1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
59 static int sub_api_initialized
;
61 static struct workqueue_struct
*target_completion_wq
;
62 static struct kmem_cache
*se_cmd_cache
;
63 static struct kmem_cache
*se_sess_cache
;
64 struct kmem_cache
*se_tmr_req_cache
;
65 struct kmem_cache
*se_ua_cache
;
66 struct kmem_cache
*t10_pr_reg_cache
;
67 struct kmem_cache
*t10_alua_lu_gp_cache
;
68 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
69 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
70 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
72 static int transport_generic_write_pending(struct se_cmd
*);
73 static int transport_processing_thread(void *param
);
74 static int __transport_execute_tasks(struct se_device
*dev
);
75 static void transport_complete_task_attr(struct se_cmd
*cmd
);
76 static void transport_handle_queue_full(struct se_cmd
*cmd
,
77 struct se_device
*dev
);
78 static void transport_free_dev_tasks(struct se_cmd
*cmd
);
79 static int transport_generic_get_mem(struct se_cmd
*cmd
);
80 static void transport_put_cmd(struct se_cmd
*cmd
);
81 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
);
82 static int transport_set_sense_codes(struct se_cmd
*cmd
, u8 asc
, u8 ascq
);
83 static void transport_generic_request_failure(struct se_cmd
*, int, int);
84 static void target_complete_ok_work(struct work_struct
*work
);
86 int init_se_kmem_caches(void)
88 se_cmd_cache
= kmem_cache_create("se_cmd_cache",
89 sizeof(struct se_cmd
), __alignof__(struct se_cmd
), 0, NULL
);
91 pr_err("kmem_cache_create for struct se_cmd failed\n");
94 se_tmr_req_cache
= kmem_cache_create("se_tmr_cache",
95 sizeof(struct se_tmr_req
), __alignof__(struct se_tmr_req
),
97 if (!se_tmr_req_cache
) {
98 pr_err("kmem_cache_create() for struct se_tmr_req"
100 goto out_free_cmd_cache
;
102 se_sess_cache
= kmem_cache_create("se_sess_cache",
103 sizeof(struct se_session
), __alignof__(struct se_session
),
105 if (!se_sess_cache
) {
106 pr_err("kmem_cache_create() for struct se_session"
108 goto out_free_tmr_req_cache
;
110 se_ua_cache
= kmem_cache_create("se_ua_cache",
111 sizeof(struct se_ua
), __alignof__(struct se_ua
),
114 pr_err("kmem_cache_create() for struct se_ua failed\n");
115 goto out_free_sess_cache
;
117 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
118 sizeof(struct t10_pr_registration
),
119 __alignof__(struct t10_pr_registration
), 0, NULL
);
120 if (!t10_pr_reg_cache
) {
121 pr_err("kmem_cache_create() for struct t10_pr_registration"
123 goto out_free_ua_cache
;
125 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
126 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
128 if (!t10_alua_lu_gp_cache
) {
129 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
131 goto out_free_pr_reg_cache
;
133 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
134 sizeof(struct t10_alua_lu_gp_member
),
135 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
136 if (!t10_alua_lu_gp_mem_cache
) {
137 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
139 goto out_free_lu_gp_cache
;
141 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
142 sizeof(struct t10_alua_tg_pt_gp
),
143 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
144 if (!t10_alua_tg_pt_gp_cache
) {
145 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147 goto out_free_lu_gp_mem_cache
;
149 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
150 "t10_alua_tg_pt_gp_mem_cache",
151 sizeof(struct t10_alua_tg_pt_gp_member
),
152 __alignof__(struct t10_alua_tg_pt_gp_member
),
154 if (!t10_alua_tg_pt_gp_mem_cache
) {
155 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
157 goto out_free_tg_pt_gp_cache
;
160 target_completion_wq
= alloc_workqueue("target_completion",
162 if (!target_completion_wq
)
163 goto out_free_tg_pt_gp_mem_cache
;
167 out_free_tg_pt_gp_mem_cache
:
168 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
169 out_free_tg_pt_gp_cache
:
170 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
171 out_free_lu_gp_mem_cache
:
172 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
173 out_free_lu_gp_cache
:
174 kmem_cache_destroy(t10_alua_lu_gp_cache
);
175 out_free_pr_reg_cache
:
176 kmem_cache_destroy(t10_pr_reg_cache
);
178 kmem_cache_destroy(se_ua_cache
);
180 kmem_cache_destroy(se_sess_cache
);
181 out_free_tmr_req_cache
:
182 kmem_cache_destroy(se_tmr_req_cache
);
184 kmem_cache_destroy(se_cmd_cache
);
189 void release_se_kmem_caches(void)
191 destroy_workqueue(target_completion_wq
);
192 kmem_cache_destroy(se_cmd_cache
);
193 kmem_cache_destroy(se_tmr_req_cache
);
194 kmem_cache_destroy(se_sess_cache
);
195 kmem_cache_destroy(se_ua_cache
);
196 kmem_cache_destroy(t10_pr_reg_cache
);
197 kmem_cache_destroy(t10_alua_lu_gp_cache
);
198 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
199 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
200 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
203 /* This code ensures unique mib indexes are handed out. */
204 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
205 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
208 * Allocate a new row index for the entry type specified
210 u32
scsi_get_new_index(scsi_index_t type
)
214 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
216 spin_lock(&scsi_mib_index_lock
);
217 new_index
= ++scsi_mib_index
[type
];
218 spin_unlock(&scsi_mib_index_lock
);
223 void transport_init_queue_obj(struct se_queue_obj
*qobj
)
225 atomic_set(&qobj
->queue_cnt
, 0);
226 INIT_LIST_HEAD(&qobj
->qobj_list
);
227 init_waitqueue_head(&qobj
->thread_wq
);
228 spin_lock_init(&qobj
->cmd_queue_lock
);
230 EXPORT_SYMBOL(transport_init_queue_obj
);
232 void transport_subsystem_check_init(void)
236 if (sub_api_initialized
)
239 ret
= request_module("target_core_iblock");
241 pr_err("Unable to load target_core_iblock\n");
243 ret
= request_module("target_core_file");
245 pr_err("Unable to load target_core_file\n");
247 ret
= request_module("target_core_pscsi");
249 pr_err("Unable to load target_core_pscsi\n");
251 ret
= request_module("target_core_stgt");
253 pr_err("Unable to load target_core_stgt\n");
255 sub_api_initialized
= 1;
259 struct se_session
*transport_init_session(void)
261 struct se_session
*se_sess
;
263 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
265 pr_err("Unable to allocate struct se_session from"
267 return ERR_PTR(-ENOMEM
);
269 INIT_LIST_HEAD(&se_sess
->sess_list
);
270 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
271 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
272 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
273 spin_lock_init(&se_sess
->sess_cmd_lock
);
277 EXPORT_SYMBOL(transport_init_session
);
280 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
282 void __transport_register_session(
283 struct se_portal_group
*se_tpg
,
284 struct se_node_acl
*se_nacl
,
285 struct se_session
*se_sess
,
286 void *fabric_sess_ptr
)
288 unsigned char buf
[PR_REG_ISID_LEN
];
290 se_sess
->se_tpg
= se_tpg
;
291 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
293 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
295 * Only set for struct se_session's that will actually be moving I/O.
296 * eg: *NOT* discovery sessions.
300 * If the fabric module supports an ISID based TransportID,
301 * save this value in binary from the fabric I_T Nexus now.
303 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
304 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
305 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
306 &buf
[0], PR_REG_ISID_LEN
);
307 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
309 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
311 * The se_nacl->nacl_sess pointer will be set to the
312 * last active I_T Nexus for each struct se_node_acl.
314 se_nacl
->nacl_sess
= se_sess
;
316 list_add_tail(&se_sess
->sess_acl_list
,
317 &se_nacl
->acl_sess_list
);
318 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
320 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
322 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
323 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
325 EXPORT_SYMBOL(__transport_register_session
);
327 void transport_register_session(
328 struct se_portal_group
*se_tpg
,
329 struct se_node_acl
*se_nacl
,
330 struct se_session
*se_sess
,
331 void *fabric_sess_ptr
)
333 spin_lock_bh(&se_tpg
->session_lock
);
334 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
335 spin_unlock_bh(&se_tpg
->session_lock
);
337 EXPORT_SYMBOL(transport_register_session
);
339 void transport_deregister_session_configfs(struct se_session
*se_sess
)
341 struct se_node_acl
*se_nacl
;
344 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
346 se_nacl
= se_sess
->se_node_acl
;
348 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
349 list_del(&se_sess
->sess_acl_list
);
351 * If the session list is empty, then clear the pointer.
352 * Otherwise, set the struct se_session pointer from the tail
353 * element of the per struct se_node_acl active session list.
355 if (list_empty(&se_nacl
->acl_sess_list
))
356 se_nacl
->nacl_sess
= NULL
;
358 se_nacl
->nacl_sess
= container_of(
359 se_nacl
->acl_sess_list
.prev
,
360 struct se_session
, sess_acl_list
);
362 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
365 EXPORT_SYMBOL(transport_deregister_session_configfs
);
367 void transport_free_session(struct se_session
*se_sess
)
369 kmem_cache_free(se_sess_cache
, se_sess
);
371 EXPORT_SYMBOL(transport_free_session
);
373 void transport_deregister_session(struct se_session
*se_sess
)
375 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
376 struct se_node_acl
*se_nacl
;
380 transport_free_session(se_sess
);
384 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
385 list_del(&se_sess
->sess_list
);
386 se_sess
->se_tpg
= NULL
;
387 se_sess
->fabric_sess_ptr
= NULL
;
388 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
391 * Determine if we need to do extra work for this initiator node's
392 * struct se_node_acl if it had been previously dynamically generated.
394 se_nacl
= se_sess
->se_node_acl
;
396 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
397 if (se_nacl
->dynamic_node_acl
) {
398 if (!se_tpg
->se_tpg_tfo
->tpg_check_demo_mode_cache(
400 list_del(&se_nacl
->acl_list
);
401 se_tpg
->num_node_acls
--;
402 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
404 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
405 core_free_device_list_for_node(se_nacl
, se_tpg
);
406 se_tpg
->se_tpg_tfo
->tpg_release_fabric_acl(se_tpg
,
408 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
411 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
414 transport_free_session(se_sess
);
416 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
417 se_tpg
->se_tpg_tfo
->get_fabric_name());
419 EXPORT_SYMBOL(transport_deregister_session
);
422 * Called with cmd->t_state_lock held.
424 static void transport_all_task_dev_remove_state(struct se_cmd
*cmd
)
426 struct se_device
*dev
= cmd
->se_dev
;
427 struct se_task
*task
;
433 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
434 if (task
->task_flags
& TF_ACTIVE
)
437 if (!atomic_read(&task
->task_state_active
))
440 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
441 list_del(&task
->t_state_list
);
442 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
443 cmd
->se_tfo
->get_task_tag(cmd
), dev
, task
);
444 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
446 atomic_set(&task
->task_state_active
, 0);
447 atomic_dec(&cmd
->t_task_cdbs_ex_left
);
451 /* transport_cmd_check_stop():
453 * 'transport_off = 1' determines if t_transport_active should be cleared.
454 * 'transport_off = 2' determines if task_dev_state should be removed.
456 * A non-zero u8 t_state sets cmd->t_state.
457 * Returns 1 when command is stopped, else 0.
459 static int transport_cmd_check_stop(
466 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
468 * Determine if IOCTL context caller in requesting the stopping of this
469 * command for LUN shutdown purposes.
471 if (atomic_read(&cmd
->transport_lun_stop
)) {
472 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
473 " == TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
474 cmd
->se_tfo
->get_task_tag(cmd
));
476 atomic_set(&cmd
->t_transport_active
, 0);
477 if (transport_off
== 2)
478 transport_all_task_dev_remove_state(cmd
);
479 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
481 complete(&cmd
->transport_lun_stop_comp
);
485 * Determine if frontend context caller is requesting the stopping of
486 * this command for frontend exceptions.
488 if (atomic_read(&cmd
->t_transport_stop
)) {
489 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
490 " TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
491 cmd
->se_tfo
->get_task_tag(cmd
));
493 if (transport_off
== 2)
494 transport_all_task_dev_remove_state(cmd
);
497 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
500 if (transport_off
== 2)
502 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
504 complete(&cmd
->t_transport_stop_comp
);
508 atomic_set(&cmd
->t_transport_active
, 0);
509 if (transport_off
== 2) {
510 transport_all_task_dev_remove_state(cmd
);
512 * Clear struct se_cmd->se_lun before the transport_off == 2
513 * handoff to fabric module.
517 * Some fabric modules like tcm_loop can release
518 * their internally allocated I/O reference now and
521 * Fabric modules are expected to return '1' here if the
522 * se_cmd being passed is released at this point,
523 * or zero if not being released.
525 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
526 spin_unlock_irqrestore(
527 &cmd
->t_state_lock
, flags
);
529 return cmd
->se_tfo
->check_stop_free(cmd
);
532 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
536 cmd
->t_state
= t_state
;
537 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
542 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
544 return transport_cmd_check_stop(cmd
, 2, 0);
547 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
549 struct se_lun
*lun
= cmd
->se_lun
;
555 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
556 if (!atomic_read(&cmd
->transport_dev_active
)) {
557 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
560 atomic_set(&cmd
->transport_dev_active
, 0);
561 transport_all_task_dev_remove_state(cmd
);
562 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
566 spin_lock_irqsave(&lun
->lun_cmd_lock
, flags
);
567 if (atomic_read(&cmd
->transport_lun_active
)) {
568 list_del(&cmd
->se_lun_node
);
569 atomic_set(&cmd
->transport_lun_active
, 0);
571 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
572 cmd
->se_tfo
->get_task_tag(cmd
), lun
->unpacked_lun
);
575 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, flags
);
578 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
580 if (!cmd
->se_tmr_req
)
581 transport_lun_remove_cmd(cmd
);
583 if (transport_cmd_check_stop_to_fabric(cmd
))
586 transport_remove_cmd_from_queue(cmd
);
587 transport_put_cmd(cmd
);
591 static void transport_add_cmd_to_queue(struct se_cmd
*cmd
, int t_state
,
594 struct se_device
*dev
= cmd
->se_dev
;
595 struct se_queue_obj
*qobj
= &dev
->dev_queue_obj
;
599 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
600 cmd
->t_state
= t_state
;
601 atomic_set(&cmd
->t_transport_active
, 1);
602 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
605 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
607 /* If the cmd is already on the list, remove it before we add it */
608 if (!list_empty(&cmd
->se_queue_node
))
609 list_del(&cmd
->se_queue_node
);
611 atomic_inc(&qobj
->queue_cnt
);
614 list_add(&cmd
->se_queue_node
, &qobj
->qobj_list
);
616 list_add_tail(&cmd
->se_queue_node
, &qobj
->qobj_list
);
617 atomic_set(&cmd
->t_transport_queue_active
, 1);
618 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
620 wake_up_interruptible(&qobj
->thread_wq
);
623 static struct se_cmd
*
624 transport_get_cmd_from_queue(struct se_queue_obj
*qobj
)
629 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
630 if (list_empty(&qobj
->qobj_list
)) {
631 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
634 cmd
= list_first_entry(&qobj
->qobj_list
, struct se_cmd
, se_queue_node
);
636 atomic_set(&cmd
->t_transport_queue_active
, 0);
638 list_del_init(&cmd
->se_queue_node
);
639 atomic_dec(&qobj
->queue_cnt
);
640 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
645 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
)
647 struct se_queue_obj
*qobj
= &cmd
->se_dev
->dev_queue_obj
;
650 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
651 if (!atomic_read(&cmd
->t_transport_queue_active
)) {
652 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
655 atomic_set(&cmd
->t_transport_queue_active
, 0);
656 atomic_dec(&qobj
->queue_cnt
);
657 list_del_init(&cmd
->se_queue_node
);
658 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
660 if (atomic_read(&cmd
->t_transport_queue_active
)) {
661 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
662 cmd
->se_tfo
->get_task_tag(cmd
),
663 atomic_read(&cmd
->t_transport_queue_active
));
668 * Completion function used by TCM subsystem plugins (such as FILEIO)
669 * for queueing up response from struct se_subsystem_api->do_task()
671 void transport_complete_sync_cache(struct se_cmd
*cmd
, int good
)
673 struct se_task
*task
= list_entry(cmd
->t_task_list
.next
,
674 struct se_task
, t_list
);
677 cmd
->scsi_status
= SAM_STAT_GOOD
;
678 task
->task_scsi_status
= GOOD
;
680 task
->task_scsi_status
= SAM_STAT_CHECK_CONDITION
;
681 task
->task_error_status
= PYX_TRANSPORT_ILLEGAL_REQUEST
;
682 task
->task_se_cmd
->transport_error_status
=
683 PYX_TRANSPORT_ILLEGAL_REQUEST
;
686 transport_complete_task(task
, good
);
688 EXPORT_SYMBOL(transport_complete_sync_cache
);
690 static void target_complete_failure_work(struct work_struct
*work
)
692 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
694 transport_generic_request_failure(cmd
, 1, 1);
697 /* transport_complete_task():
699 * Called from interrupt and non interrupt context depending
700 * on the transport plugin.
