xfs: fix incorrect b_offset initialisation
[linux-2.6/cjktty.git] / fs / xfs / xfs_buf.c
blobddfc58f405064655417d5e72d87ca627be9d38c0
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
44 static kmem_zone_t *xfs_buf_zone;
46 static struct workqueue_struct *xfslogd_workqueue;
48 #ifdef XFS_BUF_LOCK_TRACKING
49 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
52 #else
53 # define XB_SET_OWNER(bp) do { } while (0)
54 # define XB_CLEAR_OWNER(bp) do { } while (0)
55 # define XB_GET_OWNER(bp) do { } while (0)
56 #endif
58 #define xb_to_gfp(flags) \
59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
60 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
62 #define xb_to_km(flags) \
63 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
66 static inline int
67 xfs_buf_is_vmapped(
68 struct xfs_buf *bp)
71 * Return true if the buffer is vmapped.
73 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
74 * code is clever enough to know it doesn't have to map a single page,
75 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
77 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
80 static inline int
81 xfs_buf_vmap_len(
82 struct xfs_buf *bp)
84 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
88 * xfs_buf_lru_add - add a buffer to the LRU.
90 * The LRU takes a new reference to the buffer so that it will only be freed
91 * once the shrinker takes the buffer off the LRU.
93 STATIC void
94 xfs_buf_lru_add(
95 struct xfs_buf *bp)
97 struct xfs_buftarg *btp = bp->b_target;
99 spin_lock(&btp->bt_lru_lock);
100 if (list_empty(&bp->b_lru)) {
101 atomic_inc(&bp->b_hold);
102 list_add_tail(&bp->b_lru, &btp->bt_lru);
103 btp->bt_lru_nr++;
105 spin_unlock(&btp->bt_lru_lock);
109 * xfs_buf_lru_del - remove a buffer from the LRU
111 * The unlocked check is safe here because it only occurs when there are not
112 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
113 * to optimise the shrinker removing the buffer from the LRU and calling
114 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
115 * bt_lru_lock.
117 STATIC void
118 xfs_buf_lru_del(
119 struct xfs_buf *bp)
121 struct xfs_buftarg *btp = bp->b_target;
123 if (list_empty(&bp->b_lru))
124 return;
126 spin_lock(&btp->bt_lru_lock);
127 if (!list_empty(&bp->b_lru)) {
128 list_del_init(&bp->b_lru);
129 btp->bt_lru_nr--;
131 spin_unlock(&btp->bt_lru_lock);
135 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
136 * b_lru_ref count so that the buffer is freed immediately when the buffer
137 * reference count falls to zero. If the buffer is already on the LRU, we need
138 * to remove the reference that LRU holds on the buffer.
140 * This prevents build-up of stale buffers on the LRU.
142 void
143 xfs_buf_stale(
144 struct xfs_buf *bp)
146 ASSERT(xfs_buf_islocked(bp));
148 bp->b_flags |= XBF_STALE;
151 * Clear the delwri status so that a delwri queue walker will not
152 * flush this buffer to disk now that it is stale. The delwri queue has
153 * a reference to the buffer, so this is safe to do.
155 bp->b_flags &= ~_XBF_DELWRI_Q;
157 atomic_set(&(bp)->b_lru_ref, 0);
158 if (!list_empty(&bp->b_lru)) {
159 struct xfs_buftarg *btp = bp->b_target;
161 spin_lock(&btp->bt_lru_lock);
162 if (!list_empty(&bp->b_lru)) {
163 list_del_init(&bp->b_lru);
164 btp->bt_lru_nr--;
165 atomic_dec(&bp->b_hold);
167 spin_unlock(&btp->bt_lru_lock);
169 ASSERT(atomic_read(&bp->b_hold) >= 1);
172 struct xfs_buf *
173 xfs_buf_alloc(
174 struct xfs_buftarg *target,
175 xfs_off_t range_base,
176 size_t range_length,
177 xfs_buf_flags_t flags)
179 struct xfs_buf *bp;
181 bp = kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags));
182 if (unlikely(!bp))
183 return NULL;
186 * We don't want certain flags to appear in b_flags.
188 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
190 memset(bp, 0, sizeof(xfs_buf_t));
191 atomic_set(&bp->b_hold, 1);
192 atomic_set(&bp->b_lru_ref, 1);
193 init_completion(&bp->b_iowait);
194 INIT_LIST_HEAD(&bp->b_lru);
195 INIT_LIST_HEAD(&bp->b_list);
196 RB_CLEAR_NODE(&bp->b_rbnode);
197 sema_init(&bp->b_sema, 0); /* held, no waiters */
198 XB_SET_OWNER(bp);
199 bp->b_target = target;
200 bp->b_file_offset = range_base;
202 * Set buffer_length and count_desired to the same value initially.
203 * I/O routines should use count_desired, which will be the same in
204 * most cases but may be reset (e.g. XFS recovery).
206 bp->b_buffer_length = bp->b_count_desired = range_length;
207 bp->b_flags = flags;
208 bp->b_bn = XFS_BUF_DADDR_NULL;
209 atomic_set(&bp->b_pin_count, 0);
210 init_waitqueue_head(&bp->b_waiters);
212 XFS_STATS_INC(xb_create);
213 trace_xfs_buf_init(bp, _RET_IP_);
215 return bp;
219 * Allocate a page array capable of holding a specified number
220 * of pages, and point the page buf at it.
222 STATIC int
223 _xfs_buf_get_pages(
224 xfs_buf_t *bp,
225 int page_count,
226 xfs_buf_flags_t flags)
228 /* Make sure that we have a page list */
229 if (bp->b_pages == NULL) {
230 bp->b_page_count = page_count;
231 if (page_count <= XB_PAGES) {
232 bp->b_pages = bp->b_page_array;
233 } else {
234 bp->b_pages = kmem_alloc(sizeof(struct page *) *
235 page_count, xb_to_km(flags));
236 if (bp->b_pages == NULL)
237 return -ENOMEM;
239 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
241 return 0;
245 * Frees b_pages if it was allocated.
