Input: ams_delta_serio - fix wrong kfree in ams_delta_serio_exit
[linux-2.6/cjktty.git] / mm / memcontrol.c
blob9a99cfaf0a19025f6020c106d56e1ce28d6499b4
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
65 #else
66 #define do_swap_account (0)
67 #endif
70 * Per memcg event counter is incremented at every pagein/pageout. This counter
71 * is used for trigger some periodic events. This is straightforward and better
72 * than using jiffies etc. to handle periodic memcg event.
74 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
76 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
77 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
80 * Statistics for memory cgroup.
82 enum mem_cgroup_stat_index {
84 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
87 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
88 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
89 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
90 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
91 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
92 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
93 /* incremented at every pagein/pageout */
94 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
95 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
97 MEM_CGROUP_STAT_NSTATS,
100 struct mem_cgroup_stat_cpu {
101 s64 count[MEM_CGROUP_STAT_NSTATS];
105 * per-zone information in memory controller.
107 struct mem_cgroup_per_zone {
109 * spin_lock to protect the per cgroup LRU
111 struct list_head lists[NR_LRU_LISTS];
112 unsigned long count[NR_LRU_LISTS];
114 struct zone_reclaim_stat reclaim_stat;
115 struct rb_node tree_node; /* RB tree node */
116 unsigned long long usage_in_excess;/* Set to the value by which */
117 /* the soft limit is exceeded*/
118 bool on_tree;
119 struct mem_cgroup *mem; /* Back pointer, we cannot */
120 /* use container_of */
122 /* Macro for accessing counter */
123 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
125 struct mem_cgroup_per_node {
126 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
129 struct mem_cgroup_lru_info {
130 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
134 * Cgroups above their limits are maintained in a RB-Tree, independent of
135 * their hierarchy representation
138 struct mem_cgroup_tree_per_zone {
139 struct rb_root rb_root;
140 spinlock_t lock;
143 struct mem_cgroup_tree_per_node {
144 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
147 struct mem_cgroup_tree {
148 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
151 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
153 struct mem_cgroup_threshold {
154 struct eventfd_ctx *eventfd;
155 u64 threshold;
158 /* For threshold */
159 struct mem_cgroup_threshold_ary {
160 /* An array index points to threshold just below usage. */
161 int current_threshold;
162 /* Size of entries[] */
163 unsigned int size;
164 /* Array of thresholds */
165 struct mem_cgroup_threshold entries[0];
168 struct mem_cgroup_thresholds {
169 /* Primary thresholds array */
170 struct mem_cgroup_threshold_ary *primary;
172 * Spare threshold array.
173 * This is needed to make mem_cgroup_unregister_event() "never fail".
174 * It must be able to store at least primary->size - 1 entries.
176 struct mem_cgroup_threshold_ary *spare;
179 /* for OOM */
180 struct mem_cgroup_eventfd_list {
181 struct list_head list;
182 struct eventfd_ctx *eventfd;
185 static void mem_cgroup_threshold(struct mem_cgroup *mem);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
189 * The memory controller data structure. The memory controller controls both
190 * page cache and RSS per cgroup. We would eventually like to provide
191 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
192 * to help the administrator determine what knobs to tune.
194 * TODO: Add a water mark for the memory controller. Reclaim will begin when
195 * we hit the water mark. May be even add a low water mark, such that
196 * no reclaim occurs from a cgroup at it's low water mark, this is
197 * a feature that will be implemented much later in the future.
199 struct mem_cgroup {
200 struct cgroup_subsys_state css;
202 * the counter to account for memory usage
204 struct res_counter res;
206 * the counter to account for mem+swap usage.
208 struct res_counter memsw;
210 * Per cgroup active and inactive list, similar to the
211 * per zone LRU lists.
213 struct mem_cgroup_lru_info info;
216 protect against reclaim related member.
218 spinlock_t reclaim_param_lock;
221 * While reclaiming in a hierarchy, we cache the last child we
222 * reclaimed from.
224 int last_scanned_child;
226 * Should the accounting and control be hierarchical, per subtree?
228 bool use_hierarchy;
229 atomic_t oom_lock;
230 atomic_t refcnt;
232 unsigned int swappiness;
233 /* OOM-Killer disable */
234 int oom_kill_disable;
236 /* set when res.limit == memsw.limit */
237 bool memsw_is_minimum;
239 /* protect arrays of thresholds */
240 struct mutex thresholds_lock;
242 /* thresholds for memory usage. RCU-protected */
243 struct mem_cgroup_thresholds thresholds;
245 /* thresholds for mem+swap usage. RCU-protected */
246 struct mem_cgroup_thresholds memsw_thresholds;
248 /* For oom notifier event fd */
249 struct list_head oom_notify;
252 * Should we move charges of a task when a task is moved into this
253 * mem_cgroup ? And what type of charges should we move ?
255 unsigned long move_charge_at_immigrate;
257 * percpu counter.
259 struct mem_cgroup_stat_cpu *stat;
261 * used when a cpu is offlined or other synchronizations
262 * See mem_cgroup_read_stat().
264 struct mem_cgroup_stat_cpu nocpu_base;
265 spinlock_t pcp_counter_lock;
268 /* Stuffs for move charges at task migration. */
270 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
271 * left-shifted bitmap of these types.
273 enum move_type {
274 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
275 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
276 NR_MOVE_TYPE,
279 /* "mc" and its members are protected by cgroup_mutex */
280 static struct move_charge_struct {
281 spinlock_t lock; /* for from, to, moving_task */
282 struct mem_cgroup *from;
283 struct mem_cgroup *to;
284 unsigned long precharge;
285 unsigned long moved_charge;
286 unsigned long moved_swap;
287 struct task_struct *moving_task; /* a task moving charges */
288 wait_queue_head_t waitq; /* a waitq for other context */
289 } mc = {
290 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
291 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
294 static bool move_anon(void)
296 return test_bit(MOVE_CHARGE_TYPE_ANON,
297 &mc.to->move_charge_at_immigrate);
300 static bool move_file(void)
302 return test_bit(MOVE_CHARGE_TYPE_FILE,
303 &mc.to->move_charge_at_immigrate);
307 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
308 * limit reclaim to prevent infinite loops, if they ever occur.
310 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
311 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
313 enum charge_type {
314 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
315 MEM_CGROUP_CHARGE_TYPE_MAPPED,
316 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
317 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
318 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
319 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
320 NR_CHARGE_TYPE,
323 /* only for here (for easy reading.) */
324 #define PCGF_CACHE (1UL << PCG_CACHE)
325 #define PCGF_USED (1UL << PCG_USED)
326 #define PCGF_LOCK (1UL << PCG_LOCK)
327 /* Not used, but added here for completeness */
328 #define PCGF_ACCT (1UL << PCG_ACCT)
330 /* for encoding cft->private value on file */
331 #define _MEM (0)
332 #define _MEMSWAP (1)
333 #define _OOM_TYPE (2)
334 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
336 #define MEMFILE_ATTR(val) ((val) & 0xffff)
337 /* Used for OOM nofiier */
338 #define OOM_CONTROL (0)
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
343 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
344 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
346 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
348 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
350 static void mem_cgroup_get(struct mem_cgroup *mem);
351 static void mem_cgroup_put(struct mem_cgroup *mem);
352 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353 static void drain_all_stock_async(void);
355 static struct mem_cgroup_per_zone *
356 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
358 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
361 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
363 return &mem->css;
366 static struct mem_cgroup_per_zone *
367 page_cgroup_zoneinfo(struct page_cgroup *pc)
369 struct mem_cgroup *mem = pc->mem_cgroup;
370 int nid = page_cgroup_nid(pc);
371 int zid = page_cgroup_zid(pc);
373 if (!mem)
374 return NULL;
376 return mem_cgroup_zoneinfo(mem, nid, zid);
379 static struct mem_cgroup_tree_per_zone *
380 soft_limit_tree_node_zone(int nid, int zid)
382 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
385 static struct mem_cgroup_tree_per_zone *
386 soft_limit_tree_from_page(struct page *page)
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
391 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
394 static void
395 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
396 struct mem_cgroup_per_zone *mz,
397 struct mem_cgroup_tree_per_zone *mctz,
398 unsigned long long new_usage_in_excess)
400 struct rb_node **p = &mctz->rb_root.rb_node;
401 struct rb_node *parent = NULL;
402 struct mem_cgroup_per_zone *mz_node;
404 if (mz->on_tree)
405 return;
407 mz->usage_in_excess = new_usage_in_excess;
408 if (!mz->usage_in_excess)
409 return;
410 while (*p) {
411 parent = *p;
412 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
413 tree_node);
414 if (mz->usage_in_excess < mz_node->usage_in_excess)
415 p = &(*p)->rb_left;
417 * We can't avoid mem cgroups that are over their soft
418 * limit by the same amount
420 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
421 p = &(*p)->rb_right;
423 rb_link_node(&mz->tree_node, parent, p);
424 rb_insert_color(&mz->tree_node, &mctz->rb_root);
425 mz->on_tree = true;
428 static void
429 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
430 struct mem_cgroup_per_zone *mz,
431 struct mem_cgroup_tree_per_zone *mctz)
433 if (!mz->on_tree)
434 return;
435 rb_erase(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = false;
439 static void
440 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441 struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
444 spin_lock(&mctz->lock);
445 __mem_cgroup_remove_exceeded(mem, mz, mctz);
446 spin_unlock(&mctz->lock);
450 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
452 unsigned long long excess;
453 struct mem_cgroup_per_zone *mz;
454 struct mem_cgroup_tree_per_zone *mctz;
455 int nid = page_to_nid(page);
456 int zid = page_zonenum(page);
457 mctz = soft_limit_tree_from_page(page);
460 * Necessary to update all ancestors when hierarchy is used.
461 * because their event counter is not touched.
463 for (; mem; mem = parent_mem_cgroup(mem)) {
464 mz = mem_cgroup_zoneinfo(mem, nid, zid);
465 excess = res_counter_soft_limit_excess(&mem->res);
467 * We have to update the tree if mz is on RB-tree or
468 * mem is over its softlimit.
470 if (excess || mz->on_tree) {
471 spin_lock(&mctz->lock);
472 /* if on-tree, remove it */
473 if (mz->on_tree)
474 __mem_cgroup_remove_exceeded(mem, mz, mctz);
476 * Insert again. mz->usage_in_excess will be updated.
477 * If excess is 0, no tree ops.
479 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
480 spin_unlock(&mctz->lock);
485 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
487 int node, zone;
488 struct mem_cgroup_per_zone *mz;
489 struct mem_cgroup_tree_per_zone *mctz;
491 for_each_node_state(node, N_POSSIBLE) {
492 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
493 mz = mem_cgroup_zoneinfo(mem, node, zone);
494 mctz = soft_limit_tree_node_zone(node, zone);
495 mem_cgroup_remove_exceeded(mem, mz, mctz);
500 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
502 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
505 static struct mem_cgroup_per_zone *
506 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
508 struct rb_node *rightmost = NULL;
509 struct mem_cgroup_per_zone *mz;
511 retry:
512 mz = NULL;
513 rightmost = rb_last(&mctz->rb_root);
514 if (!rightmost)
515 goto done; /* Nothing to reclaim from */
517 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
519 * Remove the node now but someone else can add it back,
520 * we will to add it back at the end of reclaim to its correct
521 * position in the tree.
523 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
524 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
525 !css_tryget(&mz->mem->css))
526 goto retry;
527 done:
528 return mz;
531 static struct mem_cgroup_per_zone *
532 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
534 struct mem_cgroup_per_zone *mz;
536 spin_lock(&mctz->lock);
537 mz = __mem_cgroup_largest_soft_limit_node(mctz);
538 spin_unlock(&mctz->lock);
539 return mz;
543 * Implementation Note: reading percpu statistics for memcg.
545 * Both of vmstat[] and percpu_counter has threshold and do periodic
546 * synchronization to implement "quick" read. There are trade-off between
547 * reading cost and precision of value. Then, we may have a chance to implement
548 * a periodic synchronizion of counter in memcg's counter.
550 * But this _read() function is used for user interface now. The user accounts
551 * memory usage by memory cgroup and he _always_ requires exact value because
552 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
553 * have to visit all online cpus and make sum. So, for now, unnecessary
554 * synchronization is not implemented. (just implemented for cpu hotplug)
556 * If there are kernel internal actions which can make use of some not-exact
557 * value, and reading all cpu value can be performance bottleneck in some
558 * common workload, threashold and synchonization as vmstat[] should be
559 * implemented.
561 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
562 enum mem_cgroup_stat_index idx)
564 int cpu;
565 s64 val = 0;
567 get_online_cpus();
568 for_each_online_cpu(cpu)
569 val += per_cpu(mem->stat->count[idx], cpu);
570 #ifdef CONFIG_HOTPLUG_CPU
571 spin_lock(&mem->pcp_counter_lock);
572 val += mem->nocpu_base.count[idx];
573 spin_unlock(&mem->pcp_counter_lock);
574 #endif
575 put_online_cpus();
576 return val;
579 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
581 s64 ret;
583 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
584 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
585 return ret;
588 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
589 bool charge)
591 int val = (charge) ? 1 : -1;
592 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
595 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
596 struct page_cgroup *pc,
597 bool charge)
599 int val = (charge) ? 1 : -1;
601 preempt_disable();
603 if (PageCgroupCache(pc))
604 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
605 else
606 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
608 if (charge)
609 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
610 else
611 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
612 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
614 preempt_enable();
617 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
618 enum lru_list idx)
620 int nid, zid;
621 struct mem_cgroup_per_zone *mz;
622 u64 total = 0;
624 for_each_online_node(nid)
625 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
626 mz = mem_cgroup_zoneinfo(mem, nid, zid);
627 total += MEM_CGROUP_ZSTAT(mz, idx);
629 return total;
632 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
634 s64 val;
636 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
638 return !(val & ((1 << event_mask_shift) - 1));
642 * Check events in order.
645 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
647 /* threshold event is triggered in finer grain than soft limit */
648 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
649 mem_cgroup_threshold(mem);
650 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
651 mem_cgroup_update_tree(mem, page);
655 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
657 return container_of(cgroup_subsys_state(cont,
658 mem_cgroup_subsys_id), struct mem_cgroup,
659 css);
662 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
665 * mm_update_next_owner() may clear mm->owner to NULL
666 * if it races with swapoff, page migration, etc.
667 * So this can be called with p == NULL.
669 if (unlikely(!p))
670 return NULL;
672 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
673 struct mem_cgroup, css);
676 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
678 struct mem_cgroup *mem = NULL;
680 if (!mm)
681 return NULL;
683 * Because we have no locks, mm->owner's may be being moved to other
684 * cgroup. We use css_tryget() here even if this looks
685 * pessimistic (rather than adding locks here).
687 rcu_read_lock();
688 do {
689 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
690 if (unlikely(!mem))
691 break;
692 } while (!css_tryget(&mem->css));
693 rcu_read_unlock();
694 return mem;
697 /* The caller has to guarantee "mem" exists before calling this */
698 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
700 struct cgroup_subsys_state *css;
701 int found;
703 if (!mem) /* ROOT cgroup has the smallest ID */
704 return root_mem_cgroup; /*css_put/get against root is ignored*/
705 if (!mem->use_hierarchy) {
706 if (css_tryget(&mem->css))
707 return mem;
708 return NULL;
710 rcu_read_lock();
712 * searching a memory cgroup which has the smallest ID under given
713 * ROOT cgroup. (ID >= 1)
715 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
716 if (css && css_tryget(css))
717 mem = container_of(css, struct mem_cgroup, css);
718 else
719 mem = NULL;
720 rcu_read_unlock();
721 return mem;
724 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
725 struct mem_cgroup *root,
726 bool cond)
728 int nextid = css_id(&iter->css) + 1;
729 int found;
730 int hierarchy_used;
731 struct cgroup_subsys_state *css;
733 hierarchy_used = iter->use_hierarchy;
735 css_put(&iter->css);
736 /* If no ROOT, walk all, ignore hierarchy */
737 if (!cond || (root && !hierarchy_used))
738 return NULL;
740 if (!root)
741 root = root_mem_cgroup;
743 do {
744 iter = NULL;
745 rcu_read_lock();
747 css = css_get_next(&mem_cgroup_subsys, nextid,
748 &root->css, &found);
749 if (css && css_tryget(css))
750 iter = container_of(css, struct mem_cgroup, css);
751 rcu_read_unlock();
752 /* If css is NULL, no more cgroups will be found */
753 nextid = found + 1;
754 } while (css && !iter);
756 return iter;
759 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
760 * be careful that "break" loop is not allowed. We have reference count.