702 void transport_complete_task(struct se_task
*task
, int success
)
704 struct se_cmd
*cmd
= task
->task_se_cmd
;
705 struct se_device
*dev
= cmd
->se_dev
;
708 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task
,
709 cmd
->t_task_cdb
[0], dev
);
712 atomic_inc(&dev
->depth_left
);
714 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
715 task
->task_flags
&= ~TF_ACTIVE
;
718 * See if any sense data exists, if so set the TASK_SENSE flag.
719 * Also check for any other post completion work that needs to be
720 * done by the plugins.
722 if (dev
&& dev
->transport
->transport_complete
) {
723 if (dev
->transport
->transport_complete(task
) != 0) {
724 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
725 task
->task_sense
= 1;
731 * See if we are waiting for outstanding struct se_task
732 * to complete for an exception condition
734 if (task
->task_flags
& TF_REQUEST_STOP
) {
735 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
736 complete(&task
->task_stop_comp
);
741 cmd
->t_tasks_failed
= 1;
744 * Decrement the outstanding t_task_cdbs_left count. The last
745 * struct se_task from struct se_cmd will complete itself into the
746 * device queue depending upon int success.
748 if (!atomic_dec_and_test(&cmd
->t_task_cdbs_left
)) {
749 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
753 if (cmd
->t_tasks_failed
) {
754 if (!task
->task_error_status
) {
755 task
->task_error_status
=
756 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
757 cmd
->transport_error_status
=
758 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
760 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
762 atomic_set(&cmd
->t_transport_complete
, 1);
763 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
766 cmd
->t_state
= TRANSPORT_COMPLETE
;
767 atomic_set(&cmd
->t_transport_active
, 1);
768 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
770 queue_work(target_completion_wq
, &cmd
->work
);
772 EXPORT_SYMBOL(transport_complete_task
);
775 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
776 * struct se_task list are ready to be added to the active execution list
779 * Called with se_dev_t->execute_task_lock called.
781 static inline int transport_add_task_check_sam_attr(
782 struct se_task
*task
,
783 struct se_task
*task_prev
,
784 struct se_device
*dev
)
787 * No SAM Task attribute emulation enabled, add to tail of
790 if (dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
) {
791 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
795 * HEAD_OF_QUEUE attribute for received CDB, which means
796 * the first task that is associated with a struct se_cmd goes to
797 * head of the struct se_device->execute_task_list, and task_prev
798 * after that for each subsequent task
800 if (task
->task_se_cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
801 list_add(&task
->t_execute_list
,
802 (task_prev
!= NULL
) ?
803 &task_prev
->t_execute_list
:
804 &dev
->execute_task_list
);
806 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
807 " in execution queue\n",
808 task
->task_se_cmd
->t_task_cdb
[0]);
812 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
813 * transitioned from Dermant -> Active state, and are added to the end
814 * of the struct se_device->execute_task_list
816 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
820 /* __transport_add_task_to_execute_queue():
822 * Called with se_dev_t->execute_task_lock called.
824 static void __transport_add_task_to_execute_queue(
825 struct se_task
*task
,
826 struct se_task
*task_prev
,
827 struct se_device
*dev
)
831 head_of_queue
= transport_add_task_check_sam_attr(task
, task_prev
, dev
);
832 atomic_inc(&dev
->execute_tasks
);
834 if (atomic_read(&task
->task_state_active
))
837 * Determine if this task needs to go to HEAD_OF_QUEUE for the
838 * state list as well. Running with SAM Task Attribute emulation
839 * will always return head_of_queue == 0 here
842 list_add(&task
->t_state_list
, (task_prev
) ?
843 &task_prev
->t_state_list
:
844 &dev
->state_task_list
);
846 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
848 atomic_set(&task
->task_state_active
, 1);
850 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
851 task
->task_se_cmd
->se_tfo
->get_task_tag(task
->task_se_cmd
),
855 static void transport_add_tasks_to_state_queue(struct se_cmd
*cmd
)
857 struct se_device
*dev
= cmd
->se_dev
;
858 struct se_task
*task
;
861 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
862 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
863 if (atomic_read(&task
->task_state_active
))
866 spin_lock(&dev
->execute_task_lock
);
867 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
868 atomic_set(&task
->task_state_active
, 1);
870 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871 task
->task_se_cmd
->se_tfo
->get_task_tag(
872 task
->task_se_cmd
), task
, dev
);
874 spin_unlock(&dev
->execute_task_lock
);
876 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
879 static void transport_add_tasks_from_cmd(struct se_cmd
*cmd
)
881 struct se_device
*dev
= cmd
->se_dev
;
882 struct se_task
*task
, *task_prev
= NULL
;
885 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
886 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
887 if (!list_empty(&task
->t_execute_list
))
890 * __transport_add_task_to_execute_queue() handles the
891 * SAM Task Attribute emulation if enabled
893 __transport_add_task_to_execute_queue(task
, task_prev
, dev
);
896 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
899 void __transport_remove_task_from_execute_queue(struct se_task
*task
,
900 struct se_device
*dev
)
902 list_del_init(&task
->t_execute_list
);
903 atomic_dec(&dev
->execute_tasks
);
906 void transport_remove_task_from_execute_queue(
907 struct se_task
*task
,
908 struct se_device
*dev
)
912 if (WARN_ON(list_empty(&task
->t_execute_list
)))
915 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
916 __transport_remove_task_from_execute_queue(task
, dev
);
917 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
921 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
924 static void target_qf_do_work(struct work_struct
*work
)
926 struct se_device
*dev
= container_of(work
, struct se_device
,
928 LIST_HEAD(qf_cmd_list
);
929 struct se_cmd
*cmd
, *cmd_tmp
;
931 spin_lock_irq(&dev
->qf_cmd_lock
);
932 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
933 spin_unlock_irq(&dev
->qf_cmd_lock
);
935 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
936 list_del(&cmd
->se_qf_node
);
937 atomic_dec(&dev
->dev_qf_count
);
938 smp_mb__after_atomic_dec();
940 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
941 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
942 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
943 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
946 transport_add_cmd_to_queue(cmd
, cmd
->t_state
, true);
950 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
952 switch (cmd
->data_direction
) {
955 case DMA_FROM_DEVICE
:
959 case DMA_BIDIRECTIONAL
:
968 void transport_dump_dev_state(
969 struct se_device
*dev
,
973 *bl
+= sprintf(b
+ *bl
, "Status: ");
974 switch (dev
->dev_status
) {
975 case TRANSPORT_DEVICE_ACTIVATED
:
976 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
978 case TRANSPORT_DEVICE_DEACTIVATED
:
979 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
981 case TRANSPORT_DEVICE_SHUTDOWN
:
982 *bl
+= sprintf(b
+ *bl
, "SHUTDOWN");
984 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED
:
985 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED
:
986 *bl
+= sprintf(b
+ *bl
, "OFFLINE");
989 *bl
+= sprintf(b
+ *bl
, "UNKNOWN=%d", dev
->dev_status
);
993 *bl
+= sprintf(b
+ *bl
, " Execute/Left/Max Queue Depth: %d/%d/%d",
994 atomic_read(&dev
->execute_tasks
), atomic_read(&dev
->depth_left
),
996 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u MaxSectors: %u\n",
997 dev
->se_sub_dev
->se_dev_attrib
.block_size
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
998 *bl
+= sprintf(b
+ *bl
, " ");
1001 void transport_dump_vpd_proto_id(
1002 struct t10_vpd
*vpd
,
1003 unsigned char *p_buf
,
1006 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1009 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1010 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
1012 switch (vpd
->protocol_identifier
) {
1014 sprintf(buf
+len
, "Fibre Channel\n");
1017 sprintf(buf
+len
, "Parallel SCSI\n");
1020 sprintf(buf
+len
, "SSA\n");
1023 sprintf(buf
+len
, "IEEE 1394\n");
1026 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1030 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1033 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1036 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1040 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1043 sprintf(buf
+len
, "Unknown 0x%02x\n",
1044 vpd
->protocol_identifier
);
1049 strncpy(p_buf
, buf
, p_buf_len
);
1051 pr_debug("%s", buf
);
1055 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1058 * Check if the Protocol Identifier Valid (PIV) bit is set..
1060 * from spc3r23.pdf section 7.5.1
1062 if (page_83
[1] & 0x80) {
1063 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1064 vpd
->protocol_identifier_set
= 1;
1065 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1068 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1070 int transport_dump_vpd_assoc(
1071 struct t10_vpd
*vpd
,
1072 unsigned char *p_buf
,
1075 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1079 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1080 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1082 switch (vpd
->association
) {
1084 sprintf(buf
+len
, "addressed logical unit\n");
1087 sprintf(buf
+len
, "target port\n");
1090 sprintf(buf
+len
, "SCSI target device\n");
1093 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1099 strncpy(p_buf
, buf
, p_buf_len
);
1101 pr_debug("%s", buf
);
1106 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1109 * The VPD identification association..
1111 * from spc3r23.pdf Section 7.6.3.1 Table 297
1113 vpd
->association
= (page_83
[1] & 0x30);
1114 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1116 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1118 int transport_dump_vpd_ident_type(
1119 struct t10_vpd
*vpd
,
1120 unsigned char *p_buf
,
1123 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1127 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1128 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1130 switch (vpd
->device_identifier_type
) {
1132 sprintf(buf
+len
, "Vendor specific\n");
1135 sprintf(buf
+len
, "T10 Vendor ID based\n");
1138 sprintf(buf
+len
, "EUI-64 based\n");
1141 sprintf(buf
+len
, "NAA\n");
1144 sprintf(buf
+len
, "Relative target port identifier\n");
1147 sprintf(buf
+len
, "SCSI name string\n");
1150 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1151 vpd
->device_identifier_type
);
1157 if (p_buf_len
< strlen(buf
)+1)
1159 strncpy(p_buf
, buf
, p_buf_len
);
1161 pr_debug("%s", buf
);
1167 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1170 * The VPD identifier type..
1172 * from spc3r23.pdf Section 7.6.3.1 Table 298
1174 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1175 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1177 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1179 int transport_dump_vpd_ident(
1180 struct t10_vpd
*vpd
,
1181 unsigned char *p_buf
,
1184 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1187 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1189 switch (vpd
->device_identifier_code_set
) {
1190 case 0x01: /* Binary */
1191 sprintf(buf
, "T10 VPD Binary Device Identifier: %s\n",
1192 &vpd
->device_identifier
[0]);
1194 case 0x02: /* ASCII */
1195 sprintf(buf
, "T10 VPD ASCII Device Identifier: %s\n",
1196 &vpd
->device_identifier
[0]);
1198 case 0x03: /* UTF-8 */
1199 sprintf(buf
, "T10 VPD UTF-8 Device Identifier: %s\n",
1200 &vpd
->device_identifier
[0]);
1203 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1204 " 0x%02x", vpd
->device_identifier_code_set
);
1210 strncpy(p_buf
, buf
, p_buf_len
);
1212 pr_debug("%s", buf
);
1218 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1220 static const char hex_str
[] = "0123456789abcdef";
1221 int j
= 0, i
= 4; /* offset to start of the identifer */
1224 * The VPD Code Set (encoding)
1226 * from spc3r23.pdf Section 7.6.3.1 Table 296
1228 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1229 switch (vpd
->device_identifier_code_set
) {
1230 case 0x01: /* Binary */
1231 vpd
->device_identifier
[j
++] =
1232 hex_str
[vpd
->device_identifier_type
];
1233 while (i
< (4 + page_83
[3])) {
1234 vpd
->device_identifier
[j
++] =
1235 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1236 vpd
->device_identifier
[j
++] =
1237 hex_str
[page_83
[i
] & 0x0f];
1241 case 0x02: /* ASCII */
1242 case 0x03: /* UTF-8 */
1243 while (i
< (4 + page_83
[3]))
1244 vpd
->device_identifier
[j
++] = page_83
[i
++];
1250 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1252 EXPORT_SYMBOL(transport_set_vpd_ident
);
1254 static void core_setup_task_attr_emulation(struct se_device
*dev
)
1257 * If this device is from Target_Core_Mod/pSCSI, disable the
1258 * SAM Task Attribute emulation.