247 STATIC void
248 _xfs_buf_free_pages(
249 xfs_buf_t *bp)
251 if (bp->b_pages != bp->b_page_array) {
252 kmem_free(bp->b_pages);
253 bp->b_pages = NULL;
258 * Releases the specified buffer.
260 * The modification state of any associated pages is left unchanged.
261 * The buffer most not be on any hash - use xfs_buf_rele instead for
262 * hashed and refcounted buffers
264 void
265 xfs_buf_free(
266 xfs_buf_t *bp)
268 trace_xfs_buf_free(bp, _RET_IP_);
270 ASSERT(list_empty(&bp->b_lru));
272 if (bp->b_flags & _XBF_PAGES) {
273 uint i;
275 if (xfs_buf_is_vmapped(bp))
276 vm_unmap_ram(bp->b_addr - bp->b_offset,
277 bp->b_page_count);
279 for (i = 0; i < bp->b_page_count; i++) {
280 struct page *page = bp->b_pages[i];
282 __free_page(page);
284 } else if (bp->b_flags & _XBF_KMEM)
285 kmem_free(bp->b_addr);
286 _xfs_buf_free_pages(bp);
287 kmem_zone_free(xfs_buf_zone, bp);
291 * Allocates all the pages for buffer in question and builds it's page list.
293 STATIC int
294 xfs_buf_allocate_memory(
295 xfs_buf_t *bp,
296 uint flags)
298 size_t size = bp->b_count_desired;
299 size_t nbytes, offset;
300 gfp_t gfp_mask = xb_to_gfp(flags);
301 unsigned short page_count, i;
302 xfs_off_t end;
303 int error;
306 * for buffers that are contained within a single page, just allocate
307 * the memory from the heap - there's no need for the complexity of
308 * page arrays to keep allocation down to order 0.
310 if (bp->b_buffer_length < PAGE_SIZE) {
311 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
312 if (!bp->b_addr) {
313 /* low memory - use alloc_page loop instead */
314 goto use_alloc_page;
317 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
318 PAGE_MASK) !=
319 ((unsigned long)bp->b_addr & PAGE_MASK)) {
320 /* b_addr spans two pages - use alloc_page instead */
321 kmem_free(bp->b_addr);
322 bp->b_addr = NULL;
323 goto use_alloc_page;
325 bp->b_offset = offset_in_page(bp->b_addr);
326 bp->b_pages = bp->b_page_array;
327 bp->b_pages[0] = virt_to_page(bp->b_addr);
328 bp->b_page_count = 1;
329 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
330 return 0;
333 use_alloc_page:
334 end = bp->b_file_offset + bp->b_buffer_length;
335 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
336 error = _xfs_buf_get_pages(bp, page_count, flags);
337 if (unlikely(error))
338 return error;
340 offset = bp->b_offset;
341 bp->b_flags |= _XBF_PAGES;
343 for (i = 0; i < bp->b_page_count; i++) {
344 struct page *page;
345 uint retries = 0;
346 retry:
347 page = alloc_page(gfp_mask);
348 if (unlikely(page == NULL)) {
349 if (flags & XBF_READ_AHEAD) {
350 bp->b_page_count = i;
351 error = ENOMEM;
352 goto out_free_pages;
356 * This could deadlock.
358 * But until all the XFS lowlevel code is revamped to
359 * handle buffer allocation failures we can't do much.
361 if (!(++retries % 100))
362 xfs_err(NULL,
363 "possible memory allocation deadlock in %s (mode:0x%x)",
364 __func__, gfp_mask);
366 XFS_STATS_INC(xb_page_retries);
367 congestion_wait(BLK_RW_ASYNC, HZ/50);
368 goto retry;
371 XFS_STATS_INC(xb_page_found);
373 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
374 size -= nbytes;
375 bp->b_pages[i] = page;
376 offset = 0;
378 return 0;
380 out_free_pages:
381 for (i = 0; i < bp->b_page_count; i++)
382 __free_page(bp->b_pages[i]);
383 return error;
387 * Map buffer into kernel address-space if necessary.
389 STATIC int
390 _xfs_buf_map_pages(
391 xfs_buf_t *bp,
392 uint flags)
394 ASSERT(bp->b_flags & _XBF_PAGES);
395 if (bp->b_page_count == 1) {
396 /* A single page buffer is always mappable */
397 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
398 bp->b_flags |= XBF_MAPPED;
399 } else if (flags & XBF_MAPPED) {
400 int retried = 0;
402 do {
403 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
404 -1, PAGE_KERNEL);
405 if (bp->b_addr)
406 break;
407 vm_unmap_aliases();
408 } while (retried++ <= 1);
410 if (!bp->b_addr)
411 return -ENOMEM;
412 bp->b_addr += bp->b_offset;
413 bp->b_flags |= XBF_MAPPED;
416 return 0;
420 * Finding and Reading Buffers
424 * Look up, and creates if absent, a lockable buffer for
425 * a given range of an inode. The buffer is returned
426 * locked. No I/O is implied by this call.
