igb: Create separate functions for generating cmd_type and olinfo
[linux-2.6/cjktty.git] / drivers / net / ethernet / intel / igb / igb_main.c
blob2c61ec46586ff3abe5de04864ca235f6d521493c
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/bitops.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/netdevice.h>
35 #include <linux/ipv6.h>
36 #include <linux/slab.h>
37 #include <net/checksum.h>
38 #include <net/ip6_checksum.h>
39 #include <linux/net_tstamp.h>
40 #include <linux/mii.h>
41 #include <linux/ethtool.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <linux/pci.h>
45 #include <linux/pci-aspm.h>
46 #include <linux/delay.h>
47 #include <linux/interrupt.h>
48 #include <linux/ip.h>
49 #include <linux/tcp.h>
50 #include <linux/sctp.h>
51 #include <linux/if_ether.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include "igb.h"
59 #define MAJ 3
60 #define MIN 0
61 #define BUILD 6
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] = "Copyright (c) 2007-2011 Intel Corporation.";
70 static const struct e1000_info *igb_info_tbl[] = {
71 [board_82575] = &e1000_82575_info,
74 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
100 /* required last entry */
101 {0, }
104 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
106 void igb_reset(struct igb_adapter *);
107 static int igb_setup_all_tx_resources(struct igb_adapter *);
108 static int igb_setup_all_rx_resources(struct igb_adapter *);
109 static void igb_free_all_tx_resources(struct igb_adapter *);
110 static void igb_free_all_rx_resources(struct igb_adapter *);
111 static void igb_setup_mrqc(struct igb_adapter *);
112 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
113 static void __devexit igb_remove(struct pci_dev *pdev);
114 static void igb_init_hw_timer(struct igb_adapter *adapter);
115 static int igb_sw_init(struct igb_adapter *);
116 static int igb_open(struct net_device *);
117 static int igb_close(struct net_device *);
118 static void igb_configure_tx(struct igb_adapter *);
119 static void igb_configure_rx(struct igb_adapter *);
120 static void igb_clean_all_tx_rings(struct igb_adapter *);
121 static void igb_clean_all_rx_rings(struct igb_adapter *);
122 static void igb_clean_tx_ring(struct igb_ring *);
123 static void igb_clean_rx_ring(struct igb_ring *);
124 static void igb_set_rx_mode(struct net_device *);
125 static void igb_update_phy_info(unsigned long);
126 static void igb_watchdog(unsigned long);
127 static void igb_watchdog_task(struct work_struct *);
128 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
129 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
130 struct rtnl_link_stats64 *stats);
131 static int igb_change_mtu(struct net_device *, int);
132 static int igb_set_mac(struct net_device *, void *);
133 static void igb_set_uta(struct igb_adapter *adapter);
134 static irqreturn_t igb_intr(int irq, void *);
135 static irqreturn_t igb_intr_msi(int irq, void *);
136 static irqreturn_t igb_msix_other(int irq, void *);
137 static irqreturn_t igb_msix_ring(int irq, void *);
138 #ifdef CONFIG_IGB_DCA
139 static void igb_update_dca(struct igb_q_vector *);
140 static void igb_setup_dca(struct igb_adapter *);
141 #endif /* CONFIG_IGB_DCA */
142 static int igb_poll(struct napi_struct *, int);
143 static bool igb_clean_tx_irq(struct igb_q_vector *);
144 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
145 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
146 static void igb_tx_timeout(struct net_device *);
147 static void igb_reset_task(struct work_struct *);
148 static void igb_vlan_mode(struct net_device *netdev, u32 features);
149 static void igb_vlan_rx_add_vid(struct net_device *, u16);
150 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
151 static void igb_restore_vlan(struct igb_adapter *);
152 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
153 static void igb_ping_all_vfs(struct igb_adapter *);
154 static void igb_msg_task(struct igb_adapter *);
155 static void igb_vmm_control(struct igb_adapter *);
156 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
157 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
158 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
159 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
160 int vf, u16 vlan, u8 qos);
161 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
162 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
163 struct ifla_vf_info *ivi);
164 static void igb_check_vf_rate_limit(struct igb_adapter *);
166 #ifdef CONFIG_PM
167 static int igb_suspend(struct pci_dev *, pm_message_t);
168 static int igb_resume(struct pci_dev *);
169 #endif
170 static void igb_shutdown(struct pci_dev *);
171 #ifdef CONFIG_IGB_DCA
172 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
173 static struct notifier_block dca_notifier = {
174 .notifier_call = igb_notify_dca,
175 .next = NULL,
176 .priority = 0
178 #endif
179 #ifdef CONFIG_NET_POLL_CONTROLLER
180 /* for netdump / net console */
181 static void igb_netpoll(struct net_device *);
182 #endif
183 #ifdef CONFIG_PCI_IOV
184 static unsigned int max_vfs = 0;
185 module_param(max_vfs, uint, 0);
186 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
187 "per physical function");
188 #endif /* CONFIG_PCI_IOV */
190 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
191 pci_channel_state_t);
192 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
193 static void igb_io_resume(struct pci_dev *);
195 static struct pci_error_handlers igb_err_handler = {
196 .error_detected = igb_io_error_detected,
197 .slot_reset = igb_io_slot_reset,
198 .resume = igb_io_resume,
202 static struct pci_driver igb_driver = {
203 .name = igb_driver_name,
204 .id_table = igb_pci_tbl,
205 .probe = igb_probe,
206 .remove = __devexit_p(igb_remove),
207 #ifdef CONFIG_PM
208 /* Power Management Hooks */
209 .suspend = igb_suspend,
210 .resume = igb_resume,
211 #endif
212 .shutdown = igb_shutdown,
213 .err_handler = &igb_err_handler
216 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
217 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
218 MODULE_LICENSE("GPL");
219 MODULE_VERSION(DRV_VERSION);
221 struct igb_reg_info {
222 u32 ofs;
223 char *name;
226 static const struct igb_reg_info igb_reg_info_tbl[] = {
228 /* General Registers */
229 {E1000_CTRL, "CTRL"},
230 {E1000_STATUS, "STATUS"},
231 {E1000_CTRL_EXT, "CTRL_EXT"},
233 /* Interrupt Registers */
234 {E1000_ICR, "ICR"},
236 /* RX Registers */
237 {E1000_RCTL, "RCTL"},
238 {E1000_RDLEN(0), "RDLEN"},
239 {E1000_RDH(0), "RDH"},
240 {E1000_RDT(0), "RDT"},
241 {E1000_RXDCTL(0), "RXDCTL"},
242 {E1000_RDBAL(0), "RDBAL"},
243 {E1000_RDBAH(0), "RDBAH"},
245 /* TX Registers */
246 {E1000_TCTL, "TCTL"},
247 {E1000_TDBAL(0), "TDBAL"},
248 {E1000_TDBAH(0), "TDBAH"},
249 {E1000_TDLEN(0), "TDLEN"},
250 {E1000_TDH(0), "TDH"},
251 {E1000_TDT(0), "TDT"},
252 {E1000_TXDCTL(0), "TXDCTL"},
253 {E1000_TDFH, "TDFH"},
254 {E1000_TDFT, "TDFT"},
255 {E1000_TDFHS, "TDFHS"},
256 {E1000_TDFPC, "TDFPC"},
258 /* List Terminator */
263 * igb_regdump - register printout routine
265 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
267 int n = 0;
268 char rname[16];
269 u32 regs[8];
271 switch (reginfo->ofs) {
272 case E1000_RDLEN(0):
273 for (n = 0; n < 4; n++)
274 regs[n] = rd32(E1000_RDLEN(n));
275 break;
276 case E1000_RDH(0):
277 for (n = 0; n < 4; n++)
278 regs[n] = rd32(E1000_RDH(n));
279 break;
280 case E1000_RDT(0):
281 for (n = 0; n < 4; n++)
282 regs[n] = rd32(E1000_RDT(n));
283 break;
284 case E1000_RXDCTL(0):
285 for (n = 0; n < 4; n++)
286 regs[n] = rd32(E1000_RXDCTL(n));
287 break;
288 case E1000_RDBAL(0):
289 for (n = 0; n < 4; n++)
290 regs[n] = rd32(E1000_RDBAL(n));
291 break;
292 case E1000_RDBAH(0):
293 for (n = 0; n < 4; n++)
294 regs[n] = rd32(E1000_RDBAH(n));
295 break;
296 case E1000_TDBAL(0):
297 for (n = 0; n < 4; n++)
298 regs[n] = rd32(E1000_RDBAL(n));
299 break;
300 case E1000_TDBAH(0):
301 for (n = 0; n < 4; n++)
302 regs[n] = rd32(E1000_TDBAH(n));
303 break;
304 case E1000_TDLEN(0):
305 for (n = 0; n < 4; n++)
306 regs[n] = rd32(E1000_TDLEN(n));
307 break;
308 case E1000_TDH(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_TDH(n));
311 break;
312 case E1000_TDT(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_TDT(n));
315 break;
316 case E1000_TXDCTL(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_TXDCTL(n));
319 break;
320 default:
321 printk(KERN_INFO "%-15s %08x\n",
322 reginfo->name, rd32(reginfo->ofs));
323 return;
326 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
327 printk(KERN_INFO "%-15s ", rname);
328 for (n = 0; n < 4; n++)
329 printk(KERN_CONT "%08x ", regs[n]);
330 printk(KERN_CONT "\n");
334 * igb_dump - Print registers, tx-rings and rx-rings
336 static void igb_dump(struct igb_adapter *adapter)
338 struct net_device *netdev = adapter->netdev;
339 struct e1000_hw *hw = &adapter->hw;
340 struct igb_reg_info *reginfo;
341 int n = 0;
342 struct igb_ring *tx_ring;
343 union e1000_adv_tx_desc *tx_desc;
344 struct my_u0 { u64 a; u64 b; } *u0;
345 struct igb_ring *rx_ring;
346 union e1000_adv_rx_desc *rx_desc;
347 u32 staterr;
348 int i = 0;
350 if (!netif_msg_hw(adapter))
351 return;
353 /* Print netdevice Info */
354 if (netdev) {
355 dev_info(&adapter->pdev->dev, "Net device Info\n");
356 printk(KERN_INFO "Device Name state "
357 "trans_start last_rx\n");
358 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
359 netdev->name,
360 netdev->state,
361 netdev->trans_start,
362 netdev->last_rx);
365 /* Print Registers */
366 dev_info(&adapter->pdev->dev, "Register Dump\n");
367 printk(KERN_INFO " Register Name Value\n");
368 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
369 reginfo->name; reginfo++) {
370 igb_regdump(hw, reginfo);
373 /* Print TX Ring Summary */
374 if (!netdev || !netif_running(netdev))
375 goto exit;
377 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
378 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
379 " leng ntw timestamp\n");
380 for (n = 0; n < adapter->num_tx_queues; n++) {
381 struct igb_tx_buffer *buffer_info;
382 tx_ring = adapter->tx_ring[n];
383 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
384 printk(KERN_INFO " %5d %5X %5X %016llX %04X %p %016llX\n",
385 n, tx_ring->next_to_use, tx_ring->next_to_clean,
386 (u64)buffer_info->dma,
387 buffer_info->length,
388 buffer_info->next_to_watch,
389 (u64)buffer_info->time_stamp);
392 /* Print TX Rings */
393 if (!netif_msg_tx_done(adapter))
394 goto rx_ring_summary;
396 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
398 /* Transmit Descriptor Formats
400 * Advanced Transmit Descriptor
401 * +--------------------------------------------------------------+
402 * 0 | Buffer Address [63:0] |
403 * +--------------------------------------------------------------+
404 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
405 * +--------------------------------------------------------------+
406 * 63 46 45 40 39 38 36 35 32 31 24 15 0
409 for (n = 0; n < adapter->num_tx_queues; n++) {
410 tx_ring = adapter->tx_ring[n];
411 printk(KERN_INFO "------------------------------------\n");
412 printk(KERN_INFO "TX QUEUE INDEX = %d\n", tx_ring->queue_index);
413 printk(KERN_INFO "------------------------------------\n");
414 printk(KERN_INFO "T [desc] [address 63:0 ] "
415 "[PlPOCIStDDM Ln] [bi->dma ] "
416 "leng ntw timestamp bi->skb\n");
418 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
419 struct igb_tx_buffer *buffer_info;
420 tx_desc = IGB_TX_DESC(tx_ring, i);
421 buffer_info = &tx_ring->tx_buffer_info[i];
422 u0 = (struct my_u0 *)tx_desc;
423 printk(KERN_INFO "T [0x%03X] %016llX %016llX %016llX"
424 " %04X %p %016llX %p", i,
425 le64_to_cpu(u0->a),
426 le64_to_cpu(u0->b),
427 (u64)buffer_info->dma,
428 buffer_info->length,
429 buffer_info->next_to_watch,
430 (u64)buffer_info->time_stamp,
431 buffer_info->skb);
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 printk(KERN_CONT " NTC/U\n");
435 else if (i == tx_ring->next_to_use)
436 printk(KERN_CONT " NTU\n");
437 else if (i == tx_ring->next_to_clean)
438 printk(KERN_CONT " NTC\n");
439 else
440 printk(KERN_CONT "\n");
442 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
443 print_hex_dump(KERN_INFO, "",
444 DUMP_PREFIX_ADDRESS,
445 16, 1, phys_to_virt(buffer_info->dma),
446 buffer_info->length, true);
450 /* Print RX Rings Summary */
451 rx_ring_summary:
452 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
453 printk(KERN_INFO "Queue [NTU] [NTC]\n");
454 for (n = 0; n < adapter->num_rx_queues; n++) {
455 rx_ring = adapter->rx_ring[n];
456 printk(KERN_INFO " %5d %5X %5X\n", n,
457 rx_ring->next_to_use, rx_ring->next_to_clean);
460 /* Print RX Rings */
461 if (!netif_msg_rx_status(adapter))
462 goto exit;
464 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
466 /* Advanced Receive Descriptor (Read) Format
467 * 63 1 0
468 * +-----------------------------------------------------+
469 * 0 | Packet Buffer Address [63:1] |A0/NSE|
470 * +----------------------------------------------+------+
471 * 8 | Header Buffer Address [63:1] | DD |
472 * +-----------------------------------------------------+
475 * Advanced Receive Descriptor (Write-Back) Format
477 * 63 48 47 32 31 30 21 20 17 16 4 3 0
478 * +------------------------------------------------------+
479 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
480 * | Checksum Ident | | | | Type | Type |
481 * +------------------------------------------------------+
482 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
483 * +------------------------------------------------------+
484 * 63 48 47 32 31 20 19 0
487 for (n = 0; n < adapter->num_rx_queues; n++) {
488 rx_ring = adapter->rx_ring[n];
489 printk(KERN_INFO "------------------------------------\n");
490 printk(KERN_INFO "RX QUEUE INDEX = %d\n", rx_ring->queue_index);
491 printk(KERN_INFO "------------------------------------\n");
492 printk(KERN_INFO "R [desc] [ PktBuf A0] "
493 "[ HeadBuf DD] [bi->dma ] [bi->skb] "
494 "<-- Adv Rx Read format\n");
495 printk(KERN_INFO "RWB[desc] [PcsmIpSHl PtRs] "
496 "[vl er S cks ln] ---------------- [bi->skb] "
497 "<-- Adv Rx Write-Back format\n");
499 for (i = 0; i < rx_ring->count; i++) {
500 struct igb_rx_buffer *buffer_info;
501 buffer_info = &rx_ring->rx_buffer_info[i];
502 rx_desc = IGB_RX_DESC(rx_ring, i);
503 u0 = (struct my_u0 *)rx_desc;
504 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
505 if (staterr & E1000_RXD_STAT_DD) {
506 /* Descriptor Done */
507 printk(KERN_INFO "RWB[0x%03X] %016llX "
508 "%016llX ---------------- %p", i,
509 le64_to_cpu(u0->a),
510 le64_to_cpu(u0->b),
511 buffer_info->skb);
512 } else {
513 printk(KERN_INFO "R [0x%03X] %016llX "
514 "%016llX %016llX %p", i,
515 le64_to_cpu(u0->a),
516 le64_to_cpu(u0->b),
517 (u64)buffer_info->dma,
518 buffer_info->skb);
520 if (netif_msg_pktdata(adapter)) {
521 print_hex_dump(KERN_INFO, "",
522 DUMP_PREFIX_ADDRESS,
523 16, 1,
524 phys_to_virt(buffer_info->dma),
525 IGB_RX_HDR_LEN, true);
526 print_hex_dump(KERN_INFO, "",
527 DUMP_PREFIX_ADDRESS,
528 16, 1,
529 phys_to_virt(
530 buffer_info->page_dma +
531 buffer_info->page_offset),
532 PAGE_SIZE/2, true);
536 if (i == rx_ring->next_to_use)
537 printk(KERN_CONT " NTU\n");
538 else if (i == rx_ring->next_to_clean)
539 printk(KERN_CONT " NTC\n");
540 else
541 printk(KERN_CONT "\n");
546 exit:
547 return;
552 * igb_read_clock - read raw cycle counter (to be used by time counter)
554 static cycle_t igb_read_clock(const struct cyclecounter *tc)
556 struct igb_adapter *adapter =
557 container_of(tc, struct igb_adapter, cycles);
558 struct e1000_hw *hw = &adapter->hw;
559 u64 stamp = 0;
560 int shift = 0;
563 * The timestamp latches on lowest register read. For the 82580
564 * the lowest register is SYSTIMR instead of SYSTIML. However we never
565 * adjusted TIMINCA so SYSTIMR will just read as all 0s so ignore it.
567 if (hw->mac.type == e1000_82580) {
568 stamp = rd32(E1000_SYSTIMR) >> 8;
569 shift = IGB_82580_TSYNC_SHIFT;
572 stamp |= (u64)rd32(E1000_SYSTIML) << shift;
573 stamp |= (u64)rd32(E1000_SYSTIMH) << (shift + 32);
574 return stamp;
578 * igb_get_hw_dev - return device
579 * used by hardware layer to print debugging information
581 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
583 struct igb_adapter *adapter = hw->back;
584 return adapter->netdev;
588 * igb_init_module - Driver Registration Routine
590 * igb_init_module is the first routine called when the driver is
591 * loaded. All it does is register with the PCI subsystem.
593 static int __init igb_init_module(void)
595 int ret;
596 printk(KERN_INFO "%s - version %s\n",
597 igb_driver_string, igb_driver_version);
599 printk(KERN_INFO "%s\n", igb_copyright);
601 #ifdef CONFIG_IGB_DCA
602 dca_register_notify(&dca_notifier);
603 #endif
604 ret = pci_register_driver(&igb_driver);
605 return ret;
608 module_init(igb_init_module);
611 * igb_exit_module - Driver Exit Cleanup Routine
613 * igb_exit_module is called just before the driver is removed
614 * from memory.
616 static void __exit igb_exit_module(void)
618 #ifdef CONFIG_IGB_DCA
619 dca_unregister_notify(&dca_notifier);
620 #endif
621 pci_unregister_driver(&igb_driver);
624 module_exit(igb_exit_module);
626 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
628 * igb_cache_ring_register - Descriptor ring to register mapping
629 * @adapter: board private structure to initialize
631 * Once we know the feature-set enabled for the device, we'll cache
632 * the register offset the descriptor ring is assigned to.
634 static void igb_cache_ring_register(struct igb_adapter *adapter)
636 int i = 0, j = 0;
637 u32 rbase_offset = adapter->vfs_allocated_count;
639 switch (adapter->hw.mac.type) {
640 case e1000_82576:
641 /* The queues are allocated for virtualization such that VF 0
642 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
643 * In order to avoid collision we start at the first free queue
644 * and continue consuming queues in the same sequence
646 if (adapter->vfs_allocated_count) {
647 for (; i < adapter->rss_queues; i++)
648 adapter->rx_ring[i]->reg_idx = rbase_offset +
649 Q_IDX_82576(i);
651 case e1000_82575:
652 case e1000_82580:
653 case e1000_i350:
654 default:
655 for (; i < adapter->num_rx_queues; i++)
656 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
657 for (; j < adapter->num_tx_queues; j++)
658 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
659 break;
663 static void igb_free_queues(struct igb_adapter *adapter)
665 int i;
667 for (i = 0; i < adapter->num_tx_queues; i++) {
668 kfree(adapter->tx_ring[i]);
669 adapter->tx_ring[i] = NULL;
671 for (i = 0; i < adapter->num_rx_queues; i++) {
672 kfree(adapter->rx_ring[i]);
673 adapter->rx_ring[i] = NULL;
675 adapter->num_rx_queues = 0;
676 adapter->num_tx_queues = 0;
680 * igb_alloc_queues - Allocate memory for all rings
681 * @adapter: board private structure to initialize
683 * We allocate one ring per queue at run-time since we don't know the
684 * number of queues at compile-time.
686 static int igb_alloc_queues(struct igb_adapter *adapter)
688 struct igb_ring *ring;
689 int i;
691 for (i = 0; i < adapter->num_tx_queues; i++) {
692 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
693 if (!ring)
694 goto err;
695 ring->count = adapter->tx_ring_count;
696 ring->queue_index = i;
697 ring->dev = &adapter->pdev->dev;
698 ring->netdev = adapter->netdev;
699 /* For 82575, context index must be unique per ring. */
700 if (adapter->hw.mac.type == e1000_82575)
701 ring->flags = IGB_RING_FLAG_TX_CTX_IDX;
702 adapter->tx_ring[i] = ring;
705 for (i = 0; i < adapter->num_rx_queues; i++) {
706 ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
707 if (!ring)
708 goto err;
709 ring->count = adapter->rx_ring_count;
710 ring->queue_index = i;
711 ring->dev = &adapter->pdev->dev;
712 ring->netdev = adapter->netdev;
713 ring->flags = IGB_RING_FLAG_RX_CSUM; /* enable rx checksum */
714 /* set flag indicating ring supports SCTP checksum offload */
715 if (adapter->hw.mac.type >= e1000_82576)
716 ring->flags |= IGB_RING_FLAG_RX_SCTP_CSUM;
717 adapter->rx_ring[i] = ring;
720 igb_cache_ring_register(adapter);
722 return 0;
724 err:
725 igb_free_queues(adapter);
727 return -ENOMEM;
730 #define IGB_N0_QUEUE -1
731 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
733 u32 msixbm = 0;
734 struct igb_adapter *adapter = q_vector->adapter;
735 struct e1000_hw *hw = &adapter->hw;
736 u32 ivar, index;
737 int rx_queue = IGB_N0_QUEUE;
738 int tx_queue = IGB_N0_QUEUE;
740 if (q_vector->rx_ring)
741 rx_queue = q_vector->rx_ring->reg_idx;
742 if (q_vector->tx_ring)
743 tx_queue = q_vector->tx_ring->reg_idx;
745 switch (hw->mac.type) {
746 case e1000_82575:
747 /* The 82575 assigns vectors using a bitmask, which matches the
748 bitmask for the EICR/EIMS/EIMC registers. To assign one
749 or more queues to a vector, we write the appropriate bits
750 into the MSIXBM register for that vector. */
751 if (rx_queue > IGB_N0_QUEUE)
752 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
753 if (tx_queue > IGB_N0_QUEUE)
754 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
755 if (!adapter->msix_entries && msix_vector == 0)
756 msixbm |= E1000_EIMS_OTHER;
757 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
758 q_vector->eims_value = msixbm;
759 break;
760 case e1000_82576:
761 /* 82576 uses a table-based method for assigning vectors.
762 Each queue has a single entry in the table to which we write
763 a vector number along with a "valid" bit. Sadly, the layout
764 of the table is somewhat counterintuitive. */
765 if (rx_queue > IGB_N0_QUEUE) {
766 index = (rx_queue & 0x7);
767 ivar = array_rd32(E1000_IVAR0, index);
768 if (rx_queue < 8) {
769 /* vector goes into low byte of register */
770 ivar = ivar & 0xFFFFFF00;
771 ivar |= msix_vector | E1000_IVAR_VALID;
772 } else {
773 /* vector goes into third byte of register */
774 ivar = ivar & 0xFF00FFFF;
775 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
777 array_wr32(E1000_IVAR0, index, ivar);
779 if (tx_queue > IGB_N0_QUEUE) {
780 index = (tx_queue & 0x7);
781 ivar = array_rd32(E1000_IVAR0, index);
782 if (tx_queue < 8) {
783 /* vector goes into second byte of register */
784 ivar = ivar & 0xFFFF00FF;
785 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
786 } else {
787 /* vector goes into high byte of register */
788 ivar = ivar & 0x00FFFFFF;
789 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
791 array_wr32(E1000_IVAR0, index, ivar);
793 q_vector->eims_value = 1 << msix_vector;
794 break;
795 case e1000_82580:
796 case e1000_i350:
797 /* 82580 uses the same table-based approach as 82576 but has fewer
798 entries as a result we carry over for queues greater than 4. */
799 if (rx_queue > IGB_N0_QUEUE) {
800 index = (rx_queue >> 1);
801 ivar = array_rd32(E1000_IVAR0, index);
802 if (rx_queue & 0x1) {
803 /* vector goes into third byte of register */
804 ivar = ivar & 0xFF00FFFF;
805 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
806 } else {
807 /* vector goes into low byte of register */
808 ivar = ivar & 0xFFFFFF00;
809 ivar |= msix_vector | E1000_IVAR_VALID;
811 array_wr32(E1000_IVAR0, index, ivar);
813 if (tx_queue > IGB_N0_QUEUE) {
814 index = (tx_queue >> 1);
815 ivar = array_rd32(E1000_IVAR0, index);
816 if (tx_queue & 0x1) {
817 /* vector goes into high byte of register */
818 ivar = ivar & 0x00FFFFFF;
819 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
820 } else {
821 /* vector goes into second byte of register */
822 ivar = ivar & 0xFFFF00FF;
823 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
825 array_wr32(E1000_IVAR0, index, ivar);
827 q_vector->eims_value = 1 << msix_vector;
828 break;
829 default:
830 BUG();
831 break;
834 /* add q_vector eims value to global eims_enable_mask */
835 adapter->eims_enable_mask |= q_vector->eims_value;
837 /* configure q_vector to set itr on first interrupt */
838 q_vector->set_itr = 1;
842 * igb_configure_msix - Configure MSI-X hardware
844 * igb_configure_msix sets up the hardware to properly
845 * generate MSI-X interrupts.