1260 * This is currently not available in upsream Linux/SCSI Target
1261 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1263 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
) {
1264 dev
->dev_task_attr_type
= SAM_TASK_ATTR_PASSTHROUGH
;
1268 dev
->dev_task_attr_type
= SAM_TASK_ATTR_EMULATED
;
1269 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1270 " device\n", dev
->transport
->name
,
1271 dev
->transport
->get_device_rev(dev
));
1274 static void scsi_dump_inquiry(struct se_device
*dev
)
1276 struct t10_wwn
*wwn
= &dev
->se_sub_dev
->t10_wwn
;
1279 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1281 pr_debug(" Vendor: ");
1282 for (i
= 0; i
< 8; i
++)
1283 if (wwn
->vendor
[i
] >= 0x20)
1284 pr_debug("%c", wwn
->vendor
[i
]);
1288 pr_debug(" Model: ");
1289 for (i
= 0; i
< 16; i
++)
1290 if (wwn
->model
[i
] >= 0x20)
1291 pr_debug("%c", wwn
->model
[i
]);
1295 pr_debug(" Revision: ");
1296 for (i
= 0; i
< 4; i
++)
1297 if (wwn
->revision
[i
] >= 0x20)
1298 pr_debug("%c", wwn
->revision
[i
]);
1304 device_type
= dev
->transport
->get_device_type(dev
);
1305 pr_debug(" Type: %s ", scsi_device_type(device_type
));
1306 pr_debug(" ANSI SCSI revision: %02x\n",
1307 dev
->transport
->get_device_rev(dev
));
1310 struct se_device
*transport_add_device_to_core_hba(
1312 struct se_subsystem_api
*transport
,
1313 struct se_subsystem_dev
*se_dev
,
1315 void *transport_dev
,
1316 struct se_dev_limits
*dev_limits
,
1317 const char *inquiry_prod
,
1318 const char *inquiry_rev
)
1321 struct se_device
*dev
;
1323 dev
= kzalloc(sizeof(struct se_device
), GFP_KERNEL
);
1325 pr_err("Unable to allocate memory for se_dev_t\n");
1329 transport_init_queue_obj(&dev
->dev_queue_obj
);
1330 dev
->dev_flags
= device_flags
;
1331 dev
->dev_status
|= TRANSPORT_DEVICE_DEACTIVATED
;
1332 dev
->dev_ptr
= transport_dev
;
1334 dev
->se_sub_dev
= se_dev
;
1335 dev
->transport
= transport
;
1336 atomic_set(&dev
->active_cmds
, 0);
1337 INIT_LIST_HEAD(&dev
->dev_list
);
1338 INIT_LIST_HEAD(&dev
->dev_sep_list
);
1339 INIT_LIST_HEAD(&dev
->dev_tmr_list
);
1340 INIT_LIST_HEAD(&dev
->execute_task_list
);
1341 INIT_LIST_HEAD(&dev
->delayed_cmd_list
);
1342 INIT_LIST_HEAD(&dev
->ordered_cmd_list
);
1343 INIT_LIST_HEAD(&dev
->state_task_list
);
1344 INIT_LIST_HEAD(&dev
->qf_cmd_list
);
1345 spin_lock_init(&dev
->execute_task_lock
);
1346 spin_lock_init(&dev
->delayed_cmd_lock
);
1347 spin_lock_init(&dev
->ordered_cmd_lock
);
1348 spin_lock_init(&dev
->state_task_lock
);
1349 spin_lock_init(&dev
->dev_alua_lock
);
1350 spin_lock_init(&dev
->dev_reservation_lock
);
1351 spin_lock_init(&dev
->dev_status_lock
);
1352 spin_lock_init(&dev
->dev_status_thr_lock
);
1353 spin_lock_init(&dev
->se_port_lock
);
1354 spin_lock_init(&dev
->se_tmr_lock
);
1355 spin_lock_init(&dev
->qf_cmd_lock
);
1357 dev
->queue_depth
= dev_limits
->queue_depth
;
1358 atomic_set(&dev
->depth_left
, dev
->queue_depth
);
1359 atomic_set(&dev
->dev_ordered_id
, 0);
1361 se_dev_set_default_attribs(dev
, dev_limits
);
1363 dev
->dev_index
= scsi_get_new_index(SCSI_DEVICE_INDEX
);
1364 dev
->creation_time
= get_jiffies_64();
1365 spin_lock_init(&dev
->stats_lock
);
1367 spin_lock(&hba
->device_lock
);
1368 list_add_tail(&dev
->dev_list
, &hba
->hba_dev_list
);
1370 spin_unlock(&hba
->device_lock
);
1372 * Setup the SAM Task Attribute emulation for struct se_device
1374 core_setup_task_attr_emulation(dev
);
1376 * Force PR and ALUA passthrough emulation with internal object use.
1378 force_pt
= (hba
->hba_flags
& HBA_FLAGS_INTERNAL_USE
);
1380 * Setup the Reservations infrastructure for struct se_device
1382 core_setup_reservations(dev
, force_pt
);
1384 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1386 if (core_setup_alua(dev
, force_pt
) < 0)
1390 * Startup the struct se_device processing thread
1392 dev
->process_thread
= kthread_run(transport_processing_thread
, dev
,
1393 "LIO_%s", dev
->transport
->name
);
1394 if (IS_ERR(dev
->process_thread
)) {
1395 pr_err("Unable to create kthread: LIO_%s\n",
1396 dev
->transport
->name
);
1400 * Setup work_queue for QUEUE_FULL
1402 INIT_WORK(&dev
->qf_work_queue
, target_qf_do_work
);
1404 * Preload the initial INQUIRY const values if we are doing
1405 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1406 * passthrough because this is being provided by the backend LLD.
1407 * This is required so that transport_get_inquiry() copies these
1408 * originals once back into DEV_T10_WWN(dev) for the virtual device
1411 if (dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
1412 if (!inquiry_prod
|| !inquiry_rev
) {
1413 pr_err("All non TCM/pSCSI plugins require"
1414 " INQUIRY consts\n");
1418 strncpy(&dev
->se_sub_dev
->t10_wwn
.vendor
[0], "LIO-ORG", 8);
1419 strncpy(&dev
->se_sub_dev
->t10_wwn
.model
[0], inquiry_prod
, 16);
1420 strncpy(&dev
->se_sub_dev
->t10_wwn
.revision
[0], inquiry_rev
, 4);
1422 scsi_dump_inquiry(dev
);
1426 kthread_stop(dev
->process_thread
);
1428 spin_lock(&hba
->device_lock
);
1429 list_del(&dev
->dev_list
);
1431 spin_unlock(&hba
->device_lock
);
1433 se_release_vpd_for_dev(dev
);
1439 EXPORT_SYMBOL(transport_add_device_to_core_hba
);
1441 /* transport_generic_prepare_cdb():
1443 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1444 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1445 * The point of this is since we are mapping iSCSI LUNs to
1446 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1447 * devices and HBAs for a loop.
1449 static inline void transport_generic_prepare_cdb(
1453 case READ_10
: /* SBC - RDProtect */
1454 case READ_12
: /* SBC - RDProtect */
1455 case READ_16
: /* SBC - RDProtect */
1456 case SEND_DIAGNOSTIC
: /* SPC - SELF-TEST Code */
1457 case VERIFY
: /* SBC - VRProtect */
1458 case VERIFY_16
: /* SBC - VRProtect */
1459 case WRITE_VERIFY
: /* SBC - VRProtect */
1460 case WRITE_VERIFY_12
: /* SBC - VRProtect */
1463 cdb
[1] &= 0x1f; /* clear logical unit number */
1468 static struct se_task
*
1469 transport_generic_get_task(struct se_cmd
*cmd
,
1470 enum dma_data_direction data_direction
)
1472 struct se_task
*task
;
1473 struct se_device
*dev
= cmd
->se_dev
;
1475 task
= dev
->transport
->alloc_task(cmd
->t_task_cdb
);
1477 pr_err("Unable to allocate struct se_task\n");
1481 INIT_LIST_HEAD(&task
->t_list
);
1482 INIT_LIST_HEAD(&task
->t_execute_list
);
1483 INIT_LIST_HEAD(&task
->t_state_list
);
1484 init_completion(&task
->task_stop_comp
);
1485 task
->task_se_cmd
= cmd
;
1486 task
->task_data_direction
= data_direction
;
1491 static int transport_generic_cmd_sequencer(struct se_cmd
*, unsigned char *);
1494 * Used by fabric modules containing a local struct se_cmd within their
1495 * fabric dependent per I/O descriptor.
1497 void transport_init_se_cmd(
1499 struct target_core_fabric_ops
*tfo
,
1500 struct se_session
*se_sess
,
1504 unsigned char *sense_buffer
)
1506 INIT_LIST_HEAD(&cmd
->se_lun_node
);
1507 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1508 INIT_LIST_HEAD(&cmd
->se_ordered_node
);
1509 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1510 INIT_LIST_HEAD(&cmd
->se_queue_node
);
1511 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1512 INIT_LIST_HEAD(&cmd
->t_task_list
);
1513 init_completion(&cmd
->transport_lun_fe_stop_comp
);
1514 init_completion(&cmd
->transport_lun_stop_comp
);
1515 init_completion(&cmd
->t_transport_stop_comp
);
1516 init_completion(&cmd
->cmd_wait_comp
);
1517 spin_lock_init(&cmd
->t_state_lock
);
1518 atomic_set(&cmd
->transport_dev_active
, 1);
1521 cmd
->se_sess
= se_sess
;
1522 cmd
->data_length
= data_length
;
1523 cmd
->data_direction
= data_direction
;
1524 cmd
->sam_task_attr
= task_attr
;
1525 cmd
->sense_buffer
= sense_buffer
;
1527 EXPORT_SYMBOL(transport_init_se_cmd
);
1529 static int transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1532 * Check if SAM Task Attribute emulation is enabled for this
1533 * struct se_device storage object
1535 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1538 if (cmd
->sam_task_attr
== MSG_ACA_TAG
) {
1539 pr_debug("SAM Task Attribute ACA"
1540 " emulation is not supported\n");
1544 * Used to determine when ORDERED commands should go from
1545 * Dormant to Active status.
1547 cmd
->se_ordered_id
= atomic_inc_return(&cmd
->se_dev
->dev_ordered_id
);
1548 smp_mb__after_atomic_inc();
1549 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1550 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1551 cmd
->se_dev
->transport
->name
);
1555 /* transport_generic_allocate_tasks():
1557 * Called from fabric RX Thread.
1559 int transport_generic_allocate_tasks(
1565 transport_generic_prepare_cdb(cdb
);
1567 * Ensure that the received CDB is less than the max (252 + 8) bytes
1568 * for VARIABLE_LENGTH_CMD
1570 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1571 pr_err("Received SCSI CDB with command_size: %d that"
1572 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1573 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1577 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1578 * allocate the additional extended CDB buffer now.. Otherwise
1579 * setup the pointer from __t_task_cdb to t_task_cdb.
1581 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1582 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1584 if (!cmd
->t_task_cdb
) {
1585 pr_err("Unable to allocate cmd->t_task_cdb"
1586 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1587 scsi_command_size(cdb
),
1588 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1592 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1594 * Copy the original CDB into cmd->
1596 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1598 * Setup the received CDB based on SCSI defined opcodes and
1599 * perform unit attention, persistent reservations and ALUA
1600 * checks for virtual device backends. The cmd->t_task_cdb
1601 * pointer is expected to be setup before we reach this point.
1603 ret
= transport_generic_cmd_sequencer(cmd
, cdb
);
1607 * Check for SAM Task Attribute Emulation
1609 if (transport_check_alloc_task_attr(cmd
) < 0) {
1610 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1611 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1614 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1615 if (cmd
->se_lun
->lun_sep
)
1616 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1617 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1620 EXPORT_SYMBOL(transport_generic_allocate_tasks
);
1623 * Used by fabric module frontends to queue tasks directly.
1624 * Many only be used from process context only
1626 int transport_handle_cdb_direct(
1633 pr_err("cmd->se_lun is NULL\n");
1636 if (in_interrupt()) {
1638 pr_err("transport_generic_handle_cdb cannot be called"
1639 " from interrupt context\n");
1643 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1644 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1645 * in existing usage to ensure that outstanding descriptors are handled
1646 * correctly during shutdown via transport_wait_for_tasks()
1648 * Also, we don't take cmd->t_state_lock here as we only expect
1649 * this to be called for initial descriptor submission.
1651 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1652 atomic_set(&cmd
->t_transport_active
, 1);
1654 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1655 * so follow TRANSPORT_NEW_CMD processing thread context usage
1656 * and call transport_generic_request_failure() if necessary..
1658 ret
= transport_generic_new_cmd(cmd
);
1660 cmd
->transport_error_status
= ret
;
1661 transport_generic_request_failure(cmd
, 0,
1662 (cmd
->data_direction
!= DMA_TO_DEVICE
));
1666 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1669 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1670 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1671 * complete setup in TCM process context w/ TFO->new_cmd_map().
1673 int transport_generic_handle_cdb_map(
1678 pr_err("cmd->se_lun is NULL\n");
1682 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD_MAP
, false);
1685 EXPORT_SYMBOL(transport_generic_handle_cdb_map
);
1687 /* transport_generic_handle_data():
1691 int transport_generic_handle_data(
1695 * For the software fabric case, then we assume the nexus is being
1696 * failed/shutdown when signals are pending from the kthread context
1697 * caller, so we return a failure. For the HW target mode case running
1698 * in interrupt code, the signal_pending() check is skipped.
1700 if (!in_interrupt() && signal_pending(current
))
1703 * If the received CDB has aleady been ABORTED by the generic
1704 * target engine, we now call transport_check_aborted_status()
1705 * to queue any delated TASK_ABORTED status for the received CDB to the
1706 * fabric module as we are expecting no further incoming DATA OUT
1707 * sequences at this point.
1709 if (transport_check_aborted_status(cmd
, 1) != 0)
1712 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_WRITE
, false);
1715 EXPORT_SYMBOL(transport_generic_handle_data
);
1717 /* transport_generic_handle_tmr():
1721 int transport_generic_handle_tmr(
1724 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_TMR
, false);
1727 EXPORT_SYMBOL(transport_generic_handle_tmr
);
1730 * If the task is active, request it to be stopped and sleep until it
1733 bool target_stop_task(struct se_task
*task
, unsigned long *flags
)
1735 struct se_cmd
*cmd
= task
->task_se_cmd
;
1736 bool was_active
= false;
1738 if (task
->task_flags
& TF_ACTIVE
) {
1739 task
->task_flags
|= TF_REQUEST_STOP
;
1740 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
1742 pr_debug("Task %p waiting to complete\n", task
);
1743 wait_for_completion(&task
->task_stop_comp
);
1744 pr_debug("Task %p stopped successfully\n", task
);
1746 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
1747 atomic_dec(&cmd
->t_task_cdbs_left
);
1748 task
->task_flags
&= ~(TF_ACTIVE
| TF_REQUEST_STOP
);
1755 static int transport_stop_tasks_for_cmd(struct se_cmd
*cmd
)
1757 struct se_task
*task
, *task_tmp
;
1758 unsigned long flags
;
1761 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1762 cmd
->se_tfo
->get_task_tag(cmd
));
1765 * No tasks remain in the execution queue
1767 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1768 list_for_each_entry_safe(task
, task_tmp
,
1769 &cmd
->t_task_list
, t_list
) {
1770 pr_debug("Processing task %p\n", task
);
1772 * If the struct se_task has not been sent and is not active,
1773 * remove the struct se_task from the execution queue.
1775 if (!(task
->task_flags
& (TF_ACTIVE
| TF_SENT
))) {
1776 spin_unlock_irqrestore(&cmd
->t_state_lock
,
1778 transport_remove_task_from_execute_queue(task
,
1781 pr_debug("Task %p removed from execute queue\n", task
);
1782 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
1786 if (!target_stop_task(task
, &flags
)) {
1787 pr_debug("Task %p - did nothing\n", task
);
1791 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
1797 * Handle SAM-esque emulation for generic transport request failures.
