1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly
;
64 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
66 #define do_swap_account (0)
70 * Per memcg event counter is incremented at every pagein/pageout. This counter
71 * is used for trigger some periodic events. This is straightforward and better
72 * than using jiffies etc. to handle periodic memcg event.
74 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
76 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
77 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
80 * Statistics for memory cgroup.
82 enum mem_cgroup_stat_index
{
84 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
87 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
88 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
89 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
90 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
91 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
92 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
93 /* incremented at every pagein/pageout */
94 MEM_CGROUP_EVENTS
= MEM_CGROUP_STAT_DATA
,
95 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
97 MEM_CGROUP_STAT_NSTATS
,
100 struct mem_cgroup_stat_cpu
{
101 s64 count
[MEM_CGROUP_STAT_NSTATS
];
105 * per-zone information in memory controller.
107 struct mem_cgroup_per_zone
{
109 * spin_lock to protect the per cgroup LRU
111 struct list_head lists
[NR_LRU_LISTS
];
112 unsigned long count
[NR_LRU_LISTS
];
114 struct zone_reclaim_stat reclaim_stat
;
115 struct rb_node tree_node
; /* RB tree node */
116 unsigned long long usage_in_excess
;/* Set to the value by which */
117 /* the soft limit is exceeded*/
119 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
120 /* use container_of */
122 /* Macro for accessing counter */
123 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
125 struct mem_cgroup_per_node
{
126 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
129 struct mem_cgroup_lru_info
{
130 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
134 * Cgroups above their limits are maintained in a RB-Tree, independent of
135 * their hierarchy representation
138 struct mem_cgroup_tree_per_zone
{
139 struct rb_root rb_root
;
143 struct mem_cgroup_tree_per_node
{
144 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
147 struct mem_cgroup_tree
{
148 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
151 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
153 struct mem_cgroup_threshold
{
154 struct eventfd_ctx
*eventfd
;
159 struct mem_cgroup_threshold_ary
{
160 /* An array index points to threshold just below usage. */
161 int current_threshold
;
162 /* Size of entries[] */
164 /* Array of thresholds */
165 struct mem_cgroup_threshold entries
[0];
168 struct mem_cgroup_thresholds
{
169 /* Primary thresholds array */
170 struct mem_cgroup_threshold_ary
*primary
;
172 * Spare threshold array.
173 * This is needed to make mem_cgroup_unregister_event() "never fail".
174 * It must be able to store at least primary->size - 1 entries.
176 struct mem_cgroup_threshold_ary
*spare
;
180 struct mem_cgroup_eventfd_list
{
181 struct list_head list
;
182 struct eventfd_ctx
*eventfd
;
185 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
186 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
189 * The memory controller data structure. The memory controller controls both
190 * page cache and RSS per cgroup. We would eventually like to provide
191 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
192 * to help the administrator determine what knobs to tune.
194 * TODO: Add a water mark for the memory controller. Reclaim will begin when
195 * we hit the water mark. May be even add a low water mark, such that
196 * no reclaim occurs from a cgroup at it's low water mark, this is
197 * a feature that will be implemented much later in the future.
200 struct cgroup_subsys_state css
;
202 * the counter to account for memory usage
204 struct res_counter res
;
206 * the counter to account for mem+swap usage.
208 struct res_counter memsw
;
210 * Per cgroup active and inactive list, similar to the
211 * per zone LRU lists.
213 struct mem_cgroup_lru_info info
;
216 protect against reclaim related member.
218 spinlock_t reclaim_param_lock
;
221 * While reclaiming in a hierarchy, we cache the last child we
224 int last_scanned_child
;
226 * Should the accounting and control be hierarchical, per subtree?
232 unsigned int swappiness
;
233 /* OOM-Killer disable */
234 int oom_kill_disable
;
236 /* set when res.limit == memsw.limit */
237 bool memsw_is_minimum
;
239 /* protect arrays of thresholds */
240 struct mutex thresholds_lock
;
242 /* thresholds for memory usage. RCU-protected */
243 struct mem_cgroup_thresholds thresholds
;
245 /* thresholds for mem+swap usage. RCU-protected */
246 struct mem_cgroup_thresholds memsw_thresholds
;
248 /* For oom notifier event fd */
249 struct list_head oom_notify
;
252 * Should we move charges of a task when a task is moved into this
253 * mem_cgroup ? And what type of charges should we move ?
255 unsigned long move_charge_at_immigrate
;
259 struct mem_cgroup_stat_cpu
*stat
;
261 * used when a cpu is offlined or other synchronizations
262 * See mem_cgroup_read_stat().
264 struct mem_cgroup_stat_cpu nocpu_base
;
265 spinlock_t pcp_counter_lock
;
268 /* Stuffs for move charges at task migration. */
270 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
271 * left-shifted bitmap of these types.
274 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
275 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
279 /* "mc" and its members are protected by cgroup_mutex */
280 static struct move_charge_struct
{
281 spinlock_t lock
; /* for from, to, moving_task */
282 struct mem_cgroup
*from
;
283 struct mem_cgroup
*to
;
284 unsigned long precharge
;
285 unsigned long moved_charge
;
286 unsigned long moved_swap
;
287 struct task_struct
*moving_task
; /* a task moving charges */
288 wait_queue_head_t waitq
; /* a waitq for other context */
290 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
291 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
294 static bool move_anon(void)
296 return test_bit(MOVE_CHARGE_TYPE_ANON
,
297 &mc
.to
->move_charge_at_immigrate
);
300 static bool move_file(void)
302 return test_bit(MOVE_CHARGE_TYPE_FILE
,
303 &mc
.to
->move_charge_at_immigrate
);
307 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
308 * limit reclaim to prevent infinite loops, if they ever occur.
310 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
311 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
314 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
315 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
316 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
317 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
318 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
319 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
323 /* only for here (for easy reading.) */
324 #define PCGF_CACHE (1UL << PCG_CACHE)
325 #define PCGF_USED (1UL << PCG_USED)
326 #define PCGF_LOCK (1UL << PCG_LOCK)
327 /* Not used, but added here for completeness */
328 #define PCGF_ACCT (1UL << PCG_ACCT)
330 /* for encoding cft->private value on file */
333 #define _OOM_TYPE (2)
334 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
336 #define MEMFILE_ATTR(val) ((val) & 0xffff)
337 /* Used for OOM nofiier */
338 #define OOM_CONTROL (0)
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
343 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
344 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
346 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
348 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
350 static void mem_cgroup_get(struct mem_cgroup
*mem
);
351 static void mem_cgroup_put(struct mem_cgroup
*mem
);
352 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
353 static void drain_all_stock_async(void);
355 static struct mem_cgroup_per_zone
*
356 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
358 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
361 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
366 static struct mem_cgroup_per_zone
*
367 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
369 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
370 int nid
= page_cgroup_nid(pc
);
371 int zid
= page_cgroup_zid(pc
);
376 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
379 static struct mem_cgroup_tree_per_zone
*
380 soft_limit_tree_node_zone(int nid
, int zid
)
382 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
385 static struct mem_cgroup_tree_per_zone
*
386 soft_limit_tree_from_page(struct page
*page
)
388 int nid
= page_to_nid(page
);
389 int zid
= page_zonenum(page
);
391 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
395 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
396 struct mem_cgroup_per_zone
*mz
,
397 struct mem_cgroup_tree_per_zone
*mctz
,
398 unsigned long long new_usage_in_excess
)
400 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
401 struct rb_node
*parent
= NULL
;
402 struct mem_cgroup_per_zone
*mz_node
;
407 mz
->usage_in_excess
= new_usage_in_excess
;
408 if (!mz
->usage_in_excess
)
412 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
414 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
417 * We can't avoid mem cgroups that are over their soft
418 * limit by the same amount
420 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
423 rb_link_node(&mz
->tree_node
, parent
, p
);
424 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
429 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
430 struct mem_cgroup_per_zone
*mz
,
431 struct mem_cgroup_tree_per_zone
*mctz
)
435 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
440 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
441 struct mem_cgroup_per_zone
*mz
,
442 struct mem_cgroup_tree_per_zone
*mctz
)
444 spin_lock(&mctz
->lock
);
445 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
446 spin_unlock(&mctz
->lock
);
450 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
452 unsigned long long excess
;
453 struct mem_cgroup_per_zone
*mz
;
454 struct mem_cgroup_tree_per_zone
*mctz
;
455 int nid
= page_to_nid(page
);
456 int zid
= page_zonenum(page
);
457 mctz
= soft_limit_tree_from_page(page
);
460 * Necessary to update all ancestors when hierarchy is used.
461 * because their event counter is not touched.
463 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
464 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
465 excess
= res_counter_soft_limit_excess(&mem
->res
);
467 * We have to update the tree if mz is on RB-tree or
468 * mem is over its softlimit.
470 if (excess
|| mz
->on_tree
) {
471 spin_lock(&mctz
->lock
);
472 /* if on-tree, remove it */
474 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
476 * Insert again. mz->usage_in_excess will be updated.
477 * If excess is 0, no tree ops.
479 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
480 spin_unlock(&mctz
->lock
);
485 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
488 struct mem_cgroup_per_zone
*mz
;
489 struct mem_cgroup_tree_per_zone
*mctz
;
491 for_each_node_state(node
, N_POSSIBLE
) {
492 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
493 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
494 mctz
= soft_limit_tree_node_zone(node
, zone
);
495 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
500 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup
*mem
)
502 return res_counter_soft_limit_excess(&mem
->res
) >> PAGE_SHIFT
;
505 static struct mem_cgroup_per_zone
*
506 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
508 struct rb_node
*rightmost
= NULL
;
509 struct mem_cgroup_per_zone
*mz
;
513 rightmost
= rb_last(&mctz
->rb_root
);
515 goto done
; /* Nothing to reclaim from */
517 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
519 * Remove the node now but someone else can add it back,
520 * we will to add it back at the end of reclaim to its correct
521 * position in the tree.
523 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
524 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
525 !css_tryget(&mz
->mem
->css
))
531 static struct mem_cgroup_per_zone
*
532 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
534 struct mem_cgroup_per_zone
*mz
;
536 spin_lock(&mctz
->lock
);
537 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
538 spin_unlock(&mctz
->lock
);
543 * Implementation Note: reading percpu statistics for memcg.
545 * Both of vmstat[] and percpu_counter has threshold and do periodic
546 * synchronization to implement "quick" read. There are trade-off between
547 * reading cost and precision of value. Then, we may have a chance to implement
548 * a periodic synchronizion of counter in memcg's counter.
550 * But this _read() function is used for user interface now. The user accounts
551 * memory usage by memory cgroup and he _always_ requires exact value because
552 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
553 * have to visit all online cpus and make sum. So, for now, unnecessary
554 * synchronization is not implemented. (just implemented for cpu hotplug)
556 * If there are kernel internal actions which can make use of some not-exact
557 * value, and reading all cpu value can be performance bottleneck in some
558 * common workload, threashold and synchonization as vmstat[] should be
561 static s64
mem_cgroup_read_stat(struct mem_cgroup
*mem
,
562 enum mem_cgroup_stat_index idx
)
568 for_each_online_cpu(cpu
)
569 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
570 #ifdef CONFIG_HOTPLUG_CPU
571 spin_lock(&mem
->pcp_counter_lock
);
572 val
+= mem
->nocpu_base
.count
[idx
];
573 spin_unlock(&mem
->pcp_counter_lock
);
579 static s64
mem_cgroup_local_usage(struct mem_cgroup
*mem
)
583 ret
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
584 ret
+= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
588 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
591 int val
= (charge
) ? 1 : -1;
592 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
595 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
596 struct page_cgroup
*pc
,
599 int val
= (charge
) ? 1 : -1;
603 if (PageCgroupCache(pc
))
604 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], val
);
606 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], val
);
609 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGIN_COUNT
]);
611 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGOUT_COUNT
]);
612 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
617 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
621 struct mem_cgroup_per_zone
*mz
;
624 for_each_online_node(nid
)
625 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
626 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
627 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
632 static bool __memcg_event_check(struct mem_cgroup
*mem
, int event_mask_shift
)
636 val
= this_cpu_read(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
638 return !(val
& ((1 << event_mask_shift
) - 1));
642 * Check events in order.
645 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
647 /* threshold event is triggered in finer grain than soft limit */
648 if (unlikely(__memcg_event_check(mem
, THRESHOLDS_EVENTS_THRESH
))) {
649 mem_cgroup_threshold(mem
);
650 if (unlikely(__memcg_event_check(mem
, SOFTLIMIT_EVENTS_THRESH
)))
651 mem_cgroup_update_tree(mem
, page
);
655 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
657 return container_of(cgroup_subsys_state(cont
,
658 mem_cgroup_subsys_id
), struct mem_cgroup
,
662 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
665 * mm_update_next_owner() may clear mm->owner to NULL
666 * if it races with swapoff, page migration, etc.
667 * So this can be called with p == NULL.
672 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
673 struct mem_cgroup
, css
);
676 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
678 struct mem_cgroup
*mem
= NULL
;
683 * Because we have no locks, mm->owner's may be being moved to other
684 * cgroup. We use css_tryget() here even if this looks
685 * pessimistic (rather than adding locks here).