428 xfs_buf_t *
429 _xfs_buf_find(
430 xfs_buftarg_t *btp, /* block device target */
431 xfs_off_t ioff, /* starting offset of range */
432 size_t isize, /* length of range */
433 xfs_buf_flags_t flags,
434 xfs_buf_t *new_bp)
436 xfs_off_t range_base;
437 size_t range_length;
438 struct xfs_perag *pag;
439 struct rb_node **rbp;
440 struct rb_node *parent;
441 xfs_buf_t *bp;
443 range_base = (ioff << BBSHIFT);
444 range_length = (isize << BBSHIFT);
446 /* Check for IOs smaller than the sector size / not sector aligned */
447 ASSERT(!(range_length < (1 << btp->bt_sshift)));
448 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
450 /* get tree root */
451 pag = xfs_perag_get(btp->bt_mount,
452 xfs_daddr_to_agno(btp->bt_mount, ioff));
454 /* walk tree */
455 spin_lock(&pag->pag_buf_lock);
456 rbp = &pag->pag_buf_tree.rb_node;
457 parent = NULL;
458 bp = NULL;
459 while (*rbp) {
460 parent = *rbp;
461 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
463 if (range_base < bp->b_file_offset)
464 rbp = &(*rbp)->rb_left;
465 else if (range_base > bp->b_file_offset)
466 rbp = &(*rbp)->rb_right;
467 else {
469 * found a block offset match. If the range doesn't
470 * match, the only way this is allowed is if the buffer
471 * in the cache is stale and the transaction that made
472 * it stale has not yet committed. i.e. we are
473 * reallocating a busy extent. Skip this buffer and
474 * continue searching to the right for an exact match.
476 if (bp->b_buffer_length != range_length) {
477 ASSERT(bp->b_flags & XBF_STALE);
478 rbp = &(*rbp)->rb_right;
479 continue;
481 atomic_inc(&bp->b_hold);
482 goto found;
486 /* No match found */
487 if (new_bp) {
488 rb_link_node(&new_bp->b_rbnode, parent, rbp);
489 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
490 /* the buffer keeps the perag reference until it is freed */
491 new_bp->b_pag = pag;
492 spin_unlock(&pag->pag_buf_lock);
493 } else {
494 XFS_STATS_INC(xb_miss_locked);
495 spin_unlock(&pag->pag_buf_lock);
496 xfs_perag_put(pag);
498 return new_bp;
500 found:
501 spin_unlock(&pag->pag_buf_lock);
502 xfs_perag_put(pag);
504 if (!xfs_buf_trylock(bp)) {
505 if (flags & XBF_TRYLOCK) {
506 xfs_buf_rele(bp);
507 XFS_STATS_INC(xb_busy_locked);
508 return NULL;
510 xfs_buf_lock(bp);
511 XFS_STATS_INC(xb_get_locked_waited);
515 * if the buffer is stale, clear all the external state associated with
516 * it. We need to keep flags such as how we allocated the buffer memory
517 * intact here.
519 if (bp->b_flags & XBF_STALE) {
520 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
521 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
524 trace_xfs_buf_find(bp, flags, _RET_IP_);
525 XFS_STATS_INC(xb_get_locked);
526 return bp;
530 * Assembles a buffer covering the specified range. The code is optimised for
531 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
532 * more hits than misses.
534 struct xfs_buf *
535 xfs_buf_get(
536 xfs_buftarg_t *target,/* target for buffer */
537 xfs_off_t ioff, /* starting offset of range */
538 size_t isize, /* length of range */
539 xfs_buf_flags_t flags)
541 struct xfs_buf *bp;
542 struct xfs_buf *new_bp;
543 int error = 0;
545 bp = _xfs_buf_find(target, ioff, isize, flags, NULL);
546 if (likely(bp))
547 goto found;
549 new_bp = xfs_buf_alloc(target, ioff << BBSHIFT, isize << BBSHIFT,
550 flags);
551 if (unlikely(!new_bp))
552 return NULL;
554 error = xfs_buf_allocate_memory(new_bp, flags);
555 if (error) {
556 kmem_zone_free(xfs_buf_zone, new_bp);
557 return NULL;
560 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
561 if (!bp) {
562 xfs_buf_free(new_bp);
563 return NULL;
566 if (bp != new_bp)
567 xfs_buf_free(new_bp);
570 * Now we have a workable buffer, fill in the block number so
571 * that we can do IO on it.
573 bp->b_bn = ioff;
574 bp->b_count_desired = bp->b_buffer_length;
576 found:
577 if (!(bp->b_flags & XBF_MAPPED)) {
578 error = _xfs_buf_map_pages(bp, flags);
579 if (unlikely(error)) {
580 xfs_warn(target->bt_mount,
581 "%s: failed to map pages\n", __func__);
582 goto no_buffer;
586 XFS_STATS_INC(xb_get);
587 trace_xfs_buf_get(bp, flags, _RET_IP_);
588 return bp;
590 no_buffer:
591 if (flags & (XBF_LOCK | XBF_TRYLOCK))
592 xfs_buf_unlock(bp);
593 xfs_buf_rele(bp);
594 return NULL;
597 STATIC int
598 _xfs_buf_read(
599 xfs_buf_t *bp,
600 xfs_buf_flags_t flags)
602 ASSERT(!(flags & XBF_WRITE));
603 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
605 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
606 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
608 xfs_buf_iorequest(bp);
609 if (flags & XBF_ASYNC)
610 return 0;
611 return xfs_buf_iowait(bp);
614 xfs_buf_t *
615 xfs_buf_read(
616 xfs_buftarg_t *target,
617 xfs_off_t ioff,
618 size_t isize,
619 xfs_buf_flags_t flags)
621 xfs_buf_t *bp;
623 flags |= XBF_READ;
625 bp = xfs_buf_get(target, ioff, isize, flags);
626 if (bp) {
627 trace_xfs_buf_read(bp, flags, _RET_IP_);
629 if (!XFS_BUF_ISDONE(bp)) {
630 XFS_STATS_INC(xb_get_read);
631 _xfs_buf_read(bp, flags);
632 } else if (flags & XBF_ASYNC) {
634 * Read ahead call which is already satisfied,
635 * drop the buffer
637 goto no_buffer;
638 } else {
639 /* We do not want read in the flags */
640 bp->b_flags &= ~XBF_READ;
644 return bp;
646 no_buffer:
647 if (flags & (XBF_LOCK | XBF_TRYLOCK))
648 xfs_buf_unlock(bp);
649 xfs_buf_rele(bp);
650 return NULL;
654 * If we are not low on memory then do the readahead in a deadlock
655 * safe manner.