1799 static void transport_generic_request_failure(
1806 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1807 " CDB: 0x%02x\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
1808 cmd
->t_task_cdb
[0]);
1809 pr_debug("-----[ i_state: %d t_state: %d transport_error_status: %d\n",
1810 cmd
->se_tfo
->get_cmd_state(cmd
),
1812 cmd
->transport_error_status
);
1813 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1814 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1815 " t_transport_active: %d t_transport_stop: %d"
1816 " t_transport_sent: %d\n", cmd
->t_task_list_num
,
1817 atomic_read(&cmd
->t_task_cdbs_left
),
1818 atomic_read(&cmd
->t_task_cdbs_sent
),
1819 atomic_read(&cmd
->t_task_cdbs_ex_left
),
1820 atomic_read(&cmd
->t_transport_active
),
1821 atomic_read(&cmd
->t_transport_stop
),
1822 atomic_read(&cmd
->t_transport_sent
));
1825 * For SAM Task Attribute emulation for failed struct se_cmd
1827 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
1828 transport_complete_task_attr(cmd
);
1831 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
1834 switch (cmd
->transport_error_status
) {
1835 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
:
1836 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1838 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
:
1839 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
1841 case PYX_TRANSPORT_INVALID_CDB_FIELD
:
1842 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1844 case PYX_TRANSPORT_INVALID_PARAMETER_LIST
:
1845 cmd
->scsi_sense_reason
= TCM_INVALID_PARAMETER_LIST
;
1847 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
:
1849 transport_new_cmd_failure(cmd
);
1851 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1852 * we force this session to fall back to session
1855 cmd
->se_tfo
->fall_back_to_erl0(cmd
->se_sess
);
1856 cmd
->se_tfo
->stop_session(cmd
->se_sess
, 0, 0);
1859 case PYX_TRANSPORT_LU_COMM_FAILURE
:
1860 case PYX_TRANSPORT_ILLEGAL_REQUEST
:
1861 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1863 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE
:
1864 cmd
->scsi_sense_reason
= TCM_UNKNOWN_MODE_PAGE
;
1866 case PYX_TRANSPORT_WRITE_PROTECTED
:
1867 cmd
->scsi_sense_reason
= TCM_WRITE_PROTECTED
;
1869 case PYX_TRANSPORT_RESERVATION_CONFLICT
:
1871 * No SENSE Data payload for this case, set SCSI Status
1872 * and queue the response to $FABRIC_MOD.
1874 * Uses linux/include/scsi/scsi.h SAM status codes defs
1876 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1878 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1879 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1882 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1885 cmd
->se_dev
->se_sub_dev
->se_dev_attrib
.emulate_ua_intlck_ctrl
== 2)
1886 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
1887 cmd
->orig_fe_lun
, 0x2C,
1888 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1890 ret
= cmd
->se_tfo
->queue_status(cmd
);
1891 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1894 case PYX_TRANSPORT_USE_SENSE_REASON
:
1896 * struct se_cmd->scsi_sense_reason already set
1900 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1902 cmd
->transport_error_status
);
1903 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1907 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1908 * make the call to transport_send_check_condition_and_sense()
1909 * directly. Otherwise expect the fabric to make the call to
1910 * transport_send_check_condition_and_sense() after handling
1911 * possible unsoliticied write data payloads.
1913 if (!sc
&& !cmd
->se_tfo
->new_cmd_map
)
1914 transport_new_cmd_failure(cmd
);
1916 ret
= transport_send_check_condition_and_sense(cmd
,
1917 cmd
->scsi_sense_reason
, 0);
1918 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1923 transport_lun_remove_cmd(cmd
);
1924 if (!transport_cmd_check_stop_to_fabric(cmd
))
1929 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1930 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1933 static inline u32
transport_lba_21(unsigned char *cdb
)
1935 return ((cdb
[1] & 0x1f) << 16) | (cdb
[2] << 8) | cdb
[3];
1938 static inline u32
transport_lba_32(unsigned char *cdb
)
1940 return (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
1943 static inline unsigned long long transport_lba_64(unsigned char *cdb
)
1945 unsigned int __v1
, __v2
;
1947 __v1
= (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
1948 __v2
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
1950 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
1954 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1956 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb
)
1958 unsigned int __v1
, __v2
;
1960 __v1
= (cdb
[12] << 24) | (cdb
[13] << 16) | (cdb
[14] << 8) | cdb
[15];
1961 __v2
= (cdb
[16] << 24) | (cdb
[17] << 16) | (cdb
[18] << 8) | cdb
[19];
1963 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
1966 static void transport_set_supported_SAM_opcode(struct se_cmd
*se_cmd
)
1968 unsigned long flags
;
1970 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
1971 se_cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1972 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
1975 static inline int transport_tcq_window_closed(struct se_device
*dev
)
1977 if (dev
->dev_tcq_window_closed
++ <
1978 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD
) {
1979 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT
);
1981 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG
);
1983 wake_up_interruptible(&dev
->dev_queue_obj
.thread_wq
);
1988 * Called from Fabric Module context from transport_execute_tasks()
1990 * The return of this function determins if the tasks from struct se_cmd
1991 * get added to the execution queue in transport_execute_tasks(),
1992 * or are added to the delayed or ordered lists here.
1994 static inline int transport_execute_task_attr(struct se_cmd
*cmd
)
1996 if (cmd
->se_dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1999 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2000 * to allow the passed struct se_cmd list of tasks to the front of the list.
2002 if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
2003 atomic_inc(&cmd
->se_dev
->dev_hoq_count
);
2004 smp_mb__after_atomic_inc();
2005 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2006 " 0x%02x, se_ordered_id: %u\n",
2008 cmd
->se_ordered_id
);
2010 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
2011 spin_lock(&cmd
->se_dev
->ordered_cmd_lock
);
2012 list_add_tail(&cmd
->se_ordered_node
,
2013 &cmd
->se_dev
->ordered_cmd_list
);
2014 spin_unlock(&cmd
->se_dev
->ordered_cmd_lock
);
2016 atomic_inc(&cmd
->se_dev
->dev_ordered_sync
);
2017 smp_mb__after_atomic_inc();
2019 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2020 " list, se_ordered_id: %u\n",
2022 cmd
->se_ordered_id
);
2024 * Add ORDERED command to tail of execution queue if
2025 * no other older commands exist that need to be
2028 if (!atomic_read(&cmd
->se_dev
->simple_cmds
))
2032 * For SIMPLE and UNTAGGED Task Attribute commands
2034 atomic_inc(&cmd
->se_dev
->simple_cmds
);
2035 smp_mb__after_atomic_inc();
2038 * Otherwise if one or more outstanding ORDERED task attribute exist,
2039 * add the dormant task(s) built for the passed struct se_cmd to the
2040 * execution queue and become in Active state for this struct se_device.
2042 if (atomic_read(&cmd
->se_dev
->dev_ordered_sync
) != 0) {
2044 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2045 * will be drained upon completion of HEAD_OF_QUEUE task.
2047 spin_lock(&cmd
->se_dev
->delayed_cmd_lock
);
2048 cmd
->se_cmd_flags
|= SCF_DELAYED_CMD_FROM_SAM_ATTR
;
2049 list_add_tail(&cmd
->se_delayed_node
,
2050 &cmd
->se_dev
->delayed_cmd_list
);
2051 spin_unlock(&cmd
->se_dev
->delayed_cmd_lock
);
2053 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2054 " delayed CMD list, se_ordered_id: %u\n",
2055 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
,
2056 cmd
->se_ordered_id
);
2058 * Return zero to let transport_execute_tasks() know
2059 * not to add the delayed tasks to the execution list.
2064 * Otherwise, no ORDERED task attributes exist..
2070 * Called from fabric module context in transport_generic_new_cmd() and
2071 * transport_generic_process_write()
2073 static int transport_execute_tasks(struct se_cmd
*cmd
)
2077 if (se_dev_check_online(cmd
->se_orig_obj_ptr
) != 0) {
2078 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
2079 transport_generic_request_failure(cmd
, 0, 1);
2084 * Call transport_cmd_check_stop() to see if a fabric exception
2085 * has occurred that prevents execution.
2087 if (!transport_cmd_check_stop(cmd
, 0, TRANSPORT_PROCESSING
)) {
2089 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2090 * attribute for the tasks of the received struct se_cmd CDB
2092 add_tasks
= transport_execute_task_attr(cmd
);
2096 * This calls transport_add_tasks_from_cmd() to handle
2097 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2098 * (if enabled) in __transport_add_task_to_execute_queue() and
2099 * transport_add_task_check_sam_attr().
2101 transport_add_tasks_from_cmd(cmd
);
2104 * Kick the execution queue for the cmd associated struct se_device
2108 __transport_execute_tasks(cmd
->se_dev
);
2113 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2114 * from struct se_device->execute_task_list and
2116 * Called from transport_processing_thread()
2118 static int __transport_execute_tasks(struct se_device
*dev
)
2121 struct se_cmd
*cmd
= NULL
;
2122 struct se_task
*task
= NULL
;
2123 unsigned long flags
;
2126 * Check if there is enough room in the device and HBA queue to send
2127 * struct se_tasks to the selected transport.
2130 if (!atomic_read(&dev
->depth_left
))
2131 return transport_tcq_window_closed(dev
);
2133 dev
->dev_tcq_window_closed
= 0;
2135 spin_lock_irq(&dev
->execute_task_lock
);
2136 if (list_empty(&dev
->execute_task_list
)) {
2137 spin_unlock_irq(&dev
->execute_task_lock
);
2140 task
= list_first_entry(&dev
->execute_task_list
,
2141 struct se_task
, t_execute_list
);
2142 __transport_remove_task_from_execute_queue(task
, dev
);
2143 spin_unlock_irq(&dev
->execute_task_lock
);
2145 atomic_dec(&dev
->depth_left
);
2147 cmd
= task
->task_se_cmd
;
2149 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2150 task
->task_flags
|= (TF_ACTIVE
| TF_SENT
);
2151 atomic_inc(&cmd
->t_task_cdbs_sent
);
2153 if (atomic_read(&cmd
->t_task_cdbs_sent
) ==
2154 cmd
->t_task_list_num
)
2155 atomic_set(&cmd
->t_transport_sent
, 1);
2157 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2159 * The struct se_cmd->execute_task() function pointer is used
2160 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2161 * struct se_subsystem_api->do_task() caller below.
2163 if (cmd
->execute_task
) {
2164 error
= cmd
->execute_task(task
);
2166 cmd
->transport_error_status
= error
;
2167 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2168 task
->task_flags
&= ~TF_ACTIVE
;
2169 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2170 atomic_set(&cmd
->t_transport_sent
, 0);
2171 transport_stop_tasks_for_cmd(cmd
);
2172 atomic_inc(&dev
->depth_left
);
2173 transport_generic_request_failure(cmd
, 0, 1);
2177 * Handle the successful completion for execute_task()
2178 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2179 * Otherwise the caller is expected to complete the task with
2182 if (!(cmd
->se_cmd_flags
& SCF_EMULATE_CDB_ASYNC
)) {
2183 cmd
->scsi_status
= SAM_STAT_GOOD
;
2184 task
->task_scsi_status
= GOOD
;
2185 transport_complete_task(task
, 1);
2189 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2190 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2191 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2192 * LUN emulation code.
2194 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2195 * call ->do_task() directly and let the underlying TCM subsystem plugin
2196 * code handle the CDB emulation.
2198 if ((dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) &&
2199 (!(task
->task_se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)))
2200 error
= transport_emulate_control_cdb(task
);
2202 error
= dev
->transport
->do_task(task
);
2205 cmd
->transport_error_status
= error
;
2206 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2207 task
->task_flags
&= ~TF_ACTIVE
;
2208 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2209 atomic_set(&cmd
->t_transport_sent
, 0);
2210 transport_stop_tasks_for_cmd(cmd
);
2211 atomic_inc(&dev
->depth_left
);
2212 transport_generic_request_failure(cmd
, 0, 1);
2221 void transport_new_cmd_failure(struct se_cmd
*se_cmd
)
2223 unsigned long flags
;
2225 * Any unsolicited data will get dumped for failed command inside of
2228 spin_lock_irqsave(&se_cmd
->t_state_lock
, flags
);
2229 se_cmd
->se_cmd_flags
|= SCF_SE_CMD_FAILED
;
2230 se_cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2231 spin_unlock_irqrestore(&se_cmd
->t_state_lock
, flags
);
2234 static inline u32
transport_get_sectors_6(
2239 struct se_device
*dev
= cmd
->se_dev
;
2242 * Assume TYPE_DISK for non struct se_device objects.
2243 * Use 8-bit sector value.
2249 * Use 24-bit allocation length for TYPE_TAPE.
2251 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2252 return (u32
)(cdb
[2] << 16) + (cdb
[3] << 8) + cdb
[4];
2255 * Everything else assume TYPE_DISK Sector CDB location.
2256 * Use 8-bit sector value.
2262 static inline u32
transport_get_sectors_10(
2267 struct se_device
*dev
= cmd
->se_dev
;
2270 * Assume TYPE_DISK for non struct se_device objects.
2271 * Use 16-bit sector value.
2277 * XXX_10 is not defined in SSC, throw an exception
2279 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2285 * Everything else assume TYPE_DISK Sector CDB location.
2286 * Use 16-bit sector value.
2289 return (u32
)(cdb
[7] << 8) + cdb
[8];
2292 static inline u32
transport_get_sectors_12(
2297 struct se_device
*dev
= cmd
->se_dev
;
2300 * Assume TYPE_DISK for non struct se_device objects.
2301 * Use 32-bit sector value.
2307 * XXX_12 is not defined in SSC, throw an exception
2309 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2315 * Everything else assume TYPE_DISK Sector CDB location.
2316 * Use 32-bit sector value.
2319 return (u32
)(cdb
[6] << 24) + (cdb
[7] << 16) + (cdb
[8] << 8) + cdb
[9];
2322 static inline u32
transport_get_sectors_16(
2327 struct se_device
*dev
= cmd
->se_dev
;
2330 * Assume TYPE_DISK for non struct se_device objects.
2331 * Use 32-bit sector value.
2337 * Use 24-bit allocation length for TYPE_TAPE.
2339 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
)
2340 return (u32
)(cdb
[12] << 16) + (cdb
[13] << 8) + cdb
[14];
2343 return (u32
)(cdb
[10] << 24) + (cdb
[11] << 16) +
2344 (cdb
[12] << 8) + cdb
[13];
2348 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2350 static inline u32
transport_get_sectors_32(
2356 * Assume TYPE_DISK for non struct se_device objects.
2357 * Use 32-bit sector value.
2359 return (u32
)(cdb
[28] << 24) + (cdb
[29] << 16) +
2360 (cdb
[30] << 8) + cdb
[31];
2364 static inline u32
transport_get_size(
2369 struct se_device
*dev
= cmd
->se_dev
;
2371 if (dev
->transport
->get_device_type(dev
) == TYPE_TAPE
) {
2372 if (cdb
[1] & 1) { /* sectors */
2373 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2378 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2379 " %s object\n", dev
->se_sub_dev
->se_dev_attrib
.block_size
, sectors
,
2380 dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
,
2381 dev
->transport
->name
);
2383 return dev
->se_sub_dev
->se_dev_attrib
.block_size
* sectors
;
2386 static void transport_xor_callback(struct se_cmd
*cmd
)
2388 unsigned char *buf
, *addr
;
2389 struct scatterlist
*sg
;
2390 unsigned int offset
;
2394 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2396 * 1) read the specified logical block(s);
2397 * 2) transfer logical blocks from the data-out buffer;
2398 * 3) XOR the logical blocks transferred from the data-out buffer with
2399 * the logical blocks read, storing the resulting XOR data in a buffer;
2400 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2401 * blocks transferred from the data-out buffer; and
2402 * 5) transfer the resulting XOR data to the data-in buffer.
