903 if (tg->rt_se)
7904 kfree(tg->rt_se[i]);
7907 kfree(tg->rt_rq);
7908 kfree(tg->rt_se);
7911 static
7912 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7914 struct rt_rq *rt_rq;
7915 struct sched_rt_entity *rt_se;
7916 struct rq *rq;
7917 int i;
7919 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7920 if (!tg->rt_rq)
7921 goto err;
7922 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7923 if (!tg->rt_se)
7924 goto err;
7926 init_rt_bandwidth(&tg->rt_bandwidth,
7927 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7929 for_each_possible_cpu(i) {
7930 rq = cpu_rq(i);
7932 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7933 GFP_KERNEL, cpu_to_node(i));
7934 if (!rt_rq)
7935 goto err;
7937 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7938 GFP_KERNEL, cpu_to_node(i));
7939 if (!rt_se)
7940 goto err_free_rq;
7942 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
7945 return 1;
7947 err_free_rq:
7948 kfree(rt_rq);
7949 err:
7950 return 0;
7953 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7955 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7956 &cpu_rq(cpu)->leaf_rt_rq_list);
7959 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7961 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7963 #else /* !CONFIG_RT_GROUP_SCHED */
7964 static inline void free_rt_sched_group(struct task_group *tg)
7968 static inline
7969 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7971 return 1;
7974 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7978 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7981 #endif /* CONFIG_RT_GROUP_SCHED */
7983 #ifdef CONFIG_CGROUP_SCHED
7984 static void free_sched_group(struct task_group *tg)
7986 free_fair_sched_group(tg);
7987 free_rt_sched_group(tg);
7988 kfree(tg);
7991 /* allocate runqueue etc for a new task group */
7992 struct task_group *sched_create_group(struct task_group *parent)
7994 struct task_group *tg;
7995 unsigned long flags;
7996 int i;
7998 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7999 if (!tg)
8000 return ERR_PTR(-ENOMEM);
8002 if (!alloc_fair_sched_group(tg, parent))
8003 goto err;
8005 if (!alloc_rt_sched_group(tg, parent))
8006 goto err;
8008 spin_lock_irqsave(&task_group_lock, flags);
8009 for_each_possible_cpu(i) {
8010 register_fair_sched_group(tg, i);
8011 register_rt_sched_group(tg, i);
8013 list_add_rcu(&tg->list, &task_groups);
8015 WARN_ON(!parent); /* root should already exist */
8017 tg->parent = parent;
8018 INIT_LIST_HEAD(&tg->children);
8019 list_add_rcu(&tg->siblings, &parent->children);
8020 spin_unlock_irqrestore(&task_group_lock, flags);
8022 return tg;
8024 err:
8025 free_sched_group(tg);
8026 return ERR_PTR(-ENOMEM);
8029 /* rcu callback to free various structures associated with a task group */
8030 static void free_sched_group_rcu(struct rcu_head *rhp)
8032 /* now it should be safe to free those cfs_rqs */
8033 free_sched_group(container_of(rhp, struct task_group, rcu));
8036 /* Destroy runqueue etc associated with a task group */
8037 void sched_destroy_group(struct task_group *tg)
8039 unsigned long flags;
8040 int i;
8042 spin_lock_irqsave(&task_group_lock, flags);
8043 for_each_possible_cpu(i) {
8044 unregister_fair_sched_group(tg, i);
8045 unregister_rt_sched_group(tg, i);
8047 list_del_rcu(&tg->list);
8048 list_del_rcu(&tg->siblings);
8049 spin_unlock_irqrestore(&task_group_lock, flags);
8051 /* wait for possible concurrent references to cfs_rqs complete */
8052 call_rcu(&tg->rcu, free_sched_group_rcu);
8055 /* change task's runqueue when it moves between groups.
8056 * The caller of this function should have put the task in its new group
8057 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8058 * reflect its new group.