761 * Instead of that modify "cond" to be false and "continue" to exit the loop.
763 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
764 for (iter = mem_cgroup_start_loop(root);\
765 iter != NULL;\
766 iter = mem_cgroup_get_next(iter, root, cond))
768 #define for_each_mem_cgroup_tree(iter, root) \
769 for_each_mem_cgroup_tree_cond(iter, root, true)
771 #define for_each_mem_cgroup_all(iter) \
772 for_each_mem_cgroup_tree_cond(iter, NULL, true)
775 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
777 return (mem == root_mem_cgroup);
781 * Following LRU functions are allowed to be used without PCG_LOCK.
782 * Operations are called by routine of global LRU independently from memcg.
783 * What we have to take care of here is validness of pc->mem_cgroup.
785 * Changes to pc->mem_cgroup happens when
786 * 1. charge
787 * 2. moving account
788 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
789 * It is added to LRU before charge.
790 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
791 * When moving account, the page is not on LRU. It's isolated.
794 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
796 struct page_cgroup *pc;
797 struct mem_cgroup_per_zone *mz;
799 if (mem_cgroup_disabled())
800 return;
801 pc = lookup_page_cgroup(page);
802 /* can happen while we handle swapcache. */
803 if (!TestClearPageCgroupAcctLRU(pc))
804 return;
805 VM_BUG_ON(!pc->mem_cgroup);
807 * We don't check PCG_USED bit. It's cleared when the "page" is finally
808 * removed from global LRU.
810 mz = page_cgroup_zoneinfo(pc);
811 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
812 if (mem_cgroup_is_root(pc->mem_cgroup))
813 return;
814 VM_BUG_ON(list_empty(&pc->lru));
815 list_del_init(&pc->lru);
816 return;
819 void mem_cgroup_del_lru(struct page *page)
821 mem_cgroup_del_lru_list(page, page_lru(page));
824 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
826 struct mem_cgroup_per_zone *mz;
827 struct page_cgroup *pc;
829 if (mem_cgroup_disabled())
830 return;
832 pc = lookup_page_cgroup(page);
834 * Used bit is set without atomic ops but after smp_wmb().
835 * For making pc->mem_cgroup visible, insert smp_rmb() here.
837 smp_rmb();
838 /* unused or root page is not rotated. */
839 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
840 return;
841 mz = page_cgroup_zoneinfo(pc);
842 list_move(&pc->lru, &mz->lists[lru]);
845 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
847 struct page_cgroup *pc;
848 struct mem_cgroup_per_zone *mz;
850 if (mem_cgroup_disabled())
851 return;
852 pc = lookup_page_cgroup(page);
853 VM_BUG_ON(PageCgroupAcctLRU(pc));
855 * Used bit is set without atomic ops but after smp_wmb().
856 * For making pc->mem_cgroup visible, insert smp_rmb() here.
858 smp_rmb();
859 if (!PageCgroupUsed(pc))
860 return;
862 mz = page_cgroup_zoneinfo(pc);
863 MEM_CGROUP_ZSTAT(mz, lru) += 1;
864 SetPageCgroupAcctLRU(pc);
865 if (mem_cgroup_is_root(pc->mem_cgroup))
866 return;
867 list_add(&pc->lru, &mz->lists[lru]);
871 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
872 * lru because the page may.be reused after it's fully uncharged (because of
873 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
874 * it again. This function is only used to charge SwapCache. It's done under
875 * lock_page and expected that zone->lru_lock is never held.
877 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
879 unsigned long flags;
880 struct zone *zone = page_zone(page);
881 struct page_cgroup *pc = lookup_page_cgroup(page);
883 spin_lock_irqsave(&zone->lru_lock, flags);
885 * Forget old LRU when this page_cgroup is *not* used. This Used bit
886 * is guarded by lock_page() because the page is SwapCache.
888 if (!PageCgroupUsed(pc))
889 mem_cgroup_del_lru_list(page, page_lru(page));
890 spin_unlock_irqrestore(&zone->lru_lock, flags);
893 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
895 unsigned long flags;
896 struct zone *zone = page_zone(page);
897 struct page_cgroup *pc = lookup_page_cgroup(page);
899 spin_lock_irqsave(&zone->lru_lock, flags);
900 /* link when the page is linked to LRU but page_cgroup isn't */
901 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
902 mem_cgroup_add_lru_list(page, page_lru(page));
903 spin_unlock_irqrestore(&zone->lru_lock, flags);
907 void mem_cgroup_move_lists(struct page *page,
908 enum lru_list from, enum lru_list to)
910 if (mem_cgroup_disabled())
911 return;
912 mem_cgroup_del_lru_list(page, from);
913 mem_cgroup_add_lru_list(page, to);
916 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
918 int ret;
919 struct mem_cgroup *curr = NULL;
920 struct task_struct *p;
922 p = find_lock_task_mm(task);
923 if (!p)
924 return 0;
925 curr = try_get_mem_cgroup_from_mm(p->mm);
926 task_unlock(p);
927 if (!curr)
928 return 0;
930 * We should check use_hierarchy of "mem" not "curr". Because checking
931 * use_hierarchy of "curr" here make this function true if hierarchy is
932 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
933 * hierarchy(even if use_hierarchy is disabled in "mem").
935 if (mem->use_hierarchy)
936 ret = css_is_ancestor(&curr->css, &mem->css);
937 else
938 ret = (curr == mem);
939 css_put(&curr->css);
940 return ret;
943 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
945 unsigned long active;
946 unsigned long inactive;
947 unsigned long gb;
948 unsigned long inactive_ratio;
950 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
951 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
953 gb = (inactive + active) >> (30 - PAGE_SHIFT);
954 if (gb)
955 inactive_ratio = int_sqrt(10 * gb);
956 else
957 inactive_ratio = 1;
959 if (present_pages) {
960 present_pages[0] = inactive;
961 present_pages[1] = active;
964 return inactive_ratio;
967 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
969 unsigned long active;
970 unsigned long inactive;
971 unsigned long present_pages[2];
972 unsigned long inactive_ratio;
974 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
976 inactive = present_pages[0];
977 active = present_pages[1];
979 if (inactive * inactive_ratio < active)
980 return 1;
982 return 0;
985 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
987 unsigned long active;
988 unsigned long inactive;
990 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
991 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
993 return (active > inactive);
996 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
997 struct zone *zone,
998 enum lru_list lru)
1000 int nid = zone_to_nid(zone);
1001 int zid = zone_idx(zone);
1002 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1004 return MEM_CGROUP_ZSTAT(mz, lru);
1007 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1008 struct zone *zone)
1010 int nid = zone_to_nid(zone);
1011 int zid = zone_idx(zone);
1012 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1014 return &mz->reclaim_stat;
1017 struct zone_reclaim_stat *
1018 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1020 struct page_cgroup *pc;
1021 struct mem_cgroup_per_zone *mz;
1023 if (mem_cgroup_disabled())
1024 return NULL;
1026 pc = lookup_page_cgroup(page);
1028 * Used bit is set without atomic ops but after smp_wmb().
1029 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1031 smp_rmb();
1032 if (!PageCgroupUsed(pc))
1033 return NULL;
1035 mz = page_cgroup_zoneinfo(pc);
1036 if (!mz)
1037 return NULL;
1039 return &mz->reclaim_stat;
1042 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1043 struct list_head *dst,
1044 unsigned long *scanned, int order,
1045 int mode, struct zone *z,
1046 struct mem_cgroup *mem_cont,
1047 int active, int file)
1049 unsigned long nr_taken = 0;
1050 struct page *page;
1051 unsigned long scan;
1052 LIST_HEAD(pc_list);
1053 struct list_head *src;
1054 struct page_cgroup *pc, *tmp;
1055 int nid = zone_to_nid(z);
1056 int zid = zone_idx(z);
1057 struct mem_cgroup_per_zone *mz;
1058 int lru = LRU_FILE * file + active;
1059 int ret;
1061 BUG_ON(!mem_cont);
1062 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1063 src = &mz->lists[lru];
1065 scan = 0;
1066 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1067 if (scan >= nr_to_scan)
1068 break;
1070 page = pc->page;
1071 if (unlikely(!PageCgroupUsed(pc)))
1072 continue;
1073 if (unlikely(!PageLRU(page)))
1074 continue;
1076 scan++;
1077 ret = __isolate_lru_page(page, mode, file);
1078 switch (ret) {
1079 case 0:
1080 list_move(&page->lru, dst);
1081 mem_cgroup_del_lru(page);
1082 nr_taken++;
1083 break;
1084 case -EBUSY:
1085 /* we don't affect global LRU but rotate in our LRU */
1086 mem_cgroup_rotate_lru_list(page, page_lru(page));
1087 break;
1088 default:
1089 break;
1093 *scanned = scan;
1095 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1096 0, 0, 0, mode);
1098 return nr_taken;
1101 #define mem_cgroup_from_res_counter(counter, member) \
1102 container_of(counter, struct mem_cgroup, member)
1104 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1106 if (do_swap_account) {
1107 if (res_counter_check_under_limit(&mem->res) &&
1108 res_counter_check_under_limit(&mem->memsw))
1109 return true;
1110 } else
1111 if (res_counter_check_under_limit(&mem->res))
1112 return true;
1113 return false;
1116 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1118 struct cgroup *cgrp = memcg->css.cgroup;
1119 unsigned int swappiness;
1121 /* root ? */
1122 if (cgrp->parent == NULL)
1123 return vm_swappiness;
1125 spin_lock(&memcg->reclaim_param_lock);
1126 swappiness = memcg->swappiness;
1127 spin_unlock(&memcg->reclaim_param_lock);
1129 return swappiness;
1132 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1134 int cpu;
1136 get_online_cpus();
1137 spin_lock(&mem->pcp_counter_lock);
1138 for_each_online_cpu(cpu)
1139 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1140 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1141 spin_unlock(&mem->pcp_counter_lock);
1142 put_online_cpus();
1144 synchronize_rcu();
1147 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1149 int cpu;
1151 if (!mem)
1152 return;
1153 get_online_cpus();
1154 spin_lock(&mem->pcp_counter_lock);
1155 for_each_online_cpu(cpu)
1156 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1157 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1158 spin_unlock(&mem->pcp_counter_lock);
1159 put_online_cpus();
1162 * 2 routines for checking "mem" is under move_account() or not.
1164 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1165 * for avoiding race in accounting. If true,
1166 * pc->mem_cgroup may be overwritten.
1168 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1169 * under hierarchy of moving cgroups. This is for
1170 * waiting at hith-memory prressure caused by "move".
1173 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1175 VM_BUG_ON(!rcu_read_lock_held());
1176 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1179 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1181 struct mem_cgroup *from;
1182 struct mem_cgroup *to;
1183 bool ret = false;
1185 * Unlike task_move routines, we access mc.to, mc.from not under
1186 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1188 spin_lock(&mc.lock);
1189 from = mc.from;
1190 to = mc.to;
1191 if (!from)
1192 goto unlock;
1193 if (from == mem || to == mem
1194 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1195 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1196 ret = true;
1197 unlock:
1198 spin_unlock(&mc.lock);
1199 return ret;
1202 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1204 if (mc.moving_task && current != mc.moving_task) {
1205 if (mem_cgroup_under_move(mem)) {
1206 DEFINE_WAIT(wait);
1207 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1208 /* moving charge context might have finished. */
1209 if (mc.moving_task)
1210 schedule();
1211 finish_wait(&mc.waitq, &wait);
1212 return true;
1215 return false;
1219 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1220 * @memcg: The memory cgroup that went over limit
1221 * @p: Task that is going to be killed
1223 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1224 * enabled
1226 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1228 struct cgroup *task_cgrp;
1229 struct cgroup *mem_cgrp;
1231 * Need a buffer in BSS, can't rely on allocations. The code relies
1232 * on the assumption that OOM is serialized for memory controller.
1233 * If this assumption is broken, revisit this code.
1235 static char memcg_name[PATH_MAX];
1236 int ret;
1238 if (!memcg || !p)
1239 return;
1242 rcu_read_lock();
1244 mem_cgrp = memcg->css.cgroup;
1245 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1247 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1248 if (ret < 0) {
1250 * Unfortunately, we are unable to convert to a useful name
1251 * But we'll still print out the usage information
1253 rcu_read_unlock();
1254 goto done;
1256 rcu_read_unlock();
1258 printk(KERN_INFO "Task in %s killed", memcg_name);
1260 rcu_read_lock();
1261 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1262 if (ret < 0) {
1263 rcu_read_unlock();
1264 goto done;
1266 rcu_read_unlock();
1269 * Continues from above, so we don't need an KERN_ level
1271 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1272 done:
1274 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1275 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1276 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1277 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1278 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1279 "failcnt %llu\n",
1280 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1281 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1282 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1286 * This function returns the number of memcg under hierarchy tree. Returns
1287 * 1(self count) if no children.
1289 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1291 int num = 0;
1292 struct mem_cgroup *iter;
1294 for_each_mem_cgroup_tree(iter, mem)
1295 num++;
1296 return num;
1300 * Return the memory (and swap, if configured) limit for a memcg.
1302 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1304 u64 limit;
1305 u64 memsw;
1307 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1308 total_swap_pages;
1309 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1311 * If memsw is finite and limits the amount of swap space available
1312 * to this memcg, return that limit.
1314 return min(limit, memsw);
1318 * Visit the first child (need not be the first child as per the ordering
1319 * of the cgroup list, since we track last_scanned_child) of @mem and use
1320 * that to reclaim free pages from.
1322 static struct mem_cgroup *
1323 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1325 struct mem_cgroup *ret = NULL;
1326 struct cgroup_subsys_state *css;
1327 int nextid, found;
1329 if (!root_mem->use_hierarchy) {
1330 css_get(&root_mem->css);
1331 ret = root_mem;
1334 while (!ret) {
1335 rcu_read_lock();
1336 nextid = root_mem->last_scanned_child + 1;
1337 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1338 &found);
1339 if (css && css_tryget(css))
1340 ret = container_of(css, struct mem_cgroup, css);
1342 rcu_read_unlock();
1343 /* Updates scanning parameter */
1344 spin_lock(&root_mem->reclaim_param_lock);
1345 if (!css) {
1346 /* this means start scan from ID:1 */
1347 root_mem->last_scanned_child = 0;
1348 } else
1349 root_mem->last_scanned_child = found;
1350 spin_unlock(&root_mem->reclaim_param_lock);
1353 return ret;
1357 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1358 * we reclaimed from, so that we don't end up penalizing one child extensively
1359 * based on its position in the children list.
1361 * root_mem is the original ancestor that we've been reclaim from.
1363 * We give up and return to the caller when we visit root_mem twice.
1364 * (other groups can be removed while we're walking....)
1366 * If shrink==true, for avoiding to free too much, this returns immedieately.
1368 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1369 struct zone *zone,
1370 gfp_t gfp_mask,
1371 unsigned long reclaim_options)
1373 struct mem_cgroup *victim;
1374 int ret, total = 0;
1375 int loop = 0;
1376 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1377 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1378 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1379 unsigned long excess = mem_cgroup_get_excess(root_mem);
1381 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1382 if (root_mem->memsw_is_minimum)
1383 noswap = true;
1385 while (1) {
1386 victim = mem_cgroup_select_victim(root_mem);
1387 if (victim == root_mem) {
1388 loop++;
1389 if (loop >= 1)
1390 drain_all_stock_async();
1391 if (loop >= 2) {
1393 * If we have not been able to reclaim
1394 * anything, it might because there are
1395 * no reclaimable pages under this hierarchy
1397 if (!check_soft || !total) {
1398 css_put(&victim->css);
1399 break;
1402 * We want to do more targetted reclaim.