2404 buf
= kmalloc(cmd
->data_length
, GFP_KERNEL
);
2406 pr_err("Unable to allocate xor_callback buf\n");
2410 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2411 * into the locally allocated *buf
2413 sg_copy_to_buffer(cmd
->t_data_sg
,
2419 * Now perform the XOR against the BIDI read memory located at
2420 * cmd->t_mem_bidi_list
2424 for_each_sg(cmd
->t_bidi_data_sg
, sg
, cmd
->t_bidi_data_nents
, count
) {
2425 addr
= kmap_atomic(sg_page(sg
), KM_USER0
);
2429 for (i
= 0; i
< sg
->length
; i
++)
2430 *(addr
+ sg
->offset
+ i
) ^= *(buf
+ offset
+ i
);
2432 offset
+= sg
->length
;
2433 kunmap_atomic(addr
, KM_USER0
);
2441 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2443 static int transport_get_sense_data(struct se_cmd
*cmd
)
2445 unsigned char *buffer
= cmd
->sense_buffer
, *sense_buffer
= NULL
;
2446 struct se_device
*dev
= cmd
->se_dev
;
2447 struct se_task
*task
= NULL
, *task_tmp
;
2448 unsigned long flags
;
2451 WARN_ON(!cmd
->se_lun
);
2456 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2457 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2458 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2462 list_for_each_entry_safe(task
, task_tmp
,
2463 &cmd
->t_task_list
, t_list
) {
2464 if (!task
->task_sense
)
2467 if (!dev
->transport
->get_sense_buffer
) {
2468 pr_err("dev->transport->get_sense_buffer"
2473 sense_buffer
= dev
->transport
->get_sense_buffer(task
);
2474 if (!sense_buffer
) {
2475 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2476 " sense buffer for task with sense\n",
2477 cmd
->se_tfo
->get_task_tag(cmd
), task
);
2480 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2482 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
2483 TRANSPORT_SENSE_BUFFER
);
2485 memcpy(&buffer
[offset
], sense_buffer
,
2486 TRANSPORT_SENSE_BUFFER
);
2487 cmd
->scsi_status
= task
->task_scsi_status
;
2488 /* Automatically padded */
2489 cmd
->scsi_sense_length
=
2490 (TRANSPORT_SENSE_BUFFER
+ offset
);
2492 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2494 dev
->se_hba
->hba_id
, dev
->transport
->name
,
2498 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2504 transport_handle_reservation_conflict(struct se_cmd
*cmd
)
2506 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2507 cmd
->se_cmd_flags
|= SCF_SCSI_RESERVATION_CONFLICT
;
2508 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2510 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2511 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2514 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2517 cmd
->se_dev
->se_sub_dev
->se_dev_attrib
.emulate_ua_intlck_ctrl
== 2)
2518 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
2519 cmd
->orig_fe_lun
, 0x2C,
2520 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2524 static inline long long transport_dev_end_lba(struct se_device
*dev
)
2526 return dev
->transport
->get_blocks(dev
) + 1;
2529 static int transport_cmd_get_valid_sectors(struct se_cmd
*cmd
)
2531 struct se_device
*dev
= cmd
->se_dev
;
2534 if (dev
->transport
->get_device_type(dev
) != TYPE_DISK
)
2537 sectors
= (cmd
->data_length
/ dev
->se_sub_dev
->se_dev_attrib
.block_size
);
2539 if ((cmd
->t_task_lba
+ sectors
) > transport_dev_end_lba(dev
)) {
2540 pr_err("LBA: %llu Sectors: %u exceeds"
2541 " transport_dev_end_lba(): %llu\n",
2542 cmd
->t_task_lba
, sectors
,
2543 transport_dev_end_lba(dev
));
2550 static int target_check_write_same_discard(unsigned char *flags
, struct se_device
*dev
)
2553 * Determine if the received WRITE_SAME is used to for direct
2554 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2555 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2556 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2558 int passthrough
= (dev
->transport
->transport_type
==
2559 TRANSPORT_PLUGIN_PHBA_PDEV
);
2562 if ((flags
[0] & 0x04) || (flags
[0] & 0x02)) {
2563 pr_err("WRITE_SAME PBDATA and LBDATA"
2564 " bits not supported for Block Discard"
2569 * Currently for the emulated case we only accept
2570 * tpws with the UNMAP=1 bit set.
2572 if (!(flags
[0] & 0x08)) {
2573 pr_err("WRITE_SAME w/o UNMAP bit not"
2574 " supported for Block Discard Emulation\n");
2582 /* transport_generic_cmd_sequencer():
2584 * Generic Command Sequencer that should work for most DAS transport
2587 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2590 * FIXME: Need to support other SCSI OPCODES where as well.
2592 static int transport_generic_cmd_sequencer(
2596 struct se_device
*dev
= cmd
->se_dev
;
2597 struct se_subsystem_dev
*su_dev
= dev
->se_sub_dev
;
2598 int ret
= 0, sector_ret
= 0, passthrough
;
2599 u32 sectors
= 0, size
= 0, pr_reg_type
= 0;
2603 * Check for an existing UNIT ATTENTION condition
2605 if (core_scsi3_ua_check(cmd
, cdb
) < 0) {
2606 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2607 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_UNIT_ATTENTION
;
2611 * Check status of Asymmetric Logical Unit Assignment port
2613 ret
= su_dev
->t10_alua
.alua_state_check(cmd
, cdb
, &alua_ascq
);
2616 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2617 * The ALUA additional sense code qualifier (ASCQ) is determined
2618 * by the ALUA primary or secondary access state..
2622 pr_debug("[%s]: ALUA TG Port not available,"
2623 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2624 cmd
->se_tfo
->get_fabric_name(), alua_ascq
);
2626 transport_set_sense_codes(cmd
, 0x04, alua_ascq
);
2627 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2628 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_NOT_READY
;
2631 goto out_invalid_cdb_field
;
2634 * Check status for SPC-3 Persistent Reservations
2636 if (su_dev
->t10_pr
.pr_ops
.t10_reservation_check(cmd
, &pr_reg_type
) != 0) {
2637 if (su_dev
->t10_pr
.pr_ops
.t10_seq_non_holder(
2638 cmd
, cdb
, pr_reg_type
) != 0)
2639 return transport_handle_reservation_conflict(cmd
);
2641 * This means the CDB is allowed for the SCSI Initiator port
2642 * when said port is *NOT* holding the legacy SPC-2 or
2643 * SPC-3 Persistent Reservation.
2649 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
2651 goto out_unsupported_cdb
;
2652 size
= transport_get_size(sectors
, cdb
, cmd
);
2653 cmd
->t_task_lba
= transport_lba_21(cdb
);
2654 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2657 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2659 goto out_unsupported_cdb
;
2660 size
= transport_get_size(sectors
, cdb
, cmd
);
2661 cmd
->t_task_lba
= transport_lba_32(cdb
);
2662 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2665 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
2667 goto out_unsupported_cdb
;
2668 size
= transport_get_size(sectors
, cdb
, cmd
);
2669 cmd
->t_task_lba
= transport_lba_32(cdb
);
2670 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2673 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2675 goto out_unsupported_cdb
;
2676 size
= transport_get_size(sectors
, cdb
, cmd
);
2677 cmd
->t_task_lba
= transport_lba_64(cdb
);
2678 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2681 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
2683 goto out_unsupported_cdb
;
2684 size
= transport_get_size(sectors
, cdb
, cmd
);
2685 cmd
->t_task_lba
= transport_lba_21(cdb
);
2686 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2689 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2691 goto out_unsupported_cdb
;
2692 size
= transport_get_size(sectors
, cdb
, cmd
);
2693 cmd
->t_task_lba
= transport_lba_32(cdb
);
2694 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
2695 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2698 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
2700 goto out_unsupported_cdb
;
2701 size
= transport_get_size(sectors
, cdb
, cmd
);
2702 cmd
->t_task_lba
= transport_lba_32(cdb
);
2703 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
2704 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2707 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2709 goto out_unsupported_cdb
;
2710 size
= transport_get_size(sectors
, cdb
, cmd
);
2711 cmd
->t_task_lba
= transport_lba_64(cdb
);
2712 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
2713 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2715 case XDWRITEREAD_10
:
2716 if ((cmd
->data_direction
!= DMA_TO_DEVICE
) ||
2717 !(cmd
->t_tasks_bidi
))
2718 goto out_invalid_cdb_field
;
2719 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2721 goto out_unsupported_cdb
;
2722 size
= transport_get_size(sectors
, cdb
, cmd
);
2723 cmd
->t_task_lba
= transport_lba_32(cdb
);
2724 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2726 if (dev
->transport
->transport_type
==
2727 TRANSPORT_PLUGIN_PHBA_PDEV
)
2728 goto out_unsupported_cdb
;
2730 * Setup BIDI XOR callback to be run after I/O completion.
2732 cmd
->transport_complete_callback
= &transport_xor_callback
;
2733 cmd
->t_tasks_fua
= (cdb
[1] & 0x8);
2735 case VARIABLE_LENGTH_CMD
:
2736 service_action
= get_unaligned_be16(&cdb
[8]);
2738 * Determine if this is TCM/PSCSI device and we should disable
2739 * internal emulation for this CDB.
2741 passthrough
= (dev
->transport
->transport_type
==
2742 TRANSPORT_PLUGIN_PHBA_PDEV
);
2744 switch (service_action
) {
2745 case XDWRITEREAD_32
:
2746 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
2748 goto out_unsupported_cdb
;
2749 size
= transport_get_size(sectors
, cdb
, cmd
);
2751 * Use WRITE_32 and READ_32 opcodes for the emulated
2752 * XDWRITE_READ_32 logic.
2754 cmd
->t_task_lba
= transport_lba_64_ext(cdb
);
2755 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
2758 goto out_unsupported_cdb
;
2760 * Setup BIDI XOR callback to be run during after I/O
2763 cmd
->transport_complete_callback
= &transport_xor_callback
;
2764 cmd
->t_tasks_fua
= (cdb
[10] & 0x8);
2767 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
2769 goto out_unsupported_cdb
;
2772 size
= transport_get_size(1, cdb
, cmd
);
2774 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2776 goto out_invalid_cdb_field
;
2779 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[12]);
2780 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2782 if (target_check_write_same_discard(&cdb
[10], dev
) < 0)
2783 goto out_invalid_cdb_field
;
2787 pr_err("VARIABLE_LENGTH_CMD service action"
2788 " 0x%04x not supported\n", service_action
);
2789 goto out_unsupported_cdb
;
2792 case MAINTENANCE_IN
:
2793 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
2794 /* MAINTENANCE_IN from SCC-2 */
2796 * Check for emulated MI_REPORT_TARGET_PGS.
2798 if (cdb
[1] == MI_REPORT_TARGET_PGS
&&
2799 su_dev
->t10_alua
.alua_type
== SPC3_ALUA_EMULATED
) {
2801 target_emulate_report_target_port_groups
;
2803 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
2804 (cdb
[8] << 8) | cdb
[9];
2806 /* GPCMD_SEND_KEY from multi media commands */
2807 size
= (cdb
[8] << 8) + cdb
[9];
2809 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2813 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2815 case MODE_SELECT_10
:
2816 size
= (cdb
[7] << 8) + cdb
[8];
2817 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2821 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2824 case GPCMD_READ_BUFFER_CAPACITY
:
2825 case GPCMD_SEND_OPC
:
2828 size
= (cdb
[7] << 8) + cdb
[8];
2829 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2831 case READ_BLOCK_LIMITS
:
2832 size
= READ_BLOCK_LEN
;
2833 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2835 case GPCMD_GET_CONFIGURATION
:
2836 case GPCMD_READ_FORMAT_CAPACITIES
:
2837 case GPCMD_READ_DISC_INFO
:
2838 case GPCMD_READ_TRACK_RZONE_INFO
:
2839 size
= (cdb
[7] << 8) + cdb
[8];
2840 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2842 case PERSISTENT_RESERVE_IN
:
2843 if (su_dev
->t10_pr
.res_type
== SPC3_PERSISTENT_RESERVATIONS
)
2844 cmd
->execute_task
= target_scsi3_emulate_pr_in
;
2845 size
= (cdb
[7] << 8) + cdb
[8];
2846 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2848 case PERSISTENT_RESERVE_OUT
:
2849 if (su_dev
->t10_pr
.res_type
== SPC3_PERSISTENT_RESERVATIONS
)
2850 cmd
->execute_task
= target_scsi3_emulate_pr_out
;
2851 size
= (cdb
[7] << 8) + cdb
[8];
2852 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2854 case GPCMD_MECHANISM_STATUS
:
2855 case GPCMD_READ_DVD_STRUCTURE
:
2856 size
= (cdb
[8] << 8) + cdb
[9];
2857 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2860 size
= READ_POSITION_LEN
;
2861 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2863 case MAINTENANCE_OUT
:
2864 if (dev
->transport
->get_device_type(dev
) != TYPE_ROM
) {
2865 /* MAINTENANCE_OUT from SCC-2
2867 * Check for emulated MO_SET_TARGET_PGS.
2869 if (cdb
[1] == MO_SET_TARGET_PGS
&&
2870 su_dev
->t10_alua
.alua_type
== SPC3_ALUA_EMULATED
) {
2872 target_emulate_set_target_port_groups
;
2875 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
2876 (cdb
[8] << 8) | cdb
[9];
2878 /* GPCMD_REPORT_KEY from multi media commands */
2879 size
= (cdb
[8] << 8) + cdb
[9];
2881 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2884 size
= (cdb
[3] << 8) + cdb
[4];
2886 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2887 * See spc4r17 section 5.3
2889 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
2890 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
2891 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2894 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2895 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2898 size
= READ_CAP_LEN
;
2899 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2901 case READ_MEDIA_SERIAL_NUMBER
:
2902 case SECURITY_PROTOCOL_IN
:
2903 case SECURITY_PROTOCOL_OUT
:
2904 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
2905 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2907 case SERVICE_ACTION_IN
:
2908 case ACCESS_CONTROL_IN
:
2909 case ACCESS_CONTROL_OUT
:
2911 case READ_ATTRIBUTE
:
2912 case RECEIVE_COPY_RESULTS
:
2913 case WRITE_ATTRIBUTE
:
2914 size
= (cdb
[10] << 24) | (cdb
[11] << 16) |
2915 (cdb
[12] << 8) | cdb
[13];
2916 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2918 case RECEIVE_DIAGNOSTIC
:
2919 case SEND_DIAGNOSTIC
:
2920 size
= (cdb
[3] << 8) | cdb
[4];
2921 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2923 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2926 sectors
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2927 size
= (2336 * sectors
);
2928 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2933 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2937 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2939 case READ_ELEMENT_STATUS
:
2940 size
= 65536 * cdb
[7] + 256 * cdb
[8] + cdb
[9];
2941 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2944 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
2945 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
2950 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2951 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2953 if (cdb
[0] == RESERVE_10
)
2954 size
= (cdb
[7] << 8) | cdb
[8];
2956 size
= cmd
->data_length
;
2959 * Setup the legacy emulated handler for SPC-2 and
2960 * >= SPC-3 compatible reservation handling (CRH=1)
2961 * Otherwise, we assume the underlying SCSI logic is
2962 * is running in SPC_PASSTHROUGH, and wants reservations
2963 * emulation disabled.