8060 void sched_move_task(struct task_struct *tsk)
8062 int on_rq, running;
8063 unsigned long flags;
8064 struct rq *rq;
8066 rq = task_rq_lock(tsk, &flags);
8068 running = task_current(rq, tsk);
8069 on_rq = tsk->se.on_rq;
8071 if (on_rq)
8072 dequeue_task(rq, tsk, 0);
8073 if (unlikely(running))
8074 tsk->sched_class->put_prev_task(rq, tsk);
8076 set_task_rq(tsk, task_cpu(tsk));
8078 #ifdef CONFIG_FAIR_GROUP_SCHED
8079 if (tsk->sched_class->moved_group)
8080 tsk->sched_class->moved_group(tsk, on_rq);
8081 #endif
8083 if (unlikely(running))
8084 tsk->sched_class->set_curr_task(rq);
8085 if (on_rq)
8086 enqueue_task(rq, tsk, 0);
8088 task_rq_unlock(rq, &flags);
8090 #endif /* CONFIG_CGROUP_SCHED */
8092 #ifdef CONFIG_FAIR_GROUP_SCHED
8093 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8095 struct cfs_rq *cfs_rq = se->cfs_rq;
8096 int on_rq;
8098 on_rq = se->on_rq;
8099 if (on_rq)
8100 dequeue_entity(cfs_rq, se, 0);
8102 se->load.weight = shares;
8103 se->load.inv_weight = 0;
8105 if (on_rq)
8106 enqueue_entity(cfs_rq, se, 0);
8109 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8111 struct cfs_rq *cfs_rq = se->cfs_rq;
8112 struct rq *rq = cfs_rq->rq;
8113 unsigned long flags;
8115 raw_spin_lock_irqsave(&rq->lock, flags);
8116 __set_se_shares(se, shares);
8117 raw_spin_unlock_irqrestore(&rq->lock, flags);
8120 static DEFINE_MUTEX(shares_mutex);
8122 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8124 int i;
8125 unsigned long flags;
8128 * We can't change the weight of the root cgroup.
8130 if (!tg->se[0])
8131 return -EINVAL;
8133 if (shares < MIN_SHARES)
8134 shares = MIN_SHARES;
8135 else if (shares > MAX_SHARES)
8136 shares = MAX_SHARES;
8138 mutex_lock(&shares_mutex);
8139 if (tg->shares == shares)
8140 goto done;
8142 spin_lock_irqsave(&task_group_lock, flags);
8143 for_each_possible_cpu(i)
8144 unregister_fair_sched_group(tg, i);
8145 list_del_rcu(&tg->siblings);
8146 spin_unlock_irqrestore(&task_group_lock, flags);
8148 /* wait for any ongoing reference to this group to finish */
8149 synchronize_sched();
8152 * Now we are free to modify the group's share on each cpu
8153 * w/o tripping rebalance_share or load_balance_fair.
8155 tg->shares = shares;
8156 for_each_possible_cpu(i) {
8158 * force a rebalance
8160 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8161 set_se_shares(tg->se[i], shares);
8165 * Enable load balance activity on this group, by inserting it back on
8166 * each cpu's rq->leaf_cfs_rq_list.
8168 spin_lock_irqsave(&task_group_lock, flags);
8169 for_each_possible_cpu(i)
8170 register_fair_sched_group(tg, i);
8171 list_add_rcu(&tg->siblings, &tg->parent->children);
8172 spin_unlock_irqrestore(&task_group_lock, flags);
8173 done:
8174 mutex_unlock(&shares_mutex);
8175 return 0;
8178 unsigned long sched_group_shares(struct task_group *tg)
8180 return tg->shares;
8182 #endif
8184 #ifdef CONFIG_RT_GROUP_SCHED
8186 * Ensure that the real time constraints are schedulable.
8188 static DEFINE_MUTEX(rt_constraints_mutex);
8190 static unsigned long to_ratio(u64 period, u64 runtime)
8192 if (runtime == RUNTIME_INF)
8193 return 1ULL << 20;
8195 return div64_u64(runtime << 20, period);
8198 /* Must be called with tasklist_lock held */
8199 static inline int tg_has_rt_tasks(struct task_group *tg)
8201 struct task_struct *g, *p;
8203 do_each_thread(g, p) {
8204 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8205 return 1;
8206 } while_each_thread(g, p);
8208 return 0;
8211 struct rt_schedulable_data {
8212 struct task_group *tg;
8213 u64 rt_period;
8214 u64 rt_runtime;
8217 static int tg_schedulable(struct task_group *tg, void *data)
8219 struct rt_schedulable_data *d = data;
8220 struct task_group *child;
8221 unsigned long total, sum = 0;
8222 u64 period, runtime;
8224 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8225 runtime = tg->rt_bandwidth.rt_runtime;
8227 if (tg == d->tg) {
8228 period = d->rt_period;
8229 runtime = d->rt_runtime;
8233 * Cannot have more runtime than the period.