847 static void igb_configure_msix(struct igb_adapter *adapter)
849 u32 tmp;
850 int i, vector = 0;
851 struct e1000_hw *hw = &adapter->hw;
853 adapter->eims_enable_mask = 0;
855 /* set vector for other causes, i.e. link changes */
856 switch (hw->mac.type) {
857 case e1000_82575:
858 tmp = rd32(E1000_CTRL_EXT);
859 /* enable MSI-X PBA support*/
860 tmp |= E1000_CTRL_EXT_PBA_CLR;
862 /* Auto-Mask interrupts upon ICR read. */
863 tmp |= E1000_CTRL_EXT_EIAME;
864 tmp |= E1000_CTRL_EXT_IRCA;
866 wr32(E1000_CTRL_EXT, tmp);
868 /* enable msix_other interrupt */
869 array_wr32(E1000_MSIXBM(0), vector++,
870 E1000_EIMS_OTHER);
871 adapter->eims_other = E1000_EIMS_OTHER;
873 break;
875 case e1000_82576:
876 case e1000_82580:
877 case e1000_i350:
878 /* Turn on MSI-X capability first, or our settings
879 * won't stick. And it will take days to debug. */
880 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
881 E1000_GPIE_PBA | E1000_GPIE_EIAME |
882 E1000_GPIE_NSICR);
884 /* enable msix_other interrupt */
885 adapter->eims_other = 1 << vector;
886 tmp = (vector++ | E1000_IVAR_VALID) << 8;
888 wr32(E1000_IVAR_MISC, tmp);
889 break;
890 default:
891 /* do nothing, since nothing else supports MSI-X */
892 break;
893 } /* switch (hw->mac.type) */
895 adapter->eims_enable_mask |= adapter->eims_other;
897 for (i = 0; i < adapter->num_q_vectors; i++)
898 igb_assign_vector(adapter->q_vector[i], vector++);
900 wrfl();
904 * igb_request_msix - Initialize MSI-X interrupts
906 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
907 * kernel.
909 static int igb_request_msix(struct igb_adapter *adapter)
911 struct net_device *netdev = adapter->netdev;
912 struct e1000_hw *hw = &adapter->hw;
913 int i, err = 0, vector = 0;
915 err = request_irq(adapter->msix_entries[vector].vector,
916 igb_msix_other, 0, netdev->name, adapter);
917 if (err)
918 goto out;
919 vector++;
921 for (i = 0; i < adapter->num_q_vectors; i++) {
922 struct igb_q_vector *q_vector = adapter->q_vector[i];
924 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
926 if (q_vector->rx_ring && q_vector->tx_ring)
927 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
928 q_vector->rx_ring->queue_index);
929 else if (q_vector->tx_ring)
930 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
931 q_vector->tx_ring->queue_index);
932 else if (q_vector->rx_ring)
933 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
934 q_vector->rx_ring->queue_index);
935 else
936 sprintf(q_vector->name, "%s-unused", netdev->name);
938 err = request_irq(adapter->msix_entries[vector].vector,
939 igb_msix_ring, 0, q_vector->name,
940 q_vector);
941 if (err)
942 goto out;
943 vector++;
946 igb_configure_msix(adapter);
947 return 0;
948 out:
949 return err;
952 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
954 if (adapter->msix_entries) {
955 pci_disable_msix(adapter->pdev);
956 kfree(adapter->msix_entries);
957 adapter->msix_entries = NULL;
958 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
959 pci_disable_msi(adapter->pdev);
964 * igb_free_q_vectors - Free memory allocated for interrupt vectors
965 * @adapter: board private structure to initialize
967 * This function frees the memory allocated to the q_vectors. In addition if
968 * NAPI is enabled it will delete any references to the NAPI struct prior
969 * to freeing the q_vector.
971 static void igb_free_q_vectors(struct igb_adapter *adapter)
973 int v_idx;
975 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
976 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
977 adapter->q_vector[v_idx] = NULL;
978 if (!q_vector)
979 continue;
980 netif_napi_del(&q_vector->napi);
981 kfree(q_vector);
983 adapter->num_q_vectors = 0;
987 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
989 * This function resets the device so that it has 0 rx queues, tx queues, and
990 * MSI-X interrupts allocated.
992 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
994 igb_free_queues(adapter);
995 igb_free_q_vectors(adapter);
996 igb_reset_interrupt_capability(adapter);
1000 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1002 * Attempt to configure interrupts using the best available
1003 * capabilities of the hardware and kernel.
1005 static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1007 int err;
1008 int numvecs, i;
1010 /* Number of supported queues. */
1011 adapter->num_rx_queues = adapter->rss_queues;
1012 if (adapter->vfs_allocated_count)
1013 adapter->num_tx_queues = 1;
1014 else
1015 adapter->num_tx_queues = adapter->rss_queues;
1017 /* start with one vector for every rx queue */
1018 numvecs = adapter->num_rx_queues;
1020 /* if tx handler is separate add 1 for every tx queue */
1021 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1022 numvecs += adapter->num_tx_queues;
1024 /* store the number of vectors reserved for queues */
1025 adapter->num_q_vectors = numvecs;
1027 /* add 1 vector for link status interrupts */
1028 numvecs++;
1029 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1030 GFP_KERNEL);
1031 if (!adapter->msix_entries)
1032 goto msi_only;
1034 for (i = 0; i < numvecs; i++)
1035 adapter->msix_entries[i].entry = i;
1037 err = pci_enable_msix(adapter->pdev,
1038 adapter->msix_entries,
1039 numvecs);
1040 if (err == 0)
1041 goto out;
1043 igb_reset_interrupt_capability(adapter);
1045 /* If we can't do MSI-X, try MSI */
1046 msi_only:
1047 #ifdef CONFIG_PCI_IOV
1048 /* disable SR-IOV for non MSI-X configurations */
1049 if (adapter->vf_data) {
1050 struct e1000_hw *hw = &adapter->hw;
1051 /* disable iov and allow time for transactions to clear */
1052 pci_disable_sriov(adapter->pdev);
1053 msleep(500);
1055 kfree(adapter->vf_data);
1056 adapter->vf_data = NULL;
1057 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1058 wrfl();
1059 msleep(100);
1060 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1062 #endif
1063 adapter->vfs_allocated_count = 0;
1064 adapter->rss_queues = 1;
1065 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1066 adapter->num_rx_queues = 1;
1067 adapter->num_tx_queues = 1;
1068 adapter->num_q_vectors = 1;
1069 if (!pci_enable_msi(adapter->pdev))
1070 adapter->flags |= IGB_FLAG_HAS_MSI;
1071 out:
1072 /* Notify the stack of the (possibly) reduced queue counts. */
1073 netif_set_real_num_tx_queues(adapter->netdev, adapter->num_tx_queues);
1074 return netif_set_real_num_rx_queues(adapter->netdev,
1075 adapter->num_rx_queues);
1079 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1080 * @adapter: board private structure to initialize
1082 * We allocate one q_vector per queue interrupt. If allocation fails we
1083 * return -ENOMEM.
1085 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1087 struct igb_q_vector *q_vector;
1088 struct e1000_hw *hw = &adapter->hw;
1089 int v_idx;
1091 for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1092 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
1093 if (!q_vector)
1094 goto err_out;
1095 q_vector->adapter = adapter;
1096 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1097 q_vector->itr_val = IGB_START_ITR;
1098 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1099 adapter->q_vector[v_idx] = q_vector;
1101 return 0;
1103 err_out:
1104 igb_free_q_vectors(adapter);
1105 return -ENOMEM;
1108 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1109 int ring_idx, int v_idx)
1111 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1113 q_vector->rx_ring = adapter->rx_ring[ring_idx];
1114 q_vector->rx_ring->q_vector = q_vector;
1115 q_vector->itr_val = adapter->rx_itr_setting;
1116 if (q_vector->itr_val && q_vector->itr_val <= 3)
1117 q_vector->itr_val = IGB_START_ITR;
1120 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1121 int ring_idx, int v_idx)
1123 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1125 q_vector->tx_ring = adapter->tx_ring[ring_idx];
1126 q_vector->tx_ring->q_vector = q_vector;
1127 q_vector->itr_val = adapter->tx_itr_setting;
1128 q_vector->tx_work_limit = adapter->tx_work_limit;
1129 if (q_vector->itr_val && q_vector->itr_val <= 3)
1130 q_vector->itr_val = IGB_START_ITR;
1134 * igb_map_ring_to_vector - maps allocated queues to vectors
1136 * This function maps the recently allocated queues to vectors.
1138 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1140 int i;
1141 int v_idx = 0;
1143 if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1144 (adapter->num_q_vectors < adapter->num_tx_queues))
1145 return -ENOMEM;
1147 if (adapter->num_q_vectors >=
1148 (adapter->num_rx_queues + adapter->num_tx_queues)) {
1149 for (i = 0; i < adapter->num_rx_queues; i++)
1150 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1151 for (i = 0; i < adapter->num_tx_queues; i++)
1152 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1153 } else {
1154 for (i = 0; i < adapter->num_rx_queues; i++) {
1155 if (i < adapter->num_tx_queues)
1156 igb_map_tx_ring_to_vector(adapter, i, v_idx);
1157 igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1159 for (; i < adapter->num_tx_queues; i++)
1160 igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1162 return 0;
1166 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1168 * This function initializes the interrupts and allocates all of the queues.
1170 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1172 struct pci_dev *pdev = adapter->pdev;
1173 int err;
1175 err = igb_set_interrupt_capability(adapter);
1176 if (err)
1177 return err;
1179 err = igb_alloc_q_vectors(adapter);
1180 if (err) {
1181 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1182 goto err_alloc_q_vectors;
1185 err = igb_alloc_queues(adapter);
1186 if (err) {
1187 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1188 goto err_alloc_queues;
1191 err = igb_map_ring_to_vector(adapter);
1192 if (err) {
1193 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1194 goto err_map_queues;
1198 return 0;
1199 err_map_queues:
1200 igb_free_queues(adapter);
1201 err_alloc_queues:
1202 igb_free_q_vectors(adapter);
1203 err_alloc_q_vectors:
1204 igb_reset_interrupt_capability(adapter);
1205 return err;
1209 * igb_request_irq - initialize interrupts
1211 * Attempts to configure interrupts using the best available
1212 * capabilities of the hardware and kernel.
1214 static int igb_request_irq(struct igb_adapter *adapter)
1216 struct net_device *netdev = adapter->netdev;
1217 struct pci_dev *pdev = adapter->pdev;
1218 int err = 0;
1220 if (adapter->msix_entries) {
1221 err = igb_request_msix(adapter);
1222 if (!err)
1223 goto request_done;
1224 /* fall back to MSI */
1225 igb_clear_interrupt_scheme(adapter);
1226 if (!pci_enable_msi(adapter->pdev))
1227 adapter->flags |= IGB_FLAG_HAS_MSI;
1228 igb_free_all_tx_resources(adapter);
1229 igb_free_all_rx_resources(adapter);
1230 adapter->num_tx_queues = 1;
1231 adapter->num_rx_queues = 1;
1232 adapter->num_q_vectors = 1;
1233 err = igb_alloc_q_vectors(adapter);
1234 if (err) {
1235 dev_err(&pdev->dev,
1236 "Unable to allocate memory for vectors\n");
1237 goto request_done;
1239 err = igb_alloc_queues(adapter);
1240 if (err) {
1241 dev_err(&pdev->dev,
1242 "Unable to allocate memory for queues\n");
1243 igb_free_q_vectors(adapter);
1244 goto request_done;
1246 igb_setup_all_tx_resources(adapter);
1247 igb_setup_all_rx_resources(adapter);
1248 } else {
1249 igb_assign_vector(adapter->q_vector[0], 0);
1252 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1253 err = request_irq(adapter->pdev->irq, igb_intr_msi, 0,
1254 netdev->name, adapter);
1255 if (!err)
1256 goto request_done;
1258 /* fall back to legacy interrupts */
1259 igb_reset_interrupt_capability(adapter);
1260 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1263 err = request_irq(adapter->pdev->irq, igb_intr, IRQF_SHARED,
1264 netdev->name, adapter);
1266 if (err)
1267 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
1268 err);
1270 request_done:
1271 return err;
1274 static void igb_free_irq(struct igb_adapter *adapter)
1276 if (adapter->msix_entries) {
1277 int vector = 0, i;
1279 free_irq(adapter->msix_entries[vector++].vector, adapter);
1281 for (i = 0; i < adapter->num_q_vectors; i++) {
1282 struct igb_q_vector *q_vector = adapter->q_vector[i];
1283 free_irq(adapter->msix_entries[vector++].vector,
1284 q_vector);
1286 } else {
1287 free_irq(adapter->pdev->irq, adapter);
1292 * igb_irq_disable - Mask off interrupt generation on the NIC
1293 * @adapter: board private structure
1295 static void igb_irq_disable(struct igb_adapter *adapter)
1297 struct e1000_hw *hw = &adapter->hw;
1300 * we need to be careful when disabling interrupts. The VFs are also
1301 * mapped into these registers and so clearing the bits can cause
1302 * issues on the VF drivers so we only need to clear what we set
1304 if (adapter->msix_entries) {
1305 u32 regval = rd32(E1000_EIAM);
1306 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1307 wr32(E1000_EIMC, adapter->eims_enable_mask);
1308 regval = rd32(E1000_EIAC);
1309 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1312 wr32(E1000_IAM, 0);
1313 wr32(E1000_IMC, ~0);
1314 wrfl();
1315 if (adapter->msix_entries) {
1316 int i;
1317 for (i = 0; i < adapter->num_q_vectors; i++)
1318 synchronize_irq(adapter->msix_entries[i].vector);
1319 } else {
1320 synchronize_irq(adapter->pdev->irq);
1325 * igb_irq_enable - Enable default interrupt generation settings
1326 * @adapter: board private structure
1328 static void igb_irq_enable(struct igb_adapter *adapter)
1330 struct e1000_hw *hw = &adapter->hw;
1332 if (adapter->msix_entries) {
1333 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC;
1334 u32 regval = rd32(E1000_EIAC);
1335 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1336 regval = rd32(E1000_EIAM);
1337 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1338 wr32(E1000_EIMS, adapter->eims_enable_mask);
1339 if (adapter->vfs_allocated_count) {
1340 wr32(E1000_MBVFIMR, 0xFF);
1341 ims |= E1000_IMS_VMMB;
1343 if (adapter->hw.mac.type == e1000_82580)
1344 ims |= E1000_IMS_DRSTA;
1346 wr32(E1000_IMS, ims);
1347 } else {
1348 wr32(E1000_IMS, IMS_ENABLE_MASK |
1349 E1000_IMS_DRSTA);
1350 wr32(E1000_IAM, IMS_ENABLE_MASK |
1351 E1000_IMS_DRSTA);
1355 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1357 struct e1000_hw *hw = &adapter->hw;
1358 u16 vid = adapter->hw.mng_cookie.vlan_id;
1359 u16 old_vid = adapter->mng_vlan_id;
1361 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1362 /* add VID to filter table */
1363 igb_vfta_set(hw, vid, true);
1364 adapter->mng_vlan_id = vid;
1365 } else {
1366 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1369 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1370 (vid != old_vid) &&
1371 !test_bit(old_vid, adapter->active_vlans)) {
1372 /* remove VID from filter table */
1373 igb_vfta_set(hw, old_vid, false);
1378 * igb_release_hw_control - release control of the h/w to f/w
1379 * @adapter: address of board private structure
1381 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1382 * For ASF and Pass Through versions of f/w this means that the
1383 * driver is no longer loaded.
1386 static void igb_release_hw_control(struct igb_adapter *adapter)
1388 struct e1000_hw *hw = &adapter->hw;
1389 u32 ctrl_ext;
1391 /* Let firmware take over control of h/w */
1392 ctrl_ext = rd32(E1000_CTRL_EXT);
1393 wr32(E1000_CTRL_EXT,
1394 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1398 * igb_get_hw_control - get control of the h/w from f/w
1399 * @adapter: address of board private structure
1401 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1402 * For ASF and Pass Through versions of f/w this means that
1403 * the driver is loaded.
1406 static void igb_get_hw_control(struct igb_adapter *adapter)
1408 struct e1000_hw *hw = &adapter->hw;
1409 u32 ctrl_ext;
1411 /* Let firmware know the driver has taken over */
1412 ctrl_ext = rd32(E1000_CTRL_EXT);
1413 wr32(E1000_CTRL_EXT,
1414 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1418 * igb_configure - configure the hardware for RX and TX
1419 * @adapter: private board structure
1421 static void igb_configure(struct igb_adapter *adapter)
1423 struct net_device *netdev = adapter->netdev;
1424 int i;
1426 igb_get_hw_control(adapter);
1427 igb_set_rx_mode(netdev);
1429 igb_restore_vlan(adapter);
1431 igb_setup_tctl(adapter);
1432 igb_setup_mrqc(adapter);
1433 igb_setup_rctl(adapter);
1435 igb_configure_tx(adapter);
1436 igb_configure_rx(adapter);
1438 igb_rx_fifo_flush_82575(&adapter->hw);
1440 /* call igb_desc_unused which always leaves
1441 * at least 1 descriptor unused to make sure
1442 * next_to_use != next_to_clean */
1443 for (i = 0; i < adapter->num_rx_queues; i++) {
1444 struct igb_ring *ring = adapter->rx_ring[i];
1445 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1450 * igb_power_up_link - Power up the phy/serdes link
1451 * @adapter: address of board private structure
1453 void igb_power_up_link(struct igb_adapter *adapter)
1455 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1456 igb_power_up_phy_copper(&adapter->hw);
1457 else
1458 igb_power_up_serdes_link_82575(&adapter->hw);
1462 * igb_power_down_link - Power down the phy/serdes link
1463 * @adapter: address of board private structure
1465 static void igb_power_down_link(struct igb_adapter *adapter)
1467 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1468 igb_power_down_phy_copper_82575(&adapter->hw);
1469 else
1470 igb_shutdown_serdes_link_82575(&adapter->hw);
1474 * igb_up - Open the interface and prepare it to handle traffic
1475 * @adapter: board private structure
1477 int igb_up(struct igb_adapter *adapter)
1479 struct e1000_hw *hw = &adapter->hw;
1480 int i;
1482 /* hardware has been reset, we need to reload some things */
1483 igb_configure(adapter);
1485 clear_bit(__IGB_DOWN, &adapter->state);
1487 for (i = 0; i < adapter->num_q_vectors; i++) {
1488 struct igb_q_vector *q_vector = adapter->q_vector[i];
1489 napi_enable(&q_vector->napi);
1491 if (adapter->msix_entries)
1492 igb_configure_msix(adapter);
1493 else
1494 igb_assign_vector(adapter->q_vector[0], 0);
1496 /* Clear any pending interrupts. */
1497 rd32(E1000_ICR);
1498 igb_irq_enable(adapter);
1500 /* notify VFs that reset has been completed */
1501 if (adapter->vfs_allocated_count) {
1502 u32 reg_data = rd32(E1000_CTRL_EXT);
1503 reg_data |= E1000_CTRL_EXT_PFRSTD;
1504 wr32(E1000_CTRL_EXT, reg_data);
1507 netif_tx_start_all_queues(adapter->netdev);
1509 /* start the watchdog. */
1510 hw->mac.get_link_status = 1;
1511 schedule_work(&adapter->watchdog_task);
1513 return 0;
1516 void igb_down(struct igb_adapter *adapter)
1518 struct net_device *netdev = adapter->netdev;
1519 struct e1000_hw *hw = &adapter->hw;
1520 u32 tctl, rctl;
1521 int i;
1523 /* signal that we're down so the interrupt handler does not
1524 * reschedule our watchdog timer */
1525 set_bit(__IGB_DOWN, &adapter->state);
1527 /* disable receives in the hardware */
1528 rctl = rd32(E1000_RCTL);
1529 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1530 /* flush and sleep below */
1532 netif_tx_stop_all_queues(netdev);
1534 /* disable transmits in the hardware */
1535 tctl = rd32(E1000_TCTL);
1536 tctl &= ~E1000_TCTL_EN;
1537 wr32(E1000_TCTL, tctl);
1538 /* flush both disables and wait for them to finish */
1539 wrfl();
1540 msleep(10);
1542 for (i = 0; i < adapter->num_q_vectors; i++) {
1543 struct igb_q_vector *q_vector = adapter->q_vector[i];
1544 napi_disable(&q_vector->napi);
1547 igb_irq_disable(adapter);
1549 del_timer_sync(&adapter->watchdog_timer);
1550 del_timer_sync(&adapter->phy_info_timer);
1552 netif_carrier_off(netdev);
1554 /* record the stats before reset*/
1555 spin_lock(&adapter->stats64_lock);
1556 igb_update_stats(adapter, &adapter->stats64);
1557 spin_unlock(&adapter->stats64_lock);
1559 adapter->link_speed = 0;
1560 adapter->link_duplex = 0;
1562 if (!pci_channel_offline(adapter->pdev))
1563 igb_reset(adapter);
1564 igb_clean_all_tx_rings(adapter);
1565 igb_clean_all_rx_rings(adapter);
1566 #ifdef CONFIG_IGB_DCA
1568 /* since we reset the hardware DCA settings were cleared */
1569 igb_setup_dca(adapter);
1570 #endif
1573 void igb_reinit_locked(struct igb_adapter *adapter)
1575 WARN_ON(in_interrupt());
1576 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1577 msleep(1);
1578 igb_down(adapter);
1579 igb_up(adapter);
1580 clear_bit(__IGB_RESETTING, &adapter->state);
1583 void igb_reset(struct igb_adapter *adapter)
1585 struct pci_dev *pdev = adapter->pdev;
1586 struct e1000_hw *hw = &adapter->hw;
1587 struct e1000_mac_info *mac = &hw->mac;
1588 struct e1000_fc_info *fc = &hw->fc;
1589 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1590 u16 hwm;
1592 /* Repartition Pba for greater than 9k mtu
1593 * To take effect CTRL.RST is required.
1595 switch (mac->type) {
1596 case e1000_i350:
1597 case e1000_82580:
1598 pba = rd32(E1000_RXPBS);
1599 pba = igb_rxpbs_adjust_82580(pba);
1600 break;
1601 case e1000_82576:
1602 pba = rd32(E1000_RXPBS);
1603 pba &= E1000_RXPBS_SIZE_MASK_82576;
1604 break;
1605 case e1000_82575:
1606 default:
1607 pba = E1000_PBA_34K;
1608 break;
1611 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1612 (mac->type < e1000_82576)) {
1613 /* adjust PBA for jumbo frames */
1614 wr32(E1000_PBA, pba);
1616 /* To maintain wire speed transmits, the Tx FIFO should be
1617 * large enough to accommodate two full transmit packets,
1618 * rounded up to the next 1KB and expressed in KB. Likewise,
1619 * the Rx FIFO should be large enough to accommodate at least
1620 * one full receive packet and is similarly rounded up and
1621 * expressed in KB. */
1622 pba = rd32(E1000_PBA);
1623 /* upper 16 bits has Tx packet buffer allocation size in KB */
1624 tx_space = pba >> 16;
1625 /* lower 16 bits has Rx packet buffer allocation size in KB */
1626 pba &= 0xffff;
1627 /* the tx fifo also stores 16 bytes of information about the tx
1628 * but don't include ethernet FCS because hardware appends it */
1629 min_tx_space = (adapter->max_frame_size +
1630 sizeof(union e1000_adv_tx_desc) -
1631 ETH_FCS_LEN) * 2;
1632 min_tx_space = ALIGN(min_tx_space, 1024);
1633 min_tx_space >>= 10;
1634 /* software strips receive CRC, so leave room for it */
1635 min_rx_space = adapter->max_frame_size;
1636 min_rx_space = ALIGN(min_rx_space, 1024);
1637 min_rx_space >>= 10;
1639 /* If current Tx allocation is less than the min Tx FIFO size,
1640 * and the min Tx FIFO size is less than the current Rx FIFO
1641 * allocation, take space away from current Rx allocation */
1642 if (tx_space < min_tx_space &&
1643 ((min_tx_space - tx_space) < pba)) {
1644 pba = pba - (min_tx_space - tx_space);
1646 /* if short on rx space, rx wins and must trump tx
1647 * adjustment */
1648 if (pba < min_rx_space)
1649 pba = min_rx_space;
1651 wr32(E1000_PBA, pba);
1654 /* flow control settings */
1655 /* The high water mark must be low enough to fit one full frame
1656 * (or the size used for early receive) above it in the Rx FIFO.
