4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/export.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/sched/sysctl.h>
34 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
41 #define kenter(FMT, ...) \
42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
48 #define kenter(FMT, ...) \
49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 unsigned long max_mapnr
;
59 unsigned long num_physpages
;
60 unsigned long highest_memmap_pfn
;
61 struct percpu_counter vm_committed_as
;
62 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
63 int sysctl_overcommit_ratio
= 50; /* default is 50% */
64 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
65 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
66 int heap_stack_gap
= 0;
68 atomic_long_t mmap_pages_allocated
;
71 * The global memory commitment made in the system can be a metric
72 * that can be used to drive ballooning decisions when Linux is hosted
73 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
74 * balancing memory across competing virtual machines that are hosted.
75 * Several metrics drive this policy engine including the guest reported
78 unsigned long vm_memory_committed(void)
80 return percpu_counter_read_positive(&vm_committed_as
);
83 EXPORT_SYMBOL_GPL(vm_memory_committed
);
85 EXPORT_SYMBOL(mem_map
);
86 EXPORT_SYMBOL(num_physpages
);
88 /* list of mapped, potentially shareable regions */
89 static struct kmem_cache
*vm_region_jar
;
90 struct rb_root nommu_region_tree
= RB_ROOT
;
91 DECLARE_RWSEM(nommu_region_sem
);
93 const struct vm_operations_struct generic_file_vm_ops
= {
97 * Return the total memory allocated for this pointer, not
98 * just what the caller asked for.
100 * Doesn't have to be accurate, i.e. may have races.
102 unsigned int kobjsize(const void *objp
)
107 * If the object we have should not have ksize performed on it,
110 if (!objp
|| !virt_addr_valid(objp
))
113 page
= virt_to_head_page(objp
);
116 * If the allocator sets PageSlab, we know the pointer came from
123 * If it's not a compound page, see if we have a matching VMA
124 * region. This test is intentionally done in reverse order,
125 * so if there's no VMA, we still fall through and hand back
126 * PAGE_SIZE for 0-order pages.
128 if (!PageCompound(page
)) {
129 struct vm_area_struct
*vma
;
131 vma
= find_vma(current
->mm
, (unsigned long)objp
);
133 return vma
->vm_end
- vma
->vm_start
;
137 * The ksize() function is only guaranteed to work for pointers
138 * returned by kmalloc(). So handle arbitrary pointers here.
140 return PAGE_SIZE
<< compound_order(page
);
143 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
144 unsigned long start
, unsigned long nr_pages
,
145 unsigned int foll_flags
, struct page
**pages
,
146 struct vm_area_struct
**vmas
, int *nonblocking
)
148 struct vm_area_struct
*vma
;
149 unsigned long vm_flags
;
152 /* calculate required read or write permissions.
153 * If FOLL_FORCE is set, we only require the "MAY" flags.
155 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
156 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
157 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
158 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
160 for (i
= 0; i
< nr_pages
; i
++) {
161 vma
= find_vma(mm
, start
);
163 goto finish_or_fault
;
165 /* protect what we can, including chardevs */
166 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
167 !(vm_flags
& vma
->vm_flags
))
168 goto finish_or_fault
;
171 pages
[i
] = virt_to_page(start
);
173 page_cache_get(pages
[i
]);
177 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
183 return i
? : -EFAULT
;
187 * get a list of pages in an address range belonging to the specified process
188 * and indicate the VMA that covers each page
189 * - this is potentially dodgy as we may end incrementing the page count of a
190 * slab page or a secondary page from a compound page
191 * - don't permit access to VMAs that don't support it, such as I/O mappings
193 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
194 unsigned long start
, unsigned long nr_pages
,
195 int write
, int force
, struct page
**pages
,
196 struct vm_area_struct
**vmas
)
205 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
208 EXPORT_SYMBOL(get_user_pages
);
211 * follow_pfn - look up PFN at a user virtual address
212 * @vma: memory mapping
213 * @address: user virtual address
214 * @pfn: location to store found PFN
216 * Only IO mappings and raw PFN mappings are allowed.