689 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
692 } while (!css_tryget(&mem
->css
));
697 /* The caller has to guarantee "mem" exists before calling this */
698 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*mem
)
700 struct cgroup_subsys_state
*css
;
703 if (!mem
) /* ROOT cgroup has the smallest ID */
704 return root_mem_cgroup
; /*css_put/get against root is ignored*/
705 if (!mem
->use_hierarchy
) {
706 if (css_tryget(&mem
->css
))
712 * searching a memory cgroup which has the smallest ID under given
713 * ROOT cgroup. (ID >= 1)
715 css
= css_get_next(&mem_cgroup_subsys
, 1, &mem
->css
, &found
);
716 if (css
&& css_tryget(css
))
717 mem
= container_of(css
, struct mem_cgroup
, css
);
724 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
725 struct mem_cgroup
*root
,
728 int nextid
= css_id(&iter
->css
) + 1;
731 struct cgroup_subsys_state
*css
;
733 hierarchy_used
= iter
->use_hierarchy
;
736 /* If no ROOT, walk all, ignore hierarchy */
737 if (!cond
|| (root
&& !hierarchy_used
))
741 root
= root_mem_cgroup
;
747 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
749 if (css
&& css_tryget(css
))
750 iter
= container_of(css
, struct mem_cgroup
, css
);
752 /* If css is NULL, no more cgroups will be found */
754 } while (css
&& !iter
);
759 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
760 * be careful that "break" loop is not allowed. We have reference count.
761 * Instead of that modify "cond" to be false and "continue" to exit the loop.
763 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
764 for (iter = mem_cgroup_start_loop(root);\
766 iter = mem_cgroup_get_next(iter, root, cond))
768 #define for_each_mem_cgroup_tree(iter, root) \
769 for_each_mem_cgroup_tree_cond(iter, root, true)
771 #define for_each_mem_cgroup_all(iter) \
772 for_each_mem_cgroup_tree_cond(iter, NULL, true)
775 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
777 return (mem
== root_mem_cgroup
);
781 * Following LRU functions are allowed to be used without PCG_LOCK.
782 * Operations are called by routine of global LRU independently from memcg.
783 * What we have to take care of here is validness of pc->mem_cgroup.
785 * Changes to pc->mem_cgroup happens when
788 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
789 * It is added to LRU before charge.
790 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
791 * When moving account, the page is not on LRU. It's isolated.
794 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
796 struct page_cgroup
*pc
;
797 struct mem_cgroup_per_zone
*mz
;
799 if (mem_cgroup_disabled())
801 pc
= lookup_page_cgroup(page
);
802 /* can happen while we handle swapcache. */
803 if (!TestClearPageCgroupAcctLRU(pc
))
805 VM_BUG_ON(!pc
->mem_cgroup
);
807 * We don't check PCG_USED bit. It's cleared when the "page" is finally
808 * removed from global LRU.
810 mz
= page_cgroup_zoneinfo(pc
);
811 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
812 if (mem_cgroup_is_root(pc
->mem_cgroup
))
814 VM_BUG_ON(list_empty(&pc
->lru
));
815 list_del_init(&pc
->lru
);
819 void mem_cgroup_del_lru(struct page
*page
)
821 mem_cgroup_del_lru_list(page
, page_lru(page
));
824 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
826 struct mem_cgroup_per_zone
*mz
;
827 struct page_cgroup
*pc
;
829 if (mem_cgroup_disabled())
832 pc
= lookup_page_cgroup(page
);
834 * Used bit is set without atomic ops but after smp_wmb().
835 * For making pc->mem_cgroup visible, insert smp_rmb() here.
838 /* unused or root page is not rotated. */
839 if (!PageCgroupUsed(pc
) || mem_cgroup_is_root(pc
->mem_cgroup
))
841 mz
= page_cgroup_zoneinfo(pc
);
842 list_move(&pc
->lru
, &mz
->lists
[lru
]);
845 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
847 struct page_cgroup
*pc
;
848 struct mem_cgroup_per_zone
*mz
;
850 if (mem_cgroup_disabled())
852 pc
= lookup_page_cgroup(page
);
853 VM_BUG_ON(PageCgroupAcctLRU(pc
));
855 * Used bit is set without atomic ops but after smp_wmb().
856 * For making pc->mem_cgroup visible, insert smp_rmb() here.
859 if (!PageCgroupUsed(pc
))
862 mz
= page_cgroup_zoneinfo(pc
);
863 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
864 SetPageCgroupAcctLRU(pc
);
865 if (mem_cgroup_is_root(pc
->mem_cgroup
))
867 list_add(&pc
->lru
, &mz
->lists
[lru
]);
871 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
872 * lru because the page may.be reused after it's fully uncharged (because of
873 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
874 * it again. This function is only used to charge SwapCache. It's done under
875 * lock_page and expected that zone->lru_lock is never held.
877 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
880 struct zone
*zone
= page_zone(page
);
881 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
883 spin_lock_irqsave(&zone
->lru_lock
, flags
);
885 * Forget old LRU when this page_cgroup is *not* used. This Used bit
886 * is guarded by lock_page() because the page is SwapCache.
888 if (!PageCgroupUsed(pc
))
889 mem_cgroup_del_lru_list(page
, page_lru(page
));
890 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
893 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
896 struct zone
*zone
= page_zone(page
);
897 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
899 spin_lock_irqsave(&zone
->lru_lock
, flags
);
900 /* link when the page is linked to LRU but page_cgroup isn't */
901 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
902 mem_cgroup_add_lru_list(page
, page_lru(page
));
903 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
907 void mem_cgroup_move_lists(struct page
*page
,
908 enum lru_list from
, enum lru_list to
)
910 if (mem_cgroup_disabled())
912 mem_cgroup_del_lru_list(page
, from
);
913 mem_cgroup_add_lru_list(page
, to
);
916 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
919 struct mem_cgroup
*curr
= NULL
;
920 struct task_struct
*p
;
922 p
= find_lock_task_mm(task
);
925 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
930 * We should check use_hierarchy of "mem" not "curr". Because checking
931 * use_hierarchy of "curr" here make this function true if hierarchy is
932 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
933 * hierarchy(even if use_hierarchy is disabled in "mem").
935 if (mem
->use_hierarchy
)
936 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
943 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
945 unsigned long active
;
946 unsigned long inactive
;
948 unsigned long inactive_ratio
;
950 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
951 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
953 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
955 inactive_ratio
= int_sqrt(10 * gb
);
960 present_pages
[0] = inactive
;
961 present_pages
[1] = active
;
964 return inactive_ratio
;
967 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
969 unsigned long active
;
970 unsigned long inactive
;
971 unsigned long present_pages
[2];
972 unsigned long inactive_ratio
;
974 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
976 inactive
= present_pages
[0];
977 active
= present_pages
[1];
979 if (inactive
* inactive_ratio
< active
)
985 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
987 unsigned long active
;
988 unsigned long inactive
;
990 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
991 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
993 return (active
> inactive
);
996 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
1000 int nid
= zone_to_nid(zone
);
1001 int zid
= zone_idx(zone
);
1002 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1004 return MEM_CGROUP_ZSTAT(mz
, lru
);
1007 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1010 int nid
= zone_to_nid(zone
);
1011 int zid
= zone_idx(zone
);
1012 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1014 return &mz
->reclaim_stat
;
1017 struct zone_reclaim_stat
*
1018 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1020 struct page_cgroup
*pc
;
1021 struct mem_cgroup_per_zone
*mz
;
1023 if (mem_cgroup_disabled())
1026 pc
= lookup_page_cgroup(page
);
1028 * Used bit is set without atomic ops but after smp_wmb().
1029 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1032 if (!PageCgroupUsed(pc
))
1035 mz
= page_cgroup_zoneinfo(pc
);
1039 return &mz
->reclaim_stat
;
1042 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1043 struct list_head
*dst
,
1044 unsigned long *scanned
, int order
,
1045 int mode
, struct zone
*z
,
1046 struct mem_cgroup
*mem_cont
,
1047 int active
, int file
)
1049 unsigned long nr_taken
= 0;
1053 struct list_head
*src
;
1054 struct page_cgroup
*pc
, *tmp
;
1055 int nid
= zone_to_nid(z
);
1056 int zid
= zone_idx(z
);
1057 struct mem_cgroup_per_zone
*mz
;
1058 int lru
= LRU_FILE
* file
+ active
;
1062 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1063 src
= &mz
->lists
[lru
];
1066 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1067 if (scan
>= nr_to_scan
)
1071 if (unlikely(!PageCgroupUsed(pc
)))
1073 if (unlikely(!PageLRU(page
)))
1077 ret
= __isolate_lru_page(page
, mode
, file
);
1080 list_move(&page
->lru
, dst
);
1081 mem_cgroup_del_lru(page
);
1085 /* we don't affect global LRU but rotate in our LRU */
1086 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1095 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1101 #define mem_cgroup_from_res_counter(counter, member) \
1102 container_of(counter, struct mem_cgroup, member)
1104 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
1106 if (do_swap_account
) {
1107 if (res_counter_check_under_limit(&mem
->res
) &&
1108 res_counter_check_under_limit(&mem
->memsw
))
1111 if (res_counter_check_under_limit(&mem
->res
))
1116 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1118 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1119 unsigned int swappiness
;
1122 if (cgrp
->parent
== NULL
)
1123 return vm_swappiness
;
1125 spin_lock(&memcg
->reclaim_param_lock
);
1126 swappiness
= memcg
->swappiness
;
1127 spin_unlock(&memcg
->reclaim_param_lock
);
1132 static void mem_cgroup_start_move(struct mem_cgroup
*mem
)
1137 spin_lock(&mem
->pcp_counter_lock
);
1138 for_each_online_cpu(cpu
)
1139 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1140 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1141 spin_unlock(&mem
->pcp_counter_lock
);
1147 static void mem_cgroup_end_move(struct mem_cgroup
*mem
)
1154 spin_lock(&mem
->pcp_counter_lock
);
1155 for_each_online_cpu(cpu
)
1156 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1157 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1158 spin_unlock(&mem
->pcp_counter_lock
);
1162 * 2 routines for checking "mem" is under move_account() or not.
1164 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1165 * for avoiding race in accounting. If true,
1166 * pc->mem_cgroup may be overwritten.
1168 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1169 * under hierarchy of moving cgroups. This is for
1170 * waiting at hith-memory prressure caused by "move".
1173 static bool mem_cgroup_stealed(struct mem_cgroup
*mem
)
1175 VM_BUG_ON(!rcu_read_lock_held());
1176 return this_cpu_read(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1179 static bool mem_cgroup_under_move(struct mem_cgroup
*mem
)
1181 struct mem_cgroup
*from
;
1182 struct mem_cgroup
*to
;
1185 * Unlike task_move routines, we access mc.to, mc.from not under
1186 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1188 spin_lock(&mc
.lock
);
1193 if (from
== mem
|| to
== mem
1194 || (mem
->use_hierarchy
&& css_is_ancestor(&from
->css
, &mem
->css
))
1195 || (mem
->use_hierarchy
&& css_is_ancestor(&to
->css
, &mem
->css
)))
1198 spin_unlock(&mc
.lock
);
1202 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*mem
)
1204 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1205 if (mem_cgroup_under_move(mem
)) {
1207 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1208 /* moving charge context might have finished. */
1211 finish_wait(&mc
.waitq
, &wait
);
1219 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1220 * @memcg: The memory cgroup that went over limit
1221 * @p: Task that is going to be killed
1223 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1226 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1228 struct cgroup
*task_cgrp
;
1229 struct cgroup
*mem_cgrp
;
1231 * Need a buffer in BSS, can't rely on allocations. The code relies
1232 * on the assumption that OOM is serialized for memory controller.
1233 * If this assumption is broken, revisit this code.
1235 static char memcg_name
[PATH_MAX
];
1244 mem_cgrp
= memcg
->css
.cgroup
;
1245 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1247 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1250 * Unfortunately, we are unable to convert to a useful name
1251 * But we'll still print out the usage information
1258 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1261 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1269 * Continues from above, so we don't need an KERN_ level
1271 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1274 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1275 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1276 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1277 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1278 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1280 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1281 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1282 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1286 * This function returns the number of memcg under hierarchy tree. Returns
1287 * 1(self count) if no children.
1289 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1292 struct mem_cgroup
*iter
;
1294 for_each_mem_cgroup_tree(iter
, mem
)
1300 * Return the memory (and swap, if configured) limit for a memcg.
1302 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1307 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
) +
1309 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1311 * If memsw is finite and limits the amount of swap space available
1312 * to this memcg, return that limit.
1314 return min(limit
, memsw
);
1318 * Visit the first child (need not be the first child as per the ordering
1319 * of the cgroup list, since we track last_scanned_child) of @mem and use
1320 * that to reclaim free pages from.