1657 * Set it to the lower of:
1658 * - 90% of the Rx FIFO size, or
1659 * - the full Rx FIFO size minus one full frame */
1660 hwm = min(((pba << 10) * 9 / 10),
1661 ((pba << 10) - 2 * adapter->max_frame_size));
1663 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1664 fc->low_water = fc->high_water - 16;
1665 fc->pause_time = 0xFFFF;
1666 fc->send_xon = 1;
1667 fc->current_mode = fc->requested_mode;
1669 /* disable receive for all VFs and wait one second */
1670 if (adapter->vfs_allocated_count) {
1671 int i;
1672 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1673 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1675 /* ping all the active vfs to let them know we are going down */
1676 igb_ping_all_vfs(adapter);
1678 /* disable transmits and receives */
1679 wr32(E1000_VFRE, 0);
1680 wr32(E1000_VFTE, 0);
1683 /* Allow time for pending master requests to run */
1684 hw->mac.ops.reset_hw(hw);
1685 wr32(E1000_WUC, 0);
1687 if (hw->mac.ops.init_hw(hw))
1688 dev_err(&pdev->dev, "Hardware Error\n");
1689 if (hw->mac.type > e1000_82580) {
1690 if (adapter->flags & IGB_FLAG_DMAC) {
1691 u32 reg;
1694 * DMA Coalescing high water mark needs to be higher
1695 * than * the * Rx threshold. The Rx threshold is
1696 * currently * pba - 6, so we * should use a high water
1697 * mark of pba * - 4. */
1698 hwm = (pba - 4) << 10;
1700 reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
1701 & E1000_DMACR_DMACTHR_MASK);
1703 /* transition to L0x or L1 if available..*/
1704 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1706 /* watchdog timer= +-1000 usec in 32usec intervals */
1707 reg |= (1000 >> 5);
1708 wr32(E1000_DMACR, reg);
1710 /* no lower threshold to disable coalescing(smart fifb)
1711 * -UTRESH=0*/
1712 wr32(E1000_DMCRTRH, 0);
1714 /* set hwm to PBA - 2 * max frame size */
1715 wr32(E1000_FCRTC, hwm);
1718 * This sets the time to wait before requesting tran-
1719 * sition to * low power state to number of usecs needed
1720 * to receive 1 512 * byte frame at gigabit line rate
1722 reg = rd32(E1000_DMCTLX);
1723 reg |= IGB_DMCTLX_DCFLUSH_DIS;
1725 /* Delay 255 usec before entering Lx state. */
1726 reg |= 0xFF;
1727 wr32(E1000_DMCTLX, reg);
1729 /* free space in Tx packet buffer to wake from DMAC */
1730 wr32(E1000_DMCTXTH,
1731 (IGB_MIN_TXPBSIZE -
1732 (IGB_TX_BUF_4096 + adapter->max_frame_size))
1733 >> 6);
1735 /* make low power state decision controlled by DMAC */
1736 reg = rd32(E1000_PCIEMISC);
1737 reg |= E1000_PCIEMISC_LX_DECISION;
1738 wr32(E1000_PCIEMISC, reg);
1739 } /* end if IGB_FLAG_DMAC set */
1741 if (hw->mac.type == e1000_82580) {
1742 u32 reg = rd32(E1000_PCIEMISC);
1743 wr32(E1000_PCIEMISC,
1744 reg & ~E1000_PCIEMISC_LX_DECISION);
1746 if (!netif_running(adapter->netdev))
1747 igb_power_down_link(adapter);
1749 igb_update_mng_vlan(adapter);
1751 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1752 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1754 igb_get_phy_info(hw);
1757 static u32 igb_fix_features(struct net_device *netdev, u32 features)
1760 * Since there is no support for separate rx/tx vlan accel
1761 * enable/disable make sure tx flag is always in same state as rx.
1763 if (features & NETIF_F_HW_VLAN_RX)
1764 features |= NETIF_F_HW_VLAN_TX;
1765 else
1766 features &= ~NETIF_F_HW_VLAN_TX;
1768 return features;
1771 static int igb_set_features(struct net_device *netdev, u32 features)
1773 struct igb_adapter *adapter = netdev_priv(netdev);
1774 int i;
1775 u32 changed = netdev->features ^ features;
1777 for (i = 0; i < adapter->num_rx_queues; i++) {
1778 if (features & NETIF_F_RXCSUM)
1779 adapter->rx_ring[i]->flags |= IGB_RING_FLAG_RX_CSUM;
1780 else
1781 adapter->rx_ring[i]->flags &= ~IGB_RING_FLAG_RX_CSUM;
1784 if (changed & NETIF_F_HW_VLAN_RX)
1785 igb_vlan_mode(netdev, features);
1787 return 0;
1790 static const struct net_device_ops igb_netdev_ops = {
1791 .ndo_open = igb_open,
1792 .ndo_stop = igb_close,
1793 .ndo_start_xmit = igb_xmit_frame,
1794 .ndo_get_stats64 = igb_get_stats64,
1795 .ndo_set_rx_mode = igb_set_rx_mode,
1796 .ndo_set_mac_address = igb_set_mac,
1797 .ndo_change_mtu = igb_change_mtu,
1798 .ndo_do_ioctl = igb_ioctl,
1799 .ndo_tx_timeout = igb_tx_timeout,
1800 .ndo_validate_addr = eth_validate_addr,
1801 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1802 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1803 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1804 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1805 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1806 .ndo_get_vf_config = igb_ndo_get_vf_config,
1807 #ifdef CONFIG_NET_POLL_CONTROLLER
1808 .ndo_poll_controller = igb_netpoll,
1809 #endif
1810 .ndo_fix_features = igb_fix_features,
1811 .ndo_set_features = igb_set_features,
1815 * igb_probe - Device Initialization Routine
1816 * @pdev: PCI device information struct
1817 * @ent: entry in igb_pci_tbl
1819 * Returns 0 on success, negative on failure
1821 * igb_probe initializes an adapter identified by a pci_dev structure.
1822 * The OS initialization, configuring of the adapter private structure,
1823 * and a hardware reset occur.
1825 static int __devinit igb_probe(struct pci_dev *pdev,
1826 const struct pci_device_id *ent)
1828 struct net_device *netdev;
1829 struct igb_adapter *adapter;
1830 struct e1000_hw *hw;
1831 u16 eeprom_data = 0;
1832 s32 ret_val;
1833 static int global_quad_port_a; /* global quad port a indication */
1834 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1835 unsigned long mmio_start, mmio_len;
1836 int err, pci_using_dac;
1837 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1838 u8 part_str[E1000_PBANUM_LENGTH];
1840 /* Catch broken hardware that put the wrong VF device ID in
1841 * the PCIe SR-IOV capability.
1843 if (pdev->is_virtfn) {
1844 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1845 pci_name(pdev), pdev->vendor, pdev->device);
1846 return -EINVAL;
1849 err = pci_enable_device_mem(pdev);
1850 if (err)
1851 return err;
1853 pci_using_dac = 0;
1854 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1855 if (!err) {
1856 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1857 if (!err)
1858 pci_using_dac = 1;
1859 } else {
1860 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1861 if (err) {
1862 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1863 if (err) {
1864 dev_err(&pdev->dev, "No usable DMA "
1865 "configuration, aborting\n");
1866 goto err_dma;
1871 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1872 IORESOURCE_MEM),
1873 igb_driver_name);
1874 if (err)
1875 goto err_pci_reg;
1877 pci_enable_pcie_error_reporting(pdev);
1879 pci_set_master(pdev);
1880 pci_save_state(pdev);
1882 err = -ENOMEM;
1883 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1884 IGB_MAX_TX_QUEUES);
1885 if (!netdev)
1886 goto err_alloc_etherdev;
1888 SET_NETDEV_DEV(netdev, &pdev->dev);
1890 pci_set_drvdata(pdev, netdev);
1891 adapter = netdev_priv(netdev);
1892 adapter->netdev = netdev;
1893 adapter->pdev = pdev;
1894 hw = &adapter->hw;
1895 hw->back = adapter;
1896 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1898 mmio_start = pci_resource_start(pdev, 0);
1899 mmio_len = pci_resource_len(pdev, 0);
1901 err = -EIO;
1902 hw->hw_addr = ioremap(mmio_start, mmio_len);
1903 if (!hw->hw_addr)
1904 goto err_ioremap;
1906 netdev->netdev_ops = &igb_netdev_ops;
1907 igb_set_ethtool_ops(netdev);
1908 netdev->watchdog_timeo = 5 * HZ;
1910 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1912 netdev->mem_start = mmio_start;
1913 netdev->mem_end = mmio_start + mmio_len;
1915 /* PCI config space info */
1916 hw->vendor_id = pdev->vendor;
1917 hw->device_id = pdev->device;
1918 hw->revision_id = pdev->revision;
1919 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1920 hw->subsystem_device_id = pdev->subsystem_device;
1922 /* Copy the default MAC, PHY and NVM function pointers */
1923 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1924 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1925 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1926 /* Initialize skew-specific constants */
1927 err = ei->get_invariants(hw);
1928 if (err)
1929 goto err_sw_init;
1931 /* setup the private structure */
1932 err = igb_sw_init(adapter);
1933 if (err)
1934 goto err_sw_init;
1936 igb_get_bus_info_pcie(hw);
1938 hw->phy.autoneg_wait_to_complete = false;
1940 /* Copper options */
1941 if (hw->phy.media_type == e1000_media_type_copper) {
1942 hw->phy.mdix = AUTO_ALL_MODES;
1943 hw->phy.disable_polarity_correction = false;
1944 hw->phy.ms_type = e1000_ms_hw_default;
1947 if (igb_check_reset_block(hw))
1948 dev_info(&pdev->dev,
1949 "PHY reset is blocked due to SOL/IDER session.\n");
1951 netdev->hw_features = NETIF_F_SG |
1952 NETIF_F_IP_CSUM |
1953 NETIF_F_IPV6_CSUM |
1954 NETIF_F_TSO |
1955 NETIF_F_TSO6 |
1956 NETIF_F_RXCSUM |
1957 NETIF_F_HW_VLAN_RX;
1959 netdev->features = netdev->hw_features |
1960 NETIF_F_HW_VLAN_TX |
1961 NETIF_F_HW_VLAN_FILTER;
1963 netdev->vlan_features |= NETIF_F_TSO;
1964 netdev->vlan_features |= NETIF_F_TSO6;
1965 netdev->vlan_features |= NETIF_F_IP_CSUM;
1966 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1967 netdev->vlan_features |= NETIF_F_SG;
1969 if (pci_using_dac) {
1970 netdev->features |= NETIF_F_HIGHDMA;
1971 netdev->vlan_features |= NETIF_F_HIGHDMA;
1974 if (hw->mac.type >= e1000_82576) {
1975 netdev->hw_features |= NETIF_F_SCTP_CSUM;
1976 netdev->features |= NETIF_F_SCTP_CSUM;
1979 netdev->priv_flags |= IFF_UNICAST_FLT;
1981 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
1983 /* before reading the NVM, reset the controller to put the device in a
1984 * known good starting state */
1985 hw->mac.ops.reset_hw(hw);
1987 /* make sure the NVM is good */
1988 if (hw->nvm.ops.validate(hw) < 0) {
1989 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1990 err = -EIO;
1991 goto err_eeprom;
1994 /* copy the MAC address out of the NVM */
1995 if (hw->mac.ops.read_mac_addr(hw))
1996 dev_err(&pdev->dev, "NVM Read Error\n");
1998 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1999 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2001 if (!is_valid_ether_addr(netdev->perm_addr)) {
2002 dev_err(&pdev->dev, "Invalid MAC Address\n");
2003 err = -EIO;
2004 goto err_eeprom;
2007 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2008 (unsigned long) adapter);
2009 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2010 (unsigned long) adapter);
2012 INIT_WORK(&adapter->reset_task, igb_reset_task);
2013 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2015 /* Initialize link properties that are user-changeable */
2016 adapter->fc_autoneg = true;
2017 hw->mac.autoneg = true;
2018 hw->phy.autoneg_advertised = 0x2f;
2020 hw->fc.requested_mode = e1000_fc_default;
2021 hw->fc.current_mode = e1000_fc_default;
2023 igb_validate_mdi_setting(hw);
2025 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2026 * enable the ACPI Magic Packet filter
2029 if (hw->bus.func == 0)
2030 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2031 else if (hw->mac.type >= e1000_82580)
2032 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2033 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2034 &eeprom_data);
2035 else if (hw->bus.func == 1)
2036 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2038 if (eeprom_data & eeprom_apme_mask)
2039 adapter->eeprom_wol |= E1000_WUFC_MAG;
2041 /* now that we have the eeprom settings, apply the special cases where
2042 * the eeprom may be wrong or the board simply won't support wake on
2043 * lan on a particular port */
2044 switch (pdev->device) {
2045 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2046 adapter->eeprom_wol = 0;
2047 break;
2048 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2049 case E1000_DEV_ID_82576_FIBER:
2050 case E1000_DEV_ID_82576_SERDES:
2051 /* Wake events only supported on port A for dual fiber
2052 * regardless of eeprom setting */
2053 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2054 adapter->eeprom_wol = 0;
2055 break;
2056 case E1000_DEV_ID_82576_QUAD_COPPER:
2057 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2058 /* if quad port adapter, disable WoL on all but port A */
2059 if (global_quad_port_a != 0)
2060 adapter->eeprom_wol = 0;
2061 else
2062 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2063 /* Reset for multiple quad port adapters */
2064 if (++global_quad_port_a == 4)
2065 global_quad_port_a = 0;
2066 break;
2069 /* initialize the wol settings based on the eeprom settings */
2070 adapter->wol = adapter->eeprom_wol;
2071 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2073 /* reset the hardware with the new settings */
2074 igb_reset(adapter);
2076 /* let the f/w know that the h/w is now under the control of the
2077 * driver. */
2078 igb_get_hw_control(adapter);
2080 strcpy(netdev->name, "eth%d");
2081 err = register_netdev(netdev);
2082 if (err)
2083 goto err_register;
2085 igb_vlan_mode(netdev, netdev->features);
2087 /* carrier off reporting is important to ethtool even BEFORE open */
2088 netif_carrier_off(netdev);
2090 #ifdef CONFIG_IGB_DCA
2091 if (dca_add_requester(&pdev->dev) == 0) {
2092 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2093 dev_info(&pdev->dev, "DCA enabled\n");
2094 igb_setup_dca(adapter);
2097 #endif
2098 /* do hw tstamp init after resetting */
2099 igb_init_hw_timer(adapter);
2101 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2102 /* print bus type/speed/width info */
2103 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2104 netdev->name,
2105 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2106 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2107 "unknown"),
2108 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2109 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2110 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2111 "unknown"),
2112 netdev->dev_addr);
2114 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2115 if (ret_val)
2116 strcpy(part_str, "Unknown");
2117 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2118 dev_info(&pdev->dev,
2119 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2120 adapter->msix_entries ? "MSI-X" :
2121 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2122 adapter->num_rx_queues, adapter->num_tx_queues);
2123 switch (hw->mac.type) {
2124 case e1000_i350:
2125 igb_set_eee_i350(hw);
2126 break;
2127 default:
2128 break;
2130 return 0;
2132 err_register:
2133 igb_release_hw_control(adapter);
2134 err_eeprom:
2135 if (!igb_check_reset_block(hw))
2136 igb_reset_phy(hw);
2138 if (hw->flash_address)
2139 iounmap(hw->flash_address);
2140 err_sw_init:
2141 igb_clear_interrupt_scheme(adapter);
2142 iounmap(hw->hw_addr);
2143 err_ioremap:
2144 free_netdev(netdev);
2145 err_alloc_etherdev:
2146 pci_release_selected_regions(pdev,
2147 pci_select_bars(pdev, IORESOURCE_MEM));
2148 err_pci_reg:
2149 err_dma:
2150 pci_disable_device(pdev);
2151 return err;
2155 * igb_remove - Device Removal Routine
2156 * @pdev: PCI device information struct
2158 * igb_remove is called by the PCI subsystem to alert the driver
2159 * that it should release a PCI device. The could be caused by a
2160 * Hot-Plug event, or because the driver is going to be removed from
2161 * memory.
2163 static void __devexit igb_remove(struct pci_dev *pdev)
2165 struct net_device *netdev = pci_get_drvdata(pdev);
2166 struct igb_adapter *adapter = netdev_priv(netdev);
2167 struct e1000_hw *hw = &adapter->hw;
2170 * The watchdog timer may be rescheduled, so explicitly
2171 * disable watchdog from being rescheduled.
2173 set_bit(__IGB_DOWN, &adapter->state);
2174 del_timer_sync(&adapter->watchdog_timer);
2175 del_timer_sync(&adapter->phy_info_timer);
2177 cancel_work_sync(&adapter->reset_task);
2178 cancel_work_sync(&adapter->watchdog_task);
2180 #ifdef CONFIG_IGB_DCA
2181 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2182 dev_info(&pdev->dev, "DCA disabled\n");
2183 dca_remove_requester(&pdev->dev);
2184 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2185 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2187 #endif
2189 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2190 * would have already happened in close and is redundant. */
2191 igb_release_hw_control(adapter);
2193 unregister_netdev(netdev);
2195 igb_clear_interrupt_scheme(adapter);
2197 #ifdef CONFIG_PCI_IOV
2198 /* reclaim resources allocated to VFs */
2199 if (adapter->vf_data) {
2200 /* disable iov and allow time for transactions to clear */
2201 pci_disable_sriov(pdev);
2202 msleep(500);
2204 kfree(adapter->vf_data);
2205 adapter->vf_data = NULL;
2206 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2207 wrfl();
2208 msleep(100);
2209 dev_info(&pdev->dev, "IOV Disabled\n");
2211 #endif
2213 iounmap(hw->hw_addr);
2214 if (hw->flash_address)
2215 iounmap(hw->flash_address);
2216 pci_release_selected_regions(pdev,
2217 pci_select_bars(pdev, IORESOURCE_MEM));
2219 free_netdev(netdev);
2221 pci_disable_pcie_error_reporting(pdev);
2223 pci_disable_device(pdev);
2227 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2228 * @adapter: board private structure to initialize
2230 * This function initializes the vf specific data storage and then attempts to
2231 * allocate the VFs. The reason for ordering it this way is because it is much
2232 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2233 * the memory for the VFs.
2235 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2237 #ifdef CONFIG_PCI_IOV
2238 struct pci_dev *pdev = adapter->pdev;
2240 if (adapter->vfs_allocated_count) {
2241 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2242 sizeof(struct vf_data_storage),
2243 GFP_KERNEL);
2244 /* if allocation failed then we do not support SR-IOV */
2245 if (!adapter->vf_data) {
2246 adapter->vfs_allocated_count = 0;
2247 dev_err(&pdev->dev, "Unable to allocate memory for VF "
2248 "Data Storage\n");
2252 if (pci_enable_sriov(pdev, adapter->vfs_allocated_count)) {
2253 kfree(adapter->vf_data);
2254 adapter->vf_data = NULL;
2255 #endif /* CONFIG_PCI_IOV */
2256 adapter->vfs_allocated_count = 0;
2257 #ifdef CONFIG_PCI_IOV
2258 } else {
2259 unsigned char mac_addr[ETH_ALEN];
2260 int i;
2261 dev_info(&pdev->dev, "%d vfs allocated\n",
2262 adapter->vfs_allocated_count);
2263 for (i = 0; i < adapter->vfs_allocated_count; i++) {
2264 random_ether_addr(mac_addr);
2265 igb_set_vf_mac(adapter, i, mac_addr);
2267 /* DMA Coalescing is not supported in IOV mode. */
2268 if (adapter->flags & IGB_FLAG_DMAC)
2269 adapter->flags &= ~IGB_FLAG_DMAC;
2271 #endif /* CONFIG_PCI_IOV */
2276 * igb_init_hw_timer - Initialize hardware timer used with IEEE 1588 timestamp
2277 * @adapter: board private structure to initialize
2279 * igb_init_hw_timer initializes the function pointer and values for the hw
2280 * timer found in hardware.
2282 static void igb_init_hw_timer(struct igb_adapter *adapter)
2284 struct e1000_hw *hw = &adapter->hw;
2286 switch (hw->mac.type) {
2287 case e1000_i350:
2288 case e1000_82580:
2289 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2290 adapter->cycles.read = igb_read_clock;
2291 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2292 adapter->cycles.mult = 1;
2294 * The 82580 timesync updates the system timer every 8ns by 8ns
2295 * and the value cannot be shifted. Instead we need to shift
2296 * the registers to generate a 64bit timer value. As a result
2297 * SYSTIMR/L/H, TXSTMPL/H, RXSTMPL/H all have to be shifted by
2298 * 24 in order to generate a larger value for synchronization.
2300 adapter->cycles.shift = IGB_82580_TSYNC_SHIFT;
2301 /* disable system timer temporarily by setting bit 31 */
2302 wr32(E1000_TSAUXC, 0x80000000);
2303 wrfl();
2305 /* Set registers so that rollover occurs soon to test this. */
2306 wr32(E1000_SYSTIMR, 0x00000000);
2307 wr32(E1000_SYSTIML, 0x80000000);
2308 wr32(E1000_SYSTIMH, 0x000000FF);
2309 wrfl();
2311 /* enable system timer by clearing bit 31 */
2312 wr32(E1000_TSAUXC, 0x0);
2313 wrfl();
2315 timecounter_init(&adapter->clock,
2316 &adapter->cycles,
2317 ktime_to_ns(ktime_get_real()));
2319 * Synchronize our NIC clock against system wall clock. NIC
2320 * time stamp reading requires ~3us per sample, each sample
2321 * was pretty stable even under load => only require 10
2322 * samples for each offset comparison.
2324 memset(&adapter->compare, 0, sizeof(adapter->compare));
2325 adapter->compare.source = &adapter->clock;
2326 adapter->compare.target = ktime_get_real;
2327 adapter->compare.num_samples = 10;
2328 timecompare_update(&adapter->compare, 0);
2329 break;
2330 case e1000_82576:
2332 * Initialize hardware timer: we keep it running just in case
2333 * that some program needs it later on.
2335 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
2336 adapter->cycles.read = igb_read_clock;
2337 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
2338 adapter->cycles.mult = 1;
2340 * Scale the NIC clock cycle by a large factor so that
2341 * relatively small clock corrections can be added or
2342 * subtracted at each clock tick. The drawbacks of a large
2343 * factor are a) that the clock register overflows more quickly
2344 * (not such a big deal) and b) that the increment per tick has
2345 * to fit into 24 bits. As a result we need to use a shift of
2346 * 19 so we can fit a value of 16 into the TIMINCA register.
2348 adapter->cycles.shift = IGB_82576_TSYNC_SHIFT;
2349 wr32(E1000_TIMINCA,
2350 (1 << E1000_TIMINCA_16NS_SHIFT) |
2351 (16 << IGB_82576_TSYNC_SHIFT));
2353 /* Set registers so that rollover occurs soon to test this. */
2354 wr32(E1000_SYSTIML, 0x00000000);
2355 wr32(E1000_SYSTIMH, 0xFF800000);
2356 wrfl();
2358 timecounter_init(&adapter->clock,
2359 &adapter->cycles,
2360 ktime_to_ns(ktime_get_real()));
2362 * Synchronize our NIC clock against system wall clock. NIC
2363 * time stamp reading requires ~3us per sample, each sample
2364 * was pretty stable even under load => only require 10
2365 * samples for each offset comparison.
2367 memset(&adapter->compare, 0, sizeof(adapter->compare));
2368 adapter->compare.source = &adapter->clock;
2369 adapter->compare.target = ktime_get_real;
2370 adapter->compare.num_samples = 10;
2371 timecompare_update(&adapter->compare, 0);
2372 break;
2373 case e1000_82575:
2374 /* 82575 does not support timesync */
2375 default:
2376 break;
2382 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2383 * @adapter: board private structure to initialize
2385 * igb_sw_init initializes the Adapter private data structure.
2386 * Fields are initialized based on PCI device information and
2387 * OS network device settings (MTU size).
2389 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2391 struct e1000_hw *hw = &adapter->hw;
2392 struct net_device *netdev = adapter->netdev;
2393 struct pci_dev *pdev = adapter->pdev;
2395 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2397 /* set default ring sizes */
2398 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2399 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2401 /* set default ITR values */
2402 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2403 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2405 /* set default work limits */
2406 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2408 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2409 VLAN_HLEN;
2410 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2412 spin_lock_init(&adapter->stats64_lock);
2413 #ifdef CONFIG_PCI_IOV
2414 switch (hw->mac.type) {
2415 case e1000_82576:
2416 case e1000_i350:
2417 if (max_vfs > 7) {
2418 dev_warn(&pdev->dev,
2419 "Maximum of 7 VFs per PF, using max\n");
2420 adapter->vfs_allocated_count = 7;
2421 } else
2422 adapter->vfs_allocated_count = max_vfs;
2423 break;
2424 default:
2425 break;
2427 #endif /* CONFIG_PCI_IOV */
2428 adapter->rss_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
2429 /* i350 cannot do RSS and SR-IOV at the same time */
2430 if (hw->mac.type == e1000_i350 && adapter->vfs_allocated_count)
2431 adapter->rss_queues = 1;
2434 * if rss_queues > 4 or vfs are going to be allocated with rss_queues
2435 * then we should combine the queues into a queue pair in order to
2436 * conserve interrupts due to limited supply
2438 if ((adapter->rss_queues > 4) ||
2439 ((adapter->rss_queues > 1) && (adapter->vfs_allocated_count > 6)))
2440 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2442 /* This call may decrease the number of queues */
2443 if (igb_init_interrupt_scheme(adapter)) {
2444 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2445 return -ENOMEM;
2448 igb_probe_vfs(adapter);
2450 /* Explicitly disable IRQ since the NIC can be in any state. */
2451 igb_irq_disable(adapter);
2453 if (hw->mac.type == e1000_i350)
2454 adapter->flags &= ~IGB_FLAG_DMAC;
2456 set_bit(__IGB_DOWN, &adapter->state);
2457 return 0;
2461 * igb_open - Called when a network interface is made active
2462 * @netdev: network interface device structure
2464 * Returns 0 on success, negative value on failure
2466 * The open entry point is called when a network interface is made
2467 * active by the system (IFF_UP). At this point all resources needed
2468 * for transmit and receive operations are allocated, the interrupt
2469 * handler is registered with the OS, the watchdog timer is started,
2470 * and the stack is notified that the interface is ready.
2472 static int igb_open(struct net_device *netdev)
2474 struct igb_adapter *adapter = netdev_priv(netdev);
2475 struct e1000_hw *hw = &adapter->hw;
2476 int err;
2477 int i;
2479 /* disallow open during test */
2480 if (test_bit(__IGB_TESTING, &adapter->state))
2481 return -EBUSY;
2483 netif_carrier_off(netdev);
2485 /* allocate transmit descriptors */
2486 err = igb_setup_all_tx_resources(adapter);
2487 if (err)
2488 goto err_setup_tx;
2490 /* allocate receive descriptors */
2491 err = igb_setup_all_rx_resources(adapter);
2492 if (err)
2493 goto err_setup_rx;
2495 igb_power_up_link(adapter);
2497 /* before we allocate an interrupt, we must be ready to handle it.