1403 * excess >> 2 is not to excessive so as to
1404 * reclaim too much, nor too less that we keep
1405 * coming back to reclaim from this cgroup
1407 if (total >= (excess >> 2) ||
1408 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1409 css_put(&victim->css);
1410 break;
1414 if (!mem_cgroup_local_usage(victim)) {
1415 /* this cgroup's local usage == 0 */
1416 css_put(&victim->css);
1417 continue;
1419 /* we use swappiness of local cgroup */
1420 if (check_soft)
1421 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1422 noswap, get_swappiness(victim), zone);
1423 else
1424 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1425 noswap, get_swappiness(victim));
1426 css_put(&victim->css);
1428 * At shrinking usage, we can't check we should stop here or
1429 * reclaim more. It's depends on callers. last_scanned_child
1430 * will work enough for keeping fairness under tree.
1432 if (shrink)
1433 return ret;
1434 total += ret;
1435 if (check_soft) {
1436 if (res_counter_check_under_soft_limit(&root_mem->res))
1437 return total;
1438 } else if (mem_cgroup_check_under_limit(root_mem))
1439 return 1 + total;
1441 return total;
1445 * Check OOM-Killer is already running under our hierarchy.
1446 * If someone is running, return false.
1448 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1450 int x, lock_count = 0;
1451 struct mem_cgroup *iter;
1453 for_each_mem_cgroup_tree(iter, mem) {
1454 x = atomic_inc_return(&iter->oom_lock);
1455 lock_count = max(x, lock_count);
1458 if (lock_count == 1)
1459 return true;
1460 return false;
1463 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1465 struct mem_cgroup *iter;
1468 * When a new child is created while the hierarchy is under oom,
1469 * mem_cgroup_oom_lock() may not be called. We have to use
1470 * atomic_add_unless() here.
1472 for_each_mem_cgroup_tree(iter, mem)
1473 atomic_add_unless(&iter->oom_lock, -1, 0);
1474 return 0;
1478 static DEFINE_MUTEX(memcg_oom_mutex);
1479 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1481 struct oom_wait_info {
1482 struct mem_cgroup *mem;
1483 wait_queue_t wait;
1486 static int memcg_oom_wake_function(wait_queue_t *wait,
1487 unsigned mode, int sync, void *arg)
1489 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1490 struct oom_wait_info *oom_wait_info;
1492 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1494 if (oom_wait_info->mem == wake_mem)
1495 goto wakeup;
1496 /* if no hierarchy, no match */
1497 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1498 return 0;
1500 * Both of oom_wait_info->mem and wake_mem are stable under us.
1501 * Then we can use css_is_ancestor without taking care of RCU.
1503 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1504 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1505 return 0;
1507 wakeup:
1508 return autoremove_wake_function(wait, mode, sync, arg);
1511 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1513 /* for filtering, pass "mem" as argument. */
1514 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1517 static void memcg_oom_recover(struct mem_cgroup *mem)
1519 if (mem && atomic_read(&mem->oom_lock))
1520 memcg_wakeup_oom(mem);
1524 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1526 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1528 struct oom_wait_info owait;
1529 bool locked, need_to_kill;
1531 owait.mem = mem;
1532 owait.wait.flags = 0;
1533 owait.wait.func = memcg_oom_wake_function;
1534 owait.wait.private = current;
1535 INIT_LIST_HEAD(&owait.wait.task_list);
1536 need_to_kill = true;
1537 /* At first, try to OOM lock hierarchy under mem.*/
1538 mutex_lock(&memcg_oom_mutex);
1539 locked = mem_cgroup_oom_lock(mem);
1541 * Even if signal_pending(), we can't quit charge() loop without
1542 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1543 * under OOM is always welcomed, use TASK_KILLABLE here.
1545 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1546 if (!locked || mem->oom_kill_disable)
1547 need_to_kill = false;
1548 if (locked)
1549 mem_cgroup_oom_notify(mem);
1550 mutex_unlock(&memcg_oom_mutex);
1552 if (need_to_kill) {
1553 finish_wait(&memcg_oom_waitq, &owait.wait);
1554 mem_cgroup_out_of_memory(mem, mask);
1555 } else {
1556 schedule();
1557 finish_wait(&memcg_oom_waitq, &owait.wait);
1559 mutex_lock(&memcg_oom_mutex);
1560 mem_cgroup_oom_unlock(mem);
1561 memcg_wakeup_oom(mem);
1562 mutex_unlock(&memcg_oom_mutex);
1564 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1565 return false;
1566 /* Give chance to dying process */
1567 schedule_timeout(1);
1568 return true;
1572 * Currently used to update mapped file statistics, but the routine can be
1573 * generalized to update other statistics as well.
1575 * Notes: Race condition
1577 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1578 * it tends to be costly. But considering some conditions, we doesn't need
1579 * to do so _always_.
1581 * Considering "charge", lock_page_cgroup() is not required because all
1582 * file-stat operations happen after a page is attached to radix-tree. There
1583 * are no race with "charge".
1585 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1586 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1587 * if there are race with "uncharge". Statistics itself is properly handled
1588 * by flags.
1590 * Considering "move", this is an only case we see a race. To make the race
1591 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1592 * possibility of race condition. If there is, we take a lock.
1595 static void mem_cgroup_update_file_stat(struct page *page, int idx, int val)
1597 struct mem_cgroup *mem;
1598 struct page_cgroup *pc = lookup_page_cgroup(page);
1599 bool need_unlock = false;
1601 if (unlikely(!pc))
1602 return;
1604 rcu_read_lock();
1605 mem = pc->mem_cgroup;
1606 if (unlikely(!mem || !PageCgroupUsed(pc)))
1607 goto out;
1608 /* pc->mem_cgroup is unstable ? */
1609 if (unlikely(mem_cgroup_stealed(mem))) {
1610 /* take a lock against to access pc->mem_cgroup */
1611 lock_page_cgroup(pc);
1612 need_unlock = true;
1613 mem = pc->mem_cgroup;
1614 if (!mem || !PageCgroupUsed(pc))
1615 goto out;
1618 this_cpu_add(mem->stat->count[idx], val);
1620 switch (idx) {
1621 case MEM_CGROUP_STAT_FILE_MAPPED:
1622 if (val > 0)
1623 SetPageCgroupFileMapped(pc);
1624 else if (!page_mapped(page))
1625 ClearPageCgroupFileMapped(pc);
1626 break;
1627 default:
1628 BUG();
1631 out:
1632 if (unlikely(need_unlock))
1633 unlock_page_cgroup(pc);
1634 rcu_read_unlock();
1635 return;
1638 void mem_cgroup_update_file_mapped(struct page *page, int val)
1640 mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val);
1644 * size of first charge trial. "32" comes from vmscan.c's magic value.
1645 * TODO: maybe necessary to use big numbers in big irons.
1647 #define CHARGE_SIZE (32 * PAGE_SIZE)
1648 struct memcg_stock_pcp {
1649 struct mem_cgroup *cached; /* this never be root cgroup */
1650 int charge;
1651 struct work_struct work;
1653 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1654 static atomic_t memcg_drain_count;
1657 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1658 * from local stock and true is returned. If the stock is 0 or charges from a
1659 * cgroup which is not current target, returns false. This stock will be
1660 * refilled.
1662 static bool consume_stock(struct mem_cgroup *mem)
1664 struct memcg_stock_pcp *stock;
1665 bool ret = true;
1667 stock = &get_cpu_var(memcg_stock);
1668 if (mem == stock->cached && stock->charge)
1669 stock->charge -= PAGE_SIZE;
1670 else /* need to call res_counter_charge */
1671 ret = false;
1672 put_cpu_var(memcg_stock);
1673 return ret;
1677 * Returns stocks cached in percpu to res_counter and reset cached information.
1679 static void drain_stock(struct memcg_stock_pcp *stock)
1681 struct mem_cgroup *old = stock->cached;
1683 if (stock->charge) {
1684 res_counter_uncharge(&old->res, stock->charge);
1685 if (do_swap_account)
1686 res_counter_uncharge(&old->memsw, stock->charge);
1688 stock->cached = NULL;
1689 stock->charge = 0;
1693 * This must be called under preempt disabled or must be called by
1694 * a thread which is pinned to local cpu.
1696 static void drain_local_stock(struct work_struct *dummy)
1698 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1699 drain_stock(stock);
1703 * Cache charges(val) which is from res_counter, to local per_cpu area.
1704 * This will be consumed by consume_stock() function, later.
1706 static void refill_stock(struct mem_cgroup *mem, int val)
1708 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1710 if (stock->cached != mem) { /* reset if necessary */
1711 drain_stock(stock);
1712 stock->cached = mem;
1714 stock->charge += val;
1715 put_cpu_var(memcg_stock);
1719 * Tries to drain stocked charges in other cpus. This function is asynchronous
1720 * and just put a work per cpu for draining localy on each cpu. Caller can
1721 * expects some charges will be back to res_counter later but cannot wait for
1722 * it.
1724 static void drain_all_stock_async(void)
1726 int cpu;
1727 /* This function is for scheduling "drain" in asynchronous way.
1728 * The result of "drain" is not directly handled by callers. Then,
1729 * if someone is calling drain, we don't have to call drain more.
1730 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1731 * there is a race. We just do loose check here.
1733 if (atomic_read(&memcg_drain_count))
1734 return;
1735 /* Notify other cpus that system-wide "drain" is running */
1736 atomic_inc(&memcg_drain_count);
1737 get_online_cpus();
1738 for_each_online_cpu(cpu) {
1739 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1740 schedule_work_on(cpu, &stock->work);
1742 put_online_cpus();
1743 atomic_dec(&memcg_drain_count);
1744 /* We don't wait for flush_work */
1747 /* This is a synchronous drain interface. */
1748 static void drain_all_stock_sync(void)
1750 /* called when force_empty is called */
1751 atomic_inc(&memcg_drain_count);
1752 schedule_on_each_cpu(drain_local_stock);
1753 atomic_dec(&memcg_drain_count);
1757 * This function drains percpu counter value from DEAD cpu and
1758 * move it to local cpu. Note that this function can be preempted.
1760 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1762 int i;
1764 spin_lock(&mem->pcp_counter_lock);
1765 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1766 s64 x = per_cpu(mem->stat->count[i], cpu);
1768 per_cpu(mem->stat->count[i], cpu) = 0;
1769 mem->nocpu_base.count[i] += x;
1771 /* need to clear ON_MOVE value, works as a kind of lock. */
1772 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1773 spin_unlock(&mem->pcp_counter_lock);
1776 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1778 int idx = MEM_CGROUP_ON_MOVE;
1780 spin_lock(&mem->pcp_counter_lock);
1781 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1782 spin_unlock(&mem->pcp_counter_lock);
1785 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1786 unsigned long action,
1787 void *hcpu)
1789 int cpu = (unsigned long)hcpu;
1790 struct memcg_stock_pcp *stock;
1791 struct mem_cgroup *iter;
1793 if ((action == CPU_ONLINE)) {
1794 for_each_mem_cgroup_all(iter)
1795 synchronize_mem_cgroup_on_move(iter, cpu);
1796 return NOTIFY_OK;
1799 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1800 return NOTIFY_OK;
1802 for_each_mem_cgroup_all(iter)
1803 mem_cgroup_drain_pcp_counter(iter, cpu);
1805 stock = &per_cpu(memcg_stock, cpu);
1806 drain_stock(stock);
1807 return NOTIFY_OK;
1811 /* See __mem_cgroup_try_charge() for details */
1812 enum {
1813 CHARGE_OK, /* success */
1814 CHARGE_RETRY, /* need to retry but retry is not bad */
1815 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1816 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1817 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1820 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1821 int csize, bool oom_check)
1823 struct mem_cgroup *mem_over_limit;
1824 struct res_counter *fail_res;
1825 unsigned long flags = 0;
1826 int ret;
1828 ret = res_counter_charge(&mem->res, csize, &fail_res);
1830 if (likely(!ret)) {
1831 if (!do_swap_account)
1832 return CHARGE_OK;
1833 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1834 if (likely(!ret))
1835 return CHARGE_OK;
1837 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1838 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1839 } else
1840 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1842 if (csize > PAGE_SIZE) /* change csize and retry */
1843 return CHARGE_RETRY;
1845 if (!(gfp_mask & __GFP_WAIT))
1846 return CHARGE_WOULDBLOCK;
1848 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1849 gfp_mask, flags);
1851 * try_to_free_mem_cgroup_pages() might not give us a full
1852 * picture of reclaim. Some pages are reclaimed and might be
1853 * moved to swap cache or just unmapped from the cgroup.
1854 * Check the limit again to see if the reclaim reduced the
1855 * current usage of the cgroup before giving up
1857 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1858 return CHARGE_RETRY;
1861 * At task move, charge accounts can be doubly counted. So, it's
1862 * better to wait until the end of task_move if something is going on.
1864 if (mem_cgroup_wait_acct_move(mem_over_limit))
1865 return CHARGE_RETRY;
1867 /* If we don't need to call oom-killer at el, return immediately */
1868 if (!oom_check)
1869 return CHARGE_NOMEM;
1870 /* check OOM */
1871 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1872 return CHARGE_OOM_DIE;
1874 return CHARGE_RETRY;
1878 * Unlike exported interface, "oom" parameter is added. if oom==true,
1879 * oom-killer can be invoked.
1881 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1882 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1884 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1885 struct mem_cgroup *mem = NULL;
1886 int ret;
1887 int csize = CHARGE_SIZE;
1890 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1891 * in system level. So, allow to go ahead dying process in addition to
1892 * MEMDIE process.
1894 if (unlikely(test_thread_flag(TIF_MEMDIE)
1895 || fatal_signal_pending(current)))
1896 goto bypass;
1899 * We always charge the cgroup the mm_struct belongs to.
1900 * The mm_struct's mem_cgroup changes on task migration if the
1901 * thread group leader migrates. It's possible that mm is not
1902 * set, if so charge the init_mm (happens for pagecache usage).
1904 if (!*memcg && !mm)
1905 goto bypass;
1906 again:
1907 if (*memcg) { /* css should be a valid one */
1908 mem = *memcg;
1909 VM_BUG_ON(css_is_removed(&mem->css));
1910 if (mem_cgroup_is_root(mem))
1911 goto done;
1912 if (consume_stock(mem))
1913 goto done;
1914 css_get(&mem->css);
1915 } else {
1916 struct task_struct *p;
1918 rcu_read_lock();
1919 p = rcu_dereference(mm->owner);
1920 VM_BUG_ON(!p);
1922 * because we don't have task_lock(), "p" can exit while
1923 * we're here. In that case, "mem" can point to root
1924 * cgroup but never be NULL. (and task_struct itself is freed
1925 * by RCU, cgroup itself is RCU safe.) Then, we have small
1926 * risk here to get wrong cgroup. But such kind of mis-account
1927 * by race always happens because we don't have cgroup_mutex().
1928 * It's overkill and we allow that small race, here.
1930 mem = mem_cgroup_from_task(p);
1931 VM_BUG_ON(!mem);
1932 if (mem_cgroup_is_root(mem)) {
1933 rcu_read_unlock();
1934 goto done;
1936 if (consume_stock(mem)) {
1938 * It seems dagerous to access memcg without css_get().
1939 * But considering how consume_stok works, it's not
1940 * necessary. If consume_stock success, some charges
1941 * from this memcg are cached on this cpu. So, we
1942 * don't need to call css_get()/css_tryget() before
1943 * calling consume_stock().