1322 static struct mem_cgroup
*
1323 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1325 struct mem_cgroup
*ret
= NULL
;
1326 struct cgroup_subsys_state
*css
;
1329 if (!root_mem
->use_hierarchy
) {
1330 css_get(&root_mem
->css
);
1336 nextid
= root_mem
->last_scanned_child
+ 1;
1337 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1339 if (css
&& css_tryget(css
))
1340 ret
= container_of(css
, struct mem_cgroup
, css
);
1343 /* Updates scanning parameter */
1344 spin_lock(&root_mem
->reclaim_param_lock
);
1346 /* this means start scan from ID:1 */
1347 root_mem
->last_scanned_child
= 0;
1349 root_mem
->last_scanned_child
= found
;
1350 spin_unlock(&root_mem
->reclaim_param_lock
);
1357 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1358 * we reclaimed from, so that we don't end up penalizing one child extensively
1359 * based on its position in the children list.
1361 * root_mem is the original ancestor that we've been reclaim from.
1363 * We give up and return to the caller when we visit root_mem twice.
1364 * (other groups can be removed while we're walking....)
1366 * If shrink==true, for avoiding to free too much, this returns immedieately.
1368 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1371 unsigned long reclaim_options
)
1373 struct mem_cgroup
*victim
;
1376 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1377 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1378 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1379 unsigned long excess
= mem_cgroup_get_excess(root_mem
);
1381 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1382 if (root_mem
->memsw_is_minimum
)
1386 victim
= mem_cgroup_select_victim(root_mem
);
1387 if (victim
== root_mem
) {
1390 drain_all_stock_async();
1393 * If we have not been able to reclaim
1394 * anything, it might because there are
1395 * no reclaimable pages under this hierarchy
1397 if (!check_soft
|| !total
) {
1398 css_put(&victim
->css
);
1402 * We want to do more targetted reclaim.
1403 * excess >> 2 is not to excessive so as to
1404 * reclaim too much, nor too less that we keep
1405 * coming back to reclaim from this cgroup
1407 if (total
>= (excess
>> 2) ||
1408 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1409 css_put(&victim
->css
);
1414 if (!mem_cgroup_local_usage(victim
)) {
1415 /* this cgroup's local usage == 0 */
1416 css_put(&victim
->css
);
1419 /* we use swappiness of local cgroup */
1421 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1422 noswap
, get_swappiness(victim
), zone
);
1424 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1425 noswap
, get_swappiness(victim
));
1426 css_put(&victim
->css
);
1428 * At shrinking usage, we can't check we should stop here or
1429 * reclaim more. It's depends on callers. last_scanned_child
1430 * will work enough for keeping fairness under tree.
1436 if (res_counter_check_under_soft_limit(&root_mem
->res
))
1438 } else if (mem_cgroup_check_under_limit(root_mem
))
1445 * Check OOM-Killer is already running under our hierarchy.
1446 * If someone is running, return false.
1448 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1450 int x
, lock_count
= 0;
1451 struct mem_cgroup
*iter
;
1453 for_each_mem_cgroup_tree(iter
, mem
) {
1454 x
= atomic_inc_return(&iter
->oom_lock
);
1455 lock_count
= max(x
, lock_count
);
1458 if (lock_count
== 1)
1463 static int mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1465 struct mem_cgroup
*iter
;
1468 * When a new child is created while the hierarchy is under oom,
1469 * mem_cgroup_oom_lock() may not be called. We have to use
1470 * atomic_add_unless() here.
1472 for_each_mem_cgroup_tree(iter
, mem
)
1473 atomic_add_unless(&iter
->oom_lock
, -1, 0);
1478 static DEFINE_MUTEX(memcg_oom_mutex
);
1479 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1481 struct oom_wait_info
{
1482 struct mem_cgroup
*mem
;
1486 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1487 unsigned mode
, int sync
, void *arg
)
1489 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
;
1490 struct oom_wait_info
*oom_wait_info
;
1492 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1494 if (oom_wait_info
->mem
== wake_mem
)
1496 /* if no hierarchy, no match */
1497 if (!oom_wait_info
->mem
->use_hierarchy
|| !wake_mem
->use_hierarchy
)
1500 * Both of oom_wait_info->mem and wake_mem are stable under us.
1501 * Then we can use css_is_ancestor without taking care of RCU.
1503 if (!css_is_ancestor(&oom_wait_info
->mem
->css
, &wake_mem
->css
) &&
1504 !css_is_ancestor(&wake_mem
->css
, &oom_wait_info
->mem
->css
))
1508 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1511 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1513 /* for filtering, pass "mem" as argument. */
1514 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1517 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1519 if (mem
&& atomic_read(&mem
->oom_lock
))
1520 memcg_wakeup_oom(mem
);
1524 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1526 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1528 struct oom_wait_info owait
;
1529 bool locked
, need_to_kill
;
1532 owait
.wait
.flags
= 0;
1533 owait
.wait
.func
= memcg_oom_wake_function
;
1534 owait
.wait
.private = current
;
1535 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1536 need_to_kill
= true;
1537 /* At first, try to OOM lock hierarchy under mem.*/
1538 mutex_lock(&memcg_oom_mutex
);
1539 locked
= mem_cgroup_oom_lock(mem
);
1541 * Even if signal_pending(), we can't quit charge() loop without
1542 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1543 * under OOM is always welcomed, use TASK_KILLABLE here.
1545 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1546 if (!locked
|| mem
->oom_kill_disable
)
1547 need_to_kill
= false;
1549 mem_cgroup_oom_notify(mem
);
1550 mutex_unlock(&memcg_oom_mutex
);
1553 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1554 mem_cgroup_out_of_memory(mem
, mask
);
1557 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1559 mutex_lock(&memcg_oom_mutex
);
1560 mem_cgroup_oom_unlock(mem
);
1561 memcg_wakeup_oom(mem
);
1562 mutex_unlock(&memcg_oom_mutex
);
1564 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1566 /* Give chance to dying process */
1567 schedule_timeout(1);
1572 * Currently used to update mapped file statistics, but the routine can be
1573 * generalized to update other statistics as well.
1575 * Notes: Race condition
1577 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1578 * it tends to be costly. But considering some conditions, we doesn't need
1579 * to do so _always_.
1581 * Considering "charge", lock_page_cgroup() is not required because all
1582 * file-stat operations happen after a page is attached to radix-tree. There
1583 * are no race with "charge".
1585 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1586 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1587 * if there are race with "uncharge". Statistics itself is properly handled
1590 * Considering "move", this is an only case we see a race. To make the race
1591 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1592 * possibility of race condition. If there is, we take a lock.
1595 static void mem_cgroup_update_file_stat(struct page
*page
, int idx
, int val
)
1597 struct mem_cgroup
*mem
;
1598 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1599 bool need_unlock
= false;
1605 mem
= pc
->mem_cgroup
;
1606 if (unlikely(!mem
|| !PageCgroupUsed(pc
)))
1608 /* pc->mem_cgroup is unstable ? */
1609 if (unlikely(mem_cgroup_stealed(mem
))) {
1610 /* take a lock against to access pc->mem_cgroup */
1611 lock_page_cgroup(pc
);
1613 mem
= pc
->mem_cgroup
;
1614 if (!mem
|| !PageCgroupUsed(pc
))
1618 this_cpu_add(mem
->stat
->count
[idx
], val
);
1621 case MEM_CGROUP_STAT_FILE_MAPPED
:
1623 SetPageCgroupFileMapped(pc
);
1624 else if (!page_mapped(page
))
1625 ClearPageCgroupFileMapped(pc
);
1632 if (unlikely(need_unlock
))
1633 unlock_page_cgroup(pc
);
1638 void mem_cgroup_update_file_mapped(struct page
*page
, int val
)
1640 mem_cgroup_update_file_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
, val
);
1644 * size of first charge trial. "32" comes from vmscan.c's magic value.
1645 * TODO: maybe necessary to use big numbers in big irons.
1647 #define CHARGE_SIZE (32 * PAGE_SIZE)
1648 struct memcg_stock_pcp
{
1649 struct mem_cgroup
*cached
; /* this never be root cgroup */
1651 struct work_struct work
;
1653 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1654 static atomic_t memcg_drain_count
;
1657 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1658 * from local stock and true is returned. If the stock is 0 or charges from a
1659 * cgroup which is not current target, returns false. This stock will be
1662 static bool consume_stock(struct mem_cgroup
*mem
)
1664 struct memcg_stock_pcp
*stock
;
1667 stock
= &get_cpu_var(memcg_stock
);
1668 if (mem
== stock
->cached
&& stock
->charge
)
1669 stock
->charge
-= PAGE_SIZE
;
1670 else /* need to call res_counter_charge */
1672 put_cpu_var(memcg_stock
);
1677 * Returns stocks cached in percpu to res_counter and reset cached information.
1679 static void drain_stock(struct memcg_stock_pcp
*stock
)
1681 struct mem_cgroup
*old
= stock
->cached
;
1683 if (stock
->charge
) {
1684 res_counter_uncharge(&old
->res
, stock
->charge
);
1685 if (do_swap_account
)
1686 res_counter_uncharge(&old
->memsw
, stock
->charge
);
1688 stock
->cached
= NULL
;
1693 * This must be called under preempt disabled or must be called by
1694 * a thread which is pinned to local cpu.
1696 static void drain_local_stock(struct work_struct
*dummy
)
1698 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1703 * Cache charges(val) which is from res_counter, to local per_cpu area.
1704 * This will be consumed by consume_stock() function, later.
1706 static void refill_stock(struct mem_cgroup
*mem
, int val
)
1708 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1710 if (stock
->cached
!= mem
) { /* reset if necessary */
1712 stock
->cached
= mem
;
1714 stock
->charge
+= val
;
1715 put_cpu_var(memcg_stock
);
1719 * Tries to drain stocked charges in other cpus. This function is asynchronous
1720 * and just put a work per cpu for draining localy on each cpu. Caller can
1721 * expects some charges will be back to res_counter later but cannot wait for
1724 static void drain_all_stock_async(void)
1727 /* This function is for scheduling "drain" in asynchronous way.
1728 * The result of "drain" is not directly handled by callers. Then,
1729 * if someone is calling drain, we don't have to call drain more.
1730 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1731 * there is a race. We just do loose check here.
1733 if (atomic_read(&memcg_drain_count
))
1735 /* Notify other cpus that system-wide "drain" is running */
1736 atomic_inc(&memcg_drain_count
);
1738 for_each_online_cpu(cpu
) {
1739 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1740 schedule_work_on(cpu
, &stock
->work
);
1743 atomic_dec(&memcg_drain_count
);
1744 /* We don't wait for flush_work */
1747 /* This is a synchronous drain interface. */
1748 static void drain_all_stock_sync(void)
1750 /* called when force_empty is called */
1751 atomic_inc(&memcg_drain_count
);
1752 schedule_on_each_cpu(drain_local_stock
);
1753 atomic_dec(&memcg_drain_count
);
1757 * This function drains percpu counter value from DEAD cpu and
1758 * move it to local cpu. Note that this function can be preempted.
1760 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*mem
, int cpu
)
1764 spin_lock(&mem
->pcp_counter_lock
);
1765 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
1766 s64 x
= per_cpu(mem
->stat
->count
[i
], cpu
);
1768 per_cpu(mem
->stat
->count
[i
], cpu
) = 0;
1769 mem
->nocpu_base
.count
[i
] += x
;
1771 /* need to clear ON_MOVE value, works as a kind of lock. */
1772 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
1773 spin_unlock(&mem
->pcp_counter_lock
);
1776 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*mem
, int cpu
)
1778 int idx
= MEM_CGROUP_ON_MOVE
;
1780 spin_lock(&mem
->pcp_counter_lock
);
1781 per_cpu(mem
->stat
->count
[idx
], cpu
) = mem
->nocpu_base
.count
[idx
];
1782 spin_unlock(&mem
->pcp_counter_lock
);
1785 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1786 unsigned long action
,
1789 int cpu
= (unsigned long)hcpu
;
1790 struct memcg_stock_pcp
*stock
;
1791 struct mem_cgroup
*iter
;
1793 if ((action
== CPU_ONLINE
)) {
1794 for_each_mem_cgroup_all(iter
)
1795 synchronize_mem_cgroup_on_move(iter
, cpu
);
1799 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
1802 for_each_mem_cgroup_all(iter
)
1803 mem_cgroup_drain_pcp_counter(iter
, cpu
);
1805 stock
= &per_cpu(memcg_stock
, cpu
);
1811 /* See __mem_cgroup_try_charge() for details */
1813 CHARGE_OK
, /* success */
1814 CHARGE_RETRY
, /* need to retry but retry is not bad */
1815 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
1816 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
1817 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
1820 static int __mem_cgroup_do_charge(struct mem_cgroup
*mem
, gfp_t gfp_mask
,
1821 int csize
, bool oom_check
)
1823 struct mem_cgroup
*mem_over_limit
;
1824 struct res_counter
*fail_res
;
1825 unsigned long flags
= 0;
1828 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
1831 if (!do_swap_account
)
1833 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
1837 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
1838 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
1840 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
1842 if (csize
> PAGE_SIZE
) /* change csize and retry */
1843 return CHARGE_RETRY
;
1845 if (!(gfp_mask
& __GFP_WAIT
))
1846 return CHARGE_WOULDBLOCK
;
1848 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
1851 * try_to_free_mem_cgroup_pages() might not give us a full
1852 * picture of reclaim. Some pages are reclaimed and might be
1853 * moved to swap cache or just unmapped from the cgroup.