2965 if (su_dev
->t10_pr
.res_type
!= SPC_PASSTHROUGH
)
2966 cmd
->execute_task
= target_scsi2_reservation_reserve
;
2967 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
2972 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2973 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2975 if (cdb
[0] == RELEASE_10
)
2976 size
= (cdb
[7] << 8) | cdb
[8];
2978 size
= cmd
->data_length
;
2980 if (su_dev
->t10_pr
.res_type
!= SPC_PASSTHROUGH
)
2981 cmd
->execute_task
= target_scsi2_reservation_release
;
2982 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
2984 case SYNCHRONIZE_CACHE
:
2985 case 0x91: /* SYNCHRONIZE_CACHE_16: */
2987 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2989 if (cdb
[0] == SYNCHRONIZE_CACHE
) {
2990 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
2991 cmd
->t_task_lba
= transport_lba_32(cdb
);
2993 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
2994 cmd
->t_task_lba
= transport_lba_64(cdb
);
2997 goto out_unsupported_cdb
;
2999 size
= transport_get_size(sectors
, cdb
, cmd
);
3000 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3002 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
3005 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3006 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3008 cmd
->se_cmd_flags
|= SCF_EMULATE_CDB_ASYNC
;
3010 * Check to ensure that LBA + Range does not exceed past end of
3011 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3013 if ((cmd
->t_task_lba
!= 0) || (sectors
!= 0)) {
3014 if (transport_cmd_get_valid_sectors(cmd
) < 0)
3015 goto out_invalid_cdb_field
;
3019 size
= get_unaligned_be16(&cdb
[7]);
3020 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3023 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3025 goto out_unsupported_cdb
;
3028 size
= transport_get_size(1, cdb
, cmd
);
3030 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3031 goto out_invalid_cdb_field
;
3034 cmd
->t_task_lba
= get_unaligned_be64(&cdb
[2]);
3035 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3037 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
3038 goto out_invalid_cdb_field
;
3041 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3043 goto out_unsupported_cdb
;
3046 size
= transport_get_size(1, cdb
, cmd
);
3048 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3049 goto out_invalid_cdb_field
;
3052 cmd
->t_task_lba
= get_unaligned_be32(&cdb
[2]);
3053 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3055 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3056 * of byte 1 bit 3 UNMAP instead of original reserved field
3058 if (target_check_write_same_discard(&cdb
[1], dev
) < 0)
3059 goto out_invalid_cdb_field
;
3061 case ALLOW_MEDIUM_REMOVAL
:
3062 case GPCMD_CLOSE_TRACK
:
3064 case INITIALIZE_ELEMENT_STATUS
:
3065 case GPCMD_LOAD_UNLOAD
:
3068 case GPCMD_SET_SPEED
:
3071 case TEST_UNIT_READY
:
3073 case WRITE_FILEMARKS
:
3075 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3078 cmd
->execute_task
= target_report_luns
;
3079 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3081 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3082 * See spc4r17 section 5.3
3084 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3085 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3086 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3089 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3090 " 0x%02x, sending CHECK_CONDITION.\n",
3091 cmd
->se_tfo
->get_fabric_name(), cdb
[0]);
3092 goto out_unsupported_cdb
;
3095 if (size
!= cmd
->data_length
) {
3096 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3097 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3098 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
3099 cmd
->data_length
, size
, cdb
[0]);
3101 cmd
->cmd_spdtl
= size
;
3103 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3104 pr_err("Rejecting underflow/overflow"
3106 goto out_invalid_cdb_field
;
3109 * Reject READ_* or WRITE_* with overflow/underflow for
3110 * type SCF_SCSI_DATA_SG_IO_CDB.
3112 if (!ret
&& (dev
->se_sub_dev
->se_dev_attrib
.block_size
!= 512)) {
3113 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3114 " CDB on non 512-byte sector setup subsystem"
3115 " plugin: %s\n", dev
->transport
->name
);
3116 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3117 goto out_invalid_cdb_field
;
3120 if (size
> cmd
->data_length
) {
3121 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
3122 cmd
->residual_count
= (size
- cmd
->data_length
);
3124 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
3125 cmd
->residual_count
= (cmd
->data_length
- size
);
3127 cmd
->data_length
= size
;
3130 /* Let's limit control cdbs to a page, for simplicity's sake. */
3131 if ((cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) &&
3133 goto out_invalid_cdb_field
;
3135 transport_set_supported_SAM_opcode(cmd
);
3138 out_unsupported_cdb
:
3139 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3140 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
3142 out_invalid_cdb_field
:
3143 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3144 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3149 * Called from I/O completion to determine which dormant/delayed
3150 * and ordered cmds need to have their tasks added to the execution queue.
3152 static void transport_complete_task_attr(struct se_cmd
*cmd
)
3154 struct se_device
*dev
= cmd
->se_dev
;
3155 struct se_cmd
*cmd_p
, *cmd_tmp
;
3156 int new_active_tasks
= 0;
3158 if (cmd
->sam_task_attr
== MSG_SIMPLE_TAG
) {
3159 atomic_dec(&dev
->simple_cmds
);
3160 smp_mb__after_atomic_dec();
3161 dev
->dev_cur_ordered_id
++;
3162 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3163 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
3164 cmd
->se_ordered_id
);
3165 } else if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
3166 atomic_dec(&dev
->dev_hoq_count
);
3167 smp_mb__after_atomic_dec();
3168 dev
->dev_cur_ordered_id
++;
3169 pr_debug("Incremented dev_cur_ordered_id: %u for"
3170 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
3171 cmd
->se_ordered_id
);
3172 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
3173 spin_lock(&dev
->ordered_cmd_lock
);
3174 list_del(&cmd
->se_ordered_node
);
3175 atomic_dec(&dev
->dev_ordered_sync
);
3176 smp_mb__after_atomic_dec();
3177 spin_unlock(&dev
->ordered_cmd_lock
);
3179 dev
->dev_cur_ordered_id
++;
3180 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3181 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
3184 * Process all commands up to the last received
3185 * ORDERED task attribute which requires another blocking
3188 spin_lock(&dev
->delayed_cmd_lock
);
3189 list_for_each_entry_safe(cmd_p
, cmd_tmp
,
3190 &dev
->delayed_cmd_list
, se_delayed_node
) {
3192 list_del(&cmd_p
->se_delayed_node
);
3193 spin_unlock(&dev
->delayed_cmd_lock
);
3195 pr_debug("Calling add_tasks() for"
3196 " cmd_p: 0x%02x Task Attr: 0x%02x"
3197 " Dormant -> Active, se_ordered_id: %u\n",
3198 cmd_p
->t_task_cdb
[0],
3199 cmd_p
->sam_task_attr
, cmd_p
->se_ordered_id
);
3201 transport_add_tasks_from_cmd(cmd_p
);
3204 spin_lock(&dev
->delayed_cmd_lock
);
3205 if (cmd_p
->sam_task_attr
== MSG_ORDERED_TAG
)
3208 spin_unlock(&dev
->delayed_cmd_lock
);
3210 * If new tasks have become active, wake up the transport thread
3211 * to do the processing of the Active tasks.
3213 if (new_active_tasks
!= 0)
3214 wake_up_interruptible(&dev
->dev_queue_obj
.thread_wq
);
3217 static void transport_complete_qf(struct se_cmd
*cmd
)
3221 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3222 transport_complete_task_attr(cmd
);
3224 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3225 ret
= cmd
->se_tfo
->queue_status(cmd
);
3230 switch (cmd
->data_direction
) {
3231 case DMA_FROM_DEVICE
:
3232 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3235 if (cmd
->t_bidi_data_sg
) {
3236 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3240 /* Fall through for DMA_TO_DEVICE */
3242 ret
= cmd
->se_tfo
->queue_status(cmd
);
3250 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3253 transport_lun_remove_cmd(cmd
);
3254 transport_cmd_check_stop_to_fabric(cmd
);
3257 static void transport_handle_queue_full(
3259 struct se_device
*dev
)
3261 spin_lock_irq(&dev
->qf_cmd_lock
);
3262 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
3263 atomic_inc(&dev
->dev_qf_count
);
3264 smp_mb__after_atomic_inc();
3265 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
3267 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3270 static void target_complete_ok_work(struct work_struct
*work
)
3272 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3273 int reason
= 0, ret
;
3276 * Check if we need to move delayed/dormant tasks from cmds on the
3277 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3280 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3281 transport_complete_task_attr(cmd
);
3283 * Check to schedule QUEUE_FULL work, or execute an existing
3284 * cmd->transport_qf_callback()
3286 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
3287 schedule_work(&cmd
->se_dev
->qf_work_queue
);
3290 * Check if we need to retrieve a sense buffer from
3291 * the struct se_cmd in question.
3293 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3294 if (transport_get_sense_data(cmd
) < 0)
3295 reason
= TCM_NON_EXISTENT_LUN
;
3298 * Only set when an struct se_task->task_scsi_status returned
3299 * a non GOOD status.
3301 if (cmd
->scsi_status
) {
3302 ret
= transport_send_check_condition_and_sense(
3304 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3307 transport_lun_remove_cmd(cmd
);
3308 transport_cmd_check_stop_to_fabric(cmd
);
3313 * Check for a callback, used by amongst other things
3314 * XDWRITE_READ_10 emulation.
3316 if (cmd
->transport_complete_callback
)
3317 cmd
->transport_complete_callback(cmd
);
3319 switch (cmd
->data_direction
) {
3320 case DMA_FROM_DEVICE
:
3321 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3322 if (cmd
->se_lun
->lun_sep
) {
3323 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3326 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3328 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3329 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3333 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3334 if (cmd
->se_lun
->lun_sep
) {
3335 cmd
->se_lun
->lun_sep
->sep_stats
.rx_data_octets
+=
3338 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3340 * Check if we need to send READ payload for BIDI-COMMAND
3342 if (cmd
->t_bidi_data_sg
) {
3343 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3344 if (cmd
->se_lun
->lun_sep
) {
3345 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
3348 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3349 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
3350 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3354 /* Fall through for DMA_TO_DEVICE */
3356 ret
= cmd
->se_tfo
->queue_status(cmd
);
3357 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3364 transport_lun_remove_cmd(cmd
);
3365 transport_cmd_check_stop_to_fabric(cmd
);
3369 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3370 " data_direction: %d\n", cmd
, cmd
->data_direction
);
3371 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
3372 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3375 static void transport_free_dev_tasks(struct se_cmd
*cmd
)
3377 struct se_task
*task
, *task_tmp
;
3378 unsigned long flags
;
3379 LIST_HEAD(dispose_list
);
3381 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3382 list_for_each_entry_safe(task
, task_tmp
,
3383 &cmd
->t_task_list
, t_list
) {
3384 if (!(task
->task_flags
& TF_ACTIVE
))
3385 list_move_tail(&task
->t_list
, &dispose_list
);
3387 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3389 while (!list_empty(&dispose_list
)) {
3390 task
= list_first_entry(&dispose_list
, struct se_task
, t_list
);
3392 if (task
->task_sg
!= cmd
->t_data_sg
&&
3393 task
->task_sg
!= cmd
->t_bidi_data_sg
)
3394 kfree(task
->task_sg
);
3396 list_del(&task
->t_list
);
3398 cmd
->se_dev
->transport
->free_task(task
);
3402 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
3404 struct scatterlist
*sg
;
3407 for_each_sg(sgl
, sg
, nents
, count
)
3408 __free_page(sg_page(sg
));
3413 static inline void transport_free_pages(struct se_cmd
*cmd
)
3415 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)
3418 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
3419 cmd
->t_data_sg
= NULL
;
3420 cmd
->t_data_nents
= 0;
3422 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
3423 cmd
->t_bidi_data_sg
= NULL
;
3424 cmd
->t_bidi_data_nents
= 0;
3428 * transport_put_cmd - release a reference to a command
3429 * @cmd: command to release
3431 * This routine releases our reference to the command and frees it if possible.
3433 static void transport_put_cmd(struct se_cmd
*cmd
)
3435 unsigned long flags
;
3438 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3439 if (atomic_read(&cmd
->t_fe_count
)) {
3440 if (!atomic_dec_and_test(&cmd
->t_fe_count
))
3444 if (atomic_read(&cmd
->t_se_count
)) {
3445 if (!atomic_dec_and_test(&cmd
->t_se_count
))
3449 if (atomic_read(&cmd
->transport_dev_active
)) {
3450 atomic_set(&cmd
->transport_dev_active
, 0);
3451 transport_all_task_dev_remove_state(cmd
);
3454 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3456 if (free_tasks
!= 0)
3457 transport_free_dev_tasks(cmd
);
3459 transport_free_pages(cmd
);
3460 transport_release_cmd(cmd
);
3463 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3467 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3468 * allocating in the core.
3469 * @cmd: Associated se_cmd descriptor
3470 * @mem: SGL style memory for TCM WRITE / READ
3471 * @sg_mem_num: Number of SGL elements
3472 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3473 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3475 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3478 int transport_generic_map_mem_to_cmd(
3480 struct scatterlist
*sgl
,
3482 struct scatterlist
*sgl_bidi
,
3485 if (!sgl
|| !sgl_count
)
3488 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
3489 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
)) {
3491 cmd
->t_data_sg
= sgl
;
3492 cmd
->t_data_nents
= sgl_count
;
3494 if (sgl_bidi
&& sgl_bidi_count
) {
3495 cmd
->t_bidi_data_sg
= sgl_bidi
;
3496 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
3498 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
3503 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd
);
3505 void *transport_kmap_first_data_page(struct se_cmd
*cmd
)
3507 struct scatterlist
*sg
= cmd
->t_data_sg
;
3511 * We need to take into account a possible offset here for fabrics like
3512 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3513 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3515 return kmap(sg_page(sg
)) + sg
->offset
;
3517 EXPORT_SYMBOL(transport_kmap_first_data_page
);
3519 void transport_kunmap_first_data_page(struct se_cmd
*cmd
)
3521 kunmap(sg_page(cmd
->t_data_sg
));
3523 EXPORT_SYMBOL(transport_kunmap_first_data_page
);
3526 transport_generic_get_mem(struct se_cmd
*cmd
)
3528 u32 length
= cmd
->data_length
;
3533 nents
= DIV_ROUND_UP(length
, PAGE_SIZE
);
3534 cmd
->t_data_sg
= kmalloc(sizeof(struct scatterlist
) * nents
, GFP_KERNEL
);
3535 if (!cmd
->t_data_sg
)
3538 cmd
->t_data_nents
= nents
;
3539 sg_init_table(cmd
->t_data_sg
, nents
);
3542 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
3543 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
3547 sg_set_page(&cmd
->t_data_sg
[i
], page
, page_len
, 0);
3555 __free_page(sg_page(&cmd
->t_data_sg
[i
]));
3558 kfree(cmd
->t_data_sg
);
3559 cmd
->t_data_sg
= NULL
;
3563 /* Reduce sectors if they are too long for the device */
3564 static inline sector_t
transport_limit_task_sectors(
3565 struct se_device
*dev
,
3566 unsigned long long lba
,
3569 sectors
= min_t(sector_t
, sectors
, dev
->se_sub_dev
->se_dev_attrib
.max_sectors
);
3571 if (dev
->transport
->get_device_type(dev
) == TYPE_DISK
)
3572 if ((lba
+ sectors
) > transport_dev_end_lba(dev
))
3573 sectors
= ((transport_dev_end_lba(dev
) - lba
) + 1);
3580 * This function can be used by HW target mode drivers to create a linked
3581 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3582 * This is intended to be called during the completion path by TCM Core
3583 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3585 void transport_do_task_sg_chain(struct se_cmd
*cmd
)
3587 struct scatterlist
*sg_first
= NULL
;
3588 struct scatterlist
*sg_prev
= NULL
;
3589 int sg_prev_nents
= 0;
3590 struct scatterlist
*sg
;
3591 struct se_task
*task
;
3592 u32 chained_nents
= 0;
3595 BUG_ON(!cmd
->se_tfo
->task_sg_chaining
);
3598 * Walk the struct se_task list and setup scatterlist chains
3599 * for each contiguously allocated struct se_task->task_sg[].