657 void
658 xfs_buf_readahead(
659 xfs_buftarg_t *target,
660 xfs_off_t ioff,
661 size_t isize)
663 if (bdi_read_congested(target->bt_bdi))
664 return;
666 xfs_buf_read(target, ioff, isize,
667 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
671 * Read an uncached buffer from disk. Allocates and returns a locked
672 * buffer containing the disk contents or nothing.
674 struct xfs_buf *
675 xfs_buf_read_uncached(
676 struct xfs_mount *mp,
677 struct xfs_buftarg *target,
678 xfs_daddr_t daddr,
679 size_t length,
680 int flags)
682 xfs_buf_t *bp;
683 int error;
685 bp = xfs_buf_get_uncached(target, length, flags);
686 if (!bp)
687 return NULL;
689 /* set up the buffer for a read IO */
690 XFS_BUF_SET_ADDR(bp, daddr);
691 XFS_BUF_READ(bp);
693 xfsbdstrat(mp, bp);
694 error = xfs_buf_iowait(bp);
695 if (error) {
696 xfs_buf_relse(bp);
697 return NULL;
699 return bp;
703 * Return a buffer allocated as an empty buffer and associated to external
704 * memory via xfs_buf_associate_memory() back to it's empty state.
706 void
707 xfs_buf_set_empty(
708 struct xfs_buf *bp,
709 size_t len)
711 if (bp->b_pages)
712 _xfs_buf_free_pages(bp);
714 bp->b_pages = NULL;
715 bp->b_page_count = 0;
716 bp->b_addr = NULL;
717 bp->b_file_offset = 0;
718 bp->b_buffer_length = bp->b_count_desired = len;
719 bp->b_bn = XFS_BUF_DADDR_NULL;
720 bp->b_flags &= ~XBF_MAPPED;
723 static inline struct page *
724 mem_to_page(
725 void *addr)
727 if ((!is_vmalloc_addr(addr))) {
728 return virt_to_page(addr);
729 } else {
730 return vmalloc_to_page(addr);
735 xfs_buf_associate_memory(
736 xfs_buf_t *bp,
737 void *mem,
738 size_t len)
740 int rval;
741 int i = 0;
742 unsigned long pageaddr;
743 unsigned long offset;
744 size_t buflen;
745 int page_count;
747 pageaddr = (unsigned long)mem & PAGE_MASK;
748 offset = (unsigned long)mem - pageaddr;
749 buflen = PAGE_ALIGN(len + offset);
750 page_count = buflen >> PAGE_SHIFT;
752 /* Free any previous set of page pointers */
753 if (bp->b_pages)
754 _xfs_buf_free_pages(bp);
756 bp->b_pages = NULL;
757 bp->b_addr = mem;
759 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
760 if (rval)
761 return rval;
763 bp->b_offset = offset;
765 for (i = 0; i < bp->b_page_count; i++) {
766 bp->b_pages[i] = mem_to_page((void *)pageaddr);
767 pageaddr += PAGE_SIZE;
770 bp->b_count_desired = len;
771 bp->b_buffer_length = buflen;
772 bp->b_flags |= XBF_MAPPED;
774 return 0;
777 xfs_buf_t *
778 xfs_buf_get_uncached(
779 struct xfs_buftarg *target,
780 size_t len,
781 int flags)
783 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
784 int error, i;
785 xfs_buf_t *bp;
787 bp = xfs_buf_alloc(target, 0, len, 0);
788 if (unlikely(bp == NULL))
789 goto fail;
791 error = _xfs_buf_get_pages(bp, page_count, 0);
792 if (error)
793 goto fail_free_buf;
795 for (i = 0; i < page_count; i++) {
796 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
797 if (!bp->b_pages[i])
798 goto fail_free_mem;
800 bp->b_flags |= _XBF_PAGES;
802 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
803 if (unlikely(error)) {
804 xfs_warn(target->bt_mount,
805 "%s: failed to map pages\n", __func__);
806 goto fail_free_mem;
809 trace_xfs_buf_get_uncached(bp, _RET_IP_);
810 return bp;
812 fail_free_mem:
813 while (--i >= 0)
814 __free_page(bp->b_pages[i]);
815 _xfs_buf_free_pages(bp);
816 fail_free_buf:
817 kmem_zone_free(xfs_buf_zone, bp);
818 fail:
819 return NULL;
823 * Increment reference count on buffer, to hold the buffer concurrently
824 * with another thread which may release (free) the buffer asynchronously.
825 * Must hold the buffer already to call this function.
827 void
828 xfs_buf_hold(
829 xfs_buf_t *bp)
831 trace_xfs_buf_hold(bp, _RET_IP_);
832 atomic_inc(&bp->b_hold);
836 * Releases a hold on the specified buffer. If the
837 * the hold count is 1, calls xfs_buf_free.
839 void
840 xfs_buf_rele(
841 xfs_buf_t *bp)
843 struct xfs_perag *pag = bp->b_pag;
845 trace_xfs_buf_rele(bp, _RET_IP_);
847 if (!pag) {
848 ASSERT(list_empty(&bp->b_lru));
849 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
850 if (atomic_dec_and_test(&bp->b_hold))
851 xfs_buf_free(bp);
852 return;
855 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
857 ASSERT(atomic_read(&bp->b_hold) > 0);
858 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
859 if (!(bp->b_flags & XBF_STALE) &&
860 atomic_read(&bp->b_lru_ref)) {
861 xfs_buf_lru_add(bp);
862 spin_unlock(&pag->pag_buf_lock);
863 } else {
864 xfs_buf_lru_del(bp);
865 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
866 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
867 spin_unlock(&pag->pag_buf_lock);
868 xfs_perag_put(pag);
869 xfs_buf_free(bp);
876 * Lock a buffer object, if it is not already locked.