8235 if (runtime > period && runtime != RUNTIME_INF)
8236 return -EINVAL;
8239 * Ensure we don't starve existing RT tasks.
8241 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8242 return -EBUSY;
8244 total = to_ratio(period, runtime);
8247 * Nobody can have more than the global setting allows.
8249 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8250 return -EINVAL;
8253 * The sum of our children's runtime should not exceed our own.
8255 list_for_each_entry_rcu(child, &tg->children, siblings) {
8256 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8257 runtime = child->rt_bandwidth.rt_runtime;
8259 if (child == d->tg) {
8260 period = d->rt_period;
8261 runtime = d->rt_runtime;
8264 sum += to_ratio(period, runtime);
8267 if (sum > total)
8268 return -EINVAL;
8270 return 0;
8273 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8275 struct rt_schedulable_data data = {
8276 .tg = tg,
8277 .rt_period = period,
8278 .rt_runtime = runtime,
8281 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8284 static int tg_set_bandwidth(struct task_group *tg,
8285 u64 rt_period, u64 rt_runtime)
8287 int i, err = 0;
8289 mutex_lock(&rt_constraints_mutex);
8290 read_lock(&tasklist_lock);
8291 err = __rt_schedulable(tg, rt_period, rt_runtime);
8292 if (err)
8293 goto unlock;
8295 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8296 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8297 tg->rt_bandwidth.rt_runtime = rt_runtime;
8299 for_each_possible_cpu(i) {
8300 struct rt_rq *rt_rq = tg->rt_rq[i];
8302 raw_spin_lock(&rt_rq->rt_runtime_lock);
8303 rt_rq->rt_runtime = rt_runtime;
8304 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8306 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8307 unlock:
8308 read_unlock(&tasklist_lock);
8309 mutex_unlock(&rt_constraints_mutex);
8311 return err;
8314 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8316 u64 rt_runtime, rt_period;
8318 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8319 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8320 if (rt_runtime_us < 0)
8321 rt_runtime = RUNTIME_INF;
8323 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8326 long sched_group_rt_runtime(struct task_group *tg)
8328 u64 rt_runtime_us;
8330 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8331 return -1;
8333 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8334 do_div(rt_runtime_us, NSEC_PER_USEC);
8335 return rt_runtime_us;
8338 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8340 u64 rt_runtime, rt_period;
8342 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8343 rt_runtime = tg->rt_bandwidth.rt_runtime;
8345 if (rt_period == 0)
8346 return -EINVAL;
8348 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8351 long sched_group_rt_period(struct task_group *tg)
8353 u64 rt_period_us;
8355 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8356 do_div(rt_period_us, NSEC_PER_USEC);
8357 return rt_period_us;
8360 static int sched_rt_global_constraints(void)
8362 u64 runtime, period;
8363 int ret = 0;
8365 if (sysctl_sched_rt_period <= 0)
8366 return -EINVAL;
8368 runtime = global_rt_runtime();
8369 period = global_rt_period();
8372 * Sanity check on the sysctl variables.
8374 if (runtime > period && runtime != RUNTIME_INF)
8375 return -EINVAL;
8377 mutex_lock(&rt_constraints_mutex);
8378 read_lock(&tasklist_lock);
8379 ret = __rt_schedulable(NULL, 0, 0);
8380 read_unlock(&tasklist_lock);
8381 mutex_unlock(&rt_constraints_mutex);
8383 return ret;
8386 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8388 /* Don't accept realtime tasks when there is no way for them to run */
8389 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8390 return 0;
8392 return 1;
8395 #else /* !CONFIG_RT_GROUP_SCHED */
8396 static int sched_rt_global_constraints(void)
8398 unsigned long flags;
8399 int i;
8401 if (sysctl_sched_rt_period <= 0)
8402 return -EINVAL;
8405 * There's always some RT tasks in the root group
8406 * -- migration, kstopmachine etc..