3601 list_for_each_entry(task
, &cmd
->t_task_list
, t_list
) {
3606 sg_first
= task
->task_sg
;
3607 chained_nents
= task
->task_sg_nents
;
3609 sg_chain(sg_prev
, sg_prev_nents
, task
->task_sg
);
3610 chained_nents
+= task
->task_sg_nents
;
3613 * For the padded tasks, use the extra SGL vector allocated
3614 * in transport_allocate_data_tasks() for the sg_prev_nents
3615 * offset into sg_chain() above.
3617 * We do not need the padding for the last task (or a single
3618 * task), but in that case we will never use the sg_prev_nents
3619 * value below which would be incorrect.
3621 sg_prev_nents
= (task
->task_sg_nents
+ 1);
3622 sg_prev
= task
->task_sg
;
3625 * Setup the starting pointer and total t_tasks_sg_linked_no including
3626 * padding SGs for linking and to mark the end.
3628 cmd
->t_tasks_sg_chained
= sg_first
;
3629 cmd
->t_tasks_sg_chained_no
= chained_nents
;
3631 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3632 " t_tasks_sg_chained_no: %u\n", cmd
, cmd
->t_tasks_sg_chained
,
3633 cmd
->t_tasks_sg_chained_no
);
3635 for_each_sg(cmd
->t_tasks_sg_chained
, sg
,
3636 cmd
->t_tasks_sg_chained_no
, i
) {
3638 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3639 i
, sg
, sg_page(sg
), sg
->length
, sg
->offset
);
3640 if (sg_is_chain(sg
))
3641 pr_debug("SG: %p sg_is_chain=1\n", sg
);
3643 pr_debug("SG: %p sg_is_last=1\n", sg
);
3646 EXPORT_SYMBOL(transport_do_task_sg_chain
);
3649 * Break up cmd into chunks transport can handle
3652 transport_allocate_data_tasks(struct se_cmd
*cmd
,
3653 enum dma_data_direction data_direction
,
3654 struct scatterlist
*cmd_sg
, unsigned int sgl_nents
)
3656 struct se_device
*dev
= cmd
->se_dev
;
3658 unsigned long long lba
;
3659 sector_t sectors
, dev_max_sectors
;
3662 if (transport_cmd_get_valid_sectors(cmd
) < 0)
3665 dev_max_sectors
= dev
->se_sub_dev
->se_dev_attrib
.max_sectors
;
3666 sector_size
= dev
->se_sub_dev
->se_dev_attrib
.block_size
;
3668 WARN_ON(cmd
->data_length
% sector_size
);
3670 lba
= cmd
->t_task_lba
;
3671 sectors
= DIV_ROUND_UP(cmd
->data_length
, sector_size
);
3672 task_count
= DIV_ROUND_UP_SECTOR_T(sectors
, dev_max_sectors
);
3675 * If we need just a single task reuse the SG list in the command
3676 * and avoid a lot of work.
3678 if (task_count
== 1) {
3679 struct se_task
*task
;
3680 unsigned long flags
;
3682 task
= transport_generic_get_task(cmd
, data_direction
);
3686 task
->task_sg
= cmd_sg
;
3687 task
->task_sg_nents
= sgl_nents
;
3689 task
->task_lba
= lba
;
3690 task
->task_sectors
= sectors
;
3691 task
->task_size
= task
->task_sectors
* sector_size
;
3693 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3694 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3695 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3700 for (i
= 0; i
< task_count
; i
++) {
3701 struct se_task
*task
;
3702 unsigned int task_size
, task_sg_nents_padded
;
3703 struct scatterlist
*sg
;
3704 unsigned long flags
;
3707 task
= transport_generic_get_task(cmd
, data_direction
);
3711 task
->task_lba
= lba
;
3712 task
->task_sectors
= min(sectors
, dev_max_sectors
);
3713 task
->task_size
= task
->task_sectors
* sector_size
;
3716 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3717 * in order to calculate the number per task SGL entries
3719 task
->task_sg_nents
= DIV_ROUND_UP(task
->task_size
, PAGE_SIZE
);
3721 * Check if the fabric module driver is requesting that all
3722 * struct se_task->task_sg[] be chained together.. If so,
3723 * then allocate an extra padding SG entry for linking and
3724 * marking the end of the chained SGL for every task except
3725 * the last one for (task_count > 1) operation, or skipping
3726 * the extra padding for the (task_count == 1) case.
3728 if (cmd
->se_tfo
->task_sg_chaining
&& (i
< (task_count
- 1))) {
3729 task_sg_nents_padded
= (task
->task_sg_nents
+ 1);
3731 task_sg_nents_padded
= task
->task_sg_nents
;
3733 task
->task_sg
= kmalloc(sizeof(struct scatterlist
) *
3734 task_sg_nents_padded
, GFP_KERNEL
);
3735 if (!task
->task_sg
) {
3736 cmd
->se_dev
->transport
->free_task(task
);
3740 sg_init_table(task
->task_sg
, task_sg_nents_padded
);
3742 task_size
= task
->task_size
;
3744 /* Build new sgl, only up to task_size */
3745 for_each_sg(task
->task_sg
, sg
, task
->task_sg_nents
, count
) {
3746 if (cmd_sg
->length
> task_size
)
3750 task_size
-= cmd_sg
->length
;
3751 cmd_sg
= sg_next(cmd_sg
);
3754 lba
+= task
->task_sectors
;
3755 sectors
-= task
->task_sectors
;
3757 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3758 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3759 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3766 transport_allocate_control_task(struct se_cmd
*cmd
)
3768 struct se_task
*task
;
3769 unsigned long flags
;
3771 task
= transport_generic_get_task(cmd
, cmd
->data_direction
);
3775 task
->task_sg
= cmd
->t_data_sg
;
3776 task
->task_size
= cmd
->data_length
;
3777 task
->task_sg_nents
= cmd
->t_data_nents
;
3779 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3780 list_add_tail(&task
->t_list
, &cmd
->t_task_list
);
3781 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3783 /* Success! Return number of tasks allocated */
3788 * Allocate any required ressources to execute the command, and either place
3789 * it on the execution queue if possible. For writes we might not have the
3790 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3792 int transport_generic_new_cmd(struct se_cmd
*cmd
)
3794 struct se_device
*dev
= cmd
->se_dev
;
3795 int task_cdbs
, task_cdbs_bidi
= 0;
3800 * Determine is the TCM fabric module has already allocated physical
3801 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3804 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
3806 ret
= transport_generic_get_mem(cmd
);
3812 * For BIDI command set up the read tasks first.
3814 if (cmd
->t_bidi_data_sg
&&
3815 dev
->transport
->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
3816 BUG_ON(!(cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
));
3818 task_cdbs_bidi
= transport_allocate_data_tasks(cmd
,
3819 DMA_FROM_DEVICE
, cmd
->t_bidi_data_sg
,
3820 cmd
->t_bidi_data_nents
);
3821 if (task_cdbs_bidi
<= 0)
3824 atomic_inc(&cmd
->t_fe_count
);
3825 atomic_inc(&cmd
->t_se_count
);
3829 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) {
3830 task_cdbs
= transport_allocate_data_tasks(cmd
,
3831 cmd
->data_direction
, cmd
->t_data_sg
,
3834 task_cdbs
= transport_allocate_control_task(cmd
);
3841 atomic_inc(&cmd
->t_fe_count
);
3842 atomic_inc(&cmd
->t_se_count
);
3845 cmd
->t_task_list_num
= (task_cdbs
+ task_cdbs_bidi
);
3846 atomic_set(&cmd
->t_task_cdbs_left
, cmd
->t_task_list_num
);
3847 atomic_set(&cmd
->t_task_cdbs_ex_left
, cmd
->t_task_list_num
);
3850 * For WRITEs, let the fabric know its buffer is ready..
3851 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3852 * will be added to the struct se_device execution queue after its WRITE
3853 * data has arrived. (ie: It gets handled by the transport processing
3854 * thread a second time)
3856 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3857 transport_add_tasks_to_state_queue(cmd
);
3858 return transport_generic_write_pending(cmd
);
3861 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3862 * to the execution queue.
3864 transport_execute_tasks(cmd
);
3868 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3869 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
3872 EXPORT_SYMBOL(transport_generic_new_cmd
);
3874 /* transport_generic_process_write():
3878 void transport_generic_process_write(struct se_cmd
*cmd
)
3880 transport_execute_tasks(cmd
);
3882 EXPORT_SYMBOL(transport_generic_process_write
);
3884 static void transport_write_pending_qf(struct se_cmd
*cmd
)
3888 ret
= cmd
->se_tfo
->write_pending(cmd
);
3889 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
3890 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3892 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3896 static int transport_generic_write_pending(struct se_cmd
*cmd
)
3898 unsigned long flags
;
3901 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3902 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
3903 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3906 * Clear the se_cmd for WRITE_PENDING status in order to set
3907 * cmd->t_transport_active=0 so that transport_generic_handle_data
3908 * can be called from HW target mode interrupt code. This is safe
3909 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3910 * because the se_cmd->se_lun pointer is not being cleared.
3912 transport_cmd_check_stop(cmd
, 1, 0);
3915 * Call the fabric write_pending function here to let the
3916 * frontend know that WRITE buffers are ready.
3918 ret
= cmd
->se_tfo
->write_pending(cmd
);
3919 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
3924 return PYX_TRANSPORT_WRITE_PENDING
;
3927 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
3928 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
3929 transport_handle_queue_full(cmd
, cmd
->se_dev
);
3934 * transport_release_cmd - free a command
3935 * @cmd: command to free
3937 * This routine unconditionally frees a command, and reference counting
3938 * or list removal must be done in the caller.
3940 void transport_release_cmd(struct se_cmd
*cmd
)
3942 BUG_ON(!cmd
->se_tfo
);
3944 if (cmd
->se_tmr_req
)
3945 core_tmr_release_req(cmd
->se_tmr_req
);
3946 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
3947 kfree(cmd
->t_task_cdb
);
3949 * Check if target_wait_for_sess_cmds() is expecting to
3950 * release se_cmd directly here..
3952 if (cmd
->check_release
!= 0 && cmd
->se_tfo
->check_release_cmd
)
3953 if (cmd
->se_tfo
->check_release_cmd(cmd
) != 0)
3956 cmd
->se_tfo
->release_cmd(cmd
);
3958 EXPORT_SYMBOL(transport_release_cmd
);
3960 void transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
3962 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
3963 if (wait_for_tasks
&& cmd
->se_tmr_req
)
3964 transport_wait_for_tasks(cmd
);
3966 transport_release_cmd(cmd
);
3969 transport_wait_for_tasks(cmd
);
3971 core_dec_lacl_count(cmd
->se_sess
->se_node_acl
, cmd
);
3974 transport_lun_remove_cmd(cmd
);
3976 transport_free_dev_tasks(cmd
);
3978 transport_put_cmd(cmd
);
3981 EXPORT_SYMBOL(transport_generic_free_cmd
);
3983 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3984 * @se_sess: session to reference
3985 * @se_cmd: command descriptor to add
3987 void target_get_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
)
3989 unsigned long flags
;
3991 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
3992 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
3993 se_cmd
->check_release
= 1;
3994 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
3996 EXPORT_SYMBOL(target_get_sess_cmd
);
3998 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
3999 * @se_sess: session to reference
4000 * @se_cmd: command descriptor to drop
4002 int target_put_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
)
4004 unsigned long flags
;
4006 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
4007 if (list_empty(&se_cmd
->se_cmd_list
)) {
4008 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4013 if (se_sess
->sess_tearing_down
&& se_cmd
->cmd_wait_set
) {
4014 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4015 complete(&se_cmd
->cmd_wait_comp
);
4018 list_del(&se_cmd
->se_cmd_list
);
4019 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4023 EXPORT_SYMBOL(target_put_sess_cmd
);
4025 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4026 * @se_sess: session to split
4028 void target_splice_sess_cmd_list(struct se_session
*se_sess
)
4030 struct se_cmd
*se_cmd
;
4031 unsigned long flags
;
4033 WARN_ON(!list_empty(&se_sess
->sess_wait_list
));
4034 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
4036 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
4037 se_sess
->sess_tearing_down
= 1;
4039 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
4041 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
)
4042 se_cmd
->cmd_wait_set
= 1;
4044 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
4046 EXPORT_SYMBOL(target_splice_sess_cmd_list
);
4048 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4049 * @se_sess: session to wait for active I/O
4050 * @wait_for_tasks: Make extra transport_wait_for_tasks call
4052 void target_wait_for_sess_cmds(
4053 struct se_session
*se_sess
,
4056 struct se_cmd
*se_cmd
, *tmp_cmd
;
4059 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
4060 &se_sess
->sess_wait_list
, se_cmd_list
) {
4061 list_del(&se_cmd
->se_cmd_list
);
4063 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4064 " %d\n", se_cmd
, se_cmd
->t_state
,
4065 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4067 if (wait_for_tasks
) {
4068 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4069 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4070 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4072 rc
= transport_wait_for_tasks(se_cmd
);
4074 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4075 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4076 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4080 wait_for_completion(&se_cmd
->cmd_wait_comp
);
4081 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4082 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
4083 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
4086 se_cmd
->se_tfo
->release_cmd(se_cmd
);
4089 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
4091 /* transport_lun_wait_for_tasks():
4093 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4094 * an struct se_lun to be successfully shutdown.
4096 static int transport_lun_wait_for_tasks(struct se_cmd
*cmd
, struct se_lun
*lun
)
4098 unsigned long flags
;
4101 * If the frontend has already requested this struct se_cmd to
4102 * be stopped, we can safely ignore this struct se_cmd.
4104 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4105 if (atomic_read(&cmd
->t_transport_stop
)) {
4106 atomic_set(&cmd
->transport_lun_stop
, 0);
4107 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4108 " TRUE, skipping\n", cmd
->se_tfo
->get_task_tag(cmd
));
4109 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4110 transport_cmd_check_stop(cmd
, 1, 0);
4113 atomic_set(&cmd
->transport_lun_fe_stop
, 1);
4114 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4116 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4118 ret
= transport_stop_tasks_for_cmd(cmd
);
4120 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4121 " %d\n", cmd
, cmd
->t_task_list_num
, ret
);
4123 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4124 cmd
->se_tfo
->get_task_tag(cmd
));
4125 wait_for_completion(&cmd
->transport_lun_stop_comp
);
4126 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4127 cmd
->se_tfo
->get_task_tag(cmd
));
4129 transport_remove_cmd_from_queue(cmd
);
4134 static void __transport_clear_lun_from_sessions(struct se_lun
*lun
)
4136 struct se_cmd
*cmd
= NULL
;
4137 unsigned long lun_flags
, cmd_flags
;
4139 * Do exception processing and return CHECK_CONDITION status to the
4142 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4143 while (!list_empty(&lun
->lun_cmd_list
)) {
4144 cmd
= list_first_entry(&lun
->lun_cmd_list
,
4145 struct se_cmd
, se_lun_node
);
4146 list_del(&cmd
->se_lun_node
);
4148 atomic_set(&cmd
->transport_lun_active
, 0);
4150 * This will notify iscsi_target_transport.c:
4151 * transport_cmd_check_stop() that a LUN shutdown is in
4152 * progress for the iscsi_cmd_t.