878 * If we come across a stale, pinned, locked buffer, we know that we are
879 * being asked to lock a buffer that has been reallocated. Because it is
880 * pinned, we know that the log has not been pushed to disk and hence it
881 * will still be locked. Rather than continuing to have trylock attempts
882 * fail until someone else pushes the log, push it ourselves before
883 * returning. This means that the xfsaild will not get stuck trying
884 * to push on stale inode buffers.
887 xfs_buf_trylock(
888 struct xfs_buf *bp)
890 int locked;
892 locked = down_trylock(&bp->b_sema) == 0;
893 if (locked)
894 XB_SET_OWNER(bp);
895 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
896 xfs_log_force(bp->b_target->bt_mount, 0);
898 trace_xfs_buf_trylock(bp, _RET_IP_);
899 return locked;
903 * Lock a buffer object.
905 * If we come across a stale, pinned, locked buffer, we know that we
906 * are being asked to lock a buffer that has been reallocated. Because
907 * it is pinned, we know that the log has not been pushed to disk and
908 * hence it will still be locked. Rather than sleeping until someone
909 * else pushes the log, push it ourselves before trying to get the lock.
911 void
912 xfs_buf_lock(
913 struct xfs_buf *bp)
915 trace_xfs_buf_lock(bp, _RET_IP_);
917 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
918 xfs_log_force(bp->b_target->bt_mount, 0);
919 down(&bp->b_sema);
920 XB_SET_OWNER(bp);
922 trace_xfs_buf_lock_done(bp, _RET_IP_);
925 void
926 xfs_buf_unlock(
927 struct xfs_buf *bp)
929 XB_CLEAR_OWNER(bp);
930 up(&bp->b_sema);
932 trace_xfs_buf_unlock(bp, _RET_IP_);
935 STATIC void
936 xfs_buf_wait_unpin(
937 xfs_buf_t *bp)
939 DECLARE_WAITQUEUE (wait, current);
941 if (atomic_read(&bp->b_pin_count) == 0)
942 return;
944 add_wait_queue(&bp->b_waiters, &wait);
945 for (;;) {
946 set_current_state(TASK_UNINTERRUPTIBLE);
947 if (atomic_read(&bp->b_pin_count) == 0)
948 break;
949 io_schedule();
951 remove_wait_queue(&bp->b_waiters, &wait);
952 set_current_state(TASK_RUNNING);
956 * Buffer Utility Routines
959 STATIC void
960 xfs_buf_iodone_work(
961 struct work_struct *work)
963 xfs_buf_t *bp =
964 container_of(work, xfs_buf_t, b_iodone_work);
966 if (bp->b_iodone)
967 (*(bp->b_iodone))(bp);
968 else if (bp->b_flags & XBF_ASYNC)
969 xfs_buf_relse(bp);
972 void
973 xfs_buf_ioend(
974 xfs_buf_t *bp,
975 int schedule)
977 trace_xfs_buf_iodone(bp, _RET_IP_);
979 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
980 if (bp->b_error == 0)
981 bp->b_flags |= XBF_DONE;
983 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
984 if (schedule) {
985 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
986 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
987 } else {
988 xfs_buf_iodone_work(&bp->b_iodone_work);
990 } else {
991 complete(&bp->b_iowait);
995 void
996 xfs_buf_ioerror(
997 xfs_buf_t *bp,
998 int error)
1000 ASSERT(error >= 0 && error <= 0xffff);
1001 bp->b_error = (unsigned short)error;
1002 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1005 void
1006 xfs_buf_ioerror_alert(
1007 struct xfs_buf *bp,
1008 const char *func)
1010 xfs_alert(bp->b_target->bt_mount,
1011 "metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd",
1012 (__uint64_t)XFS_BUF_ADDR(bp), func,
1013 bp->b_error, XFS_BUF_COUNT(bp));
1017 xfs_bwrite(
1018 struct xfs_buf *bp)
1020 int error;
1022 ASSERT(xfs_buf_islocked(bp));
1024 bp->b_flags |= XBF_WRITE;
1025 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1027 xfs_bdstrat_cb(bp);
1029 error = xfs_buf_iowait(bp);
1030 if (error) {
1031 xfs_force_shutdown(bp->b_target->bt_mount,
1032 SHUTDOWN_META_IO_ERROR);
1034 return error;
1038 * Called when we want to stop a buffer from getting written or read.
1039 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1040 * so that the proper iodone callbacks get called.
1042 STATIC int
1043 xfs_bioerror(
1044 xfs_buf_t *bp)
1046 #ifdef XFSERRORDEBUG
1047 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1048 #endif
1051 * No need to wait until the buffer is unpinned, we aren't flushing it.
1053 xfs_buf_ioerror(bp, EIO);
1056 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1058 XFS_BUF_UNREAD(bp);
1059 XFS_BUF_UNDONE(bp);
1060 xfs_buf_stale(bp);
1062 xfs_buf_ioend(bp, 0);
1064 return EIO;
1068 * Same as xfs_bioerror, except that we are releasing the buffer
1069 * here ourselves, and avoiding the xfs_buf_ioend call.
1070 * This is meant for userdata errors; metadata bufs come with
1071 * iodone functions attached, so that we can track down errors.
1073 STATIC int
1074 xfs_bioerror_relse(
1075 struct xfs_buf *bp)
1077 int64_t fl = bp->b_flags;
1079 * No need to wait until the buffer is unpinned.
1080 * We aren't flushing it.