2498 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2499 * as soon as we call pci_request_irq, so we have to setup our
2500 * clean_rx handler before we do so. */
2501 igb_configure(adapter);
2503 err = igb_request_irq(adapter);
2504 if (err)
2505 goto err_req_irq;
2507 /* From here on the code is the same as igb_up() */
2508 clear_bit(__IGB_DOWN, &adapter->state);
2510 for (i = 0; i < adapter->num_q_vectors; i++) {
2511 struct igb_q_vector *q_vector = adapter->q_vector[i];
2512 napi_enable(&q_vector->napi);
2515 /* Clear any pending interrupts. */
2516 rd32(E1000_ICR);
2518 igb_irq_enable(adapter);
2520 /* notify VFs that reset has been completed */
2521 if (adapter->vfs_allocated_count) {
2522 u32 reg_data = rd32(E1000_CTRL_EXT);
2523 reg_data |= E1000_CTRL_EXT_PFRSTD;
2524 wr32(E1000_CTRL_EXT, reg_data);
2527 netif_tx_start_all_queues(netdev);
2529 /* start the watchdog. */
2530 hw->mac.get_link_status = 1;
2531 schedule_work(&adapter->watchdog_task);
2533 return 0;
2535 err_req_irq:
2536 igb_release_hw_control(adapter);
2537 igb_power_down_link(adapter);
2538 igb_free_all_rx_resources(adapter);
2539 err_setup_rx:
2540 igb_free_all_tx_resources(adapter);
2541 err_setup_tx:
2542 igb_reset(adapter);
2544 return err;
2548 * igb_close - Disables a network interface
2549 * @netdev: network interface device structure
2551 * Returns 0, this is not allowed to fail
2553 * The close entry point is called when an interface is de-activated
2554 * by the OS. The hardware is still under the driver's control, but
2555 * needs to be disabled. A global MAC reset is issued to stop the
2556 * hardware, and all transmit and receive resources are freed.
2558 static int igb_close(struct net_device *netdev)
2560 struct igb_adapter *adapter = netdev_priv(netdev);
2562 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2563 igb_down(adapter);
2565 igb_free_irq(adapter);
2567 igb_free_all_tx_resources(adapter);
2568 igb_free_all_rx_resources(adapter);
2570 return 0;
2574 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2575 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2577 * Return 0 on success, negative on failure
2579 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2581 struct device *dev = tx_ring->dev;
2582 int size;
2584 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2585 tx_ring->tx_buffer_info = vzalloc(size);
2586 if (!tx_ring->tx_buffer_info)
2587 goto err;
2589 /* round up to nearest 4K */
2590 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2591 tx_ring->size = ALIGN(tx_ring->size, 4096);
2593 tx_ring->desc = dma_alloc_coherent(dev,
2594 tx_ring->size,
2595 &tx_ring->dma,
2596 GFP_KERNEL);
2598 if (!tx_ring->desc)
2599 goto err;
2601 tx_ring->next_to_use = 0;
2602 tx_ring->next_to_clean = 0;
2603 return 0;
2605 err:
2606 vfree(tx_ring->tx_buffer_info);
2607 dev_err(dev,
2608 "Unable to allocate memory for the transmit descriptor ring\n");
2609 return -ENOMEM;
2613 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2614 * (Descriptors) for all queues
2615 * @adapter: board private structure
2617 * Return 0 on success, negative on failure
2619 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2621 struct pci_dev *pdev = adapter->pdev;
2622 int i, err = 0;
2624 for (i = 0; i < adapter->num_tx_queues; i++) {
2625 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2626 if (err) {
2627 dev_err(&pdev->dev,
2628 "Allocation for Tx Queue %u failed\n", i);
2629 for (i--; i >= 0; i--)
2630 igb_free_tx_resources(adapter->tx_ring[i]);
2631 break;
2635 return err;
2639 * igb_setup_tctl - configure the transmit control registers
2640 * @adapter: Board private structure
2642 void igb_setup_tctl(struct igb_adapter *adapter)
2644 struct e1000_hw *hw = &adapter->hw;
2645 u32 tctl;
2647 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2648 wr32(E1000_TXDCTL(0), 0);
2650 /* Program the Transmit Control Register */
2651 tctl = rd32(E1000_TCTL);
2652 tctl &= ~E1000_TCTL_CT;
2653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2656 igb_config_collision_dist(hw);
2658 /* Enable transmits */
2659 tctl |= E1000_TCTL_EN;
2661 wr32(E1000_TCTL, tctl);
2665 * igb_configure_tx_ring - Configure transmit ring after Reset
2666 * @adapter: board private structure
2667 * @ring: tx ring to configure
2669 * Configure a transmit ring after a reset.
2671 void igb_configure_tx_ring(struct igb_adapter *adapter,
2672 struct igb_ring *ring)
2674 struct e1000_hw *hw = &adapter->hw;
2675 u32 txdctl = 0;
2676 u64 tdba = ring->dma;
2677 int reg_idx = ring->reg_idx;
2679 /* disable the queue */
2680 wr32(E1000_TXDCTL(reg_idx), 0);
2681 wrfl();
2682 mdelay(10);
2684 wr32(E1000_TDLEN(reg_idx),
2685 ring->count * sizeof(union e1000_adv_tx_desc));
2686 wr32(E1000_TDBAL(reg_idx),
2687 tdba & 0x00000000ffffffffULL);
2688 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2690 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2691 wr32(E1000_TDH(reg_idx), 0);
2692 writel(0, ring->tail);
2694 txdctl |= IGB_TX_PTHRESH;
2695 txdctl |= IGB_TX_HTHRESH << 8;
2696 txdctl |= IGB_TX_WTHRESH << 16;
2698 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2699 wr32(E1000_TXDCTL(reg_idx), txdctl);
2703 * igb_configure_tx - Configure transmit Unit after Reset
2704 * @adapter: board private structure
2706 * Configure the Tx unit of the MAC after a reset.
2708 static void igb_configure_tx(struct igb_adapter *adapter)
2710 int i;
2712 for (i = 0; i < adapter->num_tx_queues; i++)
2713 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2717 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2718 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2720 * Returns 0 on success, negative on failure
2722 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2724 struct device *dev = rx_ring->dev;
2725 int size, desc_len;
2727 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2728 rx_ring->rx_buffer_info = vzalloc(size);
2729 if (!rx_ring->rx_buffer_info)
2730 goto err;
2732 desc_len = sizeof(union e1000_adv_rx_desc);
2734 /* Round up to nearest 4K */
2735 rx_ring->size = rx_ring->count * desc_len;
2736 rx_ring->size = ALIGN(rx_ring->size, 4096);
2738 rx_ring->desc = dma_alloc_coherent(dev,
2739 rx_ring->size,
2740 &rx_ring->dma,
2741 GFP_KERNEL);
2743 if (!rx_ring->desc)
2744 goto err;
2746 rx_ring->next_to_clean = 0;
2747 rx_ring->next_to_use = 0;
2749 return 0;
2751 err:
2752 vfree(rx_ring->rx_buffer_info);
2753 rx_ring->rx_buffer_info = NULL;
2754 dev_err(dev, "Unable to allocate memory for the receive descriptor"
2755 " ring\n");
2756 return -ENOMEM;
2760 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2761 * (Descriptors) for all queues
2762 * @adapter: board private structure
2764 * Return 0 on success, negative on failure
2766 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2768 struct pci_dev *pdev = adapter->pdev;
2769 int i, err = 0;
2771 for (i = 0; i < adapter->num_rx_queues; i++) {
2772 err = igb_setup_rx_resources(adapter->rx_ring[i]);
2773 if (err) {
2774 dev_err(&pdev->dev,
2775 "Allocation for Rx Queue %u failed\n", i);
2776 for (i--; i >= 0; i--)
2777 igb_free_rx_resources(adapter->rx_ring[i]);
2778 break;
2782 return err;
2786 * igb_setup_mrqc - configure the multiple receive queue control registers
2787 * @adapter: Board private structure
2789 static void igb_setup_mrqc(struct igb_adapter *adapter)
2791 struct e1000_hw *hw = &adapter->hw;
2792 u32 mrqc, rxcsum;
2793 u32 j, num_rx_queues, shift = 0, shift2 = 0;
2794 union e1000_reta {
2795 u32 dword;
2796 u8 bytes[4];
2797 } reta;
2798 static const u8 rsshash[40] = {
2799 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67,
2800 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb,
2801 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30,
2802 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa };
2804 /* Fill out hash function seeds */
2805 for (j = 0; j < 10; j++) {
2806 u32 rsskey = rsshash[(j * 4)];
2807 rsskey |= rsshash[(j * 4) + 1] << 8;
2808 rsskey |= rsshash[(j * 4) + 2] << 16;
2809 rsskey |= rsshash[(j * 4) + 3] << 24;
2810 array_wr32(E1000_RSSRK(0), j, rsskey);
2813 num_rx_queues = adapter->rss_queues;
2815 if (adapter->vfs_allocated_count) {
2816 /* 82575 and 82576 supports 2 RSS queues for VMDq */
2817 switch (hw->mac.type) {
2818 case e1000_i350:
2819 case e1000_82580:
2820 num_rx_queues = 1;
2821 shift = 0;
2822 break;
2823 case e1000_82576:
2824 shift = 3;
2825 num_rx_queues = 2;
2826 break;
2827 case e1000_82575:
2828 shift = 2;
2829 shift2 = 6;
2830 default:
2831 break;
2833 } else {
2834 if (hw->mac.type == e1000_82575)
2835 shift = 6;
2838 for (j = 0; j < (32 * 4); j++) {
2839 reta.bytes[j & 3] = (j % num_rx_queues) << shift;
2840 if (shift2)
2841 reta.bytes[j & 3] |= num_rx_queues << shift2;
2842 if ((j & 3) == 3)
2843 wr32(E1000_RETA(j >> 2), reta.dword);
2847 * Disable raw packet checksumming so that RSS hash is placed in
2848 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2849 * offloads as they are enabled by default
2851 rxcsum = rd32(E1000_RXCSUM);
2852 rxcsum |= E1000_RXCSUM_PCSD;
2854 if (adapter->hw.mac.type >= e1000_82576)
2855 /* Enable Receive Checksum Offload for SCTP */
2856 rxcsum |= E1000_RXCSUM_CRCOFL;
2858 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2859 wr32(E1000_RXCSUM, rxcsum);
2861 /* If VMDq is enabled then we set the appropriate mode for that, else
2862 * we default to RSS so that an RSS hash is calculated per packet even
2863 * if we are only using one queue */
2864 if (adapter->vfs_allocated_count) {
2865 if (hw->mac.type > e1000_82575) {
2866 /* Set the default pool for the PF's first queue */
2867 u32 vtctl = rd32(E1000_VT_CTL);
2868 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2869 E1000_VT_CTL_DISABLE_DEF_POOL);
2870 vtctl |= adapter->vfs_allocated_count <<
2871 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2872 wr32(E1000_VT_CTL, vtctl);
2874 if (adapter->rss_queues > 1)
2875 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2876 else
2877 mrqc = E1000_MRQC_ENABLE_VMDQ;
2878 } else {
2879 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2881 igb_vmm_control(adapter);
2884 * Generate RSS hash based on TCP port numbers and/or
2885 * IPv4/v6 src and dst addresses since UDP cannot be
2886 * hashed reliably due to IP fragmentation
2888 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2889 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2890 E1000_MRQC_RSS_FIELD_IPV6 |
2891 E1000_MRQC_RSS_FIELD_IPV6_TCP |
2892 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
2894 wr32(E1000_MRQC, mrqc);
2898 * igb_setup_rctl - configure the receive control registers
2899 * @adapter: Board private structure
2901 void igb_setup_rctl(struct igb_adapter *adapter)
2903 struct e1000_hw *hw = &adapter->hw;
2904 u32 rctl;
2906 rctl = rd32(E1000_RCTL);
2908 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2909 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2911 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2912 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2915 * enable stripping of CRC. It's unlikely this will break BMC
2916 * redirection as it did with e1000. Newer features require
2917 * that the HW strips the CRC.
2919 rctl |= E1000_RCTL_SECRC;
2921 /* disable store bad packets and clear size bits. */
2922 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2924 /* enable LPE to prevent packets larger than max_frame_size */
2925 rctl |= E1000_RCTL_LPE;
2927 /* disable queue 0 to prevent tail write w/o re-config */
2928 wr32(E1000_RXDCTL(0), 0);
2930 /* Attention!!! For SR-IOV PF driver operations you must enable
2931 * queue drop for all VF and PF queues to prevent head of line blocking
2932 * if an un-trusted VF does not provide descriptors to hardware.
2934 if (adapter->vfs_allocated_count) {
2935 /* set all queue drop enable bits */
2936 wr32(E1000_QDE, ALL_QUEUES);
2939 wr32(E1000_RCTL, rctl);
2942 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2943 int vfn)
2945 struct e1000_hw *hw = &adapter->hw;
2946 u32 vmolr;
2948 /* if it isn't the PF check to see if VFs are enabled and
2949 * increase the size to support vlan tags */
2950 if (vfn < adapter->vfs_allocated_count &&
2951 adapter->vf_data[vfn].vlans_enabled)
2952 size += VLAN_TAG_SIZE;
2954 vmolr = rd32(E1000_VMOLR(vfn));
2955 vmolr &= ~E1000_VMOLR_RLPML_MASK;
2956 vmolr |= size | E1000_VMOLR_LPE;
2957 wr32(E1000_VMOLR(vfn), vmolr);
2959 return 0;
2963 * igb_rlpml_set - set maximum receive packet size
2964 * @adapter: board private structure
2966 * Configure maximum receivable packet size.
2968 static void igb_rlpml_set(struct igb_adapter *adapter)
2970 u32 max_frame_size = adapter->max_frame_size;
2971 struct e1000_hw *hw = &adapter->hw;
2972 u16 pf_id = adapter->vfs_allocated_count;
2974 if (pf_id) {
2975 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2977 * If we're in VMDQ or SR-IOV mode, then set global RLPML
2978 * to our max jumbo frame size, in case we need to enable
2979 * jumbo frames on one of the rings later.
2980 * This will not pass over-length frames into the default
2981 * queue because it's gated by the VMOLR.RLPML.
2983 max_frame_size = MAX_JUMBO_FRAME_SIZE;
2986 wr32(E1000_RLPML, max_frame_size);
2989 static inline void igb_set_vmolr(struct igb_adapter *adapter,
2990 int vfn, bool aupe)
2992 struct e1000_hw *hw = &adapter->hw;
2993 u32 vmolr;
2996 * This register exists only on 82576 and newer so if we are older then
2997 * we should exit and do nothing
2999 if (hw->mac.type < e1000_82576)
3000 return;
3002 vmolr = rd32(E1000_VMOLR(vfn));
3003 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3004 if (aupe)
3005 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3006 else
3007 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3009 /* clear all bits that might not be set */
3010 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3012 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3013 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3015 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3016 * multicast packets
3018 if (vfn <= adapter->vfs_allocated_count)
3019 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3021 wr32(E1000_VMOLR(vfn), vmolr);
3025 * igb_configure_rx_ring - Configure a receive ring after Reset
3026 * @adapter: board private structure
3027 * @ring: receive ring to be configured
3029 * Configure the Rx unit of the MAC after a reset.
3031 void igb_configure_rx_ring(struct igb_adapter *adapter,
3032 struct igb_ring *ring)
3034 struct e1000_hw *hw = &adapter->hw;
3035 u64 rdba = ring->dma;
3036 int reg_idx = ring->reg_idx;
3037 u32 srrctl = 0, rxdctl = 0;
3039 /* disable the queue */
3040 wr32(E1000_RXDCTL(reg_idx), 0);
3042 /* Set DMA base address registers */
3043 wr32(E1000_RDBAL(reg_idx),
3044 rdba & 0x00000000ffffffffULL);
3045 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3046 wr32(E1000_RDLEN(reg_idx),
3047 ring->count * sizeof(union e1000_adv_rx_desc));
3049 /* initialize head and tail */
3050 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3051 wr32(E1000_RDH(reg_idx), 0);
3052 writel(0, ring->tail);
3054 /* set descriptor configuration */
3055 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3056 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3057 srrctl |= IGB_RXBUFFER_16384 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3058 #else
3059 srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3060 #endif
3061 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
3062 if (hw->mac.type == e1000_82580)
3063 srrctl |= E1000_SRRCTL_TIMESTAMP;
3064 /* Only set Drop Enable if we are supporting multiple queues */
3065 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3066 srrctl |= E1000_SRRCTL_DROP_EN;
3068 wr32(E1000_SRRCTL(reg_idx), srrctl);
3070 /* set filtering for VMDQ pools */
3071 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3073 rxdctl |= IGB_RX_PTHRESH;
3074 rxdctl |= IGB_RX_HTHRESH << 8;
3075 rxdctl |= IGB_RX_WTHRESH << 16;
3077 /* enable receive descriptor fetching */
3078 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3079 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3083 * igb_configure_rx - Configure receive Unit after Reset
3084 * @adapter: board private structure
3086 * Configure the Rx unit of the MAC after a reset.
3088 static void igb_configure_rx(struct igb_adapter *adapter)
3090 int i;
3092 /* set UTA to appropriate mode */
3093 igb_set_uta(adapter);
3095 /* set the correct pool for the PF default MAC address in entry 0 */
3096 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3097 adapter->vfs_allocated_count);
3099 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3100 * the Base and Length of the Rx Descriptor Ring */
3101 for (i = 0; i < adapter->num_rx_queues; i++)
3102 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3106 * igb_free_tx_resources - Free Tx Resources per Queue
3107 * @tx_ring: Tx descriptor ring for a specific queue
3109 * Free all transmit software resources
3111 void igb_free_tx_resources(struct igb_ring *tx_ring)
3113 igb_clean_tx_ring(tx_ring);
3115 vfree(tx_ring->tx_buffer_info);
3116 tx_ring->tx_buffer_info = NULL;
3118 /* if not set, then don't free */
3119 if (!tx_ring->desc)
3120 return;
3122 dma_free_coherent(tx_ring->dev, tx_ring->size,
3123 tx_ring->desc, tx_ring->dma);
3125 tx_ring->desc = NULL;
3129 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3130 * @adapter: board private structure
3132 * Free all transmit software resources
3134 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3136 int i;
3138 for (i = 0; i < adapter->num_tx_queues; i++)
3139 igb_free_tx_resources(adapter->tx_ring[i]);
3142 void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
3143 struct igb_tx_buffer *buffer_info)
3145 if (buffer_info->dma) {
3146 if (buffer_info->mapped_as_page)
3147 dma_unmap_page(tx_ring->dev,
3148 buffer_info->dma,
3149 buffer_info->length,
3150 DMA_TO_DEVICE);
3151 else
3152 dma_unmap_single(tx_ring->dev,
3153 buffer_info->dma,
3154 buffer_info->length,
3155 DMA_TO_DEVICE);
3156 buffer_info->dma = 0;
3158 if (buffer_info->skb) {
3159 dev_kfree_skb_any(buffer_info->skb);
3160 buffer_info->skb = NULL;
3162 buffer_info->time_stamp = 0;
3163 buffer_info->length = 0;
3164 buffer_info->next_to_watch = NULL;
3165 buffer_info->mapped_as_page = false;
3169 * igb_clean_tx_ring - Free Tx Buffers
3170 * @tx_ring: ring to be cleaned
3172 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3174 struct igb_tx_buffer *buffer_info;
3175 unsigned long size;
3176 unsigned int i;
3178 if (!tx_ring->tx_buffer_info)
3179 return;
3180 /* Free all the Tx ring sk_buffs */
3182 for (i = 0; i < tx_ring->count; i++) {
3183 buffer_info = &tx_ring->tx_buffer_info[i];
3184 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3187 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3188 memset(tx_ring->tx_buffer_info, 0, size);
3190 /* Zero out the descriptor ring */
3191 memset(tx_ring->desc, 0, tx_ring->size);
3193 tx_ring->next_to_use = 0;
3194 tx_ring->next_to_clean = 0;
3198 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3199 * @adapter: board private structure
3201 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3203 int i;
3205 for (i = 0; i < adapter->num_tx_queues; i++)
3206 igb_clean_tx_ring(adapter->tx_ring[i]);
3210 * igb_free_rx_resources - Free Rx Resources
3211 * @rx_ring: ring to clean the resources from
3213 * Free all receive software resources
3215 void igb_free_rx_resources(struct igb_ring *rx_ring)
3217 igb_clean_rx_ring(rx_ring);
3219 vfree(rx_ring->rx_buffer_info);
3220 rx_ring->rx_buffer_info = NULL;
3222 /* if not set, then don't free */
3223 if (!rx_ring->desc)
3224 return;
3226 dma_free_coherent(rx_ring->dev, rx_ring->size,
3227 rx_ring->desc, rx_ring->dma);
3229 rx_ring->desc = NULL;
3233 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3234 * @adapter: board private structure
3236 * Free all receive software resources
3238 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3240 int i;
3242 for (i = 0; i < adapter->num_rx_queues; i++)
3243 igb_free_rx_resources(adapter->rx_ring[i]);
3247 * igb_clean_rx_ring - Free Rx Buffers per Queue
3248 * @rx_ring: ring to free buffers from
3250 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3252 unsigned long size;
3253 u16 i;
3255 if (!rx_ring->rx_buffer_info)
3256 return;
3258 /* Free all the Rx ring sk_buffs */
3259 for (i = 0; i < rx_ring->count; i++) {
3260 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3261 if (buffer_info->dma) {
3262 dma_unmap_single(rx_ring->dev,
3263 buffer_info->dma,
3264 IGB_RX_HDR_LEN,
3265 DMA_FROM_DEVICE);
3266 buffer_info->dma = 0;
3269 if (buffer_info->skb) {
3270 dev_kfree_skb(buffer_info->skb);
3271 buffer_info->skb = NULL;
3273 if (buffer_info->page_dma) {
3274 dma_unmap_page(rx_ring->dev,
3275 buffer_info->page_dma,
3276 PAGE_SIZE / 2,
3277 DMA_FROM_DEVICE);
3278 buffer_info->page_dma = 0;
3280 if (buffer_info->page) {
3281 put_page(buffer_info->page);
3282 buffer_info->page = NULL;
3283 buffer_info->page_offset = 0;
3287 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3288 memset(rx_ring->rx_buffer_info, 0, size);
3290 /* Zero out the descriptor ring */
3291 memset(rx_ring->desc, 0, rx_ring->size);
3293 rx_ring->next_to_clean = 0;
3294 rx_ring->next_to_use = 0;
3298 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3299 * @adapter: board private structure
3301 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3303 int i;
3305 for (i = 0; i < adapter->num_rx_queues; i++)
3306 igb_clean_rx_ring(adapter->rx_ring[i]);
3310 * igb_set_mac - Change the Ethernet Address of the NIC
3311 * @netdev: network interface device structure
3312 * @p: pointer to an address structure
3314 * Returns 0 on success, negative on failure
3316 static int igb_set_mac(struct net_device *netdev, void *p)
3318 struct igb_adapter *adapter = netdev_priv(netdev);
3319 struct e1000_hw *hw = &adapter->hw;
3320 struct sockaddr *addr = p;
3322 if (!is_valid_ether_addr(addr->sa_data))
3323 return -EADDRNOTAVAIL;
3325 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3326 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3328 /* set the correct pool for the new PF MAC address in entry 0 */
3329 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3330 adapter->vfs_allocated_count);
3332 return 0;
3336 * igb_write_mc_addr_list - write multicast addresses to MTA
3337 * @netdev: network interface device structure
3339 * Writes multicast address list to the MTA hash table.
3340 * Returns: -ENOMEM on failure
3341 * 0 on no addresses written
3342 * X on writing X addresses to MTA
3344 static int igb_write_mc_addr_list(struct net_device *netdev)
3346 struct igb_adapter *adapter = netdev_priv(netdev);
3347 struct e1000_hw *hw = &adapter->hw;
3348 struct netdev_hw_addr *ha;
3349 u8 *mta_list;
3350 int i;
3352 if (netdev_mc_empty(netdev)) {
3353 /* nothing to program, so clear mc list */
3354 igb_update_mc_addr_list(hw, NULL, 0);
3355 igb_restore_vf_multicasts(adapter);
3356 return 0;
3359 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3360 if (!mta_list)
3361 return -ENOMEM;
3363 /* The shared function expects a packed array of only addresses. */
3364 i = 0;
3365 netdev_for_each_mc_addr(ha, netdev)
3366 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3368 igb_update_mc_addr_list(hw, mta_list, i);
3369 kfree(mta_list);
3371 return netdev_mc_count(netdev);
3375 * igb_write_uc_addr_list - write unicast addresses to RAR table
3376 * @netdev: network interface device structure
3378 * Writes unicast address list to the RAR table.
3379 * Returns: -ENOMEM on failure/insufficient address space
3380 * 0 on no addresses written
3381 * X on writing X addresses to the RAR table
3383 static int igb_write_uc_addr_list(struct net_device *netdev)
3385 struct igb_adapter *adapter = netdev_priv(netdev);
3386 struct e1000_hw *hw = &adapter->hw;
3387 unsigned int vfn = adapter->vfs_allocated_count;
3388 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3389 int count = 0;
3391 /* return ENOMEM indicating insufficient memory for addresses */
3392 if (netdev_uc_count(netdev) > rar_entries)
3393 return -ENOMEM;
3395 if (!netdev_uc_empty(netdev) && rar_entries) {
3396 struct netdev_hw_addr *ha;
3398 netdev_for_each_uc_addr(ha, netdev) {
3399 if (!rar_entries)
3400 break;
3401 igb_rar_set_qsel(adapter, ha->addr,
3402 rar_entries--,
3403 vfn);
3404 count++;
3407 /* write the addresses in reverse order to avoid write combining */
3408 for (; rar_entries > 0 ; rar_entries--) {
3409 wr32(E1000_RAH(rar_entries), 0);
3410 wr32(E1000_RAL(rar_entries), 0);
3412 wrfl();
3414 return count;
3418 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3419 * @netdev: network interface device structure
3421 * The set_rx_mode entry point is called whenever the unicast or multicast
3422 * address lists or the network interface flags are updated. This routine is
3423 * responsible for configuring the hardware for proper unicast, multicast,
3424 * promiscuous mode, and all-multi behavior.