8408 if (sysctl_sched_rt_runtime == 0)
8409 return -EBUSY;
8411 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8412 for_each_possible_cpu(i) {
8413 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8415 raw_spin_lock(&rt_rq->rt_runtime_lock);
8416 rt_rq->rt_runtime = global_rt_runtime();
8417 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8419 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8421 return 0;
8423 #endif /* CONFIG_RT_GROUP_SCHED */
8425 int sched_rt_handler(struct ctl_table *table, int write,
8426 void __user *buffer, size_t *lenp,
8427 loff_t *ppos)
8429 int ret;
8430 int old_period, old_runtime;
8431 static DEFINE_MUTEX(mutex);
8433 mutex_lock(&mutex);
8434 old_period = sysctl_sched_rt_period;
8435 old_runtime = sysctl_sched_rt_runtime;
8437 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8439 if (!ret && write) {
8440 ret = sched_rt_global_constraints();
8441 if (ret) {
8442 sysctl_sched_rt_period = old_period;
8443 sysctl_sched_rt_runtime = old_runtime;
8444 } else {
8445 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8446 def_rt_bandwidth.rt_period =
8447 ns_to_ktime(global_rt_period());
8450 mutex_unlock(&mutex);
8452 return ret;
8455 #ifdef CONFIG_CGROUP_SCHED
8457 /* return corresponding task_group object of a cgroup */
8458 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8460 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8461 struct task_group, css);
8464 static struct cgroup_subsys_state *
8465 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8467 struct task_group *tg, *parent;
8469 if (!cgrp->parent) {
8470 /* This is early initialization for the top cgroup */
8471 return &init_task_group.css;
8474 parent = cgroup_tg(cgrp->parent);
8475 tg = sched_create_group(parent);
8476 if (IS_ERR(tg))
8477 return ERR_PTR(-ENOMEM);
8479 return &tg->css;
8482 static void
8483 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8485 struct task_group *tg = cgroup_tg(cgrp);
8487 sched_destroy_group(tg);
8490 static int
8491 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8493 #ifdef CONFIG_RT_GROUP_SCHED
8494 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8495 return -EINVAL;
8496 #else
8497 /* We don't support RT-tasks being in separate groups */
8498 if (tsk->sched_class != &fair_sched_class)
8499 return -EINVAL;
8500 #endif
8501 return 0;
8504 static int
8505 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8506 struct task_struct *tsk, bool threadgroup)
8508 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8509 if (retval)
8510 return retval;
8511 if (threadgroup) {
8512 struct task_struct *c;
8513 rcu_read_lock();
8514 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8515 retval = cpu_cgroup_can_attach_task(cgrp, c);
8516 if (retval) {
8517 rcu_read_unlock();
8518 return retval;
8521 rcu_read_unlock();
8523 return 0;
8526 static void
8527 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8528 struct cgroup *old_cont, struct task_struct *tsk,
8529 bool threadgroup)
8531 sched_move_task(tsk);
8532 if (threadgroup) {
8533 struct task_struct *c;
8534 rcu_read_lock();
8535 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8536 sched_move_task(c);
8538 rcu_read_unlock();
8542 #ifdef CONFIG_FAIR_GROUP_SCHED
8543 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8544 u64 shareval)
8546 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8549 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8551 struct task_group *tg = cgroup_tg(cgrp);
8553 return (u64) tg->shares;
8555 #endif /* CONFIG_FAIR_GROUP_SCHED */
8557 #ifdef CONFIG_RT_GROUP_SCHED
8558 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8559 s64 val)
8561 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8564 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8566 return sched_group_rt_runtime(cgroup_tg(cgrp));
8569 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8570 u64 rt_period_us)
8572 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8575 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8577 return sched_group_rt_period(cgroup_tg(cgrp));
8579 #endif /* CONFIG_RT_GROUP_SCHED */
8581 static struct cftype cpu_files[] = {
8582 #ifdef CONFIG_FAIR_GROUP_SCHED
8584 .name = "shares",
8585 .read_u64 = cpu_shares_read_u64,
8586 .write_u64 = cpu_shares_write_u64,
8588 #endif
8589 #ifdef CONFIG_RT_GROUP_SCHED
8591 .name = "rt_runtime_us",
8592 .read_s64 = cpu_rt_runtime_read,
8593 .write_s64 = cpu_rt_runtime_write,
8596 .name = "rt_period_us",
8597 .read_u64 = cpu_rt_period_read_uint,
8598 .write_u64 = cpu_rt_period_write_uint,
8600 #endif
8603 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8605 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8608 struct cgroup_subsys cpu_cgroup_subsys = {
8609 .name = "cpu",
8610 .create = cpu_cgroup_create,
8611 .destroy = cpu_cgroup_destroy,
8612 .can_attach = cpu_cgroup_can_attach,
8613 .attach = cpu_cgroup_attach,
8614 .populate = cpu_cgroup_populate,
8615 .subsys_id = cpu_cgroup_subsys_id,
8616 .early_init = 1,
8619 #endif /* CONFIG_CGROUP_SCHED */
8621 #ifdef CONFIG_CGROUP_CPUACCT
8624 * CPU accounting code for task groups.