1082 * chunkhold expects B_DONE to be set, whether
1083 * we actually finish the I/O or not. We don't want to
1084 * change that interface.
1086 XFS_BUF_UNREAD(bp);
1087 XFS_BUF_DONE(bp);
1088 xfs_buf_stale(bp);
1089 bp->b_iodone = NULL;
1090 if (!(fl & XBF_ASYNC)) {
1092 * Mark b_error and B_ERROR _both_.
1093 * Lot's of chunkcache code assumes that.
1094 * There's no reason to mark error for
1095 * ASYNC buffers.
1097 xfs_buf_ioerror(bp, EIO);
1098 complete(&bp->b_iowait);
1099 } else {
1100 xfs_buf_relse(bp);
1103 return EIO;
1108 * All xfs metadata buffers except log state machine buffers
1109 * get this attached as their b_bdstrat callback function.
1110 * This is so that we can catch a buffer
1111 * after prematurely unpinning it to forcibly shutdown the filesystem.
1114 xfs_bdstrat_cb(
1115 struct xfs_buf *bp)
1117 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1118 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1120 * Metadata write that didn't get logged but
1121 * written delayed anyway. These aren't associated
1122 * with a transaction, and can be ignored.
1124 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1125 return xfs_bioerror_relse(bp);
1126 else
1127 return xfs_bioerror(bp);
1130 xfs_buf_iorequest(bp);
1131 return 0;
1135 * Wrapper around bdstrat so that we can stop data from going to disk in case
1136 * we are shutting down the filesystem. Typically user data goes thru this
1137 * path; one of the exceptions is the superblock.
1139 void
1140 xfsbdstrat(
1141 struct xfs_mount *mp,
1142 struct xfs_buf *bp)
1144 if (XFS_FORCED_SHUTDOWN(mp)) {
1145 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1146 xfs_bioerror_relse(bp);
1147 return;
1150 xfs_buf_iorequest(bp);
1153 STATIC void
1154 _xfs_buf_ioend(
1155 xfs_buf_t *bp,
1156 int schedule)
1158 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1159 xfs_buf_ioend(bp, schedule);
1162 STATIC void
1163 xfs_buf_bio_end_io(
1164 struct bio *bio,
1165 int error)
1167 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1169 xfs_buf_ioerror(bp, -error);
1171 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1172 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1174 _xfs_buf_ioend(bp, 1);
1175 bio_put(bio);
1178 STATIC void
1179 _xfs_buf_ioapply(
1180 xfs_buf_t *bp)
1182 int rw, map_i, total_nr_pages, nr_pages;
1183 struct bio *bio;
1184 int offset = bp->b_offset;
1185 int size = bp->b_count_desired;
1186 sector_t sector = bp->b_bn;
1188 total_nr_pages = bp->b_page_count;
1189 map_i = 0;
1191 if (bp->b_flags & XBF_WRITE) {
1192 if (bp->b_flags & XBF_SYNCIO)
1193 rw = WRITE_SYNC;
1194 else
1195 rw = WRITE;
1196 if (bp->b_flags & XBF_FUA)
1197 rw |= REQ_FUA;
1198 if (bp->b_flags & XBF_FLUSH)
1199 rw |= REQ_FLUSH;
1200 } else if (bp->b_flags & XBF_READ_AHEAD) {
1201 rw = READA;
1202 } else {
1203 rw = READ;
1206 /* we only use the buffer cache for meta-data */
1207 rw |= REQ_META;
1209 next_chunk:
1210 atomic_inc(&bp->b_io_remaining);
1211 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1212 if (nr_pages > total_nr_pages)
1213 nr_pages = total_nr_pages;
1215 bio = bio_alloc(GFP_NOIO, nr_pages);
1216 bio->bi_bdev = bp->b_target->bt_bdev;
1217 bio->bi_sector = sector;
1218 bio->bi_end_io = xfs_buf_bio_end_io;
1219 bio->bi_private = bp;
1222 for (; size && nr_pages; nr_pages--, map_i++) {
1223 int rbytes, nbytes = PAGE_SIZE - offset;
1225 if (nbytes > size)
1226 nbytes = size;
1228 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1229 if (rbytes < nbytes)
1230 break;
1232 offset = 0;
1233 sector += nbytes >> BBSHIFT;
1234 size -= nbytes;
1235 total_nr_pages--;
1238 if (likely(bio->bi_size)) {
1239 if (xfs_buf_is_vmapped(bp)) {
1240 flush_kernel_vmap_range(bp->b_addr,
1241 xfs_buf_vmap_len(bp));
1243 submit_bio(rw, bio);
1244 if (size)
1245 goto next_chunk;
1246 } else {
1247 xfs_buf_ioerror(bp, EIO);
1248 bio_put(bio);
1252 void
1253 xfs_buf_iorequest(
1254 xfs_buf_t *bp)
1256 trace_xfs_buf_iorequest(bp, _RET_IP_);
1258 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1260 if (bp->b_flags & XBF_WRITE)
1261 xfs_buf_wait_unpin(bp);
1262 xfs_buf_hold(bp);
1264 /* Set the count to 1 initially, this will stop an I/O
1265 * completion callout which happens before we have started
1266 * all the I/O from calling xfs_buf_ioend too early.
1268 atomic_set(&bp->b_io_remaining, 1);
1269 _xfs_buf_ioapply(bp);
1270 _xfs_buf_ioend(bp, 0);
1272 xfs_buf_rele(bp);
1276 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1277 * no I/O is pending or there is already a pending error on the buffer. It
1278 * returns the I/O error code, if any, or 0 if there was no error.