1945 rcu_read_unlock();
1946 goto done;
1948 /* after here, we may be blocked. we need to get refcnt */
1949 if (!css_tryget(&mem->css)) {
1950 rcu_read_unlock();
1951 goto again;
1953 rcu_read_unlock();
1956 do {
1957 bool oom_check;
1959 /* If killed, bypass charge */
1960 if (fatal_signal_pending(current)) {
1961 css_put(&mem->css);
1962 goto bypass;
1965 oom_check = false;
1966 if (oom && !nr_oom_retries) {
1967 oom_check = true;
1968 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1971 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1973 switch (ret) {
1974 case CHARGE_OK:
1975 break;
1976 case CHARGE_RETRY: /* not in OOM situation but retry */
1977 csize = PAGE_SIZE;
1978 css_put(&mem->css);
1979 mem = NULL;
1980 goto again;
1981 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1982 css_put(&mem->css);
1983 goto nomem;
1984 case CHARGE_NOMEM: /* OOM routine works */
1985 if (!oom) {
1986 css_put(&mem->css);
1987 goto nomem;
1989 /* If oom, we never return -ENOMEM */
1990 nr_oom_retries--;
1991 break;
1992 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
1993 css_put(&mem->css);
1994 goto bypass;
1996 } while (ret != CHARGE_OK);
1998 if (csize > PAGE_SIZE)
1999 refill_stock(mem, csize - PAGE_SIZE);
2000 css_put(&mem->css);
2001 done:
2002 *memcg = mem;
2003 return 0;
2004 nomem:
2005 *memcg = NULL;
2006 return -ENOMEM;
2007 bypass:
2008 *memcg = NULL;
2009 return 0;
2013 * Somemtimes we have to undo a charge we got by try_charge().
2014 * This function is for that and do uncharge, put css's refcnt.
2015 * gotten by try_charge().
2017 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2018 unsigned long count)
2020 if (!mem_cgroup_is_root(mem)) {
2021 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2022 if (do_swap_account)
2023 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2027 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
2029 __mem_cgroup_cancel_charge(mem, 1);
2033 * A helper function to get mem_cgroup from ID. must be called under
2034 * rcu_read_lock(). The caller must check css_is_removed() or some if
2035 * it's concern. (dropping refcnt from swap can be called against removed
2036 * memcg.)
2038 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2040 struct cgroup_subsys_state *css;
2042 /* ID 0 is unused ID */
2043 if (!id)
2044 return NULL;
2045 css = css_lookup(&mem_cgroup_subsys, id);
2046 if (!css)
2047 return NULL;
2048 return container_of(css, struct mem_cgroup, css);
2051 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2053 struct mem_cgroup *mem = NULL;
2054 struct page_cgroup *pc;
2055 unsigned short id;
2056 swp_entry_t ent;
2058 VM_BUG_ON(!PageLocked(page));
2060 pc = lookup_page_cgroup(page);
2061 lock_page_cgroup(pc);
2062 if (PageCgroupUsed(pc)) {
2063 mem = pc->mem_cgroup;
2064 if (mem && !css_tryget(&mem->css))
2065 mem = NULL;
2066 } else if (PageSwapCache(page)) {
2067 ent.val = page_private(page);
2068 id = lookup_swap_cgroup(ent);
2069 rcu_read_lock();
2070 mem = mem_cgroup_lookup(id);
2071 if (mem && !css_tryget(&mem->css))
2072 mem = NULL;
2073 rcu_read_unlock();
2075 unlock_page_cgroup(pc);
2076 return mem;
2080 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2081 * USED state. If already USED, uncharge and return.
2084 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2085 struct page_cgroup *pc,
2086 enum charge_type ctype)
2088 /* try_charge() can return NULL to *memcg, taking care of it. */
2089 if (!mem)
2090 return;
2092 lock_page_cgroup(pc);
2093 if (unlikely(PageCgroupUsed(pc))) {
2094 unlock_page_cgroup(pc);
2095 mem_cgroup_cancel_charge(mem);
2096 return;
2099 pc->mem_cgroup = mem;
2101 * We access a page_cgroup asynchronously without lock_page_cgroup().
2102 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2103 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2104 * before USED bit, we need memory barrier here.
2105 * See mem_cgroup_add_lru_list(), etc.
2107 smp_wmb();
2108 switch (ctype) {
2109 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2110 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2111 SetPageCgroupCache(pc);
2112 SetPageCgroupUsed(pc);
2113 break;
2114 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2115 ClearPageCgroupCache(pc);
2116 SetPageCgroupUsed(pc);
2117 break;
2118 default:
2119 break;
2122 mem_cgroup_charge_statistics(mem, pc, true);
2124 unlock_page_cgroup(pc);
2126 * "charge_statistics" updated event counter. Then, check it.
2127 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2128 * if they exceeds softlimit.
2130 memcg_check_events(mem, pc->page);
2134 * __mem_cgroup_move_account - move account of the page
2135 * @pc: page_cgroup of the page.
2136 * @from: mem_cgroup which the page is moved from.
2137 * @to: mem_cgroup which the page is moved to. @from != @to.
2138 * @uncharge: whether we should call uncharge and css_put against @from.
2140 * The caller must confirm following.
2141 * - page is not on LRU (isolate_page() is useful.)
2142 * - the pc is locked, used, and ->mem_cgroup points to @from.
2144 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2145 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2146 * true, this function does "uncharge" from old cgroup, but it doesn't if
2147 * @uncharge is false, so a caller should do "uncharge".
2150 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2151 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2153 VM_BUG_ON(from == to);
2154 VM_BUG_ON(PageLRU(pc->page));
2155 VM_BUG_ON(!PageCgroupLocked(pc));
2156 VM_BUG_ON(!PageCgroupUsed(pc));
2157 VM_BUG_ON(pc->mem_cgroup != from);
2159 if (PageCgroupFileMapped(pc)) {
2160 /* Update mapped_file data for mem_cgroup */
2161 preempt_disable();
2162 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2163 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2164 preempt_enable();
2166 mem_cgroup_charge_statistics(from, pc, false);
2167 if (uncharge)
2168 /* This is not "cancel", but cancel_charge does all we need. */
2169 mem_cgroup_cancel_charge(from);
2171 /* caller should have done css_get */
2172 pc->mem_cgroup = to;
2173 mem_cgroup_charge_statistics(to, pc, true);
2175 * We charges against "to" which may not have any tasks. Then, "to"
2176 * can be under rmdir(). But in current implementation, caller of
2177 * this function is just force_empty() and move charge, so it's
2178 * garanteed that "to" is never removed. So, we don't check rmdir
2179 * status here.
2184 * check whether the @pc is valid for moving account and call
2185 * __mem_cgroup_move_account()
2187 static int mem_cgroup_move_account(struct page_cgroup *pc,
2188 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2190 int ret = -EINVAL;
2191 lock_page_cgroup(pc);
2192 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2193 __mem_cgroup_move_account(pc, from, to, uncharge);
2194 ret = 0;
2196 unlock_page_cgroup(pc);
2198 * check events
2200 memcg_check_events(to, pc->page);
2201 memcg_check_events(from, pc->page);
2202 return ret;
2206 * move charges to its parent.
2209 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2210 struct mem_cgroup *child,
2211 gfp_t gfp_mask)
2213 struct page *page = pc->page;
2214 struct cgroup *cg = child->css.cgroup;
2215 struct cgroup *pcg = cg->parent;
2216 struct mem_cgroup *parent;
2217 int ret;
2219 /* Is ROOT ? */
2220 if (!pcg)
2221 return -EINVAL;
2223 ret = -EBUSY;
2224 if (!get_page_unless_zero(page))
2225 goto out;
2226 if (isolate_lru_page(page))
2227 goto put;
2229 parent = mem_cgroup_from_cont(pcg);
2230 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2231 if (ret || !parent)
2232 goto put_back;
2234 ret = mem_cgroup_move_account(pc, child, parent, true);
2235 if (ret)
2236 mem_cgroup_cancel_charge(parent);
2237 put_back:
2238 putback_lru_page(page);
2239 put:
2240 put_page(page);
2241 out:
2242 return ret;
2246 * Charge the memory controller for page usage.
2247 * Return
2248 * 0 if the charge was successful
2249 * < 0 if the cgroup is over its limit
2251 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2252 gfp_t gfp_mask, enum charge_type ctype)
2254 struct mem_cgroup *mem = NULL;
2255 struct page_cgroup *pc;
2256 int ret;
2258 pc = lookup_page_cgroup(page);
2259 /* can happen at boot */
2260 if (unlikely(!pc))
2261 return 0;
2262 prefetchw(pc);
2264 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2265 if (ret || !mem)
2266 return ret;
2268 __mem_cgroup_commit_charge(mem, pc, ctype);
2269 return 0;
2272 int mem_cgroup_newpage_charge(struct page *page,
2273 struct mm_struct *mm, gfp_t gfp_mask)
2275 if (mem_cgroup_disabled())
2276 return 0;
2277 if (PageCompound(page))
2278 return 0;
2280 * If already mapped, we don't have to account.
2281 * If page cache, page->mapping has address_space.
2282 * But page->mapping may have out-of-use anon_vma pointer,
2283 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2284 * is NULL.
2286 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2287 return 0;
2288 if (unlikely(!mm))
2289 mm = &init_mm;
2290 return mem_cgroup_charge_common(page, mm, gfp_mask,
2291 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2294 static void
2295 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2296 enum charge_type ctype);
2298 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2299 gfp_t gfp_mask)
2301 int ret;
2303 if (mem_cgroup_disabled())
2304 return 0;
2305 if (PageCompound(page))
2306 return 0;
2308 * Corner case handling. This is called from add_to_page_cache()
2309 * in usual. But some FS (shmem) precharges this page before calling it
2310 * and call add_to_page_cache() with GFP_NOWAIT.
2312 * For GFP_NOWAIT case, the page may be pre-charged before calling
2313 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2314 * charge twice. (It works but has to pay a bit larger cost.)
2315 * And when the page is SwapCache, it should take swap information
2316 * into account. This is under lock_page() now.
2318 if (!(gfp_mask & __GFP_WAIT)) {
2319 struct page_cgroup *pc;
2321 pc = lookup_page_cgroup(page);
2322 if (!pc)
2323 return 0;
2324 lock_page_cgroup(pc);
2325 if (PageCgroupUsed(pc)) {
2326 unlock_page_cgroup(pc);
2327 return 0;
2329 unlock_page_cgroup(pc);
2332 if (unlikely(!mm))
2333 mm = &init_mm;
2335 if (page_is_file_cache(page))
2336 return mem_cgroup_charge_common(page, mm, gfp_mask,
2337 MEM_CGROUP_CHARGE_TYPE_CACHE);
2339 /* shmem */
2340 if (PageSwapCache(page)) {
2341 struct mem_cgroup *mem = NULL;
2343 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2344 if (!ret)
2345 __mem_cgroup_commit_charge_swapin(page, mem,
2346 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2347 } else
2348 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2349 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2351 return ret;
2355 * While swap-in, try_charge -> commit or cancel, the page is locked.
2356 * And when try_charge() successfully returns, one refcnt to memcg without
2357 * struct page_cgroup is acquired. This refcnt will be consumed by
2358 * "commit()" or removed by "cancel()"
2360 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2361 struct page *page,
2362 gfp_t mask, struct mem_cgroup **ptr)
2364 struct mem_cgroup *mem;
2365 int ret;
2367 if (mem_cgroup_disabled())
2368 return 0;
2370 if (!do_swap_account)
2371 goto charge_cur_mm;
2373 * A racing thread's fault, or swapoff, may have already updated
2374 * the pte, and even removed page from swap cache: in those cases
2375 * do_swap_page()'s pte_same() test will fail; but there's also a
2376 * KSM case which does need to charge the page.
2378 if (!PageSwapCache(page))
2379 goto charge_cur_mm;
2380 mem = try_get_mem_cgroup_from_page(page);
2381 if (!mem)
2382 goto charge_cur_mm;
2383 *ptr = mem;
2384 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2385 css_put(&mem->css);
2386 return ret;
2387 charge_cur_mm:
2388 if (unlikely(!mm))
2389 mm = &init_mm;
2390 return __mem_cgroup_try_charge(mm, mask, ptr, true);
2393 static void
2394 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2395 enum charge_type ctype)
2397 struct page_cgroup *pc;
2399 if (mem_cgroup_disabled())
2400 return;
2401 if (!ptr)
2402 return;
2403 cgroup_exclude_rmdir(&ptr->css);
2404 pc = lookup_page_cgroup(page);
2405 mem_cgroup_lru_del_before_commit_swapcache(page);
2406 __mem_cgroup_commit_charge(ptr, pc, ctype);
2407 mem_cgroup_lru_add_after_commit_swapcache(page);
2409 * Now swap is on-memory. This means this page may be
2410 * counted both as mem and swap....double count.
2411 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2412 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2413 * may call delete_from_swap_cache() before reach here.
2415 if (do_swap_account && PageSwapCache(page)) {
2416 swp_entry_t ent = {.val = page_private(page)};
2417 unsigned short id;
2418 struct mem_cgroup *memcg;
2420 id = swap_cgroup_record(ent, 0);
2421 rcu_read_lock();
2422 memcg = mem_cgroup_lookup(id);
2423 if (memcg) {
2425 * This recorded memcg can be obsolete one. So, avoid
2426 * calling css_tryget
2428 if (!mem_cgroup_is_root(memcg))
2429 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2430 mem_cgroup_swap_statistics(memcg, false);
2431 mem_cgroup_put(memcg);
2433 rcu_read_unlock();
2436 * At swapin, we may charge account against cgroup which has no tasks.
2437 * So, rmdir()->pre_destroy() can be called while we do this charge.
2438 * In that case, we need to call pre_destroy() again. check it here.
2440 cgroup_release_and_wakeup_rmdir(&ptr->css);
2443 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2445 __mem_cgroup_commit_charge_swapin(page, ptr,
2446 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2449 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2451 if (mem_cgroup_disabled())
2452 return;
2453 if (!mem)
2454 return;
2455 mem_cgroup_cancel_charge(mem);
2458 static void
2459 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2461 struct memcg_batch_info *batch = NULL;
2462 bool uncharge_memsw = true;
2463 /* If swapout, usage of swap doesn't decrease */
2464 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2465 uncharge_memsw = false;
2467 batch = &current->memcg_batch;
2469 * In usual, we do css_get() when we remember memcg pointer.
2470 * But in this case, we keep res->usage until end of a series of
2471 * uncharges. Then, it's ok to ignore memcg's refcnt.
2473 if (!batch->memcg)
2474 batch->memcg = mem;
2476 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2477 * In those cases, all pages freed continously can be expected to be in
2478 * the same cgroup and we have chance to coalesce uncharges.
2479 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2480 * because we want to do uncharge as soon as possible.
2483 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2484 goto direct_uncharge;
2487 * In typical case, batch->memcg == mem. This means we can
2488 * merge a series of uncharges to an uncharge of res_counter.
2489 * If not, we uncharge res_counter ony by one.