1854 * Check the limit again to see if the reclaim reduced the
1855 * current usage of the cgroup before giving up
1857 if (ret
|| mem_cgroup_check_under_limit(mem_over_limit
))
1858 return CHARGE_RETRY
;
1861 * At task move, charge accounts can be doubly counted. So, it's
1862 * better to wait until the end of task_move if something is going on.
1864 if (mem_cgroup_wait_acct_move(mem_over_limit
))
1865 return CHARGE_RETRY
;
1867 /* If we don't need to call oom-killer at el, return immediately */
1869 return CHARGE_NOMEM
;
1871 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
1872 return CHARGE_OOM_DIE
;
1874 return CHARGE_RETRY
;
1878 * Unlike exported interface, "oom" parameter is added. if oom==true,
1879 * oom-killer can be invoked.
1881 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
1882 gfp_t gfp_mask
, struct mem_cgroup
**memcg
, bool oom
)
1884 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1885 struct mem_cgroup
*mem
= NULL
;
1887 int csize
= CHARGE_SIZE
;
1890 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1891 * in system level. So, allow to go ahead dying process in addition to
1894 if (unlikely(test_thread_flag(TIF_MEMDIE
)
1895 || fatal_signal_pending(current
)))
1899 * We always charge the cgroup the mm_struct belongs to.
1900 * The mm_struct's mem_cgroup changes on task migration if the
1901 * thread group leader migrates. It's possible that mm is not
1902 * set, if so charge the init_mm (happens for pagecache usage).
1907 if (*memcg
) { /* css should be a valid one */
1909 VM_BUG_ON(css_is_removed(&mem
->css
));
1910 if (mem_cgroup_is_root(mem
))
1912 if (consume_stock(mem
))
1916 struct task_struct
*p
;
1919 p
= rcu_dereference(mm
->owner
);
1922 * because we don't have task_lock(), "p" can exit while
1923 * we're here. In that case, "mem" can point to root
1924 * cgroup but never be NULL. (and task_struct itself is freed
1925 * by RCU, cgroup itself is RCU safe.) Then, we have small
1926 * risk here to get wrong cgroup. But such kind of mis-account
1927 * by race always happens because we don't have cgroup_mutex().
1928 * It's overkill and we allow that small race, here.
1930 mem
= mem_cgroup_from_task(p
);
1932 if (mem_cgroup_is_root(mem
)) {
1936 if (consume_stock(mem
)) {
1938 * It seems dagerous to access memcg without css_get().
1939 * But considering how consume_stok works, it's not
1940 * necessary. If consume_stock success, some charges
1941 * from this memcg are cached on this cpu. So, we
1942 * don't need to call css_get()/css_tryget() before
1943 * calling consume_stock().
1948 /* after here, we may be blocked. we need to get refcnt */
1949 if (!css_tryget(&mem
->css
)) {
1959 /* If killed, bypass charge */
1960 if (fatal_signal_pending(current
)) {
1966 if (oom
&& !nr_oom_retries
) {
1968 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1971 ret
= __mem_cgroup_do_charge(mem
, gfp_mask
, csize
, oom_check
);
1976 case CHARGE_RETRY
: /* not in OOM situation but retry */
1981 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
1984 case CHARGE_NOMEM
: /* OOM routine works */
1989 /* If oom, we never return -ENOMEM */
1992 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
1996 } while (ret
!= CHARGE_OK
);
1998 if (csize
> PAGE_SIZE
)
1999 refill_stock(mem
, csize
- PAGE_SIZE
);
2013 * Somemtimes we have to undo a charge we got by try_charge().
2014 * This function is for that and do uncharge, put css's refcnt.
2015 * gotten by try_charge().
2017 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2018 unsigned long count
)
2020 if (!mem_cgroup_is_root(mem
)) {
2021 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
2022 if (do_swap_account
)
2023 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
* count
);
2027 static void mem_cgroup_cancel_charge(struct mem_cgroup
*mem
)
2029 __mem_cgroup_cancel_charge(mem
, 1);
2033 * A helper function to get mem_cgroup from ID. must be called under
2034 * rcu_read_lock(). The caller must check css_is_removed() or some if
2035 * it's concern. (dropping refcnt from swap can be called against removed
2038 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2040 struct cgroup_subsys_state
*css
;
2042 /* ID 0 is unused ID */
2045 css
= css_lookup(&mem_cgroup_subsys
, id
);
2048 return container_of(css
, struct mem_cgroup
, css
);
2051 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2053 struct mem_cgroup
*mem
= NULL
;
2054 struct page_cgroup
*pc
;
2058 VM_BUG_ON(!PageLocked(page
));
2060 pc
= lookup_page_cgroup(page
);
2061 lock_page_cgroup(pc
);
2062 if (PageCgroupUsed(pc
)) {
2063 mem
= pc
->mem_cgroup
;
2064 if (mem
&& !css_tryget(&mem
->css
))
2066 } else if (PageSwapCache(page
)) {
2067 ent
.val
= page_private(page
);
2068 id
= lookup_swap_cgroup(ent
);
2070 mem
= mem_cgroup_lookup(id
);
2071 if (mem
&& !css_tryget(&mem
->css
))
2075 unlock_page_cgroup(pc
);
2080 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2081 * USED state. If already USED, uncharge and return.
2084 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
2085 struct page_cgroup
*pc
,
2086 enum charge_type ctype
)
2088 /* try_charge() can return NULL to *memcg, taking care of it. */
2092 lock_page_cgroup(pc
);
2093 if (unlikely(PageCgroupUsed(pc
))) {
2094 unlock_page_cgroup(pc
);
2095 mem_cgroup_cancel_charge(mem
);
2099 pc
->mem_cgroup
= mem
;
2101 * We access a page_cgroup asynchronously without lock_page_cgroup().
2102 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2103 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2104 * before USED bit, we need memory barrier here.
2105 * See mem_cgroup_add_lru_list(), etc.
2109 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2110 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2111 SetPageCgroupCache(pc
);
2112 SetPageCgroupUsed(pc
);
2114 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2115 ClearPageCgroupCache(pc
);
2116 SetPageCgroupUsed(pc
);
2122 mem_cgroup_charge_statistics(mem
, pc
, true);
2124 unlock_page_cgroup(pc
);
2126 * "charge_statistics" updated event counter. Then, check it.
2127 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2128 * if they exceeds softlimit.
2130 memcg_check_events(mem
, pc
->page
);
2134 * __mem_cgroup_move_account - move account of the page
2135 * @pc: page_cgroup of the page.
2136 * @from: mem_cgroup which the page is moved from.
2137 * @to: mem_cgroup which the page is moved to. @from != @to.
2138 * @uncharge: whether we should call uncharge and css_put against @from.
2140 * The caller must confirm following.
2141 * - page is not on LRU (isolate_page() is useful.)
2142 * - the pc is locked, used, and ->mem_cgroup points to @from.
2144 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2145 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2146 * true, this function does "uncharge" from old cgroup, but it doesn't if
2147 * @uncharge is false, so a caller should do "uncharge".
2150 static void __mem_cgroup_move_account(struct page_cgroup
*pc
,
2151 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
2153 VM_BUG_ON(from
== to
);
2154 VM_BUG_ON(PageLRU(pc
->page
));
2155 VM_BUG_ON(!PageCgroupLocked(pc
));
2156 VM_BUG_ON(!PageCgroupUsed(pc
));
2157 VM_BUG_ON(pc
->mem_cgroup
!= from
);
2159 if (PageCgroupFileMapped(pc
)) {
2160 /* Update mapped_file data for mem_cgroup */
2162 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2163 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2166 mem_cgroup_charge_statistics(from
, pc
, false);
2168 /* This is not "cancel", but cancel_charge does all we need. */
2169 mem_cgroup_cancel_charge(from
);
2171 /* caller should have done css_get */
2172 pc
->mem_cgroup
= to
;
2173 mem_cgroup_charge_statistics(to
, pc
, true);
2175 * We charges against "to" which may not have any tasks. Then, "to"
2176 * can be under rmdir(). But in current implementation, caller of
2177 * this function is just force_empty() and move charge, so it's
2178 * garanteed that "to" is never removed. So, we don't check rmdir
2184 * check whether the @pc is valid for moving account and call
2185 * __mem_cgroup_move_account()
2187 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
2188 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
2191 lock_page_cgroup(pc
);
2192 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== from
) {
2193 __mem_cgroup_move_account(pc
, from
, to
, uncharge
);
2196 unlock_page_cgroup(pc
);
2200 memcg_check_events(to
, pc
->page
);
2201 memcg_check_events(from
, pc
->page
);
2206 * move charges to its parent.
2209 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
2210 struct mem_cgroup
*child
,
2213 struct page
*page
= pc
->page
;
2214 struct cgroup
*cg
= child
->css
.cgroup
;
2215 struct cgroup
*pcg
= cg
->parent
;
2216 struct mem_cgroup
*parent
;
2224 if (!get_page_unless_zero(page
))
2226 if (isolate_lru_page(page
))
2229 parent
= mem_cgroup_from_cont(pcg
);
2230 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
2234 ret
= mem_cgroup_move_account(pc
, child
, parent
, true);
2236 mem_cgroup_cancel_charge(parent
);
2238 putback_lru_page(page
);
2246 * Charge the memory controller for page usage.
2248 * 0 if the charge was successful
2249 * < 0 if the cgroup is over its limit
2251 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2252 gfp_t gfp_mask
, enum charge_type ctype
)
2254 struct mem_cgroup
*mem
= NULL
;
2255 struct page_cgroup
*pc
;
2258 pc
= lookup_page_cgroup(page
);
2259 /* can happen at boot */
2264 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
2268 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
2272 int mem_cgroup_newpage_charge(struct page
*page
,
2273 struct mm_struct
*mm
, gfp_t gfp_mask
)
2275 if (mem_cgroup_disabled())
2277 if (PageCompound(page
))
2280 * If already mapped, we don't have to account.
2281 * If page cache, page->mapping has address_space.
2282 * But page->mapping may have out-of-use anon_vma pointer,
2283 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2286 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2290 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2291 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2295 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2296 enum charge_type ctype
);
2298 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2303 if (mem_cgroup_disabled())
2305 if (PageCompound(page
))
2308 * Corner case handling. This is called from add_to_page_cache()
2309 * in usual. But some FS (shmem) precharges this page before calling it
2310 * and call add_to_page_cache() with GFP_NOWAIT.
2312 * For GFP_NOWAIT case, the page may be pre-charged before calling
2313 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2314 * charge twice. (It works but has to pay a bit larger cost.)
2315 * And when the page is SwapCache, it should take swap information
2316 * into account. This is under lock_page() now.
2318 if (!(gfp_mask
& __GFP_WAIT
)) {
2319 struct page_cgroup
*pc
;
2321 pc
= lookup_page_cgroup(page
);
2324 lock_page_cgroup(pc
);
2325 if (PageCgroupUsed(pc
)) {
2326 unlock_page_cgroup(pc
);
2329 unlock_page_cgroup(pc
);
2335 if (page_is_file_cache(page
))
2336 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2337 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2340 if (PageSwapCache(page
)) {
2341 struct mem_cgroup
*mem
= NULL
;
2343 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2345 __mem_cgroup_commit_charge_swapin(page
, mem
,
2346 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2348 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2349 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2355 * While swap-in, try_charge -> commit or cancel, the page is locked.
2356 * And when try_charge() successfully returns, one refcnt to memcg without
2357 * struct page_cgroup is acquired. This refcnt will be consumed by
2358 * "commit()" or removed by "cancel()"
2360 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2362 gfp_t mask
, struct mem_cgroup
**ptr
)
2364 struct mem_cgroup
*mem
;
2367 if (mem_cgroup_disabled())
2370 if (!do_swap_account
)
2373 * A racing thread's fault, or swapoff, may have already updated
2374 * the pte, and even removed page from swap cache: in those cases
2375 * do_swap_page()'s pte_same() test will fail; but there's also a
2376 * KSM case which does need to charge the page.
2378 if (!PageSwapCache(page
))
2380 mem
= try_get_mem_cgroup_from_page(page
);
2384 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
2390 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
2394 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2395 enum charge_type ctype
)
2397 struct page_cgroup
*pc
;
2399 if (mem_cgroup_disabled())
2403 cgroup_exclude_rmdir(&ptr
->css
);
2404 pc
= lookup_page_cgroup(page
);
2405 mem_cgroup_lru_del_before_commit_swapcache(page
);
2406 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
2407 mem_cgroup_lru_add_after_commit_swapcache(page
);
2409 * Now swap is on-memory. This means this page may be
2410 * counted both as mem and swap....double count.
2411 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2412 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2413 * may call delete_from_swap_cache() before reach here.