3426 static void igb_set_rx_mode(struct net_device *netdev)
3428 struct igb_adapter *adapter = netdev_priv(netdev);
3429 struct e1000_hw *hw = &adapter->hw;
3430 unsigned int vfn = adapter->vfs_allocated_count;
3431 u32 rctl, vmolr = 0;
3432 int count;
3434 /* Check for Promiscuous and All Multicast modes */
3435 rctl = rd32(E1000_RCTL);
3437 /* clear the effected bits */
3438 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3440 if (netdev->flags & IFF_PROMISC) {
3441 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3442 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3443 } else {
3444 if (netdev->flags & IFF_ALLMULTI) {
3445 rctl |= E1000_RCTL_MPE;
3446 vmolr |= E1000_VMOLR_MPME;
3447 } else {
3449 * Write addresses to the MTA, if the attempt fails
3450 * then we should just turn on promiscuous mode so
3451 * that we can at least receive multicast traffic
3453 count = igb_write_mc_addr_list(netdev);
3454 if (count < 0) {
3455 rctl |= E1000_RCTL_MPE;
3456 vmolr |= E1000_VMOLR_MPME;
3457 } else if (count) {
3458 vmolr |= E1000_VMOLR_ROMPE;
3462 * Write addresses to available RAR registers, if there is not
3463 * sufficient space to store all the addresses then enable
3464 * unicast promiscuous mode
3466 count = igb_write_uc_addr_list(netdev);
3467 if (count < 0) {
3468 rctl |= E1000_RCTL_UPE;
3469 vmolr |= E1000_VMOLR_ROPE;
3471 rctl |= E1000_RCTL_VFE;
3473 wr32(E1000_RCTL, rctl);
3476 * In order to support SR-IOV and eventually VMDq it is necessary to set
3477 * the VMOLR to enable the appropriate modes. Without this workaround
3478 * we will have issues with VLAN tag stripping not being done for frames
3479 * that are only arriving because we are the default pool
3481 if (hw->mac.type < e1000_82576)
3482 return;
3484 vmolr |= rd32(E1000_VMOLR(vfn)) &
3485 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3486 wr32(E1000_VMOLR(vfn), vmolr);
3487 igb_restore_vf_multicasts(adapter);
3490 static void igb_check_wvbr(struct igb_adapter *adapter)
3492 struct e1000_hw *hw = &adapter->hw;
3493 u32 wvbr = 0;
3495 switch (hw->mac.type) {
3496 case e1000_82576:
3497 case e1000_i350:
3498 if (!(wvbr = rd32(E1000_WVBR)))
3499 return;
3500 break;
3501 default:
3502 break;
3505 adapter->wvbr |= wvbr;
3508 #define IGB_STAGGERED_QUEUE_OFFSET 8
3510 static void igb_spoof_check(struct igb_adapter *adapter)
3512 int j;
3514 if (!adapter->wvbr)
3515 return;
3517 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3518 if (adapter->wvbr & (1 << j) ||
3519 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3520 dev_warn(&adapter->pdev->dev,
3521 "Spoof event(s) detected on VF %d\n", j);
3522 adapter->wvbr &=
3523 ~((1 << j) |
3524 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3529 /* Need to wait a few seconds after link up to get diagnostic information from
3530 * the phy */
3531 static void igb_update_phy_info(unsigned long data)
3533 struct igb_adapter *adapter = (struct igb_adapter *) data;
3534 igb_get_phy_info(&adapter->hw);
3538 * igb_has_link - check shared code for link and determine up/down
3539 * @adapter: pointer to driver private info
3541 bool igb_has_link(struct igb_adapter *adapter)
3543 struct e1000_hw *hw = &adapter->hw;
3544 bool link_active = false;
3545 s32 ret_val = 0;
3547 /* get_link_status is set on LSC (link status) interrupt or
3548 * rx sequence error interrupt. get_link_status will stay
3549 * false until the e1000_check_for_link establishes link
3550 * for copper adapters ONLY
3552 switch (hw->phy.media_type) {
3553 case e1000_media_type_copper:
3554 if (hw->mac.get_link_status) {
3555 ret_val = hw->mac.ops.check_for_link(hw);
3556 link_active = !hw->mac.get_link_status;
3557 } else {
3558 link_active = true;
3560 break;
3561 case e1000_media_type_internal_serdes:
3562 ret_val = hw->mac.ops.check_for_link(hw);
3563 link_active = hw->mac.serdes_has_link;
3564 break;
3565 default:
3566 case e1000_media_type_unknown:
3567 break;
3570 return link_active;
3573 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3575 bool ret = false;
3576 u32 ctrl_ext, thstat;
3578 /* check for thermal sensor event on i350, copper only */
3579 if (hw->mac.type == e1000_i350) {
3580 thstat = rd32(E1000_THSTAT);
3581 ctrl_ext = rd32(E1000_CTRL_EXT);
3583 if ((hw->phy.media_type == e1000_media_type_copper) &&
3584 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3585 ret = !!(thstat & event);
3589 return ret;
3593 * igb_watchdog - Timer Call-back
3594 * @data: pointer to adapter cast into an unsigned long
3596 static void igb_watchdog(unsigned long data)
3598 struct igb_adapter *adapter = (struct igb_adapter *)data;
3599 /* Do the rest outside of interrupt context */
3600 schedule_work(&adapter->watchdog_task);
3603 static void igb_watchdog_task(struct work_struct *work)
3605 struct igb_adapter *adapter = container_of(work,
3606 struct igb_adapter,
3607 watchdog_task);
3608 struct e1000_hw *hw = &adapter->hw;
3609 struct net_device *netdev = adapter->netdev;
3610 u32 link;
3611 int i;
3613 link = igb_has_link(adapter);
3614 if (link) {
3615 if (!netif_carrier_ok(netdev)) {
3616 u32 ctrl;
3617 hw->mac.ops.get_speed_and_duplex(hw,
3618 &adapter->link_speed,
3619 &adapter->link_duplex);
3621 ctrl = rd32(E1000_CTRL);
3622 /* Links status message must follow this format */
3623 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
3624 "Flow Control: %s\n",
3625 netdev->name,
3626 adapter->link_speed,
3627 adapter->link_duplex == FULL_DUPLEX ?
3628 "Full Duplex" : "Half Duplex",
3629 ((ctrl & E1000_CTRL_TFCE) &&
3630 (ctrl & E1000_CTRL_RFCE)) ? "RX/TX" :
3631 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3632 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None")));
3634 /* check for thermal sensor event */
3635 if (igb_thermal_sensor_event(hw, E1000_THSTAT_LINK_THROTTLE)) {
3636 printk(KERN_INFO "igb: %s The network adapter "
3637 "link speed was downshifted "
3638 "because it overheated.\n",
3639 netdev->name);
3642 /* adjust timeout factor according to speed/duplex */
3643 adapter->tx_timeout_factor = 1;
3644 switch (adapter->link_speed) {
3645 case SPEED_10:
3646 adapter->tx_timeout_factor = 14;
3647 break;
3648 case SPEED_100:
3649 /* maybe add some timeout factor ? */
3650 break;
3653 netif_carrier_on(netdev);
3655 igb_ping_all_vfs(adapter);
3656 igb_check_vf_rate_limit(adapter);
3658 /* link state has changed, schedule phy info update */
3659 if (!test_bit(__IGB_DOWN, &adapter->state))
3660 mod_timer(&adapter->phy_info_timer,
3661 round_jiffies(jiffies + 2 * HZ));
3663 } else {
3664 if (netif_carrier_ok(netdev)) {
3665 adapter->link_speed = 0;
3666 adapter->link_duplex = 0;
3668 /* check for thermal sensor event */
3669 if (igb_thermal_sensor_event(hw, E1000_THSTAT_PWR_DOWN)) {
3670 printk(KERN_ERR "igb: %s The network adapter "
3671 "was stopped because it "
3672 "overheated.\n",
3673 netdev->name);
3676 /* Links status message must follow this format */
3677 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3678 netdev->name);
3679 netif_carrier_off(netdev);
3681 igb_ping_all_vfs(adapter);
3683 /* link state has changed, schedule phy info update */
3684 if (!test_bit(__IGB_DOWN, &adapter->state))
3685 mod_timer(&adapter->phy_info_timer,
3686 round_jiffies(jiffies + 2 * HZ));
3690 spin_lock(&adapter->stats64_lock);
3691 igb_update_stats(adapter, &adapter->stats64);
3692 spin_unlock(&adapter->stats64_lock);
3694 for (i = 0; i < adapter->num_tx_queues; i++) {
3695 struct igb_ring *tx_ring = adapter->tx_ring[i];
3696 if (!netif_carrier_ok(netdev)) {
3697 /* We've lost link, so the controller stops DMA,
3698 * but we've got queued Tx work that's never going
3699 * to get done, so reset controller to flush Tx.
3700 * (Do the reset outside of interrupt context). */
3701 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3702 adapter->tx_timeout_count++;
3703 schedule_work(&adapter->reset_task);
3704 /* return immediately since reset is imminent */
3705 return;
3709 /* Force detection of hung controller every watchdog period */
3710 tx_ring->detect_tx_hung = true;
3713 /* Cause software interrupt to ensure rx ring is cleaned */
3714 if (adapter->msix_entries) {
3715 u32 eics = 0;
3716 for (i = 0; i < adapter->num_q_vectors; i++) {
3717 struct igb_q_vector *q_vector = adapter->q_vector[i];
3718 eics |= q_vector->eims_value;
3720 wr32(E1000_EICS, eics);
3721 } else {
3722 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3725 igb_spoof_check(adapter);
3727 /* Reset the timer */
3728 if (!test_bit(__IGB_DOWN, &adapter->state))
3729 mod_timer(&adapter->watchdog_timer,
3730 round_jiffies(jiffies + 2 * HZ));
3733 enum latency_range {
3734 lowest_latency = 0,
3735 low_latency = 1,
3736 bulk_latency = 2,
3737 latency_invalid = 255
3741 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3743 * Stores a new ITR value based on strictly on packet size. This
3744 * algorithm is less sophisticated than that used in igb_update_itr,
3745 * due to the difficulty of synchronizing statistics across multiple
3746 * receive rings. The divisors and thresholds used by this function
3747 * were determined based on theoretical maximum wire speed and testing
3748 * data, in order to minimize response time while increasing bulk
3749 * throughput.
3750 * This functionality is controlled by the InterruptThrottleRate module
3751 * parameter (see igb_param.c)
3752 * NOTE: This function is called only when operating in a multiqueue
3753 * receive environment.
3754 * @q_vector: pointer to q_vector
3756 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3758 int new_val = q_vector->itr_val;
3759 int avg_wire_size = 0;
3760 struct igb_adapter *adapter = q_vector->adapter;
3761 struct igb_ring *ring;
3762 unsigned int packets;
3764 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3765 * ints/sec - ITR timer value of 120 ticks.
3767 if (adapter->link_speed != SPEED_1000) {
3768 new_val = 976;
3769 goto set_itr_val;
3772 ring = q_vector->rx_ring;
3773 if (ring) {
3774 packets = ACCESS_ONCE(ring->total_packets);
3776 if (packets)
3777 avg_wire_size = ring->total_bytes / packets;
3780 ring = q_vector->tx_ring;
3781 if (ring) {
3782 packets = ACCESS_ONCE(ring->total_packets);
3784 if (packets)
3785 avg_wire_size = max_t(u32, avg_wire_size,
3786 ring->total_bytes / packets);
3789 /* if avg_wire_size isn't set no work was done */
3790 if (!avg_wire_size)
3791 goto clear_counts;
3793 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3794 avg_wire_size += 24;
3796 /* Don't starve jumbo frames */
3797 avg_wire_size = min(avg_wire_size, 3000);
3799 /* Give a little boost to mid-size frames */
3800 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3801 new_val = avg_wire_size / 3;
3802 else
3803 new_val = avg_wire_size / 2;
3805 /* when in itr mode 3 do not exceed 20K ints/sec */
3806 if (adapter->rx_itr_setting == 3 && new_val < 196)
3807 new_val = 196;
3809 set_itr_val:
3810 if (new_val != q_vector->itr_val) {
3811 q_vector->itr_val = new_val;
3812 q_vector->set_itr = 1;
3814 clear_counts:
3815 if (q_vector->rx_ring) {
3816 q_vector->rx_ring->total_bytes = 0;
3817 q_vector->rx_ring->total_packets = 0;
3819 if (q_vector->tx_ring) {
3820 q_vector->tx_ring->total_bytes = 0;
3821 q_vector->tx_ring->total_packets = 0;
3826 * igb_update_itr - update the dynamic ITR value based on statistics
3827 * Stores a new ITR value based on packets and byte
3828 * counts during the last interrupt. The advantage of per interrupt
3829 * computation is faster updates and more accurate ITR for the current
3830 * traffic pattern. Constants in this function were computed
3831 * based on theoretical maximum wire speed and thresholds were set based
3832 * on testing data as well as attempting to minimize response time
3833 * while increasing bulk throughput.
3834 * this functionality is controlled by the InterruptThrottleRate module
3835 * parameter (see igb_param.c)
3836 * NOTE: These calculations are only valid when operating in a single-
3837 * queue environment.
3838 * @adapter: pointer to adapter
3839 * @itr_setting: current q_vector->itr_val
3840 * @packets: the number of packets during this measurement interval
3841 * @bytes: the number of bytes during this measurement interval
3843 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3844 int packets, int bytes)
3846 unsigned int retval = itr_setting;
3848 if (packets == 0)
3849 goto update_itr_done;
3851 switch (itr_setting) {
3852 case lowest_latency:
3853 /* handle TSO and jumbo frames */
3854 if (bytes/packets > 8000)
3855 retval = bulk_latency;
3856 else if ((packets < 5) && (bytes > 512))
3857 retval = low_latency;
3858 break;
3859 case low_latency: /* 50 usec aka 20000 ints/s */
3860 if (bytes > 10000) {
3861 /* this if handles the TSO accounting */
3862 if (bytes/packets > 8000) {
3863 retval = bulk_latency;
3864 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3865 retval = bulk_latency;
3866 } else if ((packets > 35)) {
3867 retval = lowest_latency;
3869 } else if (bytes/packets > 2000) {
3870 retval = bulk_latency;
3871 } else if (packets <= 2 && bytes < 512) {
3872 retval = lowest_latency;
3874 break;
3875 case bulk_latency: /* 250 usec aka 4000 ints/s */
3876 if (bytes > 25000) {
3877 if (packets > 35)
3878 retval = low_latency;
3879 } else if (bytes < 1500) {
3880 retval = low_latency;
3882 break;
3885 update_itr_done:
3886 return retval;
3889 static void igb_set_itr(struct igb_adapter *adapter)
3891 struct igb_q_vector *q_vector = adapter->q_vector[0];
3892 u16 current_itr;
3893 u32 new_itr = q_vector->itr_val;
3895 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3896 if (adapter->link_speed != SPEED_1000) {
3897 current_itr = 0;
3898 new_itr = 4000;
3899 goto set_itr_now;
3902 adapter->rx_itr = igb_update_itr(adapter,
3903 adapter->rx_itr,
3904 q_vector->rx_ring->total_packets,
3905 q_vector->rx_ring->total_bytes);
3907 adapter->tx_itr = igb_update_itr(adapter,
3908 adapter->tx_itr,
3909 q_vector->tx_ring->total_packets,
3910 q_vector->tx_ring->total_bytes);
3911 current_itr = max(adapter->rx_itr, adapter->tx_itr);
3913 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3914 if (adapter->rx_itr_setting == 3 && current_itr == lowest_latency)
3915 current_itr = low_latency;
3917 switch (current_itr) {
3918 /* counts and packets in update_itr are dependent on these numbers */
3919 case lowest_latency:
3920 new_itr = 56; /* aka 70,000 ints/sec */
3921 break;
3922 case low_latency:
3923 new_itr = 196; /* aka 20,000 ints/sec */
3924 break;
3925 case bulk_latency:
3926 new_itr = 980; /* aka 4,000 ints/sec */
3927 break;
3928 default:
3929 break;
3932 set_itr_now:
3933 q_vector->rx_ring->total_bytes = 0;
3934 q_vector->rx_ring->total_packets = 0;
3935 q_vector->tx_ring->total_bytes = 0;
3936 q_vector->tx_ring->total_packets = 0;
3938 if (new_itr != q_vector->itr_val) {
3939 /* this attempts to bias the interrupt rate towards Bulk
3940 * by adding intermediate steps when interrupt rate is
3941 * increasing */
3942 new_itr = new_itr > q_vector->itr_val ?
3943 max((new_itr * q_vector->itr_val) /
3944 (new_itr + (q_vector->itr_val >> 2)),
3945 new_itr) :
3946 new_itr;
3947 /* Don't write the value here; it resets the adapter's
3948 * internal timer, and causes us to delay far longer than
3949 * we should between interrupts. Instead, we write the ITR
3950 * value at the beginning of the next interrupt so the timing
3951 * ends up being correct.
3953 q_vector->itr_val = new_itr;
3954 q_vector->set_itr = 1;
3958 #define IGB_TX_FLAGS_CSUM 0x00000001
3959 #define IGB_TX_FLAGS_VLAN 0x00000002
3960 #define IGB_TX_FLAGS_TSO 0x00000004
3961 #define IGB_TX_FLAGS_IPV4 0x00000008
3962 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3963 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3964 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3966 void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
3967 u32 type_tucmd, u32 mss_l4len_idx)
3969 struct e1000_adv_tx_context_desc *context_desc;
3970 u16 i = tx_ring->next_to_use;
3972 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
3974 i++;
3975 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3977 /* set bits to identify this as an advanced context descriptor */
3978 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
3980 /* For 82575, context index must be unique per ring. */
3981 if (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX)
3982 mss_l4len_idx |= tx_ring->reg_idx << 4;
3984 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
3985 context_desc->seqnum_seed = 0;
3986 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
3987 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3990 static inline int igb_tso(struct igb_ring *tx_ring,
3991 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3993 int err;
3994 u32 vlan_macip_lens, type_tucmd;
3995 u32 mss_l4len_idx, l4len;
3997 if (!skb_is_gso(skb))
3998 return 0;
4000 if (skb_header_cloned(skb)) {
4001 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4002 if (err)
4003 return err;
4006 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4007 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4009 if (skb->protocol == htons(ETH_P_IP)) {
4010 struct iphdr *iph = ip_hdr(skb);
4011 iph->tot_len = 0;
4012 iph->check = 0;
4013 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4014 iph->daddr, 0,
4015 IPPROTO_TCP,
4017 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4018 } else if (skb_is_gso_v6(skb)) {
4019 ipv6_hdr(skb)->payload_len = 0;
4020 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4021 &ipv6_hdr(skb)->daddr,
4022 0, IPPROTO_TCP, 0);
4025 l4len = tcp_hdrlen(skb);
4026 *hdr_len = skb_transport_offset(skb) + l4len;
4028 /* MSS L4LEN IDX */
4029 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4030 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4032 /* VLAN MACLEN IPLEN */
4033 vlan_macip_lens = skb_network_header_len(skb);
4034 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4035 vlan_macip_lens |= tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4037 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4039 return 1;
4042 static inline bool igb_tx_csum(struct igb_ring *tx_ring,
4043 struct sk_buff *skb, u32 tx_flags)
4045 u32 vlan_macip_lens = 0;
4046 u32 mss_l4len_idx = 0;
4047 u32 type_tucmd = 0;
4049 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4050 if (!(tx_flags & IGB_TX_FLAGS_VLAN))
4051 return false;
4052 } else {
4053 u8 l4_hdr = 0;
4054 switch (skb->protocol) {
4055 case __constant_htons(ETH_P_IP):
4056 vlan_macip_lens |= skb_network_header_len(skb);
4057 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4058 l4_hdr = ip_hdr(skb)->protocol;
4059 break;
4060 case __constant_htons(ETH_P_IPV6):
4061 vlan_macip_lens |= skb_network_header_len(skb);
4062 l4_hdr = ipv6_hdr(skb)->nexthdr;
4063 break;
4064 default:
4065 if (unlikely(net_ratelimit())) {
4066 dev_warn(tx_ring->dev,
4067 "partial checksum but proto=%x!\n",
4068 skb->protocol);
4070 break;
4073 switch (l4_hdr) {
4074 case IPPROTO_TCP:
4075 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4076 mss_l4len_idx = tcp_hdrlen(skb) <<
4077 E1000_ADVTXD_L4LEN_SHIFT;
4078 break;
4079 case IPPROTO_SCTP:
4080 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4081 mss_l4len_idx = sizeof(struct sctphdr) <<
4082 E1000_ADVTXD_L4LEN_SHIFT;
4083 break;
4084 case IPPROTO_UDP:
4085 mss_l4len_idx = sizeof(struct udphdr) <<
4086 E1000_ADVTXD_L4LEN_SHIFT;
4087 break;
4088 default:
4089 if (unlikely(net_ratelimit())) {
4090 dev_warn(tx_ring->dev,
4091 "partial checksum but l4 proto=%x!\n",
4092 l4_hdr);
4094 break;
4098 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4099 vlan_macip_lens |= tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4101 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4103 return (skb->ip_summed == CHECKSUM_PARTIAL);
4106 static __le32 igb_tx_cmd_type(u32 tx_flags)
4108 /* set type for advanced descriptor with frame checksum insertion */
4109 __le32 cmd_type = cpu_to_le32(E1000_ADVTXD_DTYP_DATA |
4110 E1000_ADVTXD_DCMD_IFCS |
4111 E1000_ADVTXD_DCMD_DEXT);
4113 /* set HW vlan bit if vlan is present */
4114 if (tx_flags & IGB_TX_FLAGS_VLAN)
4115 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4117 /* set timestamp bit if present */
4118 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
4119 cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4121 /* set segmentation bits for TSO */
4122 if (tx_flags & IGB_TX_FLAGS_TSO)
4123 cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4125 return cmd_type;
4128 static __le32 igb_tx_olinfo_status(u32 tx_flags, unsigned int paylen,
4129 struct igb_ring *tx_ring)
4131 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4133 /* 82575 requires a unique index per ring if any offload is enabled */
4134 if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4135 (tx_ring->flags & IGB_RING_FLAG_TX_CTX_IDX))
4136 olinfo_status |= tx_ring->reg_idx << 4;
4138 /* insert L4 checksum */
4139 if (tx_flags & IGB_TX_FLAGS_CSUM) {
4140 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4142 /* insert IPv4 checksum */
4143 if (tx_flags & IGB_TX_FLAGS_IPV4)
4144 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4147 return cpu_to_le32(olinfo_status);
4150 #define IGB_MAX_TXD_PWR 16
4151 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4153 static inline int igb_tx_map(struct igb_ring *tx_ring, struct sk_buff *skb,
4154 struct igb_tx_buffer *first)
4156 struct igb_tx_buffer *buffer_info;
4157 struct device *dev = tx_ring->dev;
4158 unsigned int hlen = skb_headlen(skb);
4159 unsigned int count = 0, i;
4160 unsigned int f;
4161 u16 gso_segs = skb_shinfo(skb)->gso_segs ?: 1;
4163 i = tx_ring->next_to_use;
4165 buffer_info = &tx_ring->tx_buffer_info[i];
4166 BUG_ON(hlen >= IGB_MAX_DATA_PER_TXD);
4167 buffer_info->length = hlen;
4168 buffer_info->dma = dma_map_single(dev, skb->data, hlen,
4169 DMA_TO_DEVICE);
4170 if (dma_mapping_error(dev, buffer_info->dma))
4171 goto dma_error;
4173 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4174 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[f];
4175 unsigned int len = frag->size;
4177 count++;
4178 i++;
4179 if (i == tx_ring->count)
4180 i = 0;
4182 buffer_info = &tx_ring->tx_buffer_info[i];
4183 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
4184 buffer_info->length = len;
4185 buffer_info->mapped_as_page = true;
4186 buffer_info->dma = skb_frag_dma_map(dev, frag, 0, len,
4187 DMA_TO_DEVICE);
4188 if (dma_mapping_error(dev, buffer_info->dma))
4189 goto dma_error;
4193 buffer_info->skb = skb;
4194 buffer_info->tx_flags = skb_shinfo(skb)->tx_flags;
4195 /* multiply data chunks by size of headers */
4196 buffer_info->bytecount = ((gso_segs - 1) * hlen) + skb->len;
4197 buffer_info->gso_segs = gso_segs;
4199 /* set the timestamp */
4200 first->time_stamp = jiffies;
4202 /* set next_to_watch value indicating a packet is present */
4203 first->next_to_watch = IGB_TX_DESC(tx_ring, i);
4205 return ++count;
4207 dma_error:
4208 dev_err(dev, "TX DMA map failed\n");
4210 /* clear timestamp and dma mappings for failed buffer_info mapping */
4211 buffer_info->dma = 0;
4212 buffer_info->time_stamp = 0;
4213 buffer_info->length = 0;
4214 buffer_info->mapped_as_page = false;
4216 /* clear timestamp and dma mappings for remaining portion of packet */
4217 while (count--) {
4218 if (i == 0)
4219 i = tx_ring->count;
4220 i--;
4221 buffer_info = &tx_ring->tx_buffer_info[i];
4222 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4225 return 0;
4228 static inline void igb_tx_queue(struct igb_ring *tx_ring,
4229 u32 tx_flags, int count, u32 paylen,
4230 u8 hdr_len)
4232 union e1000_adv_tx_desc *tx_desc;
4233 struct igb_tx_buffer *buffer_info;
4234 __le32 olinfo_status, cmd_type;
4235 unsigned int i = tx_ring->next_to_use;
4237 cmd_type = igb_tx_cmd_type(tx_flags);
4238 olinfo_status = igb_tx_olinfo_status(tx_flags,
4239 paylen - hdr_len,
4240 tx_ring);
4242 do {
4243 buffer_info = &tx_ring->tx_buffer_info[i];
4244 tx_desc = IGB_TX_DESC(tx_ring, i);
4245 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
4246 tx_desc->read.cmd_type_len = cmd_type |
4247 cpu_to_le32(buffer_info->length);
4248 tx_desc->read.olinfo_status = olinfo_status;
4249 count--;
4250 i++;
4251 if (i == tx_ring->count)
4252 i = 0;
4253 } while (count > 0);
4255 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
4256 /* Force memory writes to complete before letting h/w
4257 * know there are new descriptors to fetch. (Only
4258 * applicable for weak-ordered memory model archs,
4259 * such as IA-64). */
4260 wmb();
4262 tx_ring->next_to_use = i;
4263 writel(i, tx_ring->tail);
4264 /* we need this if more than one processor can write to our tail
4265 * at a time, it syncronizes IO on IA64/Altix systems */
4266 mmiowb();
4269 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4271 struct net_device *netdev = tx_ring->netdev;
4273 netif_stop_subqueue(netdev, tx_ring->queue_index);
4275 /* Herbert's original patch had:
4276 * smp_mb__after_netif_stop_queue();
4277 * but since that doesn't exist yet, just open code it. */
4278 smp_mb();
4280 /* We need to check again in a case another CPU has just
4281 * made room available. */
4282 if (igb_desc_unused(tx_ring) < size)
4283 return -EBUSY;
4285 /* A reprieve! */
4286 netif_wake_subqueue(netdev, tx_ring->queue_index);
4288 u64_stats_update_begin(&tx_ring->tx_syncp2);
4289 tx_ring->tx_stats.restart_queue2++;
4290 u64_stats_update_end(&tx_ring->tx_syncp2);
4292 return 0;
4295 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, int size)
4297 if (igb_desc_unused(tx_ring) >= size)
4298 return 0;
4299 return __igb_maybe_stop_tx(tx_ring, size);
4302 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4303 struct igb_ring *tx_ring)
4305 struct igb_tx_buffer *first;
4306 int tso, count;
4307 u32 tx_flags = 0;
4308 u8 hdr_len = 0;
4310 /* need: 1 descriptor per page,
4311 * + 2 desc gap to keep tail from touching head,
4312 * + 1 desc for skb->data,
4313 * + 1 desc for context descriptor,
4314 * otherwise try next time */
4315 if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4316 /* this is a hard error */
4317 return NETDEV_TX_BUSY;
4320 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4321 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4322 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4325 if (vlan_tx_tag_present(skb)) {
4326 tx_flags |= IGB_TX_FLAGS_VLAN;
4327 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4330 /* record the location of the first descriptor for this packet */
4331 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4333 tso = igb_tso(tx_ring, skb, tx_flags, &hdr_len);
4335 if (tso < 0) {
4336 goto out_drop;
4337 } else if (tso) {
4338 tx_flags |= IGB_TX_FLAGS_TSO | IGB_TX_FLAGS_CSUM;
4339 if (skb->protocol == htons(ETH_P_IP))
4340 tx_flags |= IGB_TX_FLAGS_IPV4;
4342 } else if (igb_tx_csum(tx_ring, skb, tx_flags) &&
4343 (skb->ip_summed == CHECKSUM_PARTIAL)) {
4344 tx_flags |= IGB_TX_FLAGS_CSUM;
4348 * count reflects descriptors mapped, if 0 or less then mapping error
4349 * has occurred and we need to rewind the descriptor queue
4351 count = igb_tx_map(tx_ring, skb, first);
4352 if (!count) {
4353 dev_kfree_skb_any(skb);
4354 first->time_stamp = 0;
4355 tx_ring->next_to_use = first - tx_ring->tx_buffer_info;
4356 return NETDEV_TX_OK;
4359 igb_tx_queue(tx_ring, tx_flags, count, skb->len, hdr_len);
4361 /* Make sure there is space in the ring for the next send. */
4362 igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4364 return NETDEV_TX_OK;
4366 out_drop:
4367 dev_kfree_skb_any(skb);
4368 return NETDEV_TX_OK;
4371 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4372 struct sk_buff *skb)
4374 unsigned int r_idx = skb->queue_mapping;
4376 if (r_idx >= adapter->num_tx_queues)
4377 r_idx = r_idx % adapter->num_tx_queues;
4379 return adapter->tx_ring[r_idx];
4382 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4383 struct net_device *netdev)
4385 struct igb_adapter *adapter = netdev_priv(netdev);
4387 if (test_bit(__IGB_DOWN, &adapter->state)) {
4388 dev_kfree_skb_any(skb);
4389 return NETDEV_TX_OK;
4392 if (skb->len <= 0) {
4393 dev_kfree_skb_any(skb);
4394 return NETDEV_TX_OK;
4398 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4399 * in order to meet this minimum size requirement.