4154 spin_lock(&cmd
->t_state_lock
);
4155 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4156 "_lun_stop for ITT: 0x%08x\n",
4157 cmd
->se_lun
->unpacked_lun
,
4158 cmd
->se_tfo
->get_task_tag(cmd
));
4159 atomic_set(&cmd
->transport_lun_stop
, 1);
4160 spin_unlock(&cmd
->t_state_lock
);
4162 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4165 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4166 cmd
->se_tfo
->get_task_tag(cmd
),
4167 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
4171 * If the Storage engine still owns the iscsi_cmd_t, determine
4172 * and/or stop its context.
4174 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4175 "_lun_wait_for_tasks()\n", cmd
->se_lun
->unpacked_lun
,
4176 cmd
->se_tfo
->get_task_tag(cmd
));
4178 if (transport_lun_wait_for_tasks(cmd
, cmd
->se_lun
) < 0) {
4179 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4183 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4184 "_wait_for_tasks(): SUCCESS\n",
4185 cmd
->se_lun
->unpacked_lun
,
4186 cmd
->se_tfo
->get_task_tag(cmd
));
4188 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4189 if (!atomic_read(&cmd
->transport_dev_active
)) {
4190 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4193 atomic_set(&cmd
->transport_dev_active
, 0);
4194 transport_all_task_dev_remove_state(cmd
);
4195 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4197 transport_free_dev_tasks(cmd
);
4199 * The Storage engine stopped this struct se_cmd before it was
4200 * send to the fabric frontend for delivery back to the
4201 * Initiator Node. Return this SCSI CDB back with an
4202 * CHECK_CONDITION status.
4205 transport_send_check_condition_and_sense(cmd
,
4206 TCM_NON_EXISTENT_LUN
, 0);
4208 * If the fabric frontend is waiting for this iscsi_cmd_t to
4209 * be released, notify the waiting thread now that LU has
4210 * finished accessing it.
4212 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
4213 if (atomic_read(&cmd
->transport_lun_fe_stop
)) {
4214 pr_debug("SE_LUN[%d] - Detected FE stop for"
4215 " struct se_cmd: %p ITT: 0x%08x\n",
4217 cmd
, cmd
->se_tfo
->get_task_tag(cmd
));
4219 spin_unlock_irqrestore(&cmd
->t_state_lock
,
4221 transport_cmd_check_stop(cmd
, 1, 0);
4222 complete(&cmd
->transport_lun_fe_stop_comp
);
4223 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4226 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4227 lun
->unpacked_lun
, cmd
->se_tfo
->get_task_tag(cmd
));
4229 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
4230 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
4232 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
4235 static int transport_clear_lun_thread(void *p
)
4237 struct se_lun
*lun
= (struct se_lun
*)p
;
4239 __transport_clear_lun_from_sessions(lun
);
4240 complete(&lun
->lun_shutdown_comp
);
4245 int transport_clear_lun_from_sessions(struct se_lun
*lun
)
4247 struct task_struct
*kt
;
4249 kt
= kthread_run(transport_clear_lun_thread
, lun
,
4250 "tcm_cl_%u", lun
->unpacked_lun
);
4252 pr_err("Unable to start clear_lun thread\n");
4255 wait_for_completion(&lun
->lun_shutdown_comp
);
4261 * transport_wait_for_tasks - wait for completion to occur
4262 * @cmd: command to wait
4264 * Called from frontend fabric context to wait for storage engine
4265 * to pause and/or release frontend generated struct se_cmd.
4267 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
4269 unsigned long flags
;
4271 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4272 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) && !(cmd
->se_tmr_req
)) {
4273 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4277 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4278 * has been set in transport_set_supported_SAM_opcode().
4280 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) && !cmd
->se_tmr_req
) {
4281 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4285 * If we are already stopped due to an external event (ie: LUN shutdown)
4286 * sleep until the connection can have the passed struct se_cmd back.
4287 * The cmd->transport_lun_stopped_sem will be upped by
4288 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4289 * has completed its operation on the struct se_cmd.
4291 if (atomic_read(&cmd
->transport_lun_stop
)) {
4293 pr_debug("wait_for_tasks: Stopping"
4294 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4295 "_stop_comp); for ITT: 0x%08x\n",
4296 cmd
->se_tfo
->get_task_tag(cmd
));
4298 * There is a special case for WRITES where a FE exception +
4299 * LUN shutdown means ConfigFS context is still sleeping on
4300 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4301 * We go ahead and up transport_lun_stop_comp just to be sure
4304 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4305 complete(&cmd
->transport_lun_stop_comp
);
4306 wait_for_completion(&cmd
->transport_lun_fe_stop_comp
);
4307 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4309 transport_all_task_dev_remove_state(cmd
);
4311 * At this point, the frontend who was the originator of this
4312 * struct se_cmd, now owns the structure and can be released through
4313 * normal means below.
4315 pr_debug("wait_for_tasks: Stopped"
4316 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4317 "stop_comp); for ITT: 0x%08x\n",
4318 cmd
->se_tfo
->get_task_tag(cmd
));
4320 atomic_set(&cmd
->transport_lun_stop
, 0);
4322 if (!atomic_read(&cmd
->t_transport_active
) ||
4323 atomic_read(&cmd
->t_transport_aborted
)) {
4324 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4328 atomic_set(&cmd
->t_transport_stop
, 1);
4330 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4331 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4332 cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
4333 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
4335 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4337 wake_up_interruptible(&cmd
->se_dev
->dev_queue_obj
.thread_wq
);
4339 wait_for_completion(&cmd
->t_transport_stop_comp
);
4341 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4342 atomic_set(&cmd
->t_transport_active
, 0);
4343 atomic_set(&cmd
->t_transport_stop
, 0);
4345 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4346 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4347 cmd
->se_tfo
->get_task_tag(cmd
));
4349 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4353 EXPORT_SYMBOL(transport_wait_for_tasks
);
4355 static int transport_get_sense_codes(
4360 *asc
= cmd
->scsi_asc
;
4361 *ascq
= cmd
->scsi_ascq
;
4366 static int transport_set_sense_codes(
4371 cmd
->scsi_asc
= asc
;
4372 cmd
->scsi_ascq
= ascq
;
4377 int transport_send_check_condition_and_sense(
4382 unsigned char *buffer
= cmd
->sense_buffer
;
4383 unsigned long flags
;
4385 u8 asc
= 0, ascq
= 0;
4387 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4388 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
4389 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4392 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
4393 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4395 if (!reason
&& from_transport
)
4398 if (!from_transport
)
4399 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
4401 * Data Segment and SenseLength of the fabric response PDU.
4403 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4404 * from include/scsi/scsi_cmnd.h
4406 offset
= cmd
->se_tfo
->set_fabric_sense_len(cmd
,
4407 TRANSPORT_SENSE_BUFFER
);
4409 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4410 * SENSE KEY values from include/scsi/scsi.h
4413 case TCM_NON_EXISTENT_LUN
:
4415 buffer
[offset
] = 0x70;
4416 /* ILLEGAL REQUEST */
4417 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4418 /* LOGICAL UNIT NOT SUPPORTED */
4419 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x25;
4421 case TCM_UNSUPPORTED_SCSI_OPCODE
:
4422 case TCM_SECTOR_COUNT_TOO_MANY
:
4424 buffer
[offset
] = 0x70;
4425 /* ILLEGAL REQUEST */
4426 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4427 /* INVALID COMMAND OPERATION CODE */
4428 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x20;
4430 case TCM_UNKNOWN_MODE_PAGE
:
4432 buffer
[offset
] = 0x70;
4433 /* ILLEGAL REQUEST */
4434 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4435 /* INVALID FIELD IN CDB */
4436 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4438 case TCM_CHECK_CONDITION_ABORT_CMD
:
4440 buffer
[offset
] = 0x70;
4441 /* ABORTED COMMAND */
4442 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4443 /* BUS DEVICE RESET FUNCTION OCCURRED */
4444 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x29;
4445 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x03;
4447 case TCM_INCORRECT_AMOUNT_OF_DATA
:
4449 buffer
[offset
] = 0x70;
4450 /* ABORTED COMMAND */
4451 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4453 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4454 /* NOT ENOUGH UNSOLICITED DATA */
4455 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0d;
4457 case TCM_INVALID_CDB_FIELD
:
4459 buffer
[offset
] = 0x70;
4460 /* ABORTED COMMAND */
4461 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4462 /* INVALID FIELD IN CDB */
4463 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
4465 case TCM_INVALID_PARAMETER_LIST
:
4467 buffer
[offset
] = 0x70;
4468 /* ABORTED COMMAND */
4469 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4470 /* INVALID FIELD IN PARAMETER LIST */
4471 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x26;
4473 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
4475 buffer
[offset
] = 0x70;
4476 /* ABORTED COMMAND */
4477 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4479 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
4480 /* UNEXPECTED_UNSOLICITED_DATA */
4481 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0c;
4483 case TCM_SERVICE_CRC_ERROR
:
4485 buffer
[offset
] = 0x70;
4486 /* ABORTED COMMAND */
4487 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4488 /* PROTOCOL SERVICE CRC ERROR */
4489 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x47;
4491 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x05;
4493 case TCM_SNACK_REJECTED
:
4495 buffer
[offset
] = 0x70;
4496 /* ABORTED COMMAND */
4497 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
4499 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x11;
4500 /* FAILED RETRANSMISSION REQUEST */
4501 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x13;
4503 case TCM_WRITE_PROTECTED
:
4505 buffer
[offset
] = 0x70;
4507 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
4508 /* WRITE PROTECTED */
4509 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x27;
4511 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
4513 buffer
[offset
] = 0x70;
4514 /* UNIT ATTENTION */
4515 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
4516 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
4517 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4518 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4520 case TCM_CHECK_CONDITION_NOT_READY
:
4522 buffer
[offset
] = 0x70;
4524 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
4525 transport_get_sense_codes(cmd
, &asc
, &ascq
);
4526 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
4527 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
4529 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
4532 buffer
[offset
] = 0x70;
4533 /* ILLEGAL REQUEST */
4534 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
4535 /* LOGICAL UNIT COMMUNICATION FAILURE */
4536 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x80;
4540 * This code uses linux/include/scsi/scsi.h SAM status codes!
4542 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
4544 * Automatically padded, this value is encoded in the fabric's
4545 * data_length response PDU containing the SCSI defined sense data.
4547 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
+ offset
;
4550 return cmd
->se_tfo
->queue_status(cmd
);
4552 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
4554 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
4558 if (atomic_read(&cmd
->t_transport_aborted
) != 0) {
4560 (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
4563 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4564 " status for CDB: 0x%02x ITT: 0x%08x\n",
4566 cmd
->se_tfo
->get_task_tag(cmd
));
4568 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
4569 cmd
->se_tfo
->queue_status(cmd
);
4574 EXPORT_SYMBOL(transport_check_aborted_status
);
4576 void transport_send_task_abort(struct se_cmd
*cmd
)
4578 unsigned long flags
;
4580 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
4581 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
4582 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4585 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
4588 * If there are still expected incoming fabric WRITEs, we wait
4589 * until until they have completed before sending a TASK_ABORTED
4590 * response. This response with TASK_ABORTED status will be
4591 * queued back to fabric module by transport_check_aborted_status().
4593 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
4594 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
4595 atomic_inc(&cmd
->t_transport_aborted
);
4596 smp_mb__after_atomic_inc();
4597 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
4598 transport_new_cmd_failure(cmd
);
4602 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
4604 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4605 " ITT: 0x%08x\n", cmd
->t_task_cdb
[0],
4606 cmd
->se_tfo
->get_task_tag(cmd
));
4608 cmd
->se_tfo
->queue_status(cmd
);
4611 /* transport_generic_do_tmr():
4615 int transport_generic_do_tmr(struct se_cmd
*cmd
)
4617 struct se_device
*dev
= cmd
->se_dev
;
4618 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
4621 switch (tmr
->function
) {
4622 case TMR_ABORT_TASK
:
4623 tmr
->response
= TMR_FUNCTION_REJECTED
;
4625 case TMR_ABORT_TASK_SET
:
4627 case TMR_CLEAR_TASK_SET
:
4628 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
4631 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
4632 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
4633 TMR_FUNCTION_REJECTED
;
4635 case TMR_TARGET_WARM_RESET
:
4636 tmr
->response
= TMR_FUNCTION_REJECTED
;
4638 case TMR_TARGET_COLD_RESET
:
4639 tmr
->response
= TMR_FUNCTION_REJECTED
;
4642 pr_err("Uknown TMR function: 0x%02x.\n",
4644 tmr
->response
= TMR_FUNCTION_REJECTED
;
4648 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
4649 cmd
->se_tfo
->queue_tm_rsp(cmd
);
4651 transport_cmd_check_stop_to_fabric(cmd
);
4655 /* transport_processing_thread():
4659 static int transport_processing_thread(void *param
)
4663 struct se_device
*dev
= (struct se_device
*) param
;
4665 set_user_nice(current
, -20);
4667 while (!kthread_should_stop()) {
4668 ret
= wait_event_interruptible(dev
->dev_queue_obj
.thread_wq
,
4669 atomic_read(&dev
->dev_queue_obj
.queue_cnt
) ||
4670 kthread_should_stop());
4675 __transport_execute_tasks(dev
);
4677 cmd
= transport_get_cmd_from_queue(&dev
->dev_queue_obj
);
4681 switch (cmd
->t_state
) {
4682 case TRANSPORT_NEW_CMD
:
4685 case TRANSPORT_NEW_CMD_MAP
:
4686 if (!cmd
->se_tfo
->new_cmd_map
) {
4687 pr_err("cmd->se_tfo->new_cmd_map is"
4688 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4691 ret
= cmd
->se_tfo
->new_cmd_map(cmd
);
4693 cmd
->transport_error_status
= ret
;
4694 transport_generic_request_failure(cmd
,
4695 0, (cmd
->data_direction
!=
4699 ret
= transport_generic_new_cmd(cmd
);
4701 cmd
->transport_error_status
= ret
;
4702 transport_generic_request_failure(cmd
,
4703 0, (cmd
->data_direction
!=
4707 case TRANSPORT_PROCESS_WRITE
:
4708 transport_generic_process_write(cmd
);
4710 case TRANSPORT_PROCESS_TMR
:
4711 transport_generic_do_tmr(cmd
);
4713 case TRANSPORT_COMPLETE_QF_WP
:
4714 transport_write_pending_qf(cmd
);
4716 case TRANSPORT_COMPLETE_QF_OK
:
4717 transport_complete_qf(cmd
);
4720 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4721 "i_state: %d on SE LUN: %u\n",
4723 cmd
->se_tfo
->get_task_tag(cmd
),
4724 cmd
->se_tfo
->get_cmd_state(cmd
),
4725 cmd
->se_lun
->unpacked_lun
);
4733 WARN_ON(!list_empty(&dev
->state_task_list
));
4734 WARN_ON(!list_empty(&dev
->dev_queue_obj
.qobj_list
));
4735 dev
->process_thread
= NULL
;