2415 if (do_swap_account
&& PageSwapCache(page
)) {
2416 swp_entry_t ent
= {.val
= page_private(page
)};
2418 struct mem_cgroup
*memcg
;
2420 id
= swap_cgroup_record(ent
, 0);
2422 memcg
= mem_cgroup_lookup(id
);
2425 * This recorded memcg can be obsolete one. So, avoid
2426 * calling css_tryget
2428 if (!mem_cgroup_is_root(memcg
))
2429 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2430 mem_cgroup_swap_statistics(memcg
, false);
2431 mem_cgroup_put(memcg
);
2436 * At swapin, we may charge account against cgroup which has no tasks.
2437 * So, rmdir()->pre_destroy() can be called while we do this charge.
2438 * In that case, we need to call pre_destroy() again. check it here.
2440 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2443 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2445 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2446 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2449 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2451 if (mem_cgroup_disabled())
2455 mem_cgroup_cancel_charge(mem
);
2459 __do_uncharge(struct mem_cgroup
*mem
, const enum charge_type ctype
)
2461 struct memcg_batch_info
*batch
= NULL
;
2462 bool uncharge_memsw
= true;
2463 /* If swapout, usage of swap doesn't decrease */
2464 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2465 uncharge_memsw
= false;
2467 batch
= ¤t
->memcg_batch
;
2469 * In usual, we do css_get() when we remember memcg pointer.
2470 * But in this case, we keep res->usage until end of a series of
2471 * uncharges. Then, it's ok to ignore memcg's refcnt.
2476 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2477 * In those cases, all pages freed continously can be expected to be in
2478 * the same cgroup and we have chance to coalesce uncharges.
2479 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2480 * because we want to do uncharge as soon as possible.
2483 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2484 goto direct_uncharge
;
2487 * In typical case, batch->memcg == mem. This means we can
2488 * merge a series of uncharges to an uncharge of res_counter.
2489 * If not, we uncharge res_counter ony by one.
2491 if (batch
->memcg
!= mem
)
2492 goto direct_uncharge
;
2493 /* remember freed charge and uncharge it later */
2494 batch
->bytes
+= PAGE_SIZE
;
2496 batch
->memsw_bytes
+= PAGE_SIZE
;
2499 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
2501 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
2502 if (unlikely(batch
->memcg
!= mem
))
2503 memcg_oom_recover(mem
);
2508 * uncharge if !page_mapped(page)
2510 static struct mem_cgroup
*
2511 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2513 struct page_cgroup
*pc
;
2514 struct mem_cgroup
*mem
= NULL
;
2516 if (mem_cgroup_disabled())
2519 if (PageSwapCache(page
))
2523 * Check if our page_cgroup is valid
2525 pc
= lookup_page_cgroup(page
);
2526 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2529 lock_page_cgroup(pc
);
2531 mem
= pc
->mem_cgroup
;
2533 if (!PageCgroupUsed(pc
))
2537 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2538 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2539 /* See mem_cgroup_prepare_migration() */
2540 if (page_mapped(page
) || PageCgroupMigration(pc
))
2543 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2544 if (!PageAnon(page
)) { /* Shared memory */
2545 if (page
->mapping
&& !page_is_file_cache(page
))
2547 } else if (page_mapped(page
)) /* Anon */
2554 mem_cgroup_charge_statistics(mem
, pc
, false);
2556 ClearPageCgroupUsed(pc
);
2558 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2559 * freed from LRU. This is safe because uncharged page is expected not
2560 * to be reused (freed soon). Exception is SwapCache, it's handled by
2561 * special functions.
2564 unlock_page_cgroup(pc
);
2566 * even after unlock, we have mem->res.usage here and this memcg
2567 * will never be freed.
2569 memcg_check_events(mem
, page
);
2570 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
2571 mem_cgroup_swap_statistics(mem
, true);
2572 mem_cgroup_get(mem
);
2574 if (!mem_cgroup_is_root(mem
))
2575 __do_uncharge(mem
, ctype
);
2580 unlock_page_cgroup(pc
);
2584 void mem_cgroup_uncharge_page(struct page
*page
)
2587 if (page_mapped(page
))
2589 if (page
->mapping
&& !PageAnon(page
))
2591 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2594 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2596 VM_BUG_ON(page_mapped(page
));
2597 VM_BUG_ON(page
->mapping
);
2598 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2602 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2603 * In that cases, pages are freed continuously and we can expect pages
2604 * are in the same memcg. All these calls itself limits the number of
2605 * pages freed at once, then uncharge_start/end() is called properly.
2606 * This may be called prural(2) times in a context,
2609 void mem_cgroup_uncharge_start(void)
2611 current
->memcg_batch
.do_batch
++;
2612 /* We can do nest. */
2613 if (current
->memcg_batch
.do_batch
== 1) {
2614 current
->memcg_batch
.memcg
= NULL
;
2615 current
->memcg_batch
.bytes
= 0;
2616 current
->memcg_batch
.memsw_bytes
= 0;
2620 void mem_cgroup_uncharge_end(void)
2622 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
2624 if (!batch
->do_batch
)
2628 if (batch
->do_batch
) /* If stacked, do nothing. */
2634 * This "batch->memcg" is valid without any css_get/put etc...
2635 * bacause we hide charges behind us.
2638 res_counter_uncharge(&batch
->memcg
->res
, batch
->bytes
);
2639 if (batch
->memsw_bytes
)
2640 res_counter_uncharge(&batch
->memcg
->memsw
, batch
->memsw_bytes
);
2641 memcg_oom_recover(batch
->memcg
);
2642 /* forget this pointer (for sanity check) */
2643 batch
->memcg
= NULL
;
2648 * called after __delete_from_swap_cache() and drop "page" account.
2649 * memcg information is recorded to swap_cgroup of "ent"
2652 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
2654 struct mem_cgroup
*memcg
;
2655 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
2657 if (!swapout
) /* this was a swap cache but the swap is unused ! */
2658 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
2660 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
2663 * record memcg information, if swapout && memcg != NULL,
2664 * mem_cgroup_get() was called in uncharge().
2666 if (do_swap_account
&& swapout
&& memcg
)
2667 swap_cgroup_record(ent
, css_id(&memcg
->css
));
2671 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2673 * called from swap_entry_free(). remove record in swap_cgroup and
2674 * uncharge "memsw" account.
2676 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
2678 struct mem_cgroup
*memcg
;
2681 if (!do_swap_account
)
2684 id
= swap_cgroup_record(ent
, 0);
2686 memcg
= mem_cgroup_lookup(id
);
2689 * We uncharge this because swap is freed.
2690 * This memcg can be obsolete one. We avoid calling css_tryget
2692 if (!mem_cgroup_is_root(memcg
))
2693 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2694 mem_cgroup_swap_statistics(memcg
, false);
2695 mem_cgroup_put(memcg
);
2701 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2702 * @entry: swap entry to be moved
2703 * @from: mem_cgroup which the entry is moved from
2704 * @to: mem_cgroup which the entry is moved to
2705 * @need_fixup: whether we should fixup res_counters and refcounts.
2707 * It succeeds only when the swap_cgroup's record for this entry is the same
2708 * as the mem_cgroup's id of @from.
2710 * Returns 0 on success, -EINVAL on failure.
2712 * The caller must have charged to @to, IOW, called res_counter_charge() about
2713 * both res and memsw, and called css_get().
2715 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2716 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2718 unsigned short old_id
, new_id
;
2720 old_id
= css_id(&from
->css
);
2721 new_id
= css_id(&to
->css
);
2723 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2724 mem_cgroup_swap_statistics(from
, false);
2725 mem_cgroup_swap_statistics(to
, true);
2727 * This function is only called from task migration context now.
2728 * It postpones res_counter and refcount handling till the end
2729 * of task migration(mem_cgroup_clear_mc()) for performance
2730 * improvement. But we cannot postpone mem_cgroup_get(to)
2731 * because if the process that has been moved to @to does
2732 * swap-in, the refcount of @to might be decreased to 0.
2736 if (!mem_cgroup_is_root(from
))
2737 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
2738 mem_cgroup_put(from
);
2740 * we charged both to->res and to->memsw, so we should
2743 if (!mem_cgroup_is_root(to
))
2744 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
2751 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2752 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2759 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2762 int mem_cgroup_prepare_migration(struct page
*page
,
2763 struct page
*newpage
, struct mem_cgroup
**ptr
)
2765 struct page_cgroup
*pc
;
2766 struct mem_cgroup
*mem
= NULL
;
2767 enum charge_type ctype
;
2770 if (mem_cgroup_disabled())
2773 pc
= lookup_page_cgroup(page
);
2774 lock_page_cgroup(pc
);
2775 if (PageCgroupUsed(pc
)) {
2776 mem
= pc
->mem_cgroup
;
2779 * At migrating an anonymous page, its mapcount goes down
2780 * to 0 and uncharge() will be called. But, even if it's fully
2781 * unmapped, migration may fail and this page has to be
2782 * charged again. We set MIGRATION flag here and delay uncharge
2783 * until end_migration() is called
2785 * Corner Case Thinking
2787 * When the old page was mapped as Anon and it's unmap-and-freed
2788 * while migration was ongoing.
2789 * If unmap finds the old page, uncharge() of it will be delayed
2790 * until end_migration(). If unmap finds a new page, it's
2791 * uncharged when it make mapcount to be 1->0. If unmap code
2792 * finds swap_migration_entry, the new page will not be mapped
2793 * and end_migration() will find it(mapcount==0).
2796 * When the old page was mapped but migraion fails, the kernel
2797 * remaps it. A charge for it is kept by MIGRATION flag even
2798 * if mapcount goes down to 0. We can do remap successfully
2799 * without charging it again.
2802 * The "old" page is under lock_page() until the end of
2803 * migration, so, the old page itself will not be swapped-out.
2804 * If the new page is swapped out before end_migraton, our
2805 * hook to usual swap-out path will catch the event.
2808 SetPageCgroupMigration(pc
);
2810 unlock_page_cgroup(pc
);
2812 * If the page is not charged at this point,
2819 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, ptr
, false);
2820 css_put(&mem
->css
);/* drop extra refcnt */
2821 if (ret
|| *ptr
== NULL
) {
2822 if (PageAnon(page
)) {
2823 lock_page_cgroup(pc
);
2824 ClearPageCgroupMigration(pc
);
2825 unlock_page_cgroup(pc
);
2827 * The old page may be fully unmapped while we kept it.
2829 mem_cgroup_uncharge_page(page
);
2834 * We charge new page before it's used/mapped. So, even if unlock_page()
2835 * is called before end_migration, we can catch all events on this new
2836 * page. In the case new page is migrated but not remapped, new page's
2837 * mapcount will be finally 0 and we call uncharge in end_migration().
2839 pc
= lookup_page_cgroup(newpage
);
2841 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
2842 else if (page_is_file_cache(page
))
2843 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2845 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2846 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
2850 /* remove redundant charge if migration failed*/
2851 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
2852 struct page
*oldpage
, struct page
*newpage
)
2854 struct page
*used
, *unused
;
2855 struct page_cgroup
*pc
;
2859 /* blocks rmdir() */
2860 cgroup_exclude_rmdir(&mem
->css
);
2861 /* at migration success, oldpage->mapping is NULL. */
2862 if (oldpage
->mapping
) {
2870 * We disallowed uncharge of pages under migration because mapcount
2871 * of the page goes down to zero, temporarly.
2872 * Clear the flag and check the page should be charged.
2874 pc
= lookup_page_cgroup(oldpage
);
2875 lock_page_cgroup(pc
);
2876 ClearPageCgroupMigration(pc
);
2877 unlock_page_cgroup(pc
);
2879 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
2882 * If a page is a file cache, radix-tree replacement is very atomic
2883 * and we can skip this check. When it was an Anon page, its mapcount
2884 * goes down to 0. But because we added MIGRATION flage, it's not
2885 * uncharged yet. There are several case but page->mapcount check
2886 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2887 * check. (see prepare_charge() also)
2890 mem_cgroup_uncharge_page(used
);
2892 * At migration, we may charge account against cgroup which has no
2894 * So, rmdir()->pre_destroy() can be called while we do this charge.
2895 * In that case, we need to call pre_destroy() again. check it here.
2897 cgroup_release_and_wakeup_rmdir(&mem
->css
);
2901 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2902 * Calling hierarchical_reclaim is not enough because we should update
2903 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2904 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2905 * not from the memcg which this page would be charged to.
2906 * try_charge_swapin does all of these works properly.
2908 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
2909 struct mm_struct
*mm
,
2912 struct mem_cgroup
*mem
= NULL
;
2915 if (mem_cgroup_disabled())
2918 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2920 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
2925 static DEFINE_MUTEX(set_limit_mutex
);
2927 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2928 unsigned long long val
)
2931 u64 memswlimit
, memlimit
;
2933 int children
= mem_cgroup_count_children(memcg
);
2934 u64 curusage
, oldusage
;
2938 * For keeping hierarchical_reclaim simple, how long we should retry
2939 * is depends on callers. We set our retry-count to be function
2940 * of # of children which we should visit in this loop.
2942 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
2944 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2947 while (retry_count
) {
2948 if (signal_pending(current
)) {
2953 * Rather than hide all in some function, I do this in
2954 * open coded manner. You see what this really does.