2491 if (batch->memcg != mem)
2492 goto direct_uncharge;
2493 /* remember freed charge and uncharge it later */
2494 batch->bytes += PAGE_SIZE;
2495 if (uncharge_memsw)
2496 batch->memsw_bytes += PAGE_SIZE;
2497 return;
2498 direct_uncharge:
2499 res_counter_uncharge(&mem->res, PAGE_SIZE);
2500 if (uncharge_memsw)
2501 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2502 if (unlikely(batch->memcg != mem))
2503 memcg_oom_recover(mem);
2504 return;
2508 * uncharge if !page_mapped(page)
2510 static struct mem_cgroup *
2511 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2513 struct page_cgroup *pc;
2514 struct mem_cgroup *mem = NULL;
2516 if (mem_cgroup_disabled())
2517 return NULL;
2519 if (PageSwapCache(page))
2520 return NULL;
2523 * Check if our page_cgroup is valid
2525 pc = lookup_page_cgroup(page);
2526 if (unlikely(!pc || !PageCgroupUsed(pc)))
2527 return NULL;
2529 lock_page_cgroup(pc);
2531 mem = pc->mem_cgroup;
2533 if (!PageCgroupUsed(pc))
2534 goto unlock_out;
2536 switch (ctype) {
2537 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2538 case MEM_CGROUP_CHARGE_TYPE_DROP:
2539 /* See mem_cgroup_prepare_migration() */
2540 if (page_mapped(page) || PageCgroupMigration(pc))
2541 goto unlock_out;
2542 break;
2543 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2544 if (!PageAnon(page)) { /* Shared memory */
2545 if (page->mapping && !page_is_file_cache(page))
2546 goto unlock_out;
2547 } else if (page_mapped(page)) /* Anon */
2548 goto unlock_out;
2549 break;
2550 default:
2551 break;
2554 mem_cgroup_charge_statistics(mem, pc, false);
2556 ClearPageCgroupUsed(pc);
2558 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2559 * freed from LRU. This is safe because uncharged page is expected not
2560 * to be reused (freed soon). Exception is SwapCache, it's handled by
2561 * special functions.
2564 unlock_page_cgroup(pc);
2566 * even after unlock, we have mem->res.usage here and this memcg
2567 * will never be freed.
2569 memcg_check_events(mem, page);
2570 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2571 mem_cgroup_swap_statistics(mem, true);
2572 mem_cgroup_get(mem);
2574 if (!mem_cgroup_is_root(mem))
2575 __do_uncharge(mem, ctype);
2577 return mem;
2579 unlock_out:
2580 unlock_page_cgroup(pc);
2581 return NULL;
2584 void mem_cgroup_uncharge_page(struct page *page)
2586 /* early check. */
2587 if (page_mapped(page))
2588 return;
2589 if (page->mapping && !PageAnon(page))
2590 return;
2591 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2594 void mem_cgroup_uncharge_cache_page(struct page *page)
2596 VM_BUG_ON(page_mapped(page));
2597 VM_BUG_ON(page->mapping);
2598 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2602 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2603 * In that cases, pages are freed continuously and we can expect pages
2604 * are in the same memcg. All these calls itself limits the number of
2605 * pages freed at once, then uncharge_start/end() is called properly.
2606 * This may be called prural(2) times in a context,
2609 void mem_cgroup_uncharge_start(void)
2611 current->memcg_batch.do_batch++;
2612 /* We can do nest. */
2613 if (current->memcg_batch.do_batch == 1) {
2614 current->memcg_batch.memcg = NULL;
2615 current->memcg_batch.bytes = 0;
2616 current->memcg_batch.memsw_bytes = 0;
2620 void mem_cgroup_uncharge_end(void)
2622 struct memcg_batch_info *batch = &current->memcg_batch;
2624 if (!batch->do_batch)
2625 return;
2627 batch->do_batch--;
2628 if (batch->do_batch) /* If stacked, do nothing. */
2629 return;
2631 if (!batch->memcg)
2632 return;
2634 * This "batch->memcg" is valid without any css_get/put etc...
2635 * bacause we hide charges behind us.
2637 if (batch->bytes)
2638 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2639 if (batch->memsw_bytes)
2640 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2641 memcg_oom_recover(batch->memcg);
2642 /* forget this pointer (for sanity check) */
2643 batch->memcg = NULL;
2646 #ifdef CONFIG_SWAP
2648 * called after __delete_from_swap_cache() and drop "page" account.
2649 * memcg information is recorded to swap_cgroup of "ent"
2651 void
2652 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2654 struct mem_cgroup *memcg;
2655 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2657 if (!swapout) /* this was a swap cache but the swap is unused ! */
2658 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2660 memcg = __mem_cgroup_uncharge_common(page, ctype);
2663 * record memcg information, if swapout && memcg != NULL,
2664 * mem_cgroup_get() was called in uncharge().
2666 if (do_swap_account && swapout && memcg)
2667 swap_cgroup_record(ent, css_id(&memcg->css));
2669 #endif
2671 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2673 * called from swap_entry_free(). remove record in swap_cgroup and
2674 * uncharge "memsw" account.
2676 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2678 struct mem_cgroup *memcg;
2679 unsigned short id;
2681 if (!do_swap_account)
2682 return;
2684 id = swap_cgroup_record(ent, 0);
2685 rcu_read_lock();
2686 memcg = mem_cgroup_lookup(id);
2687 if (memcg) {
2689 * We uncharge this because swap is freed.
2690 * This memcg can be obsolete one. We avoid calling css_tryget
2692 if (!mem_cgroup_is_root(memcg))
2693 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2694 mem_cgroup_swap_statistics(memcg, false);
2695 mem_cgroup_put(memcg);
2697 rcu_read_unlock();
2701 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2702 * @entry: swap entry to be moved
2703 * @from: mem_cgroup which the entry is moved from
2704 * @to: mem_cgroup which the entry is moved to
2705 * @need_fixup: whether we should fixup res_counters and refcounts.
2707 * It succeeds only when the swap_cgroup's record for this entry is the same
2708 * as the mem_cgroup's id of @from.
2710 * Returns 0 on success, -EINVAL on failure.
2712 * The caller must have charged to @to, IOW, called res_counter_charge() about
2713 * both res and memsw, and called css_get().
2715 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2716 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2718 unsigned short old_id, new_id;
2720 old_id = css_id(&from->css);
2721 new_id = css_id(&to->css);
2723 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2724 mem_cgroup_swap_statistics(from, false);
2725 mem_cgroup_swap_statistics(to, true);
2727 * This function is only called from task migration context now.
2728 * It postpones res_counter and refcount handling till the end
2729 * of task migration(mem_cgroup_clear_mc()) for performance
2730 * improvement. But we cannot postpone mem_cgroup_get(to)
2731 * because if the process that has been moved to @to does
2732 * swap-in, the refcount of @to might be decreased to 0.
2734 mem_cgroup_get(to);
2735 if (need_fixup) {
2736 if (!mem_cgroup_is_root(from))
2737 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2738 mem_cgroup_put(from);
2740 * we charged both to->res and to->memsw, so we should
2741 * uncharge to->res.
2743 if (!mem_cgroup_is_root(to))
2744 res_counter_uncharge(&to->res, PAGE_SIZE);
2746 return 0;
2748 return -EINVAL;
2750 #else
2751 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2752 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2754 return -EINVAL;
2756 #endif
2759 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2760 * page belongs to.
2762 int mem_cgroup_prepare_migration(struct page *page,
2763 struct page *newpage, struct mem_cgroup **ptr)
2765 struct page_cgroup *pc;
2766 struct mem_cgroup *mem = NULL;
2767 enum charge_type ctype;
2768 int ret = 0;
2770 if (mem_cgroup_disabled())
2771 return 0;
2773 pc = lookup_page_cgroup(page);
2774 lock_page_cgroup(pc);
2775 if (PageCgroupUsed(pc)) {
2776 mem = pc->mem_cgroup;
2777 css_get(&mem->css);
2779 * At migrating an anonymous page, its mapcount goes down
2780 * to 0 and uncharge() will be called. But, even if it's fully
2781 * unmapped, migration may fail and this page has to be
2782 * charged again. We set MIGRATION flag here and delay uncharge
2783 * until end_migration() is called
2785 * Corner Case Thinking
2786 * A)
2787 * When the old page was mapped as Anon and it's unmap-and-freed
2788 * while migration was ongoing.
2789 * If unmap finds the old page, uncharge() of it will be delayed
2790 * until end_migration(). If unmap finds a new page, it's
2791 * uncharged when it make mapcount to be 1->0. If unmap code
2792 * finds swap_migration_entry, the new page will not be mapped
2793 * and end_migration() will find it(mapcount==0).
2795 * B)
2796 * When the old page was mapped but migraion fails, the kernel
2797 * remaps it. A charge for it is kept by MIGRATION flag even
2798 * if mapcount goes down to 0. We can do remap successfully
2799 * without charging it again.
2801 * C)
2802 * The "old" page is under lock_page() until the end of
2803 * migration, so, the old page itself will not be swapped-out.
2804 * If the new page is swapped out before end_migraton, our
2805 * hook to usual swap-out path will catch the event.
2807 if (PageAnon(page))
2808 SetPageCgroupMigration(pc);
2810 unlock_page_cgroup(pc);
2812 * If the page is not charged at this point,
2813 * we return here.
2815 if (!mem)
2816 return 0;
2818 *ptr = mem;
2819 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2820 css_put(&mem->css);/* drop extra refcnt */
2821 if (ret || *ptr == NULL) {
2822 if (PageAnon(page)) {
2823 lock_page_cgroup(pc);
2824 ClearPageCgroupMigration(pc);
2825 unlock_page_cgroup(pc);
2827 * The old page may be fully unmapped while we kept it.
2829 mem_cgroup_uncharge_page(page);
2831 return -ENOMEM;
2834 * We charge new page before it's used/mapped. So, even if unlock_page()
2835 * is called before end_migration, we can catch all events on this new
2836 * page. In the case new page is migrated but not remapped, new page's
2837 * mapcount will be finally 0 and we call uncharge in end_migration().
2839 pc = lookup_page_cgroup(newpage);
2840 if (PageAnon(page))
2841 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2842 else if (page_is_file_cache(page))
2843 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2844 else
2845 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2846 __mem_cgroup_commit_charge(mem, pc, ctype);
2847 return ret;
2850 /* remove redundant charge if migration failed*/
2851 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2852 struct page *oldpage, struct page *newpage)
2854 struct page *used, *unused;
2855 struct page_cgroup *pc;
2857 if (!mem)
2858 return;
2859 /* blocks rmdir() */
2860 cgroup_exclude_rmdir(&mem->css);
2861 /* at migration success, oldpage->mapping is NULL. */
2862 if (oldpage->mapping) {
2863 used = oldpage;
2864 unused = newpage;
2865 } else {
2866 used = newpage;
2867 unused = oldpage;
2870 * We disallowed uncharge of pages under migration because mapcount
2871 * of the page goes down to zero, temporarly.
2872 * Clear the flag and check the page should be charged.
2874 pc = lookup_page_cgroup(oldpage);
2875 lock_page_cgroup(pc);
2876 ClearPageCgroupMigration(pc);
2877 unlock_page_cgroup(pc);
2879 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2882 * If a page is a file cache, radix-tree replacement is very atomic
2883 * and we can skip this check. When it was an Anon page, its mapcount
2884 * goes down to 0. But because we added MIGRATION flage, it's not
2885 * uncharged yet. There are several case but page->mapcount check
2886 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2887 * check. (see prepare_charge() also)
2889 if (PageAnon(used))
2890 mem_cgroup_uncharge_page(used);
2892 * At migration, we may charge account against cgroup which has no
2893 * tasks.
2894 * So, rmdir()->pre_destroy() can be called while we do this charge.
2895 * In that case, we need to call pre_destroy() again. check it here.
2897 cgroup_release_and_wakeup_rmdir(&mem->css);
2901 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2902 * Calling hierarchical_reclaim is not enough because we should update
2903 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2904 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2905 * not from the memcg which this page would be charged to.
2906 * try_charge_swapin does all of these works properly.
2908 int mem_cgroup_shmem_charge_fallback(struct page *page,
2909 struct mm_struct *mm,
2910 gfp_t gfp_mask)
2912 struct mem_cgroup *mem = NULL;
2913 int ret;
2915 if (mem_cgroup_disabled())
2916 return 0;
2918 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2919 if (!ret)
2920 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2922 return ret;
2925 static DEFINE_MUTEX(set_limit_mutex);
2927 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2928 unsigned long long val)
2930 int retry_count;
2931 u64 memswlimit, memlimit;
2932 int ret = 0;
2933 int children = mem_cgroup_count_children(memcg);
2934 u64 curusage, oldusage;
2935 int enlarge;
2938 * For keeping hierarchical_reclaim simple, how long we should retry
2939 * is depends on callers. We set our retry-count to be function
2940 * of # of children which we should visit in this loop.
2942 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2944 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2946 enlarge = 0;
2947 while (retry_count) {
2948 if (signal_pending(current)) {
2949 ret = -EINTR;
2950 break;
2953 * Rather than hide all in some function, I do this in
2954 * open coded manner. You see what this really does.
2955 * We have to guarantee mem->res.limit < mem->memsw.limit.
2957 mutex_lock(&set_limit_mutex);
2958 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2959 if (memswlimit < val) {
2960 ret = -EINVAL;
2961 mutex_unlock(&set_limit_mutex);
2962 break;
2965 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2966 if (memlimit < val)
2967 enlarge = 1;
2969 ret = res_counter_set_limit(&memcg->res, val);
2970 if (!ret) {
2971 if (memswlimit == val)
2972 memcg->memsw_is_minimum = true;
2973 else
2974 memcg->memsw_is_minimum = false;
2976 mutex_unlock(&set_limit_mutex);
2978 if (!ret)
2979 break;
2981 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2982 MEM_CGROUP_RECLAIM_SHRINK);
2983 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2984 /* Usage is reduced ? */
2985 if (curusage >= oldusage)
2986 retry_count--;
2987 else
2988 oldusage = curusage;
2990 if (!ret && enlarge)
2991 memcg_oom_recover(memcg);
2993 return ret;
2996 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2997 unsigned long long val)
2999 int retry_count;
3000 u64 memlimit, memswlimit, oldusage, curusage;
3001 int children = mem_cgroup_count_children(memcg);
3002 int ret = -EBUSY;
3003 int enlarge = 0;
3005 /* see mem_cgroup_resize_res_limit */
3006 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3007 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3008 while (retry_count) {
3009 if (signal_pending(current)) {
3010 ret = -EINTR;
3011 break;
3014 * Rather than hide all in some function, I do this in
3015 * open coded manner. You see what this really does.
3016 * We have to guarantee mem->res.limit < mem->memsw.limit.
3018 mutex_lock(&set_limit_mutex);
3019 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3020 if (memlimit > val) {
3021 ret = -EINVAL;
3022 mutex_unlock(&set_limit_mutex);
3023 break;
3025 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3026 if (memswlimit < val)
3027 enlarge = 1;
3028 ret = res_counter_set_limit(&memcg->memsw, val);
3029 if (!ret) {
3030 if (memlimit == val)
3031 memcg->memsw_is_minimum = true;
3032 else
3033 memcg->memsw_is_minimum = false;
3035 mutex_unlock(&set_limit_mutex);
3037 if (!ret)
3038 break;
3040 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3041 MEM_CGROUP_RECLAIM_NOSWAP |
3042 MEM_CGROUP_RECLAIM_SHRINK);
3043 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3044 /* Usage is reduced ? */
3045 if (curusage >= oldusage)
3046 retry_count--;
3047 else
3048 oldusage = curusage;
3050 if (!ret && enlarge)
3051 memcg_oom_recover(memcg);
3052 return ret;
3055 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3056 gfp_t gfp_mask)
3058 unsigned long nr_reclaimed = 0;
3059 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3060 unsigned long reclaimed;
3061 int loop = 0;
3062 struct mem_cgroup_tree_per_zone *mctz;
3063 unsigned long long excess;
3065 if (order > 0)
3066 return 0;
3068 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3070 * This loop can run a while, specially if mem_cgroup's continuously
3071 * keep exceeding their soft limit and putting the system under
3072 * pressure
3074 do {
3075 if (next_mz)
3076 mz = next_mz;
3077 else
3078 mz = mem_cgroup_largest_soft_limit_node(mctz);
3079 if (!mz)
3080 break;
3082 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3083 gfp_mask,
3084 MEM_CGROUP_RECLAIM_SOFT);
3085 nr_reclaimed += reclaimed;
3086 spin_lock(&mctz->lock);
3089 * If we failed to reclaim anything from this memory cgroup
3090 * it is time to move on to the next cgroup
3092 next_mz = NULL;
3093 if (!reclaimed) {
3094 do {
3096 * Loop until we find yet another one.