1281 xfs_buf_iowait(
1282 xfs_buf_t *bp)
1284 trace_xfs_buf_iowait(bp, _RET_IP_);
1286 if (!bp->b_error)
1287 wait_for_completion(&bp->b_iowait);
1289 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1290 return bp->b_error;
1293 xfs_caddr_t
1294 xfs_buf_offset(
1295 xfs_buf_t *bp,
1296 size_t offset)
1298 struct page *page;
1300 if (bp->b_flags & XBF_MAPPED)
1301 return bp->b_addr + offset;
1303 offset += bp->b_offset;
1304 page = bp->b_pages[offset >> PAGE_SHIFT];
1305 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1309 * Move data into or out of a buffer.
1311 void
1312 xfs_buf_iomove(
1313 xfs_buf_t *bp, /* buffer to process */
1314 size_t boff, /* starting buffer offset */
1315 size_t bsize, /* length to copy */
1316 void *data, /* data address */
1317 xfs_buf_rw_t mode) /* read/write/zero flag */
1319 size_t bend, cpoff, csize;
1320 struct page *page;
1322 bend = boff + bsize;
1323 while (boff < bend) {
1324 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1325 cpoff = xfs_buf_poff(boff + bp->b_offset);
1326 csize = min_t(size_t,
1327 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1329 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1331 switch (mode) {
1332 case XBRW_ZERO:
1333 memset(page_address(page) + cpoff, 0, csize);
1334 break;
1335 case XBRW_READ:
1336 memcpy(data, page_address(page) + cpoff, csize);
1337 break;
1338 case XBRW_WRITE:
1339 memcpy(page_address(page) + cpoff, data, csize);
1342 boff += csize;
1343 data += csize;
1348 * Handling of buffer targets (buftargs).
1352 * Wait for any bufs with callbacks that have been submitted but have not yet
1353 * returned. These buffers will have an elevated hold count, so wait on those
1354 * while freeing all the buffers only held by the LRU.
1356 void
1357 xfs_wait_buftarg(
1358 struct xfs_buftarg *btp)
1360 struct xfs_buf *bp;
1362 restart:
1363 spin_lock(&btp->bt_lru_lock);
1364 while (!list_empty(&btp->bt_lru)) {
1365 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1366 if (atomic_read(&bp->b_hold) > 1) {
1367 spin_unlock(&btp->bt_lru_lock);
1368 delay(100);
1369 goto restart;
1372 * clear the LRU reference count so the buffer doesn't get
1373 * ignored in xfs_buf_rele().
1375 atomic_set(&bp->b_lru_ref, 0);
1376 spin_unlock(&btp->bt_lru_lock);
1377 xfs_buf_rele(bp);
1378 spin_lock(&btp->bt_lru_lock);
1380 spin_unlock(&btp->bt_lru_lock);
1384 xfs_buftarg_shrink(
1385 struct shrinker *shrink,
1386 struct shrink_control *sc)
1388 struct xfs_buftarg *btp = container_of(shrink,
1389 struct xfs_buftarg, bt_shrinker);
1390 struct xfs_buf *bp;
1391 int nr_to_scan = sc->nr_to_scan;
1392 LIST_HEAD(dispose);
1394 if (!nr_to_scan)
1395 return btp->bt_lru_nr;
1397 spin_lock(&btp->bt_lru_lock);
1398 while (!list_empty(&btp->bt_lru)) {
1399 if (nr_to_scan-- <= 0)
1400 break;
1402 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1405 * Decrement the b_lru_ref count unless the value is already
1406 * zero. If the value is already zero, we need to reclaim the
1407 * buffer, otherwise it gets another trip through the LRU.
1409 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1410 list_move_tail(&bp->b_lru, &btp->bt_lru);
1411 continue;
1415 * remove the buffer from the LRU now to avoid needing another
1416 * lock round trip inside xfs_buf_rele().
1418 list_move(&bp->b_lru, &dispose);
1419 btp->bt_lru_nr--;
1421 spin_unlock(&btp->bt_lru_lock);
1423 while (!list_empty(&dispose)) {
1424 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1425 list_del_init(&bp->b_lru);
1426 xfs_buf_rele(bp);
1429 return btp->bt_lru_nr;
1432 void
1433 xfs_free_buftarg(
1434 struct xfs_mount *mp,
1435 struct xfs_buftarg *btp)
1437 unregister_shrinker(&btp->bt_shrinker);
1439 if (mp->m_flags & XFS_MOUNT_BARRIER)
1440 xfs_blkdev_issue_flush(btp);
1442 kmem_free(btp);
1445 STATIC int
1446 xfs_setsize_buftarg_flags(
1447 xfs_buftarg_t *btp,
1448 unsigned int blocksize,
1449 unsigned int sectorsize,
1450 int verbose)
1452 btp->bt_bsize = blocksize;
1453 btp->bt_sshift = ffs(sectorsize) - 1;
1454 btp->bt_smask = sectorsize - 1;
1456 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1457 char name[BDEVNAME_SIZE];
1459 bdevname(btp->bt_bdev, name);
1461 xfs_warn(btp->bt_mount,
1462 "Cannot set_blocksize to %u on device %s\n",
1463 sectorsize, name);
1464 return EINVAL;
1467 return 0;
1471 * When allocating the initial buffer target we have not yet
1472 * read in the superblock, so don't know what sized sectors
1473 * are being used is at this early stage. Play safe.