2955 * We have to guarantee mem->res.limit < mem->memsw.limit.
2957 mutex_lock(&set_limit_mutex
);
2958 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2959 if (memswlimit
< val
) {
2961 mutex_unlock(&set_limit_mutex
);
2965 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2969 ret
= res_counter_set_limit(&memcg
->res
, val
);
2971 if (memswlimit
== val
)
2972 memcg
->memsw_is_minimum
= true;
2974 memcg
->memsw_is_minimum
= false;
2976 mutex_unlock(&set_limit_mutex
);
2981 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
2982 MEM_CGROUP_RECLAIM_SHRINK
);
2983 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2984 /* Usage is reduced ? */
2985 if (curusage
>= oldusage
)
2988 oldusage
= curusage
;
2990 if (!ret
&& enlarge
)
2991 memcg_oom_recover(memcg
);
2996 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2997 unsigned long long val
)
3000 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3001 int children
= mem_cgroup_count_children(memcg
);
3005 /* see mem_cgroup_resize_res_limit */
3006 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3007 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3008 while (retry_count
) {
3009 if (signal_pending(current
)) {
3014 * Rather than hide all in some function, I do this in
3015 * open coded manner. You see what this really does.
3016 * We have to guarantee mem->res.limit < mem->memsw.limit.
3018 mutex_lock(&set_limit_mutex
);
3019 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3020 if (memlimit
> val
) {
3022 mutex_unlock(&set_limit_mutex
);
3025 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3026 if (memswlimit
< val
)
3028 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3030 if (memlimit
== val
)
3031 memcg
->memsw_is_minimum
= true;
3033 memcg
->memsw_is_minimum
= false;
3035 mutex_unlock(&set_limit_mutex
);
3040 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3041 MEM_CGROUP_RECLAIM_NOSWAP
|
3042 MEM_CGROUP_RECLAIM_SHRINK
);
3043 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3044 /* Usage is reduced ? */
3045 if (curusage
>= oldusage
)
3048 oldusage
= curusage
;
3050 if (!ret
&& enlarge
)
3051 memcg_oom_recover(memcg
);
3055 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3058 unsigned long nr_reclaimed
= 0;
3059 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3060 unsigned long reclaimed
;
3062 struct mem_cgroup_tree_per_zone
*mctz
;
3063 unsigned long long excess
;
3068 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3070 * This loop can run a while, specially if mem_cgroup's continuously
3071 * keep exceeding their soft limit and putting the system under
3078 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3082 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3084 MEM_CGROUP_RECLAIM_SOFT
);
3085 nr_reclaimed
+= reclaimed
;
3086 spin_lock(&mctz
->lock
);
3089 * If we failed to reclaim anything from this memory cgroup
3090 * it is time to move on to the next cgroup
3096 * Loop until we find yet another one.
3098 * By the time we get the soft_limit lock
3099 * again, someone might have aded the
3100 * group back on the RB tree. Iterate to
3101 * make sure we get a different mem.
3102 * mem_cgroup_largest_soft_limit_node returns
3103 * NULL if no other cgroup is present on
3107 __mem_cgroup_largest_soft_limit_node(mctz
);
3108 if (next_mz
== mz
) {
3109 css_put(&next_mz
->mem
->css
);
3111 } else /* next_mz == NULL or other memcg */
3115 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3116 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3118 * One school of thought says that we should not add
3119 * back the node to the tree if reclaim returns 0.
3120 * But our reclaim could return 0, simply because due
3121 * to priority we are exposing a smaller subset of
3122 * memory to reclaim from. Consider this as a longer
3125 /* If excess == 0, no tree ops */
3126 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3127 spin_unlock(&mctz
->lock
);
3128 css_put(&mz
->mem
->css
);
3131 * Could not reclaim anything and there are no more
3132 * mem cgroups to try or we seem to be looping without
3133 * reclaiming anything.
3135 if (!nr_reclaimed
&&
3137 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3139 } while (!nr_reclaimed
);
3141 css_put(&next_mz
->mem
->css
);
3142 return nr_reclaimed
;
3146 * This routine traverse page_cgroup in given list and drop them all.
3147 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3149 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
3150 int node
, int zid
, enum lru_list lru
)
3153 struct mem_cgroup_per_zone
*mz
;
3154 struct page_cgroup
*pc
, *busy
;
3155 unsigned long flags
, loop
;
3156 struct list_head
*list
;
3159 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3160 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
3161 list
= &mz
->lists
[lru
];
3163 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3164 /* give some margin against EBUSY etc...*/
3169 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3170 if (list_empty(list
)) {
3171 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3174 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3176 list_move(&pc
->lru
, list
);
3178 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3181 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3183 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
3187 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3188 /* found lock contention or "pc" is obsolete. */
3195 if (!ret
&& !list_empty(list
))
3201 * make mem_cgroup's charge to be 0 if there is no task.
3202 * This enables deleting this mem_cgroup.
3204 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
3207 int node
, zid
, shrink
;
3208 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3209 struct cgroup
*cgrp
= mem
->css
.cgroup
;
3214 /* should free all ? */
3220 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3223 if (signal_pending(current
))
3225 /* This is for making all *used* pages to be on LRU. */
3226 lru_add_drain_all();
3227 drain_all_stock_sync();
3229 mem_cgroup_start_move(mem
);
3230 for_each_node_state(node
, N_HIGH_MEMORY
) {
3231 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3234 ret
= mem_cgroup_force_empty_list(mem
,
3243 mem_cgroup_end_move(mem
);
3244 memcg_oom_recover(mem
);
3245 /* it seems parent cgroup doesn't have enough mem */
3249 /* "ret" should also be checked to ensure all lists are empty. */
3250 } while (mem
->res
.usage
> 0 || ret
);
3256 /* returns EBUSY if there is a task or if we come here twice. */
3257 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3261 /* we call try-to-free pages for make this cgroup empty */
3262 lru_add_drain_all();
3263 /* try to free all pages in this cgroup */
3265 while (nr_retries
&& mem
->res
.usage
> 0) {
3268 if (signal_pending(current
)) {
3272 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3273 false, get_swappiness(mem
));
3276 /* maybe some writeback is necessary */
3277 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3282 /* try move_account...there may be some *locked* pages. */
3286 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3288 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3292 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3294 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3297 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3301 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3302 struct cgroup
*parent
= cont
->parent
;
3303 struct mem_cgroup
*parent_mem
= NULL
;
3306 parent_mem
= mem_cgroup_from_cont(parent
);
3310 * If parent's use_hierarchy is set, we can't make any modifications
3311 * in the child subtrees. If it is unset, then the change can
3312 * occur, provided the current cgroup has no children.
3314 * For the root cgroup, parent_mem is NULL, we allow value to be
3315 * set if there are no children.
3317 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3318 (val
== 1 || val
== 0)) {
3319 if (list_empty(&cont
->children
))
3320 mem
->use_hierarchy
= val
;
3331 static u64
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup
*mem
,
3332 enum mem_cgroup_stat_index idx
)
3334 struct mem_cgroup
*iter
;
3337 /* each per cpu's value can be minus.Then, use s64 */
3338 for_each_mem_cgroup_tree(iter
, mem
)
3339 val
+= mem_cgroup_read_stat(iter
, idx
);
3341 if (val
< 0) /* race ? */
3346 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3350 if (!mem_cgroup_is_root(mem
)) {
3352 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3354 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3357 val
= mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3358 val
+= mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_RSS
);
3361 val
+= mem_cgroup_get_recursive_idx_stat(mem
,
3362 MEM_CGROUP_STAT_SWAPOUT
);
3364 return val
<< PAGE_SHIFT
;
3367 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3369 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3373 type
= MEMFILE_TYPE(cft
->private);
3374 name
= MEMFILE_ATTR(cft
->private);
3377 if (name
== RES_USAGE
)
3378 val
= mem_cgroup_usage(mem
, false);
3380 val
= res_counter_read_u64(&mem
->res
, name
);
3383 if (name
== RES_USAGE
)
3384 val
= mem_cgroup_usage(mem
, true);
3386 val
= res_counter_read_u64(&mem
->memsw
, name
);
3395 * The user of this function is...
3398 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3401 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3403 unsigned long long val
;
3406 type
= MEMFILE_TYPE(cft
->private);
3407 name
= MEMFILE_ATTR(cft
->private);
3410 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3414 /* This function does all necessary parse...reuse it */
3415 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3419 ret
= mem_cgroup_resize_limit(memcg
, val
);
3421 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3423 case RES_SOFT_LIMIT
:
3424 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3428 * For memsw, soft limits are hard to implement in terms
3429 * of semantics, for now, we support soft limits for
3430 * control without swap
3433 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3438 ret
= -EINVAL
; /* should be BUG() ? */
3444 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3445 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3447 struct cgroup
*cgroup
;
3448 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3450 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3451 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3452 cgroup
= memcg
->css
.cgroup
;
3453 if (!memcg
->use_hierarchy
)
3456 while (cgroup
->parent
) {
3457 cgroup
= cgroup
->parent
;
3458 memcg
= mem_cgroup_from_cont(cgroup
);
3459 if (!memcg
->use_hierarchy
)
3461 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3462 min_limit
= min(min_limit
, tmp
);
3463 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3464 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3467 *mem_limit
= min_limit
;
3468 *memsw_limit
= min_memsw_limit
;
3472 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3474 struct mem_cgroup
*mem
;
3477 mem
= mem_cgroup_from_cont(cont
);
3478 type
= MEMFILE_TYPE(event
);
3479 name
= MEMFILE_ATTR(event
);
3483 res_counter_reset_max(&mem
->res
);
3485 res_counter_reset_max(&mem
->memsw
);
3489 res_counter_reset_failcnt(&mem
->res
);
3491 res_counter_reset_failcnt(&mem
->memsw
);
3498 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3501 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3505 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3506 struct cftype
*cft
, u64 val
)
3508 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3510 if (val
>= (1 << NR_MOVE_TYPE
))
3513 * We check this value several times in both in can_attach() and
3514 * attach(), so we need cgroup lock to prevent this value from being
3518 mem
->move_charge_at_immigrate
= val
;
3524 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3525 struct cftype
*cft
, u64 val
)
3532 /* For read statistics */
3548 struct mcs_total_stat
{
3549 s64 stat
[NR_MCS_STAT
];
3555 } memcg_stat_strings
[NR_MCS_STAT
] = {
3556 {"cache", "total_cache"},
3557 {"rss", "total_rss"},
3558 {"mapped_file", "total_mapped_file"},
3559 {"pgpgin", "total_pgpgin"},
3560 {"pgpgout", "total_pgpgout"},
3561 {"swap", "total_swap"},
3562 {"inactive_anon", "total_inactive_anon"},
3563 {"active_anon", "total_active_anon"},
3564 {"inactive_file", "total_inactive_file"},
3565 {"active_file", "total_active_file"},
3566 {"unevictable", "total_unevictable"}
3571 mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3576 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3577 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
3578 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
3579 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
3580 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
3581 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
3582 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
3583 s
->stat
[MCS_PGPGIN
] += val
;
3584 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
3585 s
->stat
[MCS_PGPGOUT
] += val
;
3586 if (do_swap_account
) {
3587 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3588 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
3592 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
3593 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
3594 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
3595 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
3596 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
3597 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
3598 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
3599 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
3600 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
3601 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
3605 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3607 struct mem_cgroup
*iter
;
3609 for_each_mem_cgroup_tree(iter
, mem
)
3610 mem_cgroup_get_local_stat(iter
, s
);
3613 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
3614 struct cgroup_map_cb
*cb
)
3616 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
3617 struct mcs_total_stat mystat
;
3620 memset(&mystat
, 0, sizeof(mystat
));
3621 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
3623 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3624 if (i
== MCS_SWAP
&& !do_swap_account
)
3626 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
3629 /* Hierarchical information */
3631 unsigned long long limit
, memsw_limit
;
3632 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
3633 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
3634 if (do_swap_account
)
3635 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
3638 memset(&mystat
, 0, sizeof(mystat
));
3639 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
3640 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3641 if (i
== MCS_SWAP
&& !do_swap_account
)
3643 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
3646 #ifdef CONFIG_DEBUG_VM
3647 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
3651 struct mem_cgroup_per_zone
*mz
;
3652 unsigned long recent_rotated
[2] = {0, 0};
3653 unsigned long recent_scanned
[2] = {0, 0};
3655 for_each_online_node(nid
)
3656 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3657 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
3659 recent_rotated
[0] +=
3660 mz
->reclaim_stat
.recent_rotated
[0];
3661 recent_rotated
[1] +=
3662 mz
->reclaim_stat
.recent_rotated
[1];
3663 recent_scanned
[0] +=
3664 mz
->reclaim_stat
.recent_scanned
[0];
3665 recent_scanned
[1] +=
3666 mz
->reclaim_stat
.recent_scanned
[1];
3668 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
3669 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
3670 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
3671 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
3678 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
3680 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3682 return get_swappiness(memcg
);
3685 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
3688 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3689 struct mem_cgroup
*parent
;
3694 if (cgrp
->parent
== NULL
)
3697 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3701 /* If under hierarchy, only empty-root can set this value */
3702 if ((parent
->use_hierarchy
) ||
3703 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3708 spin_lock(&memcg
->reclaim_param_lock
);
3709 memcg
->swappiness
= val
;
3710 spin_unlock(&memcg
->reclaim_param_lock
);
3717 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3719 struct mem_cgroup_threshold_ary
*t
;
3725 t
= rcu_dereference(memcg
->thresholds
.primary
);
3727 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3732 usage
= mem_cgroup_usage(memcg
, swap
);
3735 * current_threshold points to threshold just below usage.