3098 * By the time we get the soft_limit lock
3099 * again, someone might have aded the
3100 * group back on the RB tree. Iterate to
3101 * make sure we get a different mem.
3102 * mem_cgroup_largest_soft_limit_node returns
3103 * NULL if no other cgroup is present on
3104 * the tree
3106 next_mz =
3107 __mem_cgroup_largest_soft_limit_node(mctz);
3108 if (next_mz == mz) {
3109 css_put(&next_mz->mem->css);
3110 next_mz = NULL;
3111 } else /* next_mz == NULL or other memcg */
3112 break;
3113 } while (1);
3115 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3116 excess = res_counter_soft_limit_excess(&mz->mem->res);
3118 * One school of thought says that we should not add
3119 * back the node to the tree if reclaim returns 0.
3120 * But our reclaim could return 0, simply because due
3121 * to priority we are exposing a smaller subset of
3122 * memory to reclaim from. Consider this as a longer
3123 * term TODO.
3125 /* If excess == 0, no tree ops */
3126 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3127 spin_unlock(&mctz->lock);
3128 css_put(&mz->mem->css);
3129 loop++;
3131 * Could not reclaim anything and there are no more
3132 * mem cgroups to try or we seem to be looping without
3133 * reclaiming anything.
3135 if (!nr_reclaimed &&
3136 (next_mz == NULL ||
3137 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3138 break;
3139 } while (!nr_reclaimed);
3140 if (next_mz)
3141 css_put(&next_mz->mem->css);
3142 return nr_reclaimed;
3146 * This routine traverse page_cgroup in given list and drop them all.
3147 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3149 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3150 int node, int zid, enum lru_list lru)
3152 struct zone *zone;
3153 struct mem_cgroup_per_zone *mz;
3154 struct page_cgroup *pc, *busy;
3155 unsigned long flags, loop;
3156 struct list_head *list;
3157 int ret = 0;
3159 zone = &NODE_DATA(node)->node_zones[zid];
3160 mz = mem_cgroup_zoneinfo(mem, node, zid);
3161 list = &mz->lists[lru];
3163 loop = MEM_CGROUP_ZSTAT(mz, lru);
3164 /* give some margin against EBUSY etc...*/
3165 loop += 256;
3166 busy = NULL;
3167 while (loop--) {
3168 ret = 0;
3169 spin_lock_irqsave(&zone->lru_lock, flags);
3170 if (list_empty(list)) {
3171 spin_unlock_irqrestore(&zone->lru_lock, flags);
3172 break;
3174 pc = list_entry(list->prev, struct page_cgroup, lru);
3175 if (busy == pc) {
3176 list_move(&pc->lru, list);
3177 busy = NULL;
3178 spin_unlock_irqrestore(&zone->lru_lock, flags);
3179 continue;
3181 spin_unlock_irqrestore(&zone->lru_lock, flags);
3183 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3184 if (ret == -ENOMEM)
3185 break;
3187 if (ret == -EBUSY || ret == -EINVAL) {
3188 /* found lock contention or "pc" is obsolete. */
3189 busy = pc;
3190 cond_resched();
3191 } else
3192 busy = NULL;
3195 if (!ret && !list_empty(list))
3196 return -EBUSY;
3197 return ret;
3201 * make mem_cgroup's charge to be 0 if there is no task.
3202 * This enables deleting this mem_cgroup.
3204 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3206 int ret;
3207 int node, zid, shrink;
3208 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3209 struct cgroup *cgrp = mem->css.cgroup;
3211 css_get(&mem->css);
3213 shrink = 0;
3214 /* should free all ? */
3215 if (free_all)
3216 goto try_to_free;
3217 move_account:
3218 do {
3219 ret = -EBUSY;
3220 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3221 goto out;
3222 ret = -EINTR;
3223 if (signal_pending(current))
3224 goto out;
3225 /* This is for making all *used* pages to be on LRU. */
3226 lru_add_drain_all();
3227 drain_all_stock_sync();
3228 ret = 0;
3229 mem_cgroup_start_move(mem);
3230 for_each_node_state(node, N_HIGH_MEMORY) {
3231 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3232 enum lru_list l;
3233 for_each_lru(l) {
3234 ret = mem_cgroup_force_empty_list(mem,
3235 node, zid, l);
3236 if (ret)
3237 break;
3240 if (ret)
3241 break;
3243 mem_cgroup_end_move(mem);
3244 memcg_oom_recover(mem);
3245 /* it seems parent cgroup doesn't have enough mem */
3246 if (ret == -ENOMEM)
3247 goto try_to_free;
3248 cond_resched();
3249 /* "ret" should also be checked to ensure all lists are empty. */
3250 } while (mem->res.usage > 0 || ret);
3251 out:
3252 css_put(&mem->css);
3253 return ret;
3255 try_to_free:
3256 /* returns EBUSY if there is a task or if we come here twice. */
3257 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3258 ret = -EBUSY;
3259 goto out;
3261 /* we call try-to-free pages for make this cgroup empty */
3262 lru_add_drain_all();
3263 /* try to free all pages in this cgroup */
3264 shrink = 1;
3265 while (nr_retries && mem->res.usage > 0) {
3266 int progress;
3268 if (signal_pending(current)) {
3269 ret = -EINTR;
3270 goto out;
3272 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3273 false, get_swappiness(mem));
3274 if (!progress) {
3275 nr_retries--;
3276 /* maybe some writeback is necessary */
3277 congestion_wait(BLK_RW_ASYNC, HZ/10);
3281 lru_add_drain();
3282 /* try move_account...there may be some *locked* pages. */
3283 goto move_account;
3286 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3288 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3292 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3294 return mem_cgroup_from_cont(cont)->use_hierarchy;
3297 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3298 u64 val)
3300 int retval = 0;
3301 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3302 struct cgroup *parent = cont->parent;
3303 struct mem_cgroup *parent_mem = NULL;
3305 if (parent)
3306 parent_mem = mem_cgroup_from_cont(parent);
3308 cgroup_lock();
3310 * If parent's use_hierarchy is set, we can't make any modifications
3311 * in the child subtrees. If it is unset, then the change can
3312 * occur, provided the current cgroup has no children.
3314 * For the root cgroup, parent_mem is NULL, we allow value to be
3315 * set if there are no children.
3317 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3318 (val == 1 || val == 0)) {
3319 if (list_empty(&cont->children))
3320 mem->use_hierarchy = val;
3321 else
3322 retval = -EBUSY;
3323 } else
3324 retval = -EINVAL;
3325 cgroup_unlock();
3327 return retval;
3331 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3332 enum mem_cgroup_stat_index idx)
3334 struct mem_cgroup *iter;
3335 s64 val = 0;
3337 /* each per cpu's value can be minus.Then, use s64 */
3338 for_each_mem_cgroup_tree(iter, mem)
3339 val += mem_cgroup_read_stat(iter, idx);
3341 if (val < 0) /* race ? */
3342 val = 0;
3343 return val;
3346 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3348 u64 val;
3350 if (!mem_cgroup_is_root(mem)) {
3351 if (!swap)
3352 return res_counter_read_u64(&mem->res, RES_USAGE);
3353 else
3354 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3357 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3358 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3360 if (swap)
3361 val += mem_cgroup_get_recursive_idx_stat(mem,
3362 MEM_CGROUP_STAT_SWAPOUT);
3364 return val << PAGE_SHIFT;
3367 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3369 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3370 u64 val;
3371 int type, name;
3373 type = MEMFILE_TYPE(cft->private);
3374 name = MEMFILE_ATTR(cft->private);
3375 switch (type) {
3376 case _MEM:
3377 if (name == RES_USAGE)
3378 val = mem_cgroup_usage(mem, false);
3379 else
3380 val = res_counter_read_u64(&mem->res, name);
3381 break;
3382 case _MEMSWAP:
3383 if (name == RES_USAGE)
3384 val = mem_cgroup_usage(mem, true);
3385 else
3386 val = res_counter_read_u64(&mem->memsw, name);
3387 break;
3388 default:
3389 BUG();
3390 break;
3392 return val;
3395 * The user of this function is...
3396 * RES_LIMIT.
3398 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3399 const char *buffer)
3401 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3402 int type, name;
3403 unsigned long long val;
3404 int ret;
3406 type = MEMFILE_TYPE(cft->private);
3407 name = MEMFILE_ATTR(cft->private);
3408 switch (name) {
3409 case RES_LIMIT:
3410 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3411 ret = -EINVAL;
3412 break;
3414 /* This function does all necessary parse...reuse it */
3415 ret = res_counter_memparse_write_strategy(buffer, &val);
3416 if (ret)
3417 break;
3418 if (type == _MEM)
3419 ret = mem_cgroup_resize_limit(memcg, val);
3420 else
3421 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3422 break;
3423 case RES_SOFT_LIMIT:
3424 ret = res_counter_memparse_write_strategy(buffer, &val);
3425 if (ret)
3426 break;
3428 * For memsw, soft limits are hard to implement in terms
3429 * of semantics, for now, we support soft limits for
3430 * control without swap
3432 if (type == _MEM)
3433 ret = res_counter_set_soft_limit(&memcg->res, val);
3434 else
3435 ret = -EINVAL;
3436 break;
3437 default:
3438 ret = -EINVAL; /* should be BUG() ? */
3439 break;
3441 return ret;
3444 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3445 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3447 struct cgroup *cgroup;
3448 unsigned long long min_limit, min_memsw_limit, tmp;
3450 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3451 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3452 cgroup = memcg->css.cgroup;
3453 if (!memcg->use_hierarchy)
3454 goto out;
3456 while (cgroup->parent) {
3457 cgroup = cgroup->parent;
3458 memcg = mem_cgroup_from_cont(cgroup);
3459 if (!memcg->use_hierarchy)
3460 break;
3461 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3462 min_limit = min(min_limit, tmp);
3463 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3464 min_memsw_limit = min(min_memsw_limit, tmp);
3466 out:
3467 *mem_limit = min_limit;
3468 *memsw_limit = min_memsw_limit;
3469 return;
3472 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3474 struct mem_cgroup *mem;
3475 int type, name;
3477 mem = mem_cgroup_from_cont(cont);
3478 type = MEMFILE_TYPE(event);
3479 name = MEMFILE_ATTR(event);
3480 switch (name) {
3481 case RES_MAX_USAGE:
3482 if (type == _MEM)
3483 res_counter_reset_max(&mem->res);
3484 else
3485 res_counter_reset_max(&mem->memsw);
3486 break;
3487 case RES_FAILCNT:
3488 if (type == _MEM)
3489 res_counter_reset_failcnt(&mem->res);
3490 else
3491 res_counter_reset_failcnt(&mem->memsw);
3492 break;
3495 return 0;
3498 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3499 struct cftype *cft)
3501 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3504 #ifdef CONFIG_MMU
3505 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3506 struct cftype *cft, u64 val)
3508 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3510 if (val >= (1 << NR_MOVE_TYPE))
3511 return -EINVAL;
3513 * We check this value several times in both in can_attach() and
3514 * attach(), so we need cgroup lock to prevent this value from being
3515 * inconsistent.
3517 cgroup_lock();
3518 mem->move_charge_at_immigrate = val;
3519 cgroup_unlock();
3521 return 0;
3523 #else
3524 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3525 struct cftype *cft, u64 val)
3527 return -ENOSYS;
3529 #endif
3532 /* For read statistics */
3533 enum {
3534 MCS_CACHE,
3535 MCS_RSS,
3536 MCS_FILE_MAPPED,
3537 MCS_PGPGIN,
3538 MCS_PGPGOUT,
3539 MCS_SWAP,
3540 MCS_INACTIVE_ANON,
3541 MCS_ACTIVE_ANON,
3542 MCS_INACTIVE_FILE,
3543 MCS_ACTIVE_FILE,
3544 MCS_UNEVICTABLE,
3545 NR_MCS_STAT,
3548 struct mcs_total_stat {
3549 s64 stat[NR_MCS_STAT];
3552 struct {
3553 char *local_name;
3554 char *total_name;
3555 } memcg_stat_strings[NR_MCS_STAT] = {
3556 {"cache", "total_cache"},
3557 {"rss", "total_rss"},
3558 {"mapped_file", "total_mapped_file"},
3559 {"pgpgin", "total_pgpgin"},
3560 {"pgpgout", "total_pgpgout"},
3561 {"swap", "total_swap"},
3562 {"inactive_anon", "total_inactive_anon"},
3563 {"active_anon", "total_active_anon"},
3564 {"inactive_file", "total_inactive_file"},
3565 {"active_file", "total_active_file"},
3566 {"unevictable", "total_unevictable"}
3570 static void
3571 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3573 s64 val;
3575 /* per cpu stat */
3576 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3577 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3578 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3579 s->stat[MCS_RSS] += val * PAGE_SIZE;
3580 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3581 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3582 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3583 s->stat[MCS_PGPGIN] += val;
3584 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3585 s->stat[MCS_PGPGOUT] += val;
3586 if (do_swap_account) {
3587 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3588 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3591 /* per zone stat */
3592 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3593 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3594 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3595 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3596 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3597 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3598 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3599 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3600 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3601 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3604 static void
3605 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3607 struct mem_cgroup *iter;
3609 for_each_mem_cgroup_tree(iter, mem)
3610 mem_cgroup_get_local_stat(iter, s);
3613 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3614 struct cgroup_map_cb *cb)
3616 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3617 struct mcs_total_stat mystat;
3618 int i;
3620 memset(&mystat, 0, sizeof(mystat));
3621 mem_cgroup_get_local_stat(mem_cont, &mystat);
3623 for (i = 0; i < NR_MCS_STAT; i++) {
3624 if (i == MCS_SWAP && !do_swap_account)
3625 continue;
3626 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3629 /* Hierarchical information */
3631 unsigned long long limit, memsw_limit;
3632 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3633 cb->fill(cb, "hierarchical_memory_limit", limit);
3634 if (do_swap_account)
3635 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3638 memset(&mystat, 0, sizeof(mystat));
3639 mem_cgroup_get_total_stat(mem_cont, &mystat);
3640 for (i = 0; i < NR_MCS_STAT; i++) {
3641 if (i == MCS_SWAP && !do_swap_account)
3642 continue;
3643 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3646 #ifdef CONFIG_DEBUG_VM
3647 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3650 int nid, zid;
3651 struct mem_cgroup_per_zone *mz;
3652 unsigned long recent_rotated[2] = {0, 0};
3653 unsigned long recent_scanned[2] = {0, 0};
3655 for_each_online_node(nid)
3656 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3657 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3659 recent_rotated[0] +=
3660 mz->reclaim_stat.recent_rotated[0];
3661 recent_rotated[1] +=
3662 mz->reclaim_stat.recent_rotated[1];
3663 recent_scanned[0] +=
3664 mz->reclaim_stat.recent_scanned[0];
3665 recent_scanned[1] +=
3666 mz->reclaim_stat.recent_scanned[1];
3668 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3669 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3670 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3671 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3673 #endif
3675 return 0;
3678 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3680 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3682 return get_swappiness(memcg);
3685 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3686 u64 val)
3688 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3689 struct mem_cgroup *parent;
3691 if (val > 100)
3692 return -EINVAL;
3694 if (cgrp->parent == NULL)
3695 return -EINVAL;
3697 parent = mem_cgroup_from_cont(cgrp->parent);
3699 cgroup_lock();
3701 /* If under hierarchy, only empty-root can set this value */
3702 if ((parent->use_hierarchy) ||
3703 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3704 cgroup_unlock();
3705 return -EINVAL;
3708 spin_lock(&memcg->reclaim_param_lock);
3709 memcg->swappiness = val;
3710 spin_unlock(&memcg->reclaim_param_lock);
3712 cgroup_unlock();
3714 return 0;
3717 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3719 struct mem_cgroup_threshold_ary *t;
3720 u64 usage;
3721 int i;
3723 rcu_read_lock();
3724 if (!swap)
3725 t = rcu_dereference(memcg->thresholds.primary);
3726 else
3727 t = rcu_dereference(memcg->memsw_thresholds.primary);
3729 if (!t)
3730 goto unlock;
3732 usage = mem_cgroup_usage(memcg, swap);
3735 * current_threshold points to threshold just below usage.