4401 if (skb->len < 17) {
4402 if (skb_padto(skb, 17))
4403 return NETDEV_TX_OK;
4404 skb->len = 17;
4407 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4411 * igb_tx_timeout - Respond to a Tx Hang
4412 * @netdev: network interface device structure
4414 static void igb_tx_timeout(struct net_device *netdev)
4416 struct igb_adapter *adapter = netdev_priv(netdev);
4417 struct e1000_hw *hw = &adapter->hw;
4419 /* Do the reset outside of interrupt context */
4420 adapter->tx_timeout_count++;
4422 if (hw->mac.type == e1000_82580)
4423 hw->dev_spec._82575.global_device_reset = true;
4425 schedule_work(&adapter->reset_task);
4426 wr32(E1000_EICS,
4427 (adapter->eims_enable_mask & ~adapter->eims_other));
4430 static void igb_reset_task(struct work_struct *work)
4432 struct igb_adapter *adapter;
4433 adapter = container_of(work, struct igb_adapter, reset_task);
4435 igb_dump(adapter);
4436 netdev_err(adapter->netdev, "Reset adapter\n");
4437 igb_reinit_locked(adapter);
4441 * igb_get_stats64 - Get System Network Statistics
4442 * @netdev: network interface device structure
4443 * @stats: rtnl_link_stats64 pointer
4446 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4447 struct rtnl_link_stats64 *stats)
4449 struct igb_adapter *adapter = netdev_priv(netdev);
4451 spin_lock(&adapter->stats64_lock);
4452 igb_update_stats(adapter, &adapter->stats64);
4453 memcpy(stats, &adapter->stats64, sizeof(*stats));
4454 spin_unlock(&adapter->stats64_lock);
4456 return stats;
4460 * igb_change_mtu - Change the Maximum Transfer Unit
4461 * @netdev: network interface device structure
4462 * @new_mtu: new value for maximum frame size
4464 * Returns 0 on success, negative on failure
4466 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4468 struct igb_adapter *adapter = netdev_priv(netdev);
4469 struct pci_dev *pdev = adapter->pdev;
4470 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4472 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4473 dev_err(&pdev->dev, "Invalid MTU setting\n");
4474 return -EINVAL;
4477 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4478 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4479 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4480 return -EINVAL;
4483 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4484 msleep(1);
4486 /* igb_down has a dependency on max_frame_size */
4487 adapter->max_frame_size = max_frame;
4489 if (netif_running(netdev))
4490 igb_down(adapter);
4492 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4493 netdev->mtu, new_mtu);
4494 netdev->mtu = new_mtu;
4496 if (netif_running(netdev))
4497 igb_up(adapter);
4498 else
4499 igb_reset(adapter);
4501 clear_bit(__IGB_RESETTING, &adapter->state);
4503 return 0;
4507 * igb_update_stats - Update the board statistics counters
4508 * @adapter: board private structure
4511 void igb_update_stats(struct igb_adapter *adapter,
4512 struct rtnl_link_stats64 *net_stats)
4514 struct e1000_hw *hw = &adapter->hw;
4515 struct pci_dev *pdev = adapter->pdev;
4516 u32 reg, mpc;
4517 u16 phy_tmp;
4518 int i;
4519 u64 bytes, packets;
4520 unsigned int start;
4521 u64 _bytes, _packets;
4523 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4526 * Prevent stats update while adapter is being reset, or if the pci
4527 * connection is down.
4529 if (adapter->link_speed == 0)
4530 return;
4531 if (pci_channel_offline(pdev))
4532 return;
4534 bytes = 0;
4535 packets = 0;
4536 for (i = 0; i < adapter->num_rx_queues; i++) {
4537 u32 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0x0FFF;
4538 struct igb_ring *ring = adapter->rx_ring[i];
4540 ring->rx_stats.drops += rqdpc_tmp;
4541 net_stats->rx_fifo_errors += rqdpc_tmp;
4543 do {
4544 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4545 _bytes = ring->rx_stats.bytes;
4546 _packets = ring->rx_stats.packets;
4547 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4548 bytes += _bytes;
4549 packets += _packets;
4552 net_stats->rx_bytes = bytes;
4553 net_stats->rx_packets = packets;
4555 bytes = 0;
4556 packets = 0;
4557 for (i = 0; i < adapter->num_tx_queues; i++) {
4558 struct igb_ring *ring = adapter->tx_ring[i];
4559 do {
4560 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4561 _bytes = ring->tx_stats.bytes;
4562 _packets = ring->tx_stats.packets;
4563 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4564 bytes += _bytes;
4565 packets += _packets;
4567 net_stats->tx_bytes = bytes;
4568 net_stats->tx_packets = packets;
4570 /* read stats registers */
4571 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4572 adapter->stats.gprc += rd32(E1000_GPRC);
4573 adapter->stats.gorc += rd32(E1000_GORCL);
4574 rd32(E1000_GORCH); /* clear GORCL */
4575 adapter->stats.bprc += rd32(E1000_BPRC);
4576 adapter->stats.mprc += rd32(E1000_MPRC);
4577 adapter->stats.roc += rd32(E1000_ROC);
4579 adapter->stats.prc64 += rd32(E1000_PRC64);
4580 adapter->stats.prc127 += rd32(E1000_PRC127);
4581 adapter->stats.prc255 += rd32(E1000_PRC255);
4582 adapter->stats.prc511 += rd32(E1000_PRC511);
4583 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4584 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4585 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4586 adapter->stats.sec += rd32(E1000_SEC);
4588 mpc = rd32(E1000_MPC);
4589 adapter->stats.mpc += mpc;
4590 net_stats->rx_fifo_errors += mpc;
4591 adapter->stats.scc += rd32(E1000_SCC);
4592 adapter->stats.ecol += rd32(E1000_ECOL);
4593 adapter->stats.mcc += rd32(E1000_MCC);
4594 adapter->stats.latecol += rd32(E1000_LATECOL);
4595 adapter->stats.dc += rd32(E1000_DC);
4596 adapter->stats.rlec += rd32(E1000_RLEC);
4597 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4598 adapter->stats.xontxc += rd32(E1000_XONTXC);
4599 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4600 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4601 adapter->stats.fcruc += rd32(E1000_FCRUC);
4602 adapter->stats.gptc += rd32(E1000_GPTC);
4603 adapter->stats.gotc += rd32(E1000_GOTCL);
4604 rd32(E1000_GOTCH); /* clear GOTCL */
4605 adapter->stats.rnbc += rd32(E1000_RNBC);
4606 adapter->stats.ruc += rd32(E1000_RUC);
4607 adapter->stats.rfc += rd32(E1000_RFC);
4608 adapter->stats.rjc += rd32(E1000_RJC);
4609 adapter->stats.tor += rd32(E1000_TORH);
4610 adapter->stats.tot += rd32(E1000_TOTH);
4611 adapter->stats.tpr += rd32(E1000_TPR);
4613 adapter->stats.ptc64 += rd32(E1000_PTC64);
4614 adapter->stats.ptc127 += rd32(E1000_PTC127);
4615 adapter->stats.ptc255 += rd32(E1000_PTC255);
4616 adapter->stats.ptc511 += rd32(E1000_PTC511);
4617 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4618 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4620 adapter->stats.mptc += rd32(E1000_MPTC);
4621 adapter->stats.bptc += rd32(E1000_BPTC);
4623 adapter->stats.tpt += rd32(E1000_TPT);
4624 adapter->stats.colc += rd32(E1000_COLC);
4626 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4627 /* read internal phy specific stats */
4628 reg = rd32(E1000_CTRL_EXT);
4629 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4630 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4631 adapter->stats.tncrs += rd32(E1000_TNCRS);
4634 adapter->stats.tsctc += rd32(E1000_TSCTC);
4635 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4637 adapter->stats.iac += rd32(E1000_IAC);
4638 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4639 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4640 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4641 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4642 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4643 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4644 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4645 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4647 /* Fill out the OS statistics structure */
4648 net_stats->multicast = adapter->stats.mprc;
4649 net_stats->collisions = adapter->stats.colc;
4651 /* Rx Errors */
4653 /* RLEC on some newer hardware can be incorrect so build
4654 * our own version based on RUC and ROC */
4655 net_stats->rx_errors = adapter->stats.rxerrc +
4656 adapter->stats.crcerrs + adapter->stats.algnerrc +
4657 adapter->stats.ruc + adapter->stats.roc +
4658 adapter->stats.cexterr;
4659 net_stats->rx_length_errors = adapter->stats.ruc +
4660 adapter->stats.roc;
4661 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4662 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4663 net_stats->rx_missed_errors = adapter->stats.mpc;
4665 /* Tx Errors */
4666 net_stats->tx_errors = adapter->stats.ecol +
4667 adapter->stats.latecol;
4668 net_stats->tx_aborted_errors = adapter->stats.ecol;
4669 net_stats->tx_window_errors = adapter->stats.latecol;
4670 net_stats->tx_carrier_errors = adapter->stats.tncrs;
4672 /* Tx Dropped needs to be maintained elsewhere */
4674 /* Phy Stats */
4675 if (hw->phy.media_type == e1000_media_type_copper) {
4676 if ((adapter->link_speed == SPEED_1000) &&
4677 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4678 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4679 adapter->phy_stats.idle_errors += phy_tmp;
4683 /* Management Stats */
4684 adapter->stats.mgptc += rd32(E1000_MGTPTC);
4685 adapter->stats.mgprc += rd32(E1000_MGTPRC);
4686 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4688 /* OS2BMC Stats */
4689 reg = rd32(E1000_MANC);
4690 if (reg & E1000_MANC_EN_BMC2OS) {
4691 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4692 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4693 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4694 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4698 static irqreturn_t igb_msix_other(int irq, void *data)
4700 struct igb_adapter *adapter = data;
4701 struct e1000_hw *hw = &adapter->hw;
4702 u32 icr = rd32(E1000_ICR);
4703 /* reading ICR causes bit 31 of EICR to be cleared */
4705 if (icr & E1000_ICR_DRSTA)
4706 schedule_work(&adapter->reset_task);
4708 if (icr & E1000_ICR_DOUTSYNC) {
4709 /* HW is reporting DMA is out of sync */
4710 adapter->stats.doosync++;
4711 /* The DMA Out of Sync is also indication of a spoof event
4712 * in IOV mode. Check the Wrong VM Behavior register to
4713 * see if it is really a spoof event. */
4714 igb_check_wvbr(adapter);
4717 /* Check for a mailbox event */
4718 if (icr & E1000_ICR_VMMB)
4719 igb_msg_task(adapter);
4721 if (icr & E1000_ICR_LSC) {
4722 hw->mac.get_link_status = 1;
4723 /* guard against interrupt when we're going down */
4724 if (!test_bit(__IGB_DOWN, &adapter->state))
4725 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4728 if (adapter->vfs_allocated_count)
4729 wr32(E1000_IMS, E1000_IMS_LSC |
4730 E1000_IMS_VMMB |
4731 E1000_IMS_DOUTSYNC);
4732 else
4733 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
4734 wr32(E1000_EIMS, adapter->eims_other);
4736 return IRQ_HANDLED;
4739 static void igb_write_itr(struct igb_q_vector *q_vector)
4741 struct igb_adapter *adapter = q_vector->adapter;
4742 u32 itr_val = q_vector->itr_val & 0x7FFC;
4744 if (!q_vector->set_itr)
4745 return;
4747 if (!itr_val)
4748 itr_val = 0x4;
4750 if (adapter->hw.mac.type == e1000_82575)
4751 itr_val |= itr_val << 16;
4752 else
4753 itr_val |= 0x8000000;
4755 writel(itr_val, q_vector->itr_register);
4756 q_vector->set_itr = 0;
4759 static irqreturn_t igb_msix_ring(int irq, void *data)
4761 struct igb_q_vector *q_vector = data;
4763 /* Write the ITR value calculated from the previous interrupt. */
4764 igb_write_itr(q_vector);
4766 napi_schedule(&q_vector->napi);
4768 return IRQ_HANDLED;
4771 #ifdef CONFIG_IGB_DCA
4772 static void igb_update_dca(struct igb_q_vector *q_vector)
4774 struct igb_adapter *adapter = q_vector->adapter;
4775 struct e1000_hw *hw = &adapter->hw;
4776 int cpu = get_cpu();
4778 if (q_vector->cpu == cpu)
4779 goto out_no_update;
4781 if (q_vector->tx_ring) {
4782 int q = q_vector->tx_ring->reg_idx;
4783 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4784 if (hw->mac.type == e1000_82575) {
4785 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4786 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4787 } else {
4788 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4789 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4790 E1000_DCA_TXCTRL_CPUID_SHIFT;
4792 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4793 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4795 if (q_vector->rx_ring) {
4796 int q = q_vector->rx_ring->reg_idx;
4797 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4798 if (hw->mac.type == e1000_82575) {
4799 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4800 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4801 } else {
4802 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4803 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4804 E1000_DCA_RXCTRL_CPUID_SHIFT;
4806 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4807 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4808 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4809 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4811 q_vector->cpu = cpu;
4812 out_no_update:
4813 put_cpu();
4816 static void igb_setup_dca(struct igb_adapter *adapter)
4818 struct e1000_hw *hw = &adapter->hw;
4819 int i;
4821 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4822 return;
4824 /* Always use CB2 mode, difference is masked in the CB driver. */
4825 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4827 for (i = 0; i < adapter->num_q_vectors; i++) {
4828 adapter->q_vector[i]->cpu = -1;
4829 igb_update_dca(adapter->q_vector[i]);
4833 static int __igb_notify_dca(struct device *dev, void *data)
4835 struct net_device *netdev = dev_get_drvdata(dev);
4836 struct igb_adapter *adapter = netdev_priv(netdev);
4837 struct pci_dev *pdev = adapter->pdev;
4838 struct e1000_hw *hw = &adapter->hw;
4839 unsigned long event = *(unsigned long *)data;
4841 switch (event) {
4842 case DCA_PROVIDER_ADD:
4843 /* if already enabled, don't do it again */
4844 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4845 break;
4846 if (dca_add_requester(dev) == 0) {
4847 adapter->flags |= IGB_FLAG_DCA_ENABLED;
4848 dev_info(&pdev->dev, "DCA enabled\n");
4849 igb_setup_dca(adapter);
4850 break;
4852 /* Fall Through since DCA is disabled. */
4853 case DCA_PROVIDER_REMOVE:
4854 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4855 /* without this a class_device is left
4856 * hanging around in the sysfs model */
4857 dca_remove_requester(dev);
4858 dev_info(&pdev->dev, "DCA disabled\n");
4859 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4860 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4862 break;
4865 return 0;
4868 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4869 void *p)
4871 int ret_val;
4873 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4874 __igb_notify_dca);
4876 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4878 #endif /* CONFIG_IGB_DCA */
4880 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4882 struct e1000_hw *hw = &adapter->hw;
4883 u32 ping;
4884 int i;
4886 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4887 ping = E1000_PF_CONTROL_MSG;
4888 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4889 ping |= E1000_VT_MSGTYPE_CTS;
4890 igb_write_mbx(hw, &ping, 1, i);
4894 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4896 struct e1000_hw *hw = &adapter->hw;
4897 u32 vmolr = rd32(E1000_VMOLR(vf));
4898 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4900 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
4901 IGB_VF_FLAG_MULTI_PROMISC);
4902 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4904 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
4905 vmolr |= E1000_VMOLR_MPME;
4906 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
4907 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
4908 } else {
4910 * if we have hashes and we are clearing a multicast promisc
4911 * flag we need to write the hashes to the MTA as this step
4912 * was previously skipped
4914 if (vf_data->num_vf_mc_hashes > 30) {
4915 vmolr |= E1000_VMOLR_MPME;
4916 } else if (vf_data->num_vf_mc_hashes) {
4917 int j;
4918 vmolr |= E1000_VMOLR_ROMPE;
4919 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4920 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4924 wr32(E1000_VMOLR(vf), vmolr);
4926 /* there are flags left unprocessed, likely not supported */
4927 if (*msgbuf & E1000_VT_MSGINFO_MASK)
4928 return -EINVAL;
4930 return 0;
4934 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4935 u32 *msgbuf, u32 vf)
4937 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4938 u16 *hash_list = (u16 *)&msgbuf[1];
4939 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4940 int i;
4942 /* salt away the number of multicast addresses assigned
4943 * to this VF for later use to restore when the PF multi cast
4944 * list changes
4946 vf_data->num_vf_mc_hashes = n;
4948 /* only up to 30 hash values supported */
4949 if (n > 30)
4950 n = 30;
4952 /* store the hashes for later use */
4953 for (i = 0; i < n; i++)
4954 vf_data->vf_mc_hashes[i] = hash_list[i];
4956 /* Flush and reset the mta with the new values */
4957 igb_set_rx_mode(adapter->netdev);
4959 return 0;
4962 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4964 struct e1000_hw *hw = &adapter->hw;
4965 struct vf_data_storage *vf_data;
4966 int i, j;
4968 for (i = 0; i < adapter->vfs_allocated_count; i++) {
4969 u32 vmolr = rd32(E1000_VMOLR(i));
4970 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
4972 vf_data = &adapter->vf_data[i];
4974 if ((vf_data->num_vf_mc_hashes > 30) ||
4975 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
4976 vmolr |= E1000_VMOLR_MPME;
4977 } else if (vf_data->num_vf_mc_hashes) {
4978 vmolr |= E1000_VMOLR_ROMPE;
4979 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4980 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4982 wr32(E1000_VMOLR(i), vmolr);
4986 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4988 struct e1000_hw *hw = &adapter->hw;
4989 u32 pool_mask, reg, vid;
4990 int i;
4992 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4994 /* Find the vlan filter for this id */
4995 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4996 reg = rd32(E1000_VLVF(i));
4998 /* remove the vf from the pool */
4999 reg &= ~pool_mask;
5001 /* if pool is empty then remove entry from vfta */
5002 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5003 (reg & E1000_VLVF_VLANID_ENABLE)) {
5004 reg = 0;
5005 vid = reg & E1000_VLVF_VLANID_MASK;
5006 igb_vfta_set(hw, vid, false);
5009 wr32(E1000_VLVF(i), reg);
5012 adapter->vf_data[vf].vlans_enabled = 0;
5015 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5017 struct e1000_hw *hw = &adapter->hw;
5018 u32 reg, i;
5020 /* The vlvf table only exists on 82576 hardware and newer */
5021 if (hw->mac.type < e1000_82576)
5022 return -1;
5024 /* we only need to do this if VMDq is enabled */
5025 if (!adapter->vfs_allocated_count)
5026 return -1;
5028 /* Find the vlan filter for this id */
5029 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5030 reg = rd32(E1000_VLVF(i));
5031 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5032 vid == (reg & E1000_VLVF_VLANID_MASK))
5033 break;
5036 if (add) {
5037 if (i == E1000_VLVF_ARRAY_SIZE) {
5038 /* Did not find a matching VLAN ID entry that was
5039 * enabled. Search for a free filter entry, i.e.