3736 * If it's not true, a threshold was crossed after last
3737 * call of __mem_cgroup_threshold().
3739 i
= t
->current_threshold
;
3742 * Iterate backward over array of thresholds starting from
3743 * current_threshold and check if a threshold is crossed.
3744 * If none of thresholds below usage is crossed, we read
3745 * only one element of the array here.
3747 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3748 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3750 /* i = current_threshold + 1 */
3754 * Iterate forward over array of thresholds starting from
3755 * current_threshold+1 and check if a threshold is crossed.
3756 * If none of thresholds above usage is crossed, we read
3757 * only one element of the array here.
3759 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3760 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3762 /* Update current_threshold */
3763 t
->current_threshold
= i
- 1;
3768 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3771 __mem_cgroup_threshold(memcg
, false);
3772 if (do_swap_account
)
3773 __mem_cgroup_threshold(memcg
, true);
3775 memcg
= parent_mem_cgroup(memcg
);
3779 static int compare_thresholds(const void *a
, const void *b
)
3781 const struct mem_cgroup_threshold
*_a
= a
;
3782 const struct mem_cgroup_threshold
*_b
= b
;
3784 return _a
->threshold
- _b
->threshold
;
3787 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
)
3789 struct mem_cgroup_eventfd_list
*ev
;
3791 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
3792 eventfd_signal(ev
->eventfd
, 1);
3796 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
3798 struct mem_cgroup
*iter
;
3800 for_each_mem_cgroup_tree(iter
, mem
)
3801 mem_cgroup_oom_notify_cb(iter
);
3804 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
3805 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
3807 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3808 struct mem_cgroup_thresholds
*thresholds
;
3809 struct mem_cgroup_threshold_ary
*new;
3810 int type
= MEMFILE_TYPE(cft
->private);
3811 u64 threshold
, usage
;
3814 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
3818 mutex_lock(&memcg
->thresholds_lock
);
3821 thresholds
= &memcg
->thresholds
;
3822 else if (type
== _MEMSWAP
)
3823 thresholds
= &memcg
->memsw_thresholds
;
3827 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3829 /* Check if a threshold crossed before adding a new one */
3830 if (thresholds
->primary
)
3831 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3833 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3835 /* Allocate memory for new array of thresholds */
3836 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3844 /* Copy thresholds (if any) to new array */
3845 if (thresholds
->primary
) {
3846 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3847 sizeof(struct mem_cgroup_threshold
));
3850 /* Add new threshold */
3851 new->entries
[size
- 1].eventfd
= eventfd
;
3852 new->entries
[size
- 1].threshold
= threshold
;
3854 /* Sort thresholds. Registering of new threshold isn't time-critical */
3855 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3856 compare_thresholds
, NULL
);
3858 /* Find current threshold */
3859 new->current_threshold
= -1;
3860 for (i
= 0; i
< size
; i
++) {
3861 if (new->entries
[i
].threshold
< usage
) {
3863 * new->current_threshold will not be used until
3864 * rcu_assign_pointer(), so it's safe to increment
3867 ++new->current_threshold
;
3871 /* Free old spare buffer and save old primary buffer as spare */
3872 kfree(thresholds
->spare
);
3873 thresholds
->spare
= thresholds
->primary
;
3875 rcu_assign_pointer(thresholds
->primary
, new);
3877 /* To be sure that nobody uses thresholds */
3881 mutex_unlock(&memcg
->thresholds_lock
);
3886 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
3887 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
3889 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3890 struct mem_cgroup_thresholds
*thresholds
;
3891 struct mem_cgroup_threshold_ary
*new;
3892 int type
= MEMFILE_TYPE(cft
->private);
3896 mutex_lock(&memcg
->thresholds_lock
);
3898 thresholds
= &memcg
->thresholds
;
3899 else if (type
== _MEMSWAP
)
3900 thresholds
= &memcg
->memsw_thresholds
;
3905 * Something went wrong if we trying to unregister a threshold
3906 * if we don't have thresholds
3908 BUG_ON(!thresholds
);
3910 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3912 /* Check if a threshold crossed before removing */
3913 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3915 /* Calculate new number of threshold */
3917 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3918 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3922 new = thresholds
->spare
;
3924 /* Set thresholds array to NULL if we don't have thresholds */
3933 /* Copy thresholds and find current threshold */
3934 new->current_threshold
= -1;
3935 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3936 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3939 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3940 if (new->entries
[j
].threshold
< usage
) {
3942 * new->current_threshold will not be used
3943 * until rcu_assign_pointer(), so it's safe to increment
3946 ++new->current_threshold
;
3952 /* Swap primary and spare array */
3953 thresholds
->spare
= thresholds
->primary
;
3954 rcu_assign_pointer(thresholds
->primary
, new);
3956 /* To be sure that nobody uses thresholds */
3959 mutex_unlock(&memcg
->thresholds_lock
);
3962 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
3963 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
3965 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3966 struct mem_cgroup_eventfd_list
*event
;
3967 int type
= MEMFILE_TYPE(cft
->private);
3969 BUG_ON(type
!= _OOM_TYPE
);
3970 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3974 mutex_lock(&memcg_oom_mutex
);
3976 event
->eventfd
= eventfd
;
3977 list_add(&event
->list
, &memcg
->oom_notify
);
3979 /* already in OOM ? */
3980 if (atomic_read(&memcg
->oom_lock
))
3981 eventfd_signal(eventfd
, 1);
3982 mutex_unlock(&memcg_oom_mutex
);
3987 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
3988 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
3990 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3991 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3992 int type
= MEMFILE_TYPE(cft
->private);
3994 BUG_ON(type
!= _OOM_TYPE
);
3996 mutex_lock(&memcg_oom_mutex
);
3998 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
3999 if (ev
->eventfd
== eventfd
) {
4000 list_del(&ev
->list
);
4005 mutex_unlock(&memcg_oom_mutex
);
4008 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4009 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4011 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4013 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
4015 if (atomic_read(&mem
->oom_lock
))
4016 cb
->fill(cb
, "under_oom", 1);
4018 cb
->fill(cb
, "under_oom", 0);
4022 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4023 struct cftype
*cft
, u64 val
)
4025 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4026 struct mem_cgroup
*parent
;
4028 /* cannot set to root cgroup and only 0 and 1 are allowed */
4029 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4032 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4035 /* oom-kill-disable is a flag for subhierarchy. */
4036 if ((parent
->use_hierarchy
) ||
4037 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4041 mem
->oom_kill_disable
= val
;
4043 memcg_oom_recover(mem
);
4048 static struct cftype mem_cgroup_files
[] = {
4050 .name
= "usage_in_bytes",
4051 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4052 .read_u64
= mem_cgroup_read
,
4053 .register_event
= mem_cgroup_usage_register_event
,
4054 .unregister_event
= mem_cgroup_usage_unregister_event
,
4057 .name
= "max_usage_in_bytes",
4058 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4059 .trigger
= mem_cgroup_reset
,
4060 .read_u64
= mem_cgroup_read
,
4063 .name
= "limit_in_bytes",
4064 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4065 .write_string
= mem_cgroup_write
,
4066 .read_u64
= mem_cgroup_read
,
4069 .name
= "soft_limit_in_bytes",
4070 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4071 .write_string
= mem_cgroup_write
,
4072 .read_u64
= mem_cgroup_read
,
4076 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4077 .trigger
= mem_cgroup_reset
,
4078 .read_u64
= mem_cgroup_read
,
4082 .read_map
= mem_control_stat_show
,
4085 .name
= "force_empty",
4086 .trigger
= mem_cgroup_force_empty_write
,
4089 .name
= "use_hierarchy",
4090 .write_u64
= mem_cgroup_hierarchy_write
,
4091 .read_u64
= mem_cgroup_hierarchy_read
,
4094 .name
= "swappiness",
4095 .read_u64
= mem_cgroup_swappiness_read
,
4096 .write_u64
= mem_cgroup_swappiness_write
,
4099 .name
= "move_charge_at_immigrate",
4100 .read_u64
= mem_cgroup_move_charge_read
,
4101 .write_u64
= mem_cgroup_move_charge_write
,
4104 .name
= "oom_control",
4105 .read_map
= mem_cgroup_oom_control_read
,
4106 .write_u64
= mem_cgroup_oom_control_write
,
4107 .register_event
= mem_cgroup_oom_register_event
,
4108 .unregister_event
= mem_cgroup_oom_unregister_event
,
4109 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4113 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4114 static struct cftype memsw_cgroup_files
[] = {
4116 .name
= "memsw.usage_in_bytes",
4117 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4118 .read_u64
= mem_cgroup_read
,
4119 .register_event
= mem_cgroup_usage_register_event
,
4120 .unregister_event
= mem_cgroup_usage_unregister_event
,
4123 .name
= "memsw.max_usage_in_bytes",
4124 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4125 .trigger
= mem_cgroup_reset
,
4126 .read_u64
= mem_cgroup_read
,
4129 .name
= "memsw.limit_in_bytes",
4130 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4131 .write_string
= mem_cgroup_write
,
4132 .read_u64
= mem_cgroup_read
,
4135 .name
= "memsw.failcnt",
4136 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4137 .trigger
= mem_cgroup_reset
,
4138 .read_u64
= mem_cgroup_read
,
4142 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4144 if (!do_swap_account
)
4146 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4147 ARRAY_SIZE(memsw_cgroup_files
));
4150 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4156 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4158 struct mem_cgroup_per_node
*pn
;
4159 struct mem_cgroup_per_zone
*mz
;
4161 int zone
, tmp
= node
;
4163 * This routine is called against possible nodes.
4164 * But it's BUG to call kmalloc() against offline node.
4166 * TODO: this routine can waste much memory for nodes which will
4167 * never be onlined. It's better to use memory hotplug callback
4170 if (!node_state(node
, N_NORMAL_MEMORY
))
4172 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4176 mem
->info
.nodeinfo
[node
] = pn
;
4177 memset(pn
, 0, sizeof(*pn
));
4179 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4180 mz
= &pn
->zoneinfo
[zone
];
4182 INIT_LIST_HEAD(&mz
->lists
[l
]);
4183 mz
->usage_in_excess
= 0;
4184 mz
->on_tree
= false;
4190 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4192 kfree(mem
->info
.nodeinfo
[node
]);
4195 static struct mem_cgroup
*mem_cgroup_alloc(void)
4197 struct mem_cgroup
*mem
;
4198 int size
= sizeof(struct mem_cgroup
);
4200 /* Can be very big if MAX_NUMNODES is very big */
4201 if (size
< PAGE_SIZE
)
4202 mem
= kmalloc(size
, GFP_KERNEL
);
4204 mem
= vmalloc(size
);
4209 memset(mem
, 0, size
);
4210 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4212 if (size
< PAGE_SIZE
)
4218 spin_lock_init(&mem
->pcp_counter_lock
);
4223 * At destroying mem_cgroup, references from swap_cgroup can remain.
4224 * (scanning all at force_empty is too costly...)
4226 * Instead of clearing all references at force_empty, we remember
4227 * the number of reference from swap_cgroup and free mem_cgroup when
4228 * it goes down to 0.
4230 * Removal of cgroup itself succeeds regardless of refs from swap.
4233 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
4237 mem_cgroup_remove_from_trees(mem
);
4238 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
4240 for_each_node_state(node
, N_POSSIBLE
)
4241 free_mem_cgroup_per_zone_info(mem
, node
);
4243 free_percpu(mem
->stat
);
4244 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4250 static void mem_cgroup_get(struct mem_cgroup
*mem
)
4252 atomic_inc(&mem
->refcnt
);
4255 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
4257 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
4258 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
4259 __mem_cgroup_free(mem
);
4261 mem_cgroup_put(parent
);
4265 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4267 __mem_cgroup_put(mem
, 1);
4271 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4273 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4275 if (!mem
->res
.parent
)
4277 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4280 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4281 static void __init
enable_swap_cgroup(void)
4283 if (!mem_cgroup_disabled() && really_do_swap_account
)
4284 do_swap_account
= 1;
4287 static void __init
enable_swap_cgroup(void)
4292 static int mem_cgroup_soft_limit_tree_init(void)
4294 struct mem_cgroup_tree_per_node
*rtpn
;
4295 struct mem_cgroup_tree_per_zone
*rtpz
;
4296 int tmp
, node
, zone
;
4298 for_each_node_state(node
, N_POSSIBLE
) {
4300 if (!node_state(node
, N_NORMAL_MEMORY
))
4302 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4306 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4308 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4309 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4310 rtpz
->rb_root
= RB_ROOT
;
4311 spin_lock_init(&rtpz
->lock
);
4317 static struct cgroup_subsys_state
* __ref
4318 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4320 struct mem_cgroup
*mem
, *parent
;
4321 long error
= -ENOMEM
;
4324 mem
= mem_cgroup_alloc();
4326 return ERR_PTR(error
);
4328 for_each_node_state(node
, N_POSSIBLE
)
4329 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
4333 if (cont
->parent
== NULL
) {
4335 enable_swap_cgroup();
4337 root_mem_cgroup
= mem
;
4338 if (mem_cgroup_soft_limit_tree_init())
4340 for_each_possible_cpu(cpu
) {
4341 struct memcg_stock_pcp
*stock
=
4342 &per_cpu(memcg_stock
, cpu
);
4343 INIT_WORK(&stock
->work
, drain_local_stock
);
4345 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4347 parent
= mem_cgroup_from_cont(cont
->parent
);
4348 mem
->use_hierarchy
= parent
->use_hierarchy
;
4349 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
4352 if (parent
&& parent
->use_hierarchy
) {
4353 res_counter_init(&mem
->res
, &parent
->res
);
4354 res_counter_init(&mem
->memsw
, &parent
->memsw
);
4356 * We increment refcnt of the parent to ensure that we can
4357 * safely access it on res_counter_charge/uncharge.