3736 * If it's not true, a threshold was crossed after last
3737 * call of __mem_cgroup_threshold().
3739 i = t->current_threshold;
3742 * Iterate backward over array of thresholds starting from
3743 * current_threshold and check if a threshold is crossed.
3744 * If none of thresholds below usage is crossed, we read
3745 * only one element of the array here.
3747 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3748 eventfd_signal(t->entries[i].eventfd, 1);
3750 /* i = current_threshold + 1 */
3751 i++;
3754 * Iterate forward over array of thresholds starting from
3755 * current_threshold+1 and check if a threshold is crossed.
3756 * If none of thresholds above usage is crossed, we read
3757 * only one element of the array here.
3759 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3760 eventfd_signal(t->entries[i].eventfd, 1);
3762 /* Update current_threshold */
3763 t->current_threshold = i - 1;
3764 unlock:
3765 rcu_read_unlock();
3768 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3770 while (memcg) {
3771 __mem_cgroup_threshold(memcg, false);
3772 if (do_swap_account)
3773 __mem_cgroup_threshold(memcg, true);
3775 memcg = parent_mem_cgroup(memcg);
3779 static int compare_thresholds(const void *a, const void *b)
3781 const struct mem_cgroup_threshold *_a = a;
3782 const struct mem_cgroup_threshold *_b = b;
3784 return _a->threshold - _b->threshold;
3787 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3789 struct mem_cgroup_eventfd_list *ev;
3791 list_for_each_entry(ev, &mem->oom_notify, list)
3792 eventfd_signal(ev->eventfd, 1);
3793 return 0;
3796 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3798 struct mem_cgroup *iter;
3800 for_each_mem_cgroup_tree(iter, mem)
3801 mem_cgroup_oom_notify_cb(iter);
3804 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3805 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3807 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3808 struct mem_cgroup_thresholds *thresholds;
3809 struct mem_cgroup_threshold_ary *new;
3810 int type = MEMFILE_TYPE(cft->private);
3811 u64 threshold, usage;
3812 int i, size, ret;
3814 ret = res_counter_memparse_write_strategy(args, &threshold);
3815 if (ret)
3816 return ret;
3818 mutex_lock(&memcg->thresholds_lock);
3820 if (type == _MEM)
3821 thresholds = &memcg->thresholds;
3822 else if (type == _MEMSWAP)
3823 thresholds = &memcg->memsw_thresholds;
3824 else
3825 BUG();
3827 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3829 /* Check if a threshold crossed before adding a new one */
3830 if (thresholds->primary)
3831 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3833 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3835 /* Allocate memory for new array of thresholds */
3836 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3837 GFP_KERNEL);
3838 if (!new) {
3839 ret = -ENOMEM;
3840 goto unlock;
3842 new->size = size;
3844 /* Copy thresholds (if any) to new array */
3845 if (thresholds->primary) {
3846 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3847 sizeof(struct mem_cgroup_threshold));
3850 /* Add new threshold */
3851 new->entries[size - 1].eventfd = eventfd;
3852 new->entries[size - 1].threshold = threshold;
3854 /* Sort thresholds. Registering of new threshold isn't time-critical */
3855 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3856 compare_thresholds, NULL);
3858 /* Find current threshold */
3859 new->current_threshold = -1;
3860 for (i = 0; i < size; i++) {
3861 if (new->entries[i].threshold < usage) {
3863 * new->current_threshold will not be used until
3864 * rcu_assign_pointer(), so it's safe to increment
3865 * it here.
3867 ++new->current_threshold;
3871 /* Free old spare buffer and save old primary buffer as spare */
3872 kfree(thresholds->spare);
3873 thresholds->spare = thresholds->primary;
3875 rcu_assign_pointer(thresholds->primary, new);
3877 /* To be sure that nobody uses thresholds */
3878 synchronize_rcu();
3880 unlock:
3881 mutex_unlock(&memcg->thresholds_lock);
3883 return ret;
3886 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3887 struct cftype *cft, struct eventfd_ctx *eventfd)
3889 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3890 struct mem_cgroup_thresholds *thresholds;
3891 struct mem_cgroup_threshold_ary *new;
3892 int type = MEMFILE_TYPE(cft->private);
3893 u64 usage;
3894 int i, j, size;
3896 mutex_lock(&memcg->thresholds_lock);
3897 if (type == _MEM)
3898 thresholds = &memcg->thresholds;
3899 else if (type == _MEMSWAP)
3900 thresholds = &memcg->memsw_thresholds;
3901 else
3902 BUG();
3905 * Something went wrong if we trying to unregister a threshold
3906 * if we don't have thresholds
3908 BUG_ON(!thresholds);
3910 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3912 /* Check if a threshold crossed before removing */
3913 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3915 /* Calculate new number of threshold */
3916 size = 0;
3917 for (i = 0; i < thresholds->primary->size; i++) {
3918 if (thresholds->primary->entries[i].eventfd != eventfd)
3919 size++;
3922 new = thresholds->spare;
3924 /* Set thresholds array to NULL if we don't have thresholds */
3925 if (!size) {
3926 kfree(new);
3927 new = NULL;
3928 goto swap_buffers;
3931 new->size = size;
3933 /* Copy thresholds and find current threshold */
3934 new->current_threshold = -1;
3935 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3936 if (thresholds->primary->entries[i].eventfd == eventfd)
3937 continue;
3939 new->entries[j] = thresholds->primary->entries[i];
3940 if (new->entries[j].threshold < usage) {
3942 * new->current_threshold will not be used
3943 * until rcu_assign_pointer(), so it's safe to increment
3944 * it here.
3946 ++new->current_threshold;
3948 j++;
3951 swap_buffers:
3952 /* Swap primary and spare array */
3953 thresholds->spare = thresholds->primary;
3954 rcu_assign_pointer(thresholds->primary, new);
3956 /* To be sure that nobody uses thresholds */
3957 synchronize_rcu();
3959 mutex_unlock(&memcg->thresholds_lock);
3962 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3963 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3965 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3966 struct mem_cgroup_eventfd_list *event;
3967 int type = MEMFILE_TYPE(cft->private);
3969 BUG_ON(type != _OOM_TYPE);
3970 event = kmalloc(sizeof(*event), GFP_KERNEL);
3971 if (!event)
3972 return -ENOMEM;
3974 mutex_lock(&memcg_oom_mutex);
3976 event->eventfd = eventfd;
3977 list_add(&event->list, &memcg->oom_notify);
3979 /* already in OOM ? */
3980 if (atomic_read(&memcg->oom_lock))
3981 eventfd_signal(eventfd, 1);
3982 mutex_unlock(&memcg_oom_mutex);
3984 return 0;
3987 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3988 struct cftype *cft, struct eventfd_ctx *eventfd)
3990 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3991 struct mem_cgroup_eventfd_list *ev, *tmp;
3992 int type = MEMFILE_TYPE(cft->private);
3994 BUG_ON(type != _OOM_TYPE);
3996 mutex_lock(&memcg_oom_mutex);
3998 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3999 if (ev->eventfd == eventfd) {
4000 list_del(&ev->list);
4001 kfree(ev);
4005 mutex_unlock(&memcg_oom_mutex);
4008 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4009 struct cftype *cft, struct cgroup_map_cb *cb)
4011 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4013 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4015 if (atomic_read(&mem->oom_lock))
4016 cb->fill(cb, "under_oom", 1);
4017 else
4018 cb->fill(cb, "under_oom", 0);
4019 return 0;
4022 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4023 struct cftype *cft, u64 val)
4025 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4026 struct mem_cgroup *parent;
4028 /* cannot set to root cgroup and only 0 and 1 are allowed */
4029 if (!cgrp->parent || !((val == 0) || (val == 1)))
4030 return -EINVAL;
4032 parent = mem_cgroup_from_cont(cgrp->parent);
4034 cgroup_lock();
4035 /* oom-kill-disable is a flag for subhierarchy. */
4036 if ((parent->use_hierarchy) ||
4037 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4038 cgroup_unlock();
4039 return -EINVAL;
4041 mem->oom_kill_disable = val;
4042 if (!val)
4043 memcg_oom_recover(mem);
4044 cgroup_unlock();
4045 return 0;
4048 static struct cftype mem_cgroup_files[] = {
4050 .name = "usage_in_bytes",
4051 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4052 .read_u64 = mem_cgroup_read,
4053 .register_event = mem_cgroup_usage_register_event,
4054 .unregister_event = mem_cgroup_usage_unregister_event,
4057 .name = "max_usage_in_bytes",
4058 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4059 .trigger = mem_cgroup_reset,
4060 .read_u64 = mem_cgroup_read,
4063 .name = "limit_in_bytes",
4064 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4065 .write_string = mem_cgroup_write,
4066 .read_u64 = mem_cgroup_read,
4069 .name = "soft_limit_in_bytes",
4070 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4071 .write_string = mem_cgroup_write,
4072 .read_u64 = mem_cgroup_read,
4075 .name = "failcnt",
4076 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4077 .trigger = mem_cgroup_reset,
4078 .read_u64 = mem_cgroup_read,
4081 .name = "stat",
4082 .read_map = mem_control_stat_show,
4085 .name = "force_empty",
4086 .trigger = mem_cgroup_force_empty_write,
4089 .name = "use_hierarchy",
4090 .write_u64 = mem_cgroup_hierarchy_write,
4091 .read_u64 = mem_cgroup_hierarchy_read,
4094 .name = "swappiness",
4095 .read_u64 = mem_cgroup_swappiness_read,
4096 .write_u64 = mem_cgroup_swappiness_write,
4099 .name = "move_charge_at_immigrate",
4100 .read_u64 = mem_cgroup_move_charge_read,
4101 .write_u64 = mem_cgroup_move_charge_write,
4104 .name = "oom_control",
4105 .read_map = mem_cgroup_oom_control_read,
4106 .write_u64 = mem_cgroup_oom_control_write,
4107 .register_event = mem_cgroup_oom_register_event,
4108 .unregister_event = mem_cgroup_oom_unregister_event,
4109 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4113 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4114 static struct cftype memsw_cgroup_files[] = {
4116 .name = "memsw.usage_in_bytes",
4117 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4118 .read_u64 = mem_cgroup_read,
4119 .register_event = mem_cgroup_usage_register_event,
4120 .unregister_event = mem_cgroup_usage_unregister_event,
4123 .name = "memsw.max_usage_in_bytes",
4124 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4125 .trigger = mem_cgroup_reset,
4126 .read_u64 = mem_cgroup_read,
4129 .name = "memsw.limit_in_bytes",
4130 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4131 .write_string = mem_cgroup_write,
4132 .read_u64 = mem_cgroup_read,
4135 .name = "memsw.failcnt",
4136 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4137 .trigger = mem_cgroup_reset,
4138 .read_u64 = mem_cgroup_read,
4142 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4144 if (!do_swap_account)
4145 return 0;
4146 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4147 ARRAY_SIZE(memsw_cgroup_files));
4149 #else
4150 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4152 return 0;
4154 #endif
4156 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4158 struct mem_cgroup_per_node *pn;
4159 struct mem_cgroup_per_zone *mz;
4160 enum lru_list l;
4161 int zone, tmp = node;
4163 * This routine is called against possible nodes.
4164 * But it's BUG to call kmalloc() against offline node.
4166 * TODO: this routine can waste much memory for nodes which will
4167 * never be onlined. It's better to use memory hotplug callback
4168 * function.
4170 if (!node_state(node, N_NORMAL_MEMORY))
4171 tmp = -1;
4172 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4173 if (!pn)
4174 return 1;
4176 mem->info.nodeinfo[node] = pn;
4177 memset(pn, 0, sizeof(*pn));
4179 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4180 mz = &pn->zoneinfo[zone];
4181 for_each_lru(l)
4182 INIT_LIST_HEAD(&mz->lists[l]);
4183 mz->usage_in_excess = 0;
4184 mz->on_tree = false;
4185 mz->mem = mem;
4187 return 0;
4190 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4192 kfree(mem->info.nodeinfo[node]);
4195 static struct mem_cgroup *mem_cgroup_alloc(void)
4197 struct mem_cgroup *mem;
4198 int size = sizeof(struct mem_cgroup);
4200 /* Can be very big if MAX_NUMNODES is very big */
4201 if (size < PAGE_SIZE)
4202 mem = kmalloc(size, GFP_KERNEL);
4203 else
4204 mem = vmalloc(size);
4206 if (!mem)
4207 return NULL;
4209 memset(mem, 0, size);
4210 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4211 if (!mem->stat) {
4212 if (size < PAGE_SIZE)
4213 kfree(mem);
4214 else
4215 vfree(mem);
4216 mem = NULL;
4218 spin_lock_init(&mem->pcp_counter_lock);
4219 return mem;
4223 * At destroying mem_cgroup, references from swap_cgroup can remain.
4224 * (scanning all at force_empty is too costly...)
4226 * Instead of clearing all references at force_empty, we remember
4227 * the number of reference from swap_cgroup and free mem_cgroup when
4228 * it goes down to 0.
4230 * Removal of cgroup itself succeeds regardless of refs from swap.
4233 static void __mem_cgroup_free(struct mem_cgroup *mem)
4235 int node;
4237 mem_cgroup_remove_from_trees(mem);
4238 free_css_id(&mem_cgroup_subsys, &mem->css);
4240 for_each_node_state(node, N_POSSIBLE)
4241 free_mem_cgroup_per_zone_info(mem, node);
4243 free_percpu(mem->stat);
4244 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4245 kfree(mem);
4246 else
4247 vfree(mem);
4250 static void mem_cgroup_get(struct mem_cgroup *mem)
4252 atomic_inc(&mem->refcnt);
4255 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4257 if (atomic_sub_and_test(count, &mem->refcnt)) {
4258 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4259 __mem_cgroup_free(mem);
4260 if (parent)
4261 mem_cgroup_put(parent);
4265 static void mem_cgroup_put(struct mem_cgroup *mem)
4267 __mem_cgroup_put(mem, 1);
4271 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4273 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4275 if (!mem->res.parent)
4276 return NULL;
4277 return mem_cgroup_from_res_counter(mem->res.parent, res);
4280 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4281 static void __init enable_swap_cgroup(void)
4283 if (!mem_cgroup_disabled() && really_do_swap_account)
4284 do_swap_account = 1;
4286 #else
4287 static void __init enable_swap_cgroup(void)
4290 #endif
4292 static int mem_cgroup_soft_limit_tree_init(void)
4294 struct mem_cgroup_tree_per_node *rtpn;
4295 struct mem_cgroup_tree_per_zone *rtpz;
4296 int tmp, node, zone;
4298 for_each_node_state(node, N_POSSIBLE) {
4299 tmp = node;
4300 if (!node_state(node, N_NORMAL_MEMORY))
4301 tmp = -1;
4302 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4303 if (!rtpn)
4304 return 1;
4306 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4308 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4309 rtpz = &rtpn->rb_tree_per_zone[zone];
4310 rtpz->rb_root = RB_ROOT;
4311 spin_lock_init(&rtpz->lock);
4314 return 0;
4317 static struct cgroup_subsys_state * __ref
4318 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4320 struct mem_cgroup *mem, *parent;
4321 long error = -ENOMEM;
4322 int node;
4324 mem = mem_cgroup_alloc();
4325 if (!mem)
4326 return ERR_PTR(error);
4328 for_each_node_state(node, N_POSSIBLE)
4329 if (alloc_mem_cgroup_per_zone_info(mem, node))
4330 goto free_out;
4332 /* root ? */
4333 if (cont->parent == NULL) {
4334 int cpu;
4335 enable_swap_cgroup();
4336 parent = NULL;
4337 root_mem_cgroup = mem;
4338 if (mem_cgroup_soft_limit_tree_init())
4339 goto free_out;
4340 for_each_possible_cpu(cpu) {
4341 struct memcg_stock_pcp *stock =
4342 &per_cpu(memcg_stock, cpu);
4343 INIT_WORK(&stock->work, drain_local_stock);
4345 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4346 } else {
4347 parent = mem_cgroup_from_cont(cont->parent);
4348 mem->use_hierarchy = parent->use_hierarchy;
4349 mem->oom_kill_disable = parent->oom_kill_disable;
4352 if (parent && parent->use_hierarchy) {
4353 res_counter_init(&mem->res, &parent->res);
4354 res_counter_init(&mem->memsw, &parent->memsw);
4356 * We increment refcnt of the parent to ensure that we can
4357 * safely access it on res_counter_charge/uncharge.