8626 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8627 * (balbir@in.ibm.com).
8630 /* track cpu usage of a group of tasks and its child groups */
8631 struct cpuacct {
8632 struct cgroup_subsys_state css;
8633 /* cpuusage holds pointer to a u64-type object on every cpu */
8634 u64 __percpu *cpuusage;
8635 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8636 struct cpuacct *parent;
8639 struct cgroup_subsys cpuacct_subsys;
8641 /* return cpu accounting group corresponding to this container */
8642 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8644 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8645 struct cpuacct, css);
8648 /* return cpu accounting group to which this task belongs */
8649 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8651 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8652 struct cpuacct, css);
8655 /* create a new cpu accounting group */
8656 static struct cgroup_subsys_state *cpuacct_create(
8657 struct cgroup_subsys *ss, struct cgroup *cgrp)
8659 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8660 int i;
8662 if (!ca)
8663 goto out;
8665 ca->cpuusage = alloc_percpu(u64);
8666 if (!ca->cpuusage)
8667 goto out_free_ca;
8669 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8670 if (percpu_counter_init(&ca->cpustat[i], 0))
8671 goto out_free_counters;
8673 if (cgrp->parent)
8674 ca->parent = cgroup_ca(cgrp->parent);
8676 return &ca->css;
8678 out_free_counters:
8679 while (--i >= 0)
8680 percpu_counter_destroy(&ca->cpustat[i]);
8681 free_percpu(ca->cpuusage);
8682 out_free_ca:
8683 kfree(ca);
8684 out:
8685 return ERR_PTR(-ENOMEM);
8688 /* destroy an existing cpu accounting group */
8689 static void
8690 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8692 struct cpuacct *ca = cgroup_ca(cgrp);
8693 int i;
8695 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8696 percpu_counter_destroy(&ca->cpustat[i]);
8697 free_percpu(ca->cpuusage);
8698 kfree(ca);
8701 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8703 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8704 u64 data;
8706 #ifndef CONFIG_64BIT
8708 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8710 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8711 data = *cpuusage;
8712 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8713 #else
8714 data = *cpuusage;
8715 #endif
8717 return data;
8720 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8722 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8724 #ifndef CONFIG_64BIT
8726 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8728 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8729 *cpuusage = val;
8730 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8731 #else
8732 *cpuusage = val;
8733 #endif
8736 /* return total cpu usage (in nanoseconds) of a group */
8737 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8739 struct cpuacct *ca = cgroup_ca(cgrp);
8740 u64 totalcpuusage = 0;
8741 int i;
8743 for_each_present_cpu(i)
8744 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8746 return totalcpuusage;
8749 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8750 u64 reset)
8752 struct cpuacct *ca = cgroup_ca(cgrp);
8753 int err = 0;
8754 int i;
8756 if (reset) {
8757 err = -EINVAL;
8758 goto out;
8761 for_each_present_cpu(i)
8762 cpuacct_cpuusage_write(ca, i, 0);
8764 out:
8765 return err;
8768 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8769 struct seq_file *m)
8771 struct cpuacct *ca = cgroup_ca(cgroup);
8772 u64 percpu;
8773 int i;
8775 for_each_present_cpu(i) {
8776 percpu = cpuacct_cpuusage_read(ca, i);
8777 seq_printf(m, "%llu ", (unsigned long long) percpu);
8779 seq_printf(m, "\n");
8780 return 0;
8783 static const char *cpuacct_stat_desc[] = {
8784 [CPUACCT_STAT_USER] = "user",
8785 [CPUACCT_STAT_SYSTEM] = "system",
8788 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8789 struct cgroup_map_cb *cb)
8791 struct cpuacct *ca = cgroup_ca(cgrp);
8792 int i;
8794 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8795 s64 val = percpu_counter_read(&ca->cpustat[i]);
8796 val = cputime64_to_clock_t(val);
8797 cb->fill(cb, cpuacct_stat_desc[i], val);
8799 return 0;
8802 static struct cftype files[] = {
8804 .name = "usage",
8805 .read_u64 = cpuusage_read,
8806 .write_u64 = cpuusage_write,
8809 .name = "usage_percpu",
8810 .read_seq_string = cpuacct_percpu_seq_read,
8813 .name = "stat",
8814 .read_map = cpuacct_stats_show,
8818 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8820 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8824 * charge this task's execution time to its accounting group.