4358 * This refcnt will be decremented when freeing this
4359 * mem_cgroup(see mem_cgroup_put).
4361 mem_cgroup_get(parent
);
4363 res_counter_init(&mem
->res
, NULL
);
4364 res_counter_init(&mem
->memsw
, NULL
);
4366 mem
->last_scanned_child
= 0;
4367 spin_lock_init(&mem
->reclaim_param_lock
);
4368 INIT_LIST_HEAD(&mem
->oom_notify
);
4371 mem
->swappiness
= get_swappiness(parent
);
4372 atomic_set(&mem
->refcnt
, 1);
4373 mem
->move_charge_at_immigrate
= 0;
4374 mutex_init(&mem
->thresholds_lock
);
4377 __mem_cgroup_free(mem
);
4378 root_mem_cgroup
= NULL
;
4379 return ERR_PTR(error
);
4382 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4383 struct cgroup
*cont
)
4385 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4387 return mem_cgroup_force_empty(mem
, false);
4390 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4391 struct cgroup
*cont
)
4393 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4395 mem_cgroup_put(mem
);
4398 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4399 struct cgroup
*cont
)
4403 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4404 ARRAY_SIZE(mem_cgroup_files
));
4407 ret
= register_memsw_files(cont
, ss
);
4412 /* Handlers for move charge at task migration. */
4413 #define PRECHARGE_COUNT_AT_ONCE 256
4414 static int mem_cgroup_do_precharge(unsigned long count
)
4417 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4418 struct mem_cgroup
*mem
= mc
.to
;
4420 if (mem_cgroup_is_root(mem
)) {
4421 mc
.precharge
+= count
;
4422 /* we don't need css_get for root */
4425 /* try to charge at once */
4427 struct res_counter
*dummy
;
4429 * "mem" cannot be under rmdir() because we've already checked
4430 * by cgroup_lock_live_cgroup() that it is not removed and we
4431 * are still under the same cgroup_mutex. So we can postpone
4434 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
4436 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
4437 PAGE_SIZE
* count
, &dummy
)) {
4438 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
4441 mc
.precharge
+= count
;
4445 /* fall back to one by one charge */
4447 if (signal_pending(current
)) {
4451 if (!batch_count
--) {
4452 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4455 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
4457 /* mem_cgroup_clear_mc() will do uncharge later */
4465 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4466 * @vma: the vma the pte to be checked belongs
4467 * @addr: the address corresponding to the pte to be checked
4468 * @ptent: the pte to be checked
4469 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4472 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4473 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4474 * move charge. if @target is not NULL, the page is stored in target->page
4475 * with extra refcnt got(Callers should handle it).
4476 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4477 * target for charge migration. if @target is not NULL, the entry is stored
4480 * Called with pte lock held.
4487 enum mc_target_type
{
4488 MC_TARGET_NONE
, /* not used */
4493 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4494 unsigned long addr
, pte_t ptent
)
4496 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4498 if (!page
|| !page_mapped(page
))
4500 if (PageAnon(page
)) {
4501 /* we don't move shared anon */
4502 if (!move_anon() || page_mapcount(page
) > 2)
4504 } else if (!move_file())
4505 /* we ignore mapcount for file pages */
4507 if (!get_page_unless_zero(page
))
4513 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4514 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4517 struct page
*page
= NULL
;
4518 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4520 if (!move_anon() || non_swap_entry(ent
))
4522 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
4523 if (usage_count
> 1) { /* we don't move shared anon */
4528 if (do_swap_account
)
4529 entry
->val
= ent
.val
;
4534 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4535 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4537 struct page
*page
= NULL
;
4538 struct inode
*inode
;
4539 struct address_space
*mapping
;
4542 if (!vma
->vm_file
) /* anonymous vma */
4547 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
4548 mapping
= vma
->vm_file
->f_mapping
;
4549 if (pte_none(ptent
))
4550 pgoff
= linear_page_index(vma
, addr
);
4551 else /* pte_file(ptent) is true */
4552 pgoff
= pte_to_pgoff(ptent
);
4554 /* page is moved even if it's not RSS of this task(page-faulted). */
4555 if (!mapping_cap_swap_backed(mapping
)) { /* normal file */
4556 page
= find_get_page(mapping
, pgoff
);
4557 } else { /* shmem/tmpfs file. we should take account of swap too. */
4559 mem_cgroup_get_shmem_target(inode
, pgoff
, &page
, &ent
);
4560 if (do_swap_account
)
4561 entry
->val
= ent
.val
;
4567 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
4568 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4570 struct page
*page
= NULL
;
4571 struct page_cgroup
*pc
;
4573 swp_entry_t ent
= { .val
= 0 };
4575 if (pte_present(ptent
))
4576 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4577 else if (is_swap_pte(ptent
))
4578 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4579 else if (pte_none(ptent
) || pte_file(ptent
))
4580 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4582 if (!page
&& !ent
.val
)
4585 pc
= lookup_page_cgroup(page
);
4587 * Do only loose check w/o page_cgroup lock.
4588 * mem_cgroup_move_account() checks the pc is valid or not under
4591 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
4592 ret
= MC_TARGET_PAGE
;
4594 target
->page
= page
;
4596 if (!ret
|| !target
)
4599 /* There is a swap entry and a page doesn't exist or isn't charged */
4600 if (ent
.val
&& !ret
&&
4601 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
4602 ret
= MC_TARGET_SWAP
;
4609 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4610 unsigned long addr
, unsigned long end
,
4611 struct mm_walk
*walk
)
4613 struct vm_area_struct
*vma
= walk
->private;
4617 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4618 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4619 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
4620 mc
.precharge
++; /* increment precharge temporarily */
4621 pte_unmap_unlock(pte
- 1, ptl
);
4627 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4629 unsigned long precharge
;
4630 struct vm_area_struct
*vma
;
4632 down_read(&mm
->mmap_sem
);
4633 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4634 struct mm_walk mem_cgroup_count_precharge_walk
= {
4635 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4639 if (is_vm_hugetlb_page(vma
))
4641 walk_page_range(vma
->vm_start
, vma
->vm_end
,
4642 &mem_cgroup_count_precharge_walk
);
4644 up_read(&mm
->mmap_sem
);
4646 precharge
= mc
.precharge
;
4652 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4654 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm
));
4657 static void mem_cgroup_clear_mc(void)
4659 struct mem_cgroup
*from
= mc
.from
;
4660 struct mem_cgroup
*to
= mc
.to
;
4662 /* we must uncharge all the leftover precharges from mc.to */
4664 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
4668 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4669 * we must uncharge here.
4671 if (mc
.moved_charge
) {
4672 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
4673 mc
.moved_charge
= 0;
4675 /* we must fixup refcnts and charges */
4676 if (mc
.moved_swap
) {
4677 /* uncharge swap account from the old cgroup */
4678 if (!mem_cgroup_is_root(mc
.from
))
4679 res_counter_uncharge(&mc
.from
->memsw
,
4680 PAGE_SIZE
* mc
.moved_swap
);
4681 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
4683 if (!mem_cgroup_is_root(mc
.to
)) {
4685 * we charged both to->res and to->memsw, so we should
4688 res_counter_uncharge(&mc
.to
->res
,
4689 PAGE_SIZE
* mc
.moved_swap
);
4691 /* we've already done mem_cgroup_get(mc.to) */
4695 spin_lock(&mc
.lock
);
4698 mc
.moving_task
= NULL
;
4699 spin_unlock(&mc
.lock
);
4700 mem_cgroup_end_move(from
);
4701 memcg_oom_recover(from
);
4702 memcg_oom_recover(to
);
4703 wake_up_all(&mc
.waitq
);
4706 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4707 struct cgroup
*cgroup
,
4708 struct task_struct
*p
,
4712 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
4714 if (mem
->move_charge_at_immigrate
) {
4715 struct mm_struct
*mm
;
4716 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
4718 VM_BUG_ON(from
== mem
);
4720 mm
= get_task_mm(p
);
4723 /* We move charges only when we move a owner of the mm */
4724 if (mm
->owner
== p
) {
4727 VM_BUG_ON(mc
.precharge
);
4728 VM_BUG_ON(mc
.moved_charge
);
4729 VM_BUG_ON(mc
.moved_swap
);
4730 VM_BUG_ON(mc
.moving_task
);
4731 mem_cgroup_start_move(from
);
4732 spin_lock(&mc
.lock
);
4736 mc
.moved_charge
= 0;
4738 mc
.moving_task
= current
;
4739 spin_unlock(&mc
.lock
);
4741 ret
= mem_cgroup_precharge_mc(mm
);
4743 mem_cgroup_clear_mc();
4750 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4751 struct cgroup
*cgroup
,
4752 struct task_struct
*p
,
4755 mem_cgroup_clear_mc();
4758 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4759 unsigned long addr
, unsigned long end
,
4760 struct mm_walk
*walk
)
4763 struct vm_area_struct
*vma
= walk
->private;
4768 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4769 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4770 pte_t ptent
= *(pte
++);
4771 union mc_target target
;
4774 struct page_cgroup
*pc
;
4780 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
4782 case MC_TARGET_PAGE
:
4784 if (isolate_lru_page(page
))
4786 pc
= lookup_page_cgroup(page
);
4787 if (!mem_cgroup_move_account(pc
,
4788 mc
.from
, mc
.to
, false)) {
4790 /* we uncharge from mc.from later. */
4793 putback_lru_page(page
);
4794 put
: /* is_target_pte_for_mc() gets the page */
4797 case MC_TARGET_SWAP
:
4799 if (!mem_cgroup_move_swap_account(ent
,
4800 mc
.from
, mc
.to
, false)) {
4802 /* we fixup refcnts and charges later. */
4810 pte_unmap_unlock(pte
- 1, ptl
);
4815 * We have consumed all precharges we got in can_attach().
4816 * We try charge one by one, but don't do any additional
4817 * charges to mc.to if we have failed in charge once in attach()
4820 ret
= mem_cgroup_do_precharge(1);
4828 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
4830 struct vm_area_struct
*vma
;
4832 lru_add_drain_all();
4833 down_read(&mm
->mmap_sem
);
4834 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4836 struct mm_walk mem_cgroup_move_charge_walk
= {
4837 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4841 if (is_vm_hugetlb_page(vma
))
4843 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
4844 &mem_cgroup_move_charge_walk
);
4847 * means we have consumed all precharges and failed in
4848 * doing additional charge. Just abandon here.
4852 up_read(&mm
->mmap_sem
);
4855 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4856 struct cgroup
*cont
,
4857 struct cgroup
*old_cont
,
4858 struct task_struct
*p
,
4861 struct mm_struct
*mm
;
4864 /* no need to move charge */
4867 mm
= get_task_mm(p
);
4869 mem_cgroup_move_charge(mm
);
4872 mem_cgroup_clear_mc();
4874 #else /* !CONFIG_MMU */
4875 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4876 struct cgroup
*cgroup
,
4877 struct task_struct
*p
,
4882 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4883 struct cgroup
*cgroup
,
4884 struct task_struct
*p
,
4888 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4889 struct cgroup
*cont
,
4890 struct cgroup
*old_cont
,
4891 struct task_struct
*p
,
4897 struct cgroup_subsys mem_cgroup_subsys
= {
4899 .subsys_id
= mem_cgroup_subsys_id
,
4900 .create
= mem_cgroup_create
,
4901 .pre_destroy
= mem_cgroup_pre_destroy
,
4902 .destroy
= mem_cgroup_destroy
,
4903 .populate
= mem_cgroup_populate
,
4904 .can_attach
= mem_cgroup_can_attach
,
4905 .cancel_attach
= mem_cgroup_cancel_attach
,
4906 .attach
= mem_cgroup_move_task
,
4911 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4913 static int __init
disable_swap_account(char *s
)
4915 really_do_swap_account
= 0;
4918 __setup("noswapaccount", disable_swap_account
);