4358 * This refcnt will be decremented when freeing this
4359 * mem_cgroup(see mem_cgroup_put).
4361 mem_cgroup_get(parent);
4362 } else {
4363 res_counter_init(&mem->res, NULL);
4364 res_counter_init(&mem->memsw, NULL);
4366 mem->last_scanned_child = 0;
4367 spin_lock_init(&mem->reclaim_param_lock);
4368 INIT_LIST_HEAD(&mem->oom_notify);
4370 if (parent)
4371 mem->swappiness = get_swappiness(parent);
4372 atomic_set(&mem->refcnt, 1);
4373 mem->move_charge_at_immigrate = 0;
4374 mutex_init(&mem->thresholds_lock);
4375 return &mem->css;
4376 free_out:
4377 __mem_cgroup_free(mem);
4378 root_mem_cgroup = NULL;
4379 return ERR_PTR(error);
4382 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4383 struct cgroup *cont)
4385 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4387 return mem_cgroup_force_empty(mem, false);
4390 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4391 struct cgroup *cont)
4393 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4395 mem_cgroup_put(mem);
4398 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4399 struct cgroup *cont)
4401 int ret;
4403 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4404 ARRAY_SIZE(mem_cgroup_files));
4406 if (!ret)
4407 ret = register_memsw_files(cont, ss);
4408 return ret;
4411 #ifdef CONFIG_MMU
4412 /* Handlers for move charge at task migration. */
4413 #define PRECHARGE_COUNT_AT_ONCE 256
4414 static int mem_cgroup_do_precharge(unsigned long count)
4416 int ret = 0;
4417 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4418 struct mem_cgroup *mem = mc.to;
4420 if (mem_cgroup_is_root(mem)) {
4421 mc.precharge += count;
4422 /* we don't need css_get for root */
4423 return ret;
4425 /* try to charge at once */
4426 if (count > 1) {
4427 struct res_counter *dummy;
4429 * "mem" cannot be under rmdir() because we've already checked
4430 * by cgroup_lock_live_cgroup() that it is not removed and we
4431 * are still under the same cgroup_mutex. So we can postpone
4432 * css_get().
4434 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4435 goto one_by_one;
4436 if (do_swap_account && res_counter_charge(&mem->memsw,
4437 PAGE_SIZE * count, &dummy)) {
4438 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4439 goto one_by_one;
4441 mc.precharge += count;
4442 return ret;
4444 one_by_one:
4445 /* fall back to one by one charge */
4446 while (count--) {
4447 if (signal_pending(current)) {
4448 ret = -EINTR;
4449 break;
4451 if (!batch_count--) {
4452 batch_count = PRECHARGE_COUNT_AT_ONCE;
4453 cond_resched();
4455 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4456 if (ret || !mem)
4457 /* mem_cgroup_clear_mc() will do uncharge later */
4458 return -ENOMEM;
4459 mc.precharge++;
4461 return ret;
4465 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4466 * @vma: the vma the pte to be checked belongs
4467 * @addr: the address corresponding to the pte to be checked
4468 * @ptent: the pte to be checked
4469 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4471 * Returns
4472 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4473 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4474 * move charge. if @target is not NULL, the page is stored in target->page
4475 * with extra refcnt got(Callers should handle it).
4476 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4477 * target for charge migration. if @target is not NULL, the entry is stored
4478 * in target->ent.
4480 * Called with pte lock held.
4482 union mc_target {
4483 struct page *page;
4484 swp_entry_t ent;
4487 enum mc_target_type {
4488 MC_TARGET_NONE, /* not used */
4489 MC_TARGET_PAGE,
4490 MC_TARGET_SWAP,
4493 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4494 unsigned long addr, pte_t ptent)
4496 struct page *page = vm_normal_page(vma, addr, ptent);
4498 if (!page || !page_mapped(page))
4499 return NULL;
4500 if (PageAnon(page)) {
4501 /* we don't move shared anon */
4502 if (!move_anon() || page_mapcount(page) > 2)
4503 return NULL;
4504 } else if (!move_file())
4505 /* we ignore mapcount for file pages */
4506 return NULL;
4507 if (!get_page_unless_zero(page))
4508 return NULL;
4510 return page;
4513 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4514 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4516 int usage_count;
4517 struct page *page = NULL;
4518 swp_entry_t ent = pte_to_swp_entry(ptent);
4520 if (!move_anon() || non_swap_entry(ent))
4521 return NULL;
4522 usage_count = mem_cgroup_count_swap_user(ent, &page);
4523 if (usage_count > 1) { /* we don't move shared anon */
4524 if (page)
4525 put_page(page);
4526 return NULL;
4528 if (do_swap_account)
4529 entry->val = ent.val;
4531 return page;
4534 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4535 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4537 struct page *page = NULL;
4538 struct inode *inode;
4539 struct address_space *mapping;
4540 pgoff_t pgoff;
4542 if (!vma->vm_file) /* anonymous vma */
4543 return NULL;
4544 if (!move_file())
4545 return NULL;
4547 inode = vma->vm_file->f_path.dentry->d_inode;
4548 mapping = vma->vm_file->f_mapping;
4549 if (pte_none(ptent))
4550 pgoff = linear_page_index(vma, addr);
4551 else /* pte_file(ptent) is true */
4552 pgoff = pte_to_pgoff(ptent);
4554 /* page is moved even if it's not RSS of this task(page-faulted). */
4555 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4556 page = find_get_page(mapping, pgoff);
4557 } else { /* shmem/tmpfs file. we should take account of swap too. */
4558 swp_entry_t ent;
4559 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4560 if (do_swap_account)
4561 entry->val = ent.val;
4564 return page;
4567 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4568 unsigned long addr, pte_t ptent, union mc_target *target)
4570 struct page *page = NULL;
4571 struct page_cgroup *pc;
4572 int ret = 0;
4573 swp_entry_t ent = { .val = 0 };
4575 if (pte_present(ptent))
4576 page = mc_handle_present_pte(vma, addr, ptent);
4577 else if (is_swap_pte(ptent))
4578 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4579 else if (pte_none(ptent) || pte_file(ptent))
4580 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4582 if (!page && !ent.val)
4583 return 0;
4584 if (page) {
4585 pc = lookup_page_cgroup(page);
4587 * Do only loose check w/o page_cgroup lock.
4588 * mem_cgroup_move_account() checks the pc is valid or not under
4589 * the lock.
4591 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4592 ret = MC_TARGET_PAGE;
4593 if (target)
4594 target->page = page;
4596 if (!ret || !target)
4597 put_page(page);
4599 /* There is a swap entry and a page doesn't exist or isn't charged */
4600 if (ent.val && !ret &&
4601 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4602 ret = MC_TARGET_SWAP;
4603 if (target)
4604 target->ent = ent;
4606 return ret;
4609 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4610 unsigned long addr, unsigned long end,
4611 struct mm_walk *walk)
4613 struct vm_area_struct *vma = walk->private;
4614 pte_t *pte;
4615 spinlock_t *ptl;
4617 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4618 for (; addr != end; pte++, addr += PAGE_SIZE)
4619 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4620 mc.precharge++; /* increment precharge temporarily */
4621 pte_unmap_unlock(pte - 1, ptl);
4622 cond_resched();
4624 return 0;
4627 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4629 unsigned long precharge;
4630 struct vm_area_struct *vma;
4632 down_read(&mm->mmap_sem);
4633 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4634 struct mm_walk mem_cgroup_count_precharge_walk = {
4635 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4636 .mm = mm,
4637 .private = vma,
4639 if (is_vm_hugetlb_page(vma))
4640 continue;
4641 walk_page_range(vma->vm_start, vma->vm_end,
4642 &mem_cgroup_count_precharge_walk);
4644 up_read(&mm->mmap_sem);
4646 precharge = mc.precharge;
4647 mc.precharge = 0;
4649 return precharge;
4652 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4654 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4657 static void mem_cgroup_clear_mc(void)
4659 struct mem_cgroup *from = mc.from;
4660 struct mem_cgroup *to = mc.to;
4662 /* we must uncharge all the leftover precharges from mc.to */
4663 if (mc.precharge) {
4664 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4665 mc.precharge = 0;
4668 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4669 * we must uncharge here.
4671 if (mc.moved_charge) {
4672 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4673 mc.moved_charge = 0;
4675 /* we must fixup refcnts and charges */
4676 if (mc.moved_swap) {
4677 /* uncharge swap account from the old cgroup */
4678 if (!mem_cgroup_is_root(mc.from))
4679 res_counter_uncharge(&mc.from->memsw,
4680 PAGE_SIZE * mc.moved_swap);
4681 __mem_cgroup_put(mc.from, mc.moved_swap);
4683 if (!mem_cgroup_is_root(mc.to)) {
4685 * we charged both to->res and to->memsw, so we should
4686 * uncharge to->res.
4688 res_counter_uncharge(&mc.to->res,
4689 PAGE_SIZE * mc.moved_swap);
4691 /* we've already done mem_cgroup_get(mc.to) */
4693 mc.moved_swap = 0;
4695 spin_lock(&mc.lock);
4696 mc.from = NULL;
4697 mc.to = NULL;
4698 mc.moving_task = NULL;
4699 spin_unlock(&mc.lock);
4700 mem_cgroup_end_move(from);
4701 memcg_oom_recover(from);
4702 memcg_oom_recover(to);
4703 wake_up_all(&mc.waitq);
4706 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4707 struct cgroup *cgroup,
4708 struct task_struct *p,
4709 bool threadgroup)
4711 int ret = 0;
4712 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4714 if (mem->move_charge_at_immigrate) {
4715 struct mm_struct *mm;
4716 struct mem_cgroup *from = mem_cgroup_from_task(p);
4718 VM_BUG_ON(from == mem);
4720 mm = get_task_mm(p);
4721 if (!mm)
4722 return 0;
4723 /* We move charges only when we move a owner of the mm */
4724 if (mm->owner == p) {
4725 VM_BUG_ON(mc.from);
4726 VM_BUG_ON(mc.to);
4727 VM_BUG_ON(mc.precharge);
4728 VM_BUG_ON(mc.moved_charge);
4729 VM_BUG_ON(mc.moved_swap);
4730 VM_BUG_ON(mc.moving_task);
4731 mem_cgroup_start_move(from);
4732 spin_lock(&mc.lock);
4733 mc.from = from;
4734 mc.to = mem;
4735 mc.precharge = 0;
4736 mc.moved_charge = 0;
4737 mc.moved_swap = 0;
4738 mc.moving_task = current;
4739 spin_unlock(&mc.lock);
4741 ret = mem_cgroup_precharge_mc(mm);
4742 if (ret)
4743 mem_cgroup_clear_mc();
4745 mmput(mm);
4747 return ret;
4750 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4751 struct cgroup *cgroup,
4752 struct task_struct *p,
4753 bool threadgroup)
4755 mem_cgroup_clear_mc();
4758 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4759 unsigned long addr, unsigned long end,
4760 struct mm_walk *walk)
4762 int ret = 0;
4763 struct vm_area_struct *vma = walk->private;
4764 pte_t *pte;
4765 spinlock_t *ptl;
4767 retry:
4768 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4769 for (; addr != end; addr += PAGE_SIZE) {
4770 pte_t ptent = *(pte++);
4771 union mc_target target;
4772 int type;
4773 struct page *page;
4774 struct page_cgroup *pc;
4775 swp_entry_t ent;
4777 if (!mc.precharge)
4778 break;
4780 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4781 switch (type) {
4782 case MC_TARGET_PAGE:
4783 page = target.page;
4784 if (isolate_lru_page(page))
4785 goto put;
4786 pc = lookup_page_cgroup(page);
4787 if (!mem_cgroup_move_account(pc,
4788 mc.from, mc.to, false)) {
4789 mc.precharge--;
4790 /* we uncharge from mc.from later. */
4791 mc.moved_charge++;
4793 putback_lru_page(page);
4794 put: /* is_target_pte_for_mc() gets the page */
4795 put_page(page);
4796 break;
4797 case MC_TARGET_SWAP:
4798 ent = target.ent;
4799 if (!mem_cgroup_move_swap_account(ent,
4800 mc.from, mc.to, false)) {
4801 mc.precharge--;
4802 /* we fixup refcnts and charges later. */
4803 mc.moved_swap++;
4805 break;
4806 default:
4807 break;
4810 pte_unmap_unlock(pte - 1, ptl);
4811 cond_resched();
4813 if (addr != end) {
4815 * We have consumed all precharges we got in can_attach().
4816 * We try charge one by one, but don't do any additional
4817 * charges to mc.to if we have failed in charge once in attach()
4818 * phase.
4820 ret = mem_cgroup_do_precharge(1);
4821 if (!ret)
4822 goto retry;
4825 return ret;
4828 static void mem_cgroup_move_charge(struct mm_struct *mm)
4830 struct vm_area_struct *vma;
4832 lru_add_drain_all();
4833 down_read(&mm->mmap_sem);
4834 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4835 int ret;
4836 struct mm_walk mem_cgroup_move_charge_walk = {
4837 .pmd_entry = mem_cgroup_move_charge_pte_range,
4838 .mm = mm,
4839 .private = vma,
4841 if (is_vm_hugetlb_page(vma))
4842 continue;
4843 ret = walk_page_range(vma->vm_start, vma->vm_end,
4844 &mem_cgroup_move_charge_walk);
4845 if (ret)
4847 * means we have consumed all precharges and failed in
4848 * doing additional charge. Just abandon here.
4850 break;
4852 up_read(&mm->mmap_sem);
4855 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4856 struct cgroup *cont,
4857 struct cgroup *old_cont,
4858 struct task_struct *p,
4859 bool threadgroup)
4861 struct mm_struct *mm;
4863 if (!mc.to)
4864 /* no need to move charge */
4865 return;
4867 mm = get_task_mm(p);
4868 if (mm) {
4869 mem_cgroup_move_charge(mm);
4870 mmput(mm);
4872 mem_cgroup_clear_mc();
4874 #else /* !CONFIG_MMU */
4875 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4876 struct cgroup *cgroup,
4877 struct task_struct *p,
4878 bool threadgroup)
4880 return 0;
4882 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4883 struct cgroup *cgroup,
4884 struct task_struct *p,
4885 bool threadgroup)
4888 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4889 struct cgroup *cont,
4890 struct cgroup *old_cont,
4891 struct task_struct *p,
4892 bool threadgroup)
4895 #endif
4897 struct cgroup_subsys mem_cgroup_subsys = {
4898 .name = "memory",
4899 .subsys_id = mem_cgroup_subsys_id,
4900 .create = mem_cgroup_create,
4901 .pre_destroy = mem_cgroup_pre_destroy,
4902 .destroy = mem_cgroup_destroy,
4903 .populate = mem_cgroup_populate,
4904 .can_attach = mem_cgroup_can_attach,
4905 .cancel_attach = mem_cgroup_cancel_attach,
4906 .attach = mem_cgroup_move_task,
4907 .early_init = 0,
4908 .use_id = 1,
4911 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4913 static int __init disable_swap_account(char *s)
4915 really_do_swap_account = 0;
4916 return 1;
4918 __setup("noswapaccount", disable_swap_account);
4919 #endif