8826 * called with rq->lock held.
8828 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8830 struct cpuacct *ca;
8831 int cpu;
8833 if (unlikely(!cpuacct_subsys.active))
8834 return;
8836 cpu = task_cpu(tsk);
8838 rcu_read_lock();
8840 ca = task_ca(tsk);
8842 for (; ca; ca = ca->parent) {
8843 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8844 *cpuusage += cputime;
8847 rcu_read_unlock();
8851 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8852 * in cputime_t units. As a result, cpuacct_update_stats calls
8853 * percpu_counter_add with values large enough to always overflow the
8854 * per cpu batch limit causing bad SMP scalability.
8856 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8857 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8858 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8860 #ifdef CONFIG_SMP
8861 #define CPUACCT_BATCH \
8862 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8863 #else
8864 #define CPUACCT_BATCH 0
8865 #endif
8868 * Charge the system/user time to the task's accounting group.
8870 static void cpuacct_update_stats(struct task_struct *tsk,
8871 enum cpuacct_stat_index idx, cputime_t val)
8873 struct cpuacct *ca;
8874 int batch = CPUACCT_BATCH;
8876 if (unlikely(!cpuacct_subsys.active))
8877 return;
8879 rcu_read_lock();
8880 ca = task_ca(tsk);
8882 do {
8883 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8884 ca = ca->parent;
8885 } while (ca);
8886 rcu_read_unlock();
8889 struct cgroup_subsys cpuacct_subsys = {
8890 .name = "cpuacct",
8891 .create = cpuacct_create,
8892 .destroy = cpuacct_destroy,
8893 .populate = cpuacct_populate,
8894 .subsys_id = cpuacct_subsys_id,
8896 #endif /* CONFIG_CGROUP_CPUACCT */
8898 #ifndef CONFIG_SMP
8900 void synchronize_sched_expedited(void)
8902 barrier();
8904 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8906 #else /* #ifndef CONFIG_SMP */
8908 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8910 static int synchronize_sched_expedited_cpu_stop(void *data)
8913 * There must be a full memory barrier on each affected CPU
8914 * between the time that try_stop_cpus() is called and the
8915 * time that it returns.
8917 * In the current initial implementation of cpu_stop, the
8918 * above condition is already met when the control reaches
8919 * this point and the following smp_mb() is not strictly
8920 * necessary. Do smp_mb() anyway for documentation and
8921 * robustness against future implementation changes.
8923 smp_mb(); /* See above comment block. */
8924 return 0;
8928 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8929 * approach to force grace period to end quickly. This consumes
8930 * significant time on all CPUs, and is thus not recommended for
8931 * any sort of common-case code.
8933 * Note that it is illegal to call this function while holding any
8934 * lock that is acquired by a CPU-hotplug notifier. Failing to
8935 * observe this restriction will result in deadlock.
8937 void synchronize_sched_expedited(void)
8939 int snap, trycount = 0;
8941 smp_mb(); /* ensure prior mod happens before capturing snap. */
8942 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8943 get_online_cpus();
8944 while (try_stop_cpus(cpu_online_mask,
8945 synchronize_sched_expedited_cpu_stop,
8946 NULL) == -EAGAIN) {
8947 put_online_cpus();
8948 if (trycount++ < 10)
8949 udelay(trycount * num_online_cpus());
8950 else {
8951 synchronize_sched();
8952 return;
8954 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8955 smp_mb(); /* ensure test happens before caller kfree */
8956 return;
8958 get_online_cpus();
8960 atomic_inc(&synchronize_sched_expedited_count);
8961 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8962 put_online_cpus();
8964 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8966 #endif /* #else #ifndef CONFIG_SMP */