1475 STATIC int
1476 xfs_setsize_buftarg_early(
1477 xfs_buftarg_t *btp,
1478 struct block_device *bdev)
1480 return xfs_setsize_buftarg_flags(btp,
1481 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1485 xfs_setsize_buftarg(
1486 xfs_buftarg_t *btp,
1487 unsigned int blocksize,
1488 unsigned int sectorsize)
1490 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1493 xfs_buftarg_t *
1494 xfs_alloc_buftarg(
1495 struct xfs_mount *mp,
1496 struct block_device *bdev,
1497 int external,
1498 const char *fsname)
1500 xfs_buftarg_t *btp;
1502 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1504 btp->bt_mount = mp;
1505 btp->bt_dev = bdev->bd_dev;
1506 btp->bt_bdev = bdev;
1507 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1508 if (!btp->bt_bdi)
1509 goto error;
1511 INIT_LIST_HEAD(&btp->bt_lru);
1512 spin_lock_init(&btp->bt_lru_lock);
1513 if (xfs_setsize_buftarg_early(btp, bdev))
1514 goto error;
1515 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1516 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1517 register_shrinker(&btp->bt_shrinker);
1518 return btp;
1520 error:
1521 kmem_free(btp);
1522 return NULL;
1526 * Add a buffer to the delayed write list.
1528 * This queues a buffer for writeout if it hasn't already been. Note that
1529 * neither this routine nor the buffer list submission functions perform
1530 * any internal synchronization. It is expected that the lists are thread-local
1531 * to the callers.
1533 * Returns true if we queued up the buffer, or false if it already had
1534 * been on the buffer list.
1536 bool
1537 xfs_buf_delwri_queue(
1538 struct xfs_buf *bp,
1539 struct list_head *list)
1541 ASSERT(xfs_buf_islocked(bp));
1542 ASSERT(!(bp->b_flags & XBF_READ));
1545 * If the buffer is already marked delwri it already is queued up
1546 * by someone else for imediate writeout. Just ignore it in that
1547 * case.
1549 if (bp->b_flags & _XBF_DELWRI_Q) {
1550 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1551 return false;
1554 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1557 * If a buffer gets written out synchronously or marked stale while it
1558 * is on a delwri list we lazily remove it. To do this, the other party
1559 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1560 * It remains referenced and on the list. In a rare corner case it
1561 * might get readded to a delwri list after the synchronous writeout, in
1562 * which case we need just need to re-add the flag here.
1564 bp->b_flags |= _XBF_DELWRI_Q;
1565 if (list_empty(&bp->b_list)) {
1566 atomic_inc(&bp->b_hold);
1567 list_add_tail(&bp->b_list, list);
1570 return true;
1574 * Compare function is more complex than it needs to be because
1575 * the return value is only 32 bits and we are doing comparisons
1576 * on 64 bit values
1578 static int
1579 xfs_buf_cmp(
1580 void *priv,
1581 struct list_head *a,
1582 struct list_head *b)
1584 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1585 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1586 xfs_daddr_t diff;
1588 diff = ap->b_bn - bp->b_bn;
1589 if (diff < 0)
1590 return -1;
1591 if (diff > 0)
1592 return 1;
1593 return 0;
1596 static int
1597 __xfs_buf_delwri_submit(
1598 struct list_head *buffer_list,
1599 struct list_head *io_list,
1600 bool wait)
1602 struct blk_plug plug;
1603 struct xfs_buf *bp, *n;
1604 int pinned = 0;
1606 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1607 if (!wait) {
1608 if (xfs_buf_ispinned(bp)) {
1609 pinned++;
1610 continue;
1612 if (!xfs_buf_trylock(bp))
1613 continue;
1614 } else {
1615 xfs_buf_lock(bp);
1619 * Someone else might have written the buffer synchronously or
1620 * marked it stale in the meantime. In that case only the
1621 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1622 * reference and remove it from the list here.
1624 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1625 list_del_init(&bp->b_list);
1626 xfs_buf_relse(bp);
1627 continue;
1630 list_move_tail(&bp->b_list, io_list);
1631 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1634 list_sort(NULL, io_list, xfs_buf_cmp);
1636 blk_start_plug(&plug);
1637 list_for_each_entry_safe(bp, n, io_list, b_list) {
1638 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1639 bp->b_flags |= XBF_WRITE;
1641 if (!wait) {
1642 bp->b_flags |= XBF_ASYNC;
1643 list_del_init(&bp->b_list);
1645 xfs_bdstrat_cb(bp);
1647 blk_finish_plug(&plug);
1649 return pinned;
1653 * Write out a buffer list asynchronously.
1655 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1656 * out and not wait for I/O completion on any of the buffers. This interface
1657 * is only safely useable for callers that can track I/O completion by higher
1658 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1659 * function.
1662 xfs_buf_delwri_submit_nowait(
1663 struct list_head *buffer_list)
1665 LIST_HEAD (io_list);
1666 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1670 * Write out a buffer list synchronously.
1672 * This will take the @buffer_list, write all buffers out and wait for I/O
1673 * completion on all of the buffers. @buffer_list is consumed by the function,
1674 * so callers must have some other way of tracking buffers if they require such
1675 * functionality.
1678 xfs_buf_delwri_submit(
1679 struct list_head *buffer_list)
1681 LIST_HEAD (io_list);
1682 int error = 0, error2;
1683 struct xfs_buf *bp;
1685 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1687 /* Wait for IO to complete. */
1688 while (!list_empty(&io_list)) {
1689 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1691 list_del_init(&bp->b_list);
1692 error2 = xfs_buf_iowait(bp);
1693 xfs_buf_relse(bp);
1694 if (!error)
1695 error = error2;
1698 return error;
1701 int __init
1702 xfs_buf_init(void)
1704 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1705 KM_ZONE_HWALIGN, NULL);
1706 if (!xfs_buf_zone)
1707 goto out;
1709 xfslogd_workqueue = alloc_workqueue("xfslogd",
1710 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1711 if (!xfslogd_workqueue)
1712 goto out_free_buf_zone;
1714 return 0;
1716 out_free_buf_zone:
1717 kmem_zone_destroy(xfs_buf_zone);
1718 out:
1719 return -ENOMEM;
1722 void
1723 xfs_buf_terminate(void)
1725 destroy_workqueue(xfslogd_workqueue);
1726 kmem_zone_destroy(xfs_buf_zone);