5040 * one without the enable bit set
5042 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5043 reg = rd32(E1000_VLVF(i));
5044 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5045 break;
5048 if (i < E1000_VLVF_ARRAY_SIZE) {
5049 /* Found an enabled/available entry */
5050 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5052 /* if !enabled we need to set this up in vfta */
5053 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5054 /* add VID to filter table */
5055 igb_vfta_set(hw, vid, true);
5056 reg |= E1000_VLVF_VLANID_ENABLE;
5058 reg &= ~E1000_VLVF_VLANID_MASK;
5059 reg |= vid;
5060 wr32(E1000_VLVF(i), reg);
5062 /* do not modify RLPML for PF devices */
5063 if (vf >= adapter->vfs_allocated_count)
5064 return 0;
5066 if (!adapter->vf_data[vf].vlans_enabled) {
5067 u32 size;
5068 reg = rd32(E1000_VMOLR(vf));
5069 size = reg & E1000_VMOLR_RLPML_MASK;
5070 size += 4;
5071 reg &= ~E1000_VMOLR_RLPML_MASK;
5072 reg |= size;
5073 wr32(E1000_VMOLR(vf), reg);
5076 adapter->vf_data[vf].vlans_enabled++;
5077 return 0;
5079 } else {
5080 if (i < E1000_VLVF_ARRAY_SIZE) {
5081 /* remove vf from the pool */
5082 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5083 /* if pool is empty then remove entry from vfta */
5084 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5085 reg = 0;
5086 igb_vfta_set(hw, vid, false);
5088 wr32(E1000_VLVF(i), reg);
5090 /* do not modify RLPML for PF devices */
5091 if (vf >= adapter->vfs_allocated_count)
5092 return 0;
5094 adapter->vf_data[vf].vlans_enabled--;
5095 if (!adapter->vf_data[vf].vlans_enabled) {
5096 u32 size;
5097 reg = rd32(E1000_VMOLR(vf));
5098 size = reg & E1000_VMOLR_RLPML_MASK;
5099 size -= 4;
5100 reg &= ~E1000_VMOLR_RLPML_MASK;
5101 reg |= size;
5102 wr32(E1000_VMOLR(vf), reg);
5106 return 0;
5109 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5111 struct e1000_hw *hw = &adapter->hw;
5113 if (vid)
5114 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5115 else
5116 wr32(E1000_VMVIR(vf), 0);
5119 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5120 int vf, u16 vlan, u8 qos)
5122 int err = 0;
5123 struct igb_adapter *adapter = netdev_priv(netdev);
5125 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5126 return -EINVAL;
5127 if (vlan || qos) {
5128 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5129 if (err)
5130 goto out;
5131 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5132 igb_set_vmolr(adapter, vf, !vlan);
5133 adapter->vf_data[vf].pf_vlan = vlan;
5134 adapter->vf_data[vf].pf_qos = qos;
5135 dev_info(&adapter->pdev->dev,
5136 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5137 if (test_bit(__IGB_DOWN, &adapter->state)) {
5138 dev_warn(&adapter->pdev->dev,
5139 "The VF VLAN has been set,"
5140 " but the PF device is not up.\n");
5141 dev_warn(&adapter->pdev->dev,
5142 "Bring the PF device up before"
5143 " attempting to use the VF device.\n");
5145 } else {
5146 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5147 false, vf);
5148 igb_set_vmvir(adapter, vlan, vf);
5149 igb_set_vmolr(adapter, vf, true);
5150 adapter->vf_data[vf].pf_vlan = 0;
5151 adapter->vf_data[vf].pf_qos = 0;
5153 out:
5154 return err;
5157 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5159 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5160 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5162 return igb_vlvf_set(adapter, vid, add, vf);
5165 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5167 /* clear flags - except flag that indicates PF has set the MAC */
5168 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5169 adapter->vf_data[vf].last_nack = jiffies;
5171 /* reset offloads to defaults */
5172 igb_set_vmolr(adapter, vf, true);
5174 /* reset vlans for device */
5175 igb_clear_vf_vfta(adapter, vf);
5176 if (adapter->vf_data[vf].pf_vlan)
5177 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5178 adapter->vf_data[vf].pf_vlan,
5179 adapter->vf_data[vf].pf_qos);
5180 else
5181 igb_clear_vf_vfta(adapter, vf);
5183 /* reset multicast table array for vf */
5184 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5186 /* Flush and reset the mta with the new values */
5187 igb_set_rx_mode(adapter->netdev);
5190 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5192 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5194 /* generate a new mac address as we were hotplug removed/added */
5195 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5196 random_ether_addr(vf_mac);
5198 /* process remaining reset events */
5199 igb_vf_reset(adapter, vf);
5202 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5204 struct e1000_hw *hw = &adapter->hw;
5205 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5206 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5207 u32 reg, msgbuf[3];
5208 u8 *addr = (u8 *)(&msgbuf[1]);
5210 /* process all the same items cleared in a function level reset */
5211 igb_vf_reset(adapter, vf);
5213 /* set vf mac address */
5214 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5216 /* enable transmit and receive for vf */
5217 reg = rd32(E1000_VFTE);
5218 wr32(E1000_VFTE, reg | (1 << vf));
5219 reg = rd32(E1000_VFRE);
5220 wr32(E1000_VFRE, reg | (1 << vf));
5222 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5224 /* reply to reset with ack and vf mac address */
5225 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5226 memcpy(addr, vf_mac, 6);
5227 igb_write_mbx(hw, msgbuf, 3, vf);
5230 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5233 * The VF MAC Address is stored in a packed array of bytes
5234 * starting at the second 32 bit word of the msg array
5236 unsigned char *addr = (char *)&msg[1];
5237 int err = -1;
5239 if (is_valid_ether_addr(addr))
5240 err = igb_set_vf_mac(adapter, vf, addr);
5242 return err;
5245 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5247 struct e1000_hw *hw = &adapter->hw;
5248 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5249 u32 msg = E1000_VT_MSGTYPE_NACK;
5251 /* if device isn't clear to send it shouldn't be reading either */
5252 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5253 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5254 igb_write_mbx(hw, &msg, 1, vf);
5255 vf_data->last_nack = jiffies;
5259 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5261 struct pci_dev *pdev = adapter->pdev;
5262 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5263 struct e1000_hw *hw = &adapter->hw;
5264 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5265 s32 retval;
5267 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5269 if (retval) {
5270 /* if receive failed revoke VF CTS stats and restart init */
5271 dev_err(&pdev->dev, "Error receiving message from VF\n");
5272 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5273 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5274 return;
5275 goto out;
5278 /* this is a message we already processed, do nothing */
5279 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5280 return;
5283 * until the vf completes a reset it should not be
5284 * allowed to start any configuration.
5287 if (msgbuf[0] == E1000_VF_RESET) {
5288 igb_vf_reset_msg(adapter, vf);
5289 return;
5292 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5293 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5294 return;
5295 retval = -1;
5296 goto out;
5299 switch ((msgbuf[0] & 0xFFFF)) {
5300 case E1000_VF_SET_MAC_ADDR:
5301 retval = -EINVAL;
5302 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5303 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5304 else
5305 dev_warn(&pdev->dev,
5306 "VF %d attempted to override administratively "
5307 "set MAC address\nReload the VF driver to "
5308 "resume operations\n", vf);
5309 break;
5310 case E1000_VF_SET_PROMISC:
5311 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5312 break;
5313 case E1000_VF_SET_MULTICAST:
5314 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5315 break;
5316 case E1000_VF_SET_LPE:
5317 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5318 break;
5319 case E1000_VF_SET_VLAN:
5320 retval = -1;
5321 if (vf_data->pf_vlan)
5322 dev_warn(&pdev->dev,
5323 "VF %d attempted to override administratively "
5324 "set VLAN tag\nReload the VF driver to "
5325 "resume operations\n", vf);
5326 else
5327 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5328 break;
5329 default:
5330 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5331 retval = -1;
5332 break;
5335 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5336 out:
5337 /* notify the VF of the results of what it sent us */
5338 if (retval)
5339 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5340 else
5341 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5343 igb_write_mbx(hw, msgbuf, 1, vf);
5346 static void igb_msg_task(struct igb_adapter *adapter)
5348 struct e1000_hw *hw = &adapter->hw;
5349 u32 vf;
5351 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5352 /* process any reset requests */
5353 if (!igb_check_for_rst(hw, vf))
5354 igb_vf_reset_event(adapter, vf);
5356 /* process any messages pending */
5357 if (!igb_check_for_msg(hw, vf))
5358 igb_rcv_msg_from_vf(adapter, vf);
5360 /* process any acks */
5361 if (!igb_check_for_ack(hw, vf))
5362 igb_rcv_ack_from_vf(adapter, vf);
5367 * igb_set_uta - Set unicast filter table address
5368 * @adapter: board private structure
5370 * The unicast table address is a register array of 32-bit registers.
5371 * The table is meant to be used in a way similar to how the MTA is used
5372 * however due to certain limitations in the hardware it is necessary to
5373 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5374 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5376 static void igb_set_uta(struct igb_adapter *adapter)
5378 struct e1000_hw *hw = &adapter->hw;
5379 int i;
5381 /* The UTA table only exists on 82576 hardware and newer */
5382 if (hw->mac.type < e1000_82576)
5383 return;
5385 /* we only need to do this if VMDq is enabled */
5386 if (!adapter->vfs_allocated_count)
5387 return;
5389 for (i = 0; i < hw->mac.uta_reg_count; i++)
5390 array_wr32(E1000_UTA, i, ~0);
5394 * igb_intr_msi - Interrupt Handler
5395 * @irq: interrupt number
5396 * @data: pointer to a network interface device structure
5398 static irqreturn_t igb_intr_msi(int irq, void *data)
5400 struct igb_adapter *adapter = data;
5401 struct igb_q_vector *q_vector = adapter->q_vector[0];
5402 struct e1000_hw *hw = &adapter->hw;
5403 /* read ICR disables interrupts using IAM */
5404 u32 icr = rd32(E1000_ICR);
5406 igb_write_itr(q_vector);
5408 if (icr & E1000_ICR_DRSTA)
5409 schedule_work(&adapter->reset_task);
5411 if (icr & E1000_ICR_DOUTSYNC) {
5412 /* HW is reporting DMA is out of sync */
5413 adapter->stats.doosync++;
5416 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5417 hw->mac.get_link_status = 1;
5418 if (!test_bit(__IGB_DOWN, &adapter->state))
5419 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5422 napi_schedule(&q_vector->napi);
5424 return IRQ_HANDLED;
5428 * igb_intr - Legacy Interrupt Handler
5429 * @irq: interrupt number
5430 * @data: pointer to a network interface device structure
5432 static irqreturn_t igb_intr(int irq, void *data)
5434 struct igb_adapter *adapter = data;
5435 struct igb_q_vector *q_vector = adapter->q_vector[0];
5436 struct e1000_hw *hw = &adapter->hw;
5437 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5438 * need for the IMC write */
5439 u32 icr = rd32(E1000_ICR);
5440 if (!icr)
5441 return IRQ_NONE; /* Not our interrupt */
5443 igb_write_itr(q_vector);
5445 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5446 * not set, then the adapter didn't send an interrupt */
5447 if (!(icr & E1000_ICR_INT_ASSERTED))
5448 return IRQ_NONE;
5450 if (icr & E1000_ICR_DRSTA)
5451 schedule_work(&adapter->reset_task);
5453 if (icr & E1000_ICR_DOUTSYNC) {
5454 /* HW is reporting DMA is out of sync */
5455 adapter->stats.doosync++;
5458 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5459 hw->mac.get_link_status = 1;
5460 /* guard against interrupt when we're going down */
5461 if (!test_bit(__IGB_DOWN, &adapter->state))
5462 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5465 napi_schedule(&q_vector->napi);
5467 return IRQ_HANDLED;
5470 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5472 struct igb_adapter *adapter = q_vector->adapter;
5473 struct e1000_hw *hw = &adapter->hw;
5475 if ((q_vector->rx_ring && (adapter->rx_itr_setting & 3)) ||
5476 (!q_vector->rx_ring && (adapter->tx_itr_setting & 3))) {
5477 if (!adapter->msix_entries)
5478 igb_set_itr(adapter);
5479 else
5480 igb_update_ring_itr(q_vector);
5483 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5484 if (adapter->msix_entries)
5485 wr32(E1000_EIMS, q_vector->eims_value);
5486 else
5487 igb_irq_enable(adapter);
5492 * igb_poll - NAPI Rx polling callback
5493 * @napi: napi polling structure
5494 * @budget: count of how many packets we should handle
5496 static int igb_poll(struct napi_struct *napi, int budget)
5498 struct igb_q_vector *q_vector = container_of(napi,
5499 struct igb_q_vector,
5500 napi);
5501 bool clean_complete = true;
5503 #ifdef CONFIG_IGB_DCA
5504 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5505 igb_update_dca(q_vector);
5506 #endif
5507 if (q_vector->tx_ring)
5508 clean_complete = igb_clean_tx_irq(q_vector);
5510 if (q_vector->rx_ring)
5511 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5513 /* If all work not completed, return budget and keep polling */
5514 if (!clean_complete)
5515 return budget;
5517 /* If not enough Rx work done, exit the polling mode */
5518 napi_complete(napi);
5519 igb_ring_irq_enable(q_vector);
5521 return 0;
5525 * igb_systim_to_hwtstamp - convert system time value to hw timestamp
5526 * @adapter: board private structure
5527 * @shhwtstamps: timestamp structure to update
5528 * @regval: unsigned 64bit system time value.
5530 * We need to convert the system time value stored in the RX/TXSTMP registers
5531 * into a hwtstamp which can be used by the upper level timestamping functions
5533 static void igb_systim_to_hwtstamp(struct igb_adapter *adapter,
5534 struct skb_shared_hwtstamps *shhwtstamps,
5535 u64 regval)
5537 u64 ns;
5540 * The 82580 starts with 1ns at bit 0 in RX/TXSTMPL, shift this up to
5541 * 24 to match clock shift we setup earlier.
5543 if (adapter->hw.mac.type == e1000_82580)
5544 regval <<= IGB_82580_TSYNC_SHIFT;
5546 ns = timecounter_cyc2time(&adapter->clock, regval);
5547 timecompare_update(&adapter->compare, ns);
5548 memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
5549 shhwtstamps->hwtstamp = ns_to_ktime(ns);
5550 shhwtstamps->syststamp = timecompare_transform(&adapter->compare, ns);
5554 * igb_tx_hwtstamp - utility function which checks for TX time stamp
5555 * @q_vector: pointer to q_vector containing needed info
5556 * @buffer: pointer to igb_tx_buffer structure
5558 * If we were asked to do hardware stamping and such a time stamp is
5559 * available, then it must have been for this skb here because we only
5560 * allow only one such packet into the queue.
5562 static void igb_tx_hwtstamp(struct igb_q_vector *q_vector,
5563 struct igb_tx_buffer *buffer_info)
5565 struct igb_adapter *adapter = q_vector->adapter;
5566 struct e1000_hw *hw = &adapter->hw;
5567 struct skb_shared_hwtstamps shhwtstamps;
5568 u64 regval;
5570 /* if skb does not support hw timestamp or TX stamp not valid exit */
5571 if (likely(!(buffer_info->tx_flags & SKBTX_HW_TSTAMP)) ||
5572 !(rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID))
5573 return;
5575 regval = rd32(E1000_TXSTMPL);
5576 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
5578 igb_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
5579 skb_tstamp_tx(buffer_info->skb, &shhwtstamps);
5583 * igb_clean_tx_irq - Reclaim resources after transmit completes
5584 * @q_vector: pointer to q_vector containing needed info
5585 * returns true if ring is completely cleaned
5587 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5589 struct igb_adapter *adapter = q_vector->adapter;
5590 struct igb_ring *tx_ring = q_vector->tx_ring;
5591 struct igb_tx_buffer *tx_buffer;
5592 union e1000_adv_tx_desc *tx_desc, *eop_desc;
5593 unsigned int total_bytes = 0, total_packets = 0;
5594 unsigned int budget = q_vector->tx_work_limit;
5595 unsigned int i = tx_ring->next_to_clean;
5597 if (test_bit(__IGB_DOWN, &adapter->state))
5598 return true;
5600 tx_buffer = &tx_ring->tx_buffer_info[i];
5601 tx_desc = IGB_TX_DESC(tx_ring, i);
5602 i -= tx_ring->count;
5604 for (; budget; budget--) {
5605 eop_desc = tx_buffer->next_to_watch;
5607 /* prevent any other reads prior to eop_desc */
5608 rmb();
5610 /* if next_to_watch is not set then there is no work pending */
5611 if (!eop_desc)
5612 break;
5614 /* if DD is not set pending work has not been completed */
5615 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5616 break;
5618 /* clear next_to_watch to prevent false hangs */
5619 tx_buffer->next_to_watch = NULL;
5621 do {
5622 tx_desc->wb.status = 0;
5623 if (likely(tx_desc == eop_desc)) {
5624 eop_desc = NULL;
5626 total_bytes += tx_buffer->bytecount;
5627 total_packets += tx_buffer->gso_segs;
5628 igb_tx_hwtstamp(q_vector, tx_buffer);
5631 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5633 tx_buffer++;
5634 tx_desc++;
5635 i++;
5636 if (unlikely(!i)) {
5637 i -= tx_ring->count;
5638 tx_buffer = tx_ring->tx_buffer_info;
5639 tx_desc = IGB_TX_DESC(tx_ring, 0);
5641 } while (eop_desc);
5644 i += tx_ring->count;
5645 tx_ring->next_to_clean = i;
5646 u64_stats_update_begin(&tx_ring->tx_syncp);
5647 tx_ring->tx_stats.bytes += total_bytes;
5648 tx_ring->tx_stats.packets += total_packets;
5649 u64_stats_update_end(&tx_ring->tx_syncp);
5650 tx_ring->total_bytes += total_bytes;
5651 tx_ring->total_packets += total_packets;
5653 if (tx_ring->detect_tx_hung) {
5654 struct e1000_hw *hw = &adapter->hw;
5656 eop_desc = tx_buffer->next_to_watch;
5658 /* Detect a transmit hang in hardware, this serializes the
5659 * check with the clearing of time_stamp and movement of i */
5660 tx_ring->detect_tx_hung = false;
5661 if (eop_desc &&
5662 time_after(jiffies, tx_buffer->time_stamp +
5663 (adapter->tx_timeout_factor * HZ)) &&
5664 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
5666 /* detected Tx unit hang */
5667 dev_err(tx_ring->dev,
5668 "Detected Tx Unit Hang\n"
5669 " Tx Queue <%d>\n"
5670 " TDH <%x>\n"
5671 " TDT <%x>\n"
5672 " next_to_use <%x>\n"
5673 " next_to_clean <%x>\n"
5674 "buffer_info[next_to_clean]\n"
5675 " time_stamp <%lx>\n"
5676 " next_to_watch <%p>\n"
5677 " jiffies <%lx>\n"
5678 " desc.status <%x>\n",
5679 tx_ring->queue_index,
5680 rd32(E1000_TDH(tx_ring->reg_idx)),
5681 readl(tx_ring->tail),
5682 tx_ring->next_to_use,
5683 tx_ring->next_to_clean,
5684 tx_buffer->time_stamp,
5685 eop_desc,
5686 jiffies,
5687 eop_desc->wb.status);
5688 netif_stop_subqueue(tx_ring->netdev,
5689 tx_ring->queue_index);
5691 /* we are about to reset, no point in enabling stuff */
5692 return true;
5696 if (unlikely(total_packets &&
5697 netif_carrier_ok(tx_ring->netdev) &&
5698 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5699 /* Make sure that anybody stopping the queue after this
5700 * sees the new next_to_clean.
5702 smp_mb();
5703 if (__netif_subqueue_stopped(tx_ring->netdev,
5704 tx_ring->queue_index) &&
5705 !(test_bit(__IGB_DOWN, &adapter->state))) {
5706 netif_wake_subqueue(tx_ring->netdev,
5707 tx_ring->queue_index);
5709 u64_stats_update_begin(&tx_ring->tx_syncp);
5710 tx_ring->tx_stats.restart_queue++;
5711 u64_stats_update_end(&tx_ring->tx_syncp);
5715 return !!budget;
5718 static inline void igb_rx_checksum(struct igb_ring *ring,
5719 u32 status_err, struct sk_buff *skb)
5721 skb_checksum_none_assert(skb);
5723 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
5724 if (!(ring->flags & IGB_RING_FLAG_RX_CSUM) ||
5725 (status_err & E1000_RXD_STAT_IXSM))
5726 return;
5728 /* TCP/UDP checksum error bit is set */
5729 if (status_err &
5730 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
5732 * work around errata with sctp packets where the TCPE aka
5733 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5734 * packets, (aka let the stack check the crc32c)
5736 if ((skb->len == 60) &&
5737 (ring->flags & IGB_RING_FLAG_RX_SCTP_CSUM)) {
5738 u64_stats_update_begin(&ring->rx_syncp);
5739 ring->rx_stats.csum_err++;
5740 u64_stats_update_end(&ring->rx_syncp);
5742 /* let the stack verify checksum errors */
5743 return;
5745 /* It must be a TCP or UDP packet with a valid checksum */
5746 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
5747 skb->ip_summed = CHECKSUM_UNNECESSARY;
5749 dev_dbg(ring->dev, "cksum success: bits %08X\n", status_err);
5752 static void igb_rx_hwtstamp(struct igb_q_vector *q_vector, u32 staterr,
5753 struct sk_buff *skb)
5755 struct igb_adapter *adapter = q_vector->adapter;
5756 struct e1000_hw *hw = &adapter->hw;
5757 u64 regval;
5760 * If this bit is set, then the RX registers contain the time stamp. No
5761 * other packet will be time stamped until we read these registers, so
5762 * read the registers to make them available again. Because only one
5763 * packet can be time stamped at a time, we know that the register
5764 * values must belong to this one here and therefore we don't need to
5765 * compare any of the additional attributes stored for it.
5767 * If nothing went wrong, then it should have a shared tx_flags that we
5768 * can turn into a skb_shared_hwtstamps.
5770 if (staterr & E1000_RXDADV_STAT_TSIP) {
5771 u32 *stamp = (u32 *)skb->data;
5772 regval = le32_to_cpu(*(stamp + 2));
5773 regval |= (u64)le32_to_cpu(*(stamp + 3)) << 32;
5774 skb_pull(skb, IGB_TS_HDR_LEN);
5775 } else {
5776 if(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
5777 return;
5779 regval = rd32(E1000_RXSTMPL);
5780 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
5783 igb_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
5785 static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
5787 /* HW will not DMA in data larger than the given buffer, even if it
5788 * parses the (NFS, of course) header to be larger. In that case, it
5789 * fills the header buffer and spills the rest into the page.
5791 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5792 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
5793 if (hlen > IGB_RX_HDR_LEN)
5794 hlen = IGB_RX_HDR_LEN;
5795 return hlen;
5798 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
5800 struct igb_ring *rx_ring = q_vector->rx_ring;
5801 union e1000_adv_rx_desc *rx_desc;
5802 const int current_node = numa_node_id();
5803 unsigned int total_bytes = 0, total_packets = 0;
5804 u32 staterr;
5805 u16 cleaned_count = igb_desc_unused(rx_ring);
5806 u16 i = rx_ring->next_to_clean;
5808 rx_desc = IGB_RX_DESC(rx_ring, i);
5809 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5811 while (staterr & E1000_RXD_STAT_DD) {
5812 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5813 struct sk_buff *skb = buffer_info->skb;
5814 union e1000_adv_rx_desc *next_rxd;
5816 buffer_info->skb = NULL;
5817 prefetch(skb->data);
5819 i++;
5820 if (i == rx_ring->count)
5821 i = 0;
5823 next_rxd = IGB_RX_DESC(rx_ring, i);
5824 prefetch(next_rxd);
5827 * This memory barrier is needed to keep us from reading
5828 * any other fields out of the rx_desc until we know the
5829 * RXD_STAT_DD bit is set
5831 rmb();
5833 if (!skb_is_nonlinear(skb)) {
5834 __skb_put(skb, igb_get_hlen(rx_desc));
5835 dma_unmap_single(rx_ring->dev, buffer_info->dma,
5836 IGB_RX_HDR_LEN,
5837 DMA_FROM_DEVICE);
5838 buffer_info->dma = 0;
5841 if (rx_desc->wb.upper.length) {
5842 u16 length = le16_to_cpu(rx_desc->wb.upper.length);
5844 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5845 buffer_info->page,
5846 buffer_info->page_offset,
5847 length);
5849 skb->len += length;
5850 skb->data_len += length;
5851 skb->truesize += length;
5853 if ((page_count(buffer_info->page) != 1) ||
5854 (page_to_nid(buffer_info->page) != current_node))
5855 buffer_info->page = NULL;
5856 else
5857 get_page(buffer_info->page);
5859 dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
5860 PAGE_SIZE / 2, DMA_FROM_DEVICE);
5861 buffer_info->page_dma = 0;
5864 if (!(staterr & E1000_RXD_STAT_EOP)) {
5865 struct igb_rx_buffer *next_buffer;
5866 next_buffer = &rx_ring->rx_buffer_info[i];
5867 buffer_info->skb = next_buffer->skb;
5868 buffer_info->dma = next_buffer->dma;
5869 next_buffer->skb = skb;
5870 next_buffer->dma = 0;
5871 goto next_desc;
5874 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
5875 dev_kfree_skb_any(skb);
5876 goto next_desc;
5879 if (staterr & (E1000_RXDADV_STAT_TSIP | E1000_RXDADV_STAT_TS))
5880 igb_rx_hwtstamp(q_vector, staterr, skb);
5881 total_bytes += skb->len;
5882 total_packets++;
5884 igb_rx_checksum(rx_ring, staterr, skb);
5886 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
5888 if (staterr & E1000_RXD_STAT_VP) {
5889 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
5891 __vlan_hwaccel_put_tag(skb, vid);
5893 napi_gro_receive(&q_vector->napi, skb);
5895 budget--;
5896 next_desc:
5897 if (!budget)
5898 break;
5900 cleaned_count++;
5901 /* return some buffers to hardware, one at a time is too slow */
5902 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
5903 igb_alloc_rx_buffers(rx_ring, cleaned_count);
5904 cleaned_count = 0;
5907 /* use prefetched values */
5908 rx_desc = next_rxd;
5909 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5912 rx_ring->next_to_clean = i;
5913 u64_stats_update_begin(&rx_ring->rx_syncp);
5914 rx_ring->rx_stats.packets += total_packets;
5915 rx_ring->rx_stats.bytes += total_bytes;
5916 u64_stats_update_end(&rx_ring->rx_syncp);
5917 rx_ring->total_packets += total_packets;
5918 rx_ring->total_bytes += total_bytes;
5920 if (cleaned_count)
5921 igb_alloc_rx_buffers(rx_ring, cleaned_count);
5923 return !!budget;
5926 static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
5927 struct igb_rx_buffer *bi)
5929 struct sk_buff *skb = bi->skb;
5930 dma_addr_t dma = bi->dma;
5932 if (dma)
5933 return true;
5935 if (likely(!skb)) {
5936 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
5937 IGB_RX_HDR_LEN);
5938 bi->skb = skb;
5939 if (!skb) {
5940 rx_ring->rx_stats.alloc_failed++;
5941 return false;
5944 /* initialize skb for ring */
5945 skb_record_rx_queue(skb, rx_ring->queue_index);
5948 dma = dma_map_single(rx_ring->dev, skb->data,
5949 IGB_RX_HDR_LEN, DMA_FROM_DEVICE);
5951 if (dma_mapping_error(rx_ring->dev, dma)) {
5952 rx_ring->rx_stats.alloc_failed++;
5953 return false;
5956 bi->dma = dma;
5957 return true;
5960 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
5961 struct igb_rx_buffer *bi)
5963 struct page *page = bi->page;
5964 dma_addr_t page_dma = bi->page_dma;
5965 unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
5967 if (page_dma)
5968 return true;
5970 if (!page) {
5971 page = netdev_alloc_page(rx_ring->netdev);
5972 bi->page = page;
5973 if (unlikely(!page)) {
5974 rx_ring->rx_stats.alloc_failed++;
5975 return false;
5979 page_dma = dma_map_page(rx_ring->dev, page,
5980 page_offset, PAGE_SIZE / 2,
5981 DMA_FROM_DEVICE);
5983 if (dma_mapping_error(rx_ring->dev, page_dma)) {
5984 rx_ring->rx_stats.alloc_failed++;
5985 return false;
5988 bi->page_dma = page_dma;
5989 bi->page_offset = page_offset;
5990 return true;
5994 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
5995 * @adapter: address of board private structure
5997 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
5999 union e1000_adv_rx_desc *rx_desc;
6000 struct igb_rx_buffer *bi;
6001 u16 i = rx_ring->next_to_use;
6003 rx_desc = IGB_RX_DESC(rx_ring, i);
6004 bi = &rx_ring->rx_buffer_info[i];
6005 i -= rx_ring->count;
6007 while (cleaned_count--) {
6008 if (!igb_alloc_mapped_skb(rx_ring, bi))
6009 break;
6011 /* Refresh the desc even if buffer_addrs didn't change
6012 * because each write-back erases this info. */
6013 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
6015 if (!igb_alloc_mapped_page(rx_ring, bi))
6016 break;
6018 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
6020 rx_desc++;
6021 bi++;
6022 i++;
6023 if (unlikely(!i)) {
6024 rx_desc = IGB_RX_DESC(rx_ring, 0);
6025 bi = rx_ring->rx_buffer_info;
6026 i -= rx_ring->count;
6029 /* clear the hdr_addr for the next_to_use descriptor */
6030 rx_desc->read.hdr_addr = 0;
6033 i += rx_ring->count;
6035 if (rx_ring->next_to_use != i) {
6036 rx_ring->next_to_use = i;
6038 /* Force memory writes to complete before letting h/w
6039 * know there are new descriptors to fetch. (Only
6040 * applicable for weak-ordered memory model archs,
6041 * such as IA-64). */
6042 wmb();
6043 writel(i, rx_ring->tail);
6048 * igb_mii_ioctl -
6049 * @netdev:
6050 * @ifreq:
6051 * @cmd:
6053 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6055 struct igb_adapter *adapter = netdev_priv(netdev);
6056 struct mii_ioctl_data *data = if_mii(ifr);
6058 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6059 return -EOPNOTSUPP;
6061 switch (cmd) {
6062 case SIOCGMIIPHY:
6063 data->phy_id = adapter->hw.phy.addr;
6064 break;
6065 case SIOCGMIIREG:
6066 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6067 &data->val_out))
6068 return -EIO;
6069 break;
6070 case SIOCSMIIREG:
6071 default:
6072 return -EOPNOTSUPP;
6074 return 0;
6078 * igb_hwtstamp_ioctl - control hardware time stamping
6079 * @netdev:
6080 * @ifreq:
6081 * @cmd:
6083 * Outgoing time stamping can be enabled and disabled. Play nice and
6084 * disable it when requested, although it shouldn't case any overhead
6085 * when no packet needs it. At most one packet in the queue may be
6086 * marked for time stamping, otherwise it would be impossible to tell
6087 * for sure to which packet the hardware time stamp belongs.
6089 * Incoming time stamping has to be configured via the hardware
6090 * filters. Not all combinations are supported, in particular event
6091 * type has to be specified. Matching the kind of event packet is
6092 * not supported, with the exception of "all V2 events regardless of
6093 * level 2 or 4".
6096 static int igb_hwtstamp_ioctl(struct net_device *netdev,
6097 struct ifreq *ifr, int cmd)
6099 struct igb_adapter *adapter = netdev_priv(netdev);
6100 struct e1000_hw *hw = &adapter->hw;
6101 struct hwtstamp_config config;
6102 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
6103 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6104 u32 tsync_rx_cfg = 0;
6105 bool is_l4 = false;
6106 bool is_l2 = false;
6107 u32 regval;
6109 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6110 return -EFAULT;
6112 /* reserved for future extensions */
6113 if (config.flags)
6114 return -EINVAL;
6116 switch (config.tx_type) {
6117 case HWTSTAMP_TX_OFF:
6118 tsync_tx_ctl = 0;
6119 case HWTSTAMP_TX_ON:
6120 break;
6121 default:
6122 return -ERANGE;
6125 switch (config.rx_filter) {
6126 case HWTSTAMP_FILTER_NONE:
6127 tsync_rx_ctl = 0;
6128 break;
6129 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6130 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6131 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6132 case HWTSTAMP_FILTER_ALL:
6134 * register TSYNCRXCFG must be set, therefore it is not
6135 * possible to time stamp both Sync and Delay_Req messages
6136 * => fall back to time stamping all packets
6138 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6139 config.rx_filter = HWTSTAMP_FILTER_ALL;
6140 break;
6141 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6142 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6143 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
6144 is_l4 = true;
6145 break;
6146 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6147 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
6148 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
6149 is_l4 = true;
6150 break;
6151 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6152 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6153 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6154 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
6155 is_l2 = true;
6156 is_l4 = true;
6157 config.rx_filter = HWTSTAMP_FILTER_SOME;
6158 break;
6159 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6160 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6161 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
6162 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
6163 is_l2 = true;
6164 is_l4 = true;
6165 config.rx_filter = HWTSTAMP_FILTER_SOME;
6166 break;
6167 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6168 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6169 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6170 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
6171 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
6172 is_l2 = true;
6173 break;
6174 default:
6175 return -ERANGE;
6178 if (hw->mac.type == e1000_82575) {
6179 if (tsync_rx_ctl | tsync_tx_ctl)
6180 return -EINVAL;
6181 return 0;
6185 * Per-packet timestamping only works if all packets are
6186 * timestamped, so enable timestamping in all packets as
6187 * long as one rx filter was configured.
6189 if ((hw->mac.type == e1000_82580) && tsync_rx_ctl) {
6190 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
6191 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
6194 /* enable/disable TX */
6195 regval = rd32(E1000_TSYNCTXCTL);
6196 regval &= ~E1000_TSYNCTXCTL_ENABLED;
6197 regval |= tsync_tx_ctl;
6198 wr32(E1000_TSYNCTXCTL, regval);
6200 /* enable/disable RX */
6201 regval = rd32(E1000_TSYNCRXCTL);
6202 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
6203 regval |= tsync_rx_ctl;
6204 wr32(E1000_TSYNCRXCTL, regval);
6206 /* define which PTP packets are time stamped */
6207 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
6209 /* define ethertype filter for timestamped packets */
6210 if (is_l2)
6211 wr32(E1000_ETQF(3),
6212 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
6213 E1000_ETQF_1588 | /* enable timestamping */
6214 ETH_P_1588)); /* 1588 eth protocol type */
6215 else
6216 wr32(E1000_ETQF(3), 0);
6218 #define PTP_PORT 319
6219 /* L4 Queue Filter[3]: filter by destination port and protocol */
6220 if (is_l4) {
6221 u32 ftqf = (IPPROTO_UDP /* UDP */
6222 | E1000_FTQF_VF_BP /* VF not compared */
6223 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
6224 | E1000_FTQF_MASK); /* mask all inputs */
6225 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
6227 wr32(E1000_IMIR(3), htons(PTP_PORT));
6228 wr32(E1000_IMIREXT(3),
6229 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
6230 if (hw->mac.type == e1000_82576) {
6231 /* enable source port check */
6232 wr32(E1000_SPQF(3), htons(PTP_PORT));
6233 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
6235 wr32(E1000_FTQF(3), ftqf);
6236 } else {
6237 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
6239 wrfl();
6241 adapter->hwtstamp_config = config;
6243 /* clear TX/RX time stamp registers, just to be sure */
6244 regval = rd32(E1000_TXSTMPH);
6245 regval = rd32(E1000_RXSTMPH);
6247 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
6248 -EFAULT : 0;
6252 * igb_ioctl -
6253 * @netdev:
6254 * @ifreq:
6255 * @cmd:
6257 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6259 switch (cmd) {
6260 case SIOCGMIIPHY:
6261 case SIOCGMIIREG:
6262 case SIOCSMIIREG:
6263 return igb_mii_ioctl(netdev, ifr, cmd);
6264 case SIOCSHWTSTAMP:
6265 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
6266 default:
6267 return -EOPNOTSUPP;
6271 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6273 struct igb_adapter *adapter = hw->back;
6274 u16 cap_offset;
6276 cap_offset = adapter->pdev->pcie_cap;
6277 if (!cap_offset)
6278 return -E1000_ERR_CONFIG;
6280 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
6282 return 0;
6285 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6287 struct igb_adapter *adapter = hw->back;
6288 u16 cap_offset;
6290 cap_offset = adapter->pdev->pcie_cap;
6291 if (!cap_offset)
6292 return -E1000_ERR_CONFIG;
6294 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
6296 return 0;
6299 static void igb_vlan_mode(struct net_device *netdev, u32 features)
6301 struct igb_adapter *adapter = netdev_priv(netdev);
6302 struct e1000_hw *hw = &adapter->hw;
6303 u32 ctrl, rctl;
6305 igb_irq_disable(adapter);
6307 if (features & NETIF_F_HW_VLAN_RX) {
6308 /* enable VLAN tag insert/strip */
6309 ctrl = rd32(E1000_CTRL);
6310 ctrl |= E1000_CTRL_VME;
6311 wr32(E1000_CTRL, ctrl);
6313 /* Disable CFI check */
6314 rctl = rd32(E1000_RCTL);
6315 rctl &= ~E1000_RCTL_CFIEN;
6316 wr32(E1000_RCTL, rctl);
6317 } else {
6318 /* disable VLAN tag insert/strip */
6319 ctrl = rd32(E1000_CTRL);
6320 ctrl &= ~E1000_CTRL_VME;
6321 wr32(E1000_CTRL, ctrl);
6324 igb_rlpml_set(adapter);
6326 if (!test_bit(__IGB_DOWN, &adapter->state))
6327 igb_irq_enable(adapter);
6330 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6332 struct igb_adapter *adapter = netdev_priv(netdev);
6333 struct e1000_hw *hw = &adapter->hw;
6334 int pf_id = adapter->vfs_allocated_count;
6336 /* attempt to add filter to vlvf array */
6337 igb_vlvf_set(adapter, vid, true, pf_id);
6339 /* add the filter since PF can receive vlans w/o entry in vlvf */
6340 igb_vfta_set(hw, vid, true);
6342 set_bit(vid, adapter->active_vlans);
6345 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6347 struct igb_adapter *adapter = netdev_priv(netdev);
6348 struct e1000_hw *hw = &adapter->hw;
6349 int pf_id = adapter->vfs_allocated_count;
6350 s32 err;
6352 igb_irq_disable(adapter);
6354 if (!test_bit(__IGB_DOWN, &adapter->state))
6355 igb_irq_enable(adapter);
6357 /* remove vlan from VLVF table array */
6358 err = igb_vlvf_set(adapter, vid, false, pf_id);
6360 /* if vid was not present in VLVF just remove it from table */
6361 if (err)
6362 igb_vfta_set(hw, vid, false);
6364 clear_bit(vid, adapter->active_vlans);
6367 static void igb_restore_vlan(struct igb_adapter *adapter)
6369 u16 vid;
6371 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6372 igb_vlan_rx_add_vid(adapter->netdev, vid);
6375 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6377 struct pci_dev *pdev = adapter->pdev;
6378 struct e1000_mac_info *mac = &adapter->hw.mac;
6380 mac->autoneg = 0;
6382 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6383 * for the switch() below to work */
6384 if ((spd & 1) || (dplx & ~1))
6385 goto err_inval;
6387 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6388 if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6389 spd != SPEED_1000 &&
6390 dplx != DUPLEX_FULL)
6391 goto err_inval;
6393 switch (spd + dplx) {
6394 case SPEED_10 + DUPLEX_HALF:
6395 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6396 break;
6397 case SPEED_10 + DUPLEX_FULL:
6398 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6399 break;
6400 case SPEED_100 + DUPLEX_HALF:
6401 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6402 break;
6403 case SPEED_100 + DUPLEX_FULL:
6404 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6405 break;
6406 case SPEED_1000 + DUPLEX_FULL:
6407 mac->autoneg = 1;
6408 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6409 break;
6410 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6411 default:
6412 goto err_inval;
6414 return 0;
6416 err_inval:
6417 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6418 return -EINVAL;
6421 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
6423 struct net_device *netdev = pci_get_drvdata(pdev);
6424 struct igb_adapter *adapter = netdev_priv(netdev);
6425 struct e1000_hw *hw = &adapter->hw;
6426 u32 ctrl, rctl, status;
6427 u32 wufc = adapter->wol;
6428 #ifdef CONFIG_PM
6429 int retval = 0;
6430 #endif
6432 netif_device_detach(netdev);
6434 if (netif_running(netdev))
6435 igb_close(netdev);
6437 igb_clear_interrupt_scheme(adapter);
6439 #ifdef CONFIG_PM
6440 retval = pci_save_state(pdev);
6441 if (retval)
6442 return retval;
6443 #endif
6445 status = rd32(E1000_STATUS);
6446 if (status & E1000_STATUS_LU)
6447 wufc &= ~E1000_WUFC_LNKC;
6449 if (wufc) {
6450 igb_setup_rctl(adapter);
6451 igb_set_rx_mode(netdev);
6453 /* turn on all-multi mode if wake on multicast is enabled */
6454 if (wufc & E1000_WUFC_MC) {
6455 rctl = rd32(E1000_RCTL);
6456 rctl |= E1000_RCTL_MPE;
6457 wr32(E1000_RCTL, rctl);
6460 ctrl = rd32(E1000_CTRL);
6461 /* advertise wake from D3Cold */
6462 #define E1000_CTRL_ADVD3WUC 0x00100000
6463 /* phy power management enable */
6464 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6465 ctrl |= E1000_CTRL_ADVD3WUC;
6466 wr32(E1000_CTRL, ctrl);
6468 /* Allow time for pending master requests to run */
6469 igb_disable_pcie_master(hw);
6471 wr32(E1000_WUC, E1000_WUC_PME_EN);
6472 wr32(E1000_WUFC, wufc);
6473 } else {
6474 wr32(E1000_WUC, 0);
6475 wr32(E1000_WUFC, 0);
6478 *enable_wake = wufc || adapter->en_mng_pt;
6479 if (!*enable_wake)
6480 igb_power_down_link(adapter);
6481 else
6482 igb_power_up_link(adapter);
6484 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6485 * would have already happened in close and is redundant. */
6486 igb_release_hw_control(adapter);
6488 pci_disable_device(pdev);
6490 return 0;
6493 #ifdef CONFIG_PM
6494 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
6496 int retval;
6497 bool wake;
6499 retval = __igb_shutdown(pdev, &wake);
6500 if (retval)
6501 return retval;
6503 if (wake) {
6504 pci_prepare_to_sleep(pdev);
6505 } else {
6506 pci_wake_from_d3(pdev, false);
6507 pci_set_power_state(pdev, PCI_D3hot);
6510 return 0;
6513 static int igb_resume(struct pci_dev *pdev)
6515 struct net_device *netdev = pci_get_drvdata(pdev);
6516 struct igb_adapter *adapter = netdev_priv(netdev);
6517 struct e1000_hw *hw = &adapter->hw;
6518 u32 err;
6520 pci_set_power_state(pdev, PCI_D0);
6521 pci_restore_state(pdev);
6522 pci_save_state(pdev);
6524 err = pci_enable_device_mem(pdev);
6525 if (err) {
6526 dev_err(&pdev->dev,
6527 "igb: Cannot enable PCI device from suspend\n");
6528 return err;
6530 pci_set_master(pdev);
6532 pci_enable_wake(pdev, PCI_D3hot, 0);
6533 pci_enable_wake(pdev, PCI_D3cold, 0);
6535 if (igb_init_interrupt_scheme(adapter)) {
6536 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6537 return -ENOMEM;
6540 igb_reset(adapter);
6542 /* let the f/w know that the h/w is now under the control of the
6543 * driver. */
6544 igb_get_hw_control(adapter);
6546 wr32(E1000_WUS, ~0);
6548 if (netif_running(netdev)) {
6549 err = igb_open(netdev);
6550 if (err)
6551 return err;
6554 netif_device_attach(netdev);
6556 return 0;
6558 #endif
6560 static void igb_shutdown(struct pci_dev *pdev)
6562 bool wake;
6564 __igb_shutdown(pdev, &wake);
6566 if (system_state == SYSTEM_POWER_OFF) {
6567 pci_wake_from_d3(pdev, wake);
6568 pci_set_power_state(pdev, PCI_D3hot);
6572 #ifdef CONFIG_NET_POLL_CONTROLLER
6574 * Polling 'interrupt' - used by things like netconsole to send skbs
6575 * without having to re-enable interrupts. It's not called while
6576 * the interrupt routine is executing.
6578 static void igb_netpoll(struct net_device *netdev)
6580 struct igb_adapter *adapter = netdev_priv(netdev);
6581 struct e1000_hw *hw = &adapter->hw;
6582 int i;
6584 if (!adapter->msix_entries) {
6585 struct igb_q_vector *q_vector = adapter->q_vector[0];
6586 igb_irq_disable(adapter);
6587 napi_schedule(&q_vector->napi);
6588 return;
6591 for (i = 0; i < adapter->num_q_vectors; i++) {
6592 struct igb_q_vector *q_vector = adapter->q_vector[i];
6593 wr32(E1000_EIMC, q_vector->eims_value);
6594 napi_schedule(&q_vector->napi);
6597 #endif /* CONFIG_NET_POLL_CONTROLLER */
6600 * igb_io_error_detected - called when PCI error is detected
6601 * @pdev: Pointer to PCI device
6602 * @state: The current pci connection state
6604 * This function is called after a PCI bus error affecting
6605 * this device has been detected.
6607 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6608 pci_channel_state_t state)
6610 struct net_device *netdev = pci_get_drvdata(pdev);
6611 struct igb_adapter *adapter = netdev_priv(netdev);
6613 netif_device_detach(netdev);
6615 if (state == pci_channel_io_perm_failure)
6616 return PCI_ERS_RESULT_DISCONNECT;
6618 if (netif_running(netdev))
6619 igb_down(adapter);
6620 pci_disable_device(pdev);
6622 /* Request a slot slot reset. */
6623 return PCI_ERS_RESULT_NEED_RESET;
6627 * igb_io_slot_reset - called after the pci bus has been reset.
6628 * @pdev: Pointer to PCI device
6630 * Restart the card from scratch, as if from a cold-boot. Implementation
6631 * resembles the first-half of the igb_resume routine.
6633 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6635 struct net_device *netdev = pci_get_drvdata(pdev);
6636 struct igb_adapter *adapter = netdev_priv(netdev);
6637 struct e1000_hw *hw = &adapter->hw;
6638 pci_ers_result_t result;
6639 int err;
6641 if (pci_enable_device_mem(pdev)) {
6642 dev_err(&pdev->dev,
6643 "Cannot re-enable PCI device after reset.\n");
6644 result = PCI_ERS_RESULT_DISCONNECT;
6645 } else {
6646 pci_set_master(pdev);
6647 pci_restore_state(pdev);
6648 pci_save_state(pdev);
6650 pci_enable_wake(pdev, PCI_D3hot, 0);
6651 pci_enable_wake(pdev, PCI_D3cold, 0);
6653 igb_reset(adapter);
6654 wr32(E1000_WUS, ~0);
6655 result = PCI_ERS_RESULT_RECOVERED;
6658 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6659 if (err) {
6660 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6661 "failed 0x%0x\n", err);
6662 /* non-fatal, continue */
6665 return result;
6669 * igb_io_resume - called when traffic can start flowing again.
6670 * @pdev: Pointer to PCI device
6672 * This callback is called when the error recovery driver tells us that
6673 * its OK to resume normal operation. Implementation resembles the
6674 * second-half of the igb_resume routine.
6676 static void igb_io_resume(struct pci_dev *pdev)
6678 struct net_device *netdev = pci_get_drvdata(pdev);
6679 struct igb_adapter *adapter = netdev_priv(netdev);
6681 if (netif_running(netdev)) {
6682 if (igb_up(adapter)) {
6683 dev_err(&pdev->dev, "igb_up failed after reset\n");
6684 return;
6688 netif_device_attach(netdev);
6690 /* let the f/w know that the h/w is now under the control of the
6691 * driver. */
6692 igb_get_hw_control(adapter);
6695 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6696 u8 qsel)
6698 u32 rar_low, rar_high;
6699 struct e1000_hw *hw = &adapter->hw;
6701 /* HW expects these in little endian so we reverse the byte order
6702 * from network order (big endian) to little endian
6704 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6705 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6706 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6708 /* Indicate to hardware the Address is Valid. */
6709 rar_high |= E1000_RAH_AV;
6711 if (hw->mac.type == e1000_82575)
6712 rar_high |= E1000_RAH_POOL_1 * qsel;
6713 else
6714 rar_high |= E1000_RAH_POOL_1 << qsel;
6716 wr32(E1000_RAL(index), rar_low);
6717 wrfl();
6718 wr32(E1000_RAH(index), rar_high);
6719 wrfl();
6722 static int igb_set_vf_mac(struct igb_adapter *adapter,
6723 int vf, unsigned char *mac_addr)
6725 struct e1000_hw *hw = &adapter->hw;
6726 /* VF MAC addresses start at end of receive addresses and moves
6727 * torwards the first, as a result a collision should not be possible */
6728 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6730 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6732 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6734 return 0;
6737 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6739 struct igb_adapter *adapter = netdev_priv(netdev);
6740 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6741 return -EINVAL;
6742 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6743 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6744 dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6745 " change effective.");
6746 if (test_bit(__IGB_DOWN, &adapter->state)) {
6747 dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6748 " but the PF device is not up.\n");
6749 dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6750 " attempting to use the VF device.\n");
6752 return igb_set_vf_mac(adapter, vf, mac);
6755 static int igb_link_mbps(int internal_link_speed)
6757 switch (internal_link_speed) {
6758 case SPEED_100:
6759 return 100;
6760 case SPEED_1000:
6761 return 1000;
6762 default:
6763 return 0;
6767 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6768 int link_speed)
6770 int rf_dec, rf_int;
6771 u32 bcnrc_val;
6773 if (tx_rate != 0) {
6774 /* Calculate the rate factor values to set */
6775 rf_int = link_speed / tx_rate;
6776 rf_dec = (link_speed - (rf_int * tx_rate));
6777 rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6779 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6780 bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6781 E1000_RTTBCNRC_RF_INT_MASK);
6782 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6783 } else {
6784 bcnrc_val = 0;
6787 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6788 wr32(E1000_RTTBCNRC, bcnrc_val);
6791 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6793 int actual_link_speed, i;
6794 bool reset_rate = false;
6796 /* VF TX rate limit was not set or not supported */
6797 if ((adapter->vf_rate_link_speed == 0) ||
6798 (adapter->hw.mac.type != e1000_82576))
6799 return;
6801 actual_link_speed = igb_link_mbps(adapter->link_speed);
6802 if (actual_link_speed != adapter->vf_rate_link_speed) {
6803 reset_rate = true;
6804 adapter->vf_rate_link_speed = 0;
6805 dev_info(&adapter->pdev->dev,
6806 "Link speed has been changed. VF Transmit "
6807 "rate is disabled\n");
6810 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6811 if (reset_rate)
6812 adapter->vf_data[i].tx_rate = 0;
6814 igb_set_vf_rate_limit(&adapter->hw, i,
6815 adapter->vf_data[i].tx_rate,
6816 actual_link_speed);
6820 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6822 struct igb_adapter *adapter = netdev_priv(netdev);
6823 struct e1000_hw *hw = &adapter->hw;
6824 int actual_link_speed;
6826 if (hw->mac.type != e1000_82576)
6827 return -EOPNOTSUPP;
6829 actual_link_speed = igb_link_mbps(adapter->link_speed);
6830 if ((vf >= adapter->vfs_allocated_count) ||
6831 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6832 (tx_rate < 0) || (tx_rate > actual_link_speed))
6833 return -EINVAL;
6835 adapter->vf_rate_link_speed = actual_link_speed;
6836 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6837 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6839 return 0;
6842 static int igb_ndo_get_vf_config(struct net_device *netdev,
6843 int vf, struct ifla_vf_info *ivi)
6845 struct igb_adapter *adapter = netdev_priv(netdev);
6846 if (vf >= adapter->vfs_allocated_count)
6847 return -EINVAL;
6848 ivi->vf = vf;
6849 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6850 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
6851 ivi->vlan = adapter->vf_data[vf].pf_vlan;
6852 ivi->qos = adapter->vf_data[vf].pf_qos;
6853 return 0;
6856 static void igb_vmm_control(struct igb_adapter *adapter)
6858 struct e1000_hw *hw = &adapter->hw;
6859 u32 reg;
6861 switch (hw->mac.type) {
6862 case e1000_82575:
6863 default:
6864 /* replication is not supported for 82575 */
6865 return;
6866 case e1000_82576:
6867 /* notify HW that the MAC is adding vlan tags */
6868 reg = rd32(E1000_DTXCTL);
6869 reg |= E1000_DTXCTL_VLAN_ADDED;
6870 wr32(E1000_DTXCTL, reg);
6871 case e1000_82580:
6872 /* enable replication vlan tag stripping */
6873 reg = rd32(E1000_RPLOLR);
6874 reg |= E1000_RPLOLR_STRVLAN;
6875 wr32(E1000_RPLOLR, reg);
6876 case e1000_i350:
6877 /* none of the above registers are supported by i350 */
6878 break;
6881 if (adapter->vfs_allocated_count) {
6882 igb_vmdq_set_loopback_pf(hw, true);
6883 igb_vmdq_set_replication_pf(hw, true);
6884 igb_vmdq_set_anti_spoofing_pf(hw, true,
6885 adapter->vfs_allocated_count);
6886 } else {
6887 igb_vmdq_set_loopback_pf(hw, false);
6888 igb_vmdq_set_replication_pf(hw, false);
6892 /* igb_main.c */