218 * Returns zero and the pfn at @pfn on success, -ve otherwise.
220 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
223 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
226 *pfn
= address
>> PAGE_SHIFT
;
229 EXPORT_SYMBOL(follow_pfn
);
231 DEFINE_RWLOCK(vmlist_lock
);
232 struct vm_struct
*vmlist
;
234 void vfree(const void *addr
)
238 EXPORT_SYMBOL(vfree
);
240 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
243 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
244 * returns only a logical address.
246 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
248 EXPORT_SYMBOL(__vmalloc
);
250 void *vmalloc_user(unsigned long size
)
254 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
257 struct vm_area_struct
*vma
;
259 down_write(¤t
->mm
->mmap_sem
);
260 vma
= find_vma(current
->mm
, (unsigned long)ret
);
262 vma
->vm_flags
|= VM_USERMAP
;
263 up_write(¤t
->mm
->mmap_sem
);
268 EXPORT_SYMBOL(vmalloc_user
);
270 struct page
*vmalloc_to_page(const void *addr
)
272 return virt_to_page(addr
);
274 EXPORT_SYMBOL(vmalloc_to_page
);
276 unsigned long vmalloc_to_pfn(const void *addr
)
278 return page_to_pfn(virt_to_page(addr
));
280 EXPORT_SYMBOL(vmalloc_to_pfn
);
282 long vread(char *buf
, char *addr
, unsigned long count
)
284 memcpy(buf
, addr
, count
);
288 long vwrite(char *buf
, char *addr
, unsigned long count
)
290 /* Don't allow overflow */
291 if ((unsigned long) addr
+ count
< count
)
292 count
= -(unsigned long) addr
;
294 memcpy(addr
, buf
, count
);
299 * vmalloc - allocate virtually continguos memory
301 * @size: allocation size
303 * Allocate enough pages to cover @size from the page level
304 * allocator and map them into continguos kernel virtual space.
306 * For tight control over page level allocator and protection flags
307 * use __vmalloc() instead.
309 void *vmalloc(unsigned long size
)
311 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
313 EXPORT_SYMBOL(vmalloc
);
316 * vzalloc - allocate virtually continguos memory with zero fill
318 * @size: allocation size
320 * Allocate enough pages to cover @size from the page level
321 * allocator and map them into continguos kernel virtual space.
322 * The memory allocated is set to zero.
324 * For tight control over page level allocator and protection flags
325 * use __vmalloc() instead.
327 void *vzalloc(unsigned long size
)
329 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
332 EXPORT_SYMBOL(vzalloc
);
335 * vmalloc_node - allocate memory on a specific node
336 * @size: allocation size
339 * Allocate enough pages to cover @size from the page level
340 * allocator and map them into contiguous kernel virtual space.
342 * For tight control over page level allocator and protection flags
343 * use __vmalloc() instead.
345 void *vmalloc_node(unsigned long size
, int node
)
347 return vmalloc(size
);
349 EXPORT_SYMBOL(vmalloc_node
);
352 * vzalloc_node - allocate memory on a specific node with zero fill
353 * @size: allocation size
356 * Allocate enough pages to cover @size from the page level
357 * allocator and map them into contiguous kernel virtual space.
358 * The memory allocated is set to zero.
360 * For tight control over page level allocator and protection flags
361 * use __vmalloc() instead.
363 void *vzalloc_node(unsigned long size
, int node
)
365 return vzalloc(size
);
367 EXPORT_SYMBOL(vzalloc_node
);
369 #ifndef PAGE_KERNEL_EXEC
370 # define PAGE_KERNEL_EXEC PAGE_KERNEL
374 * vmalloc_exec - allocate virtually contiguous, executable memory
375 * @size: allocation size
377 * Kernel-internal function to allocate enough pages to cover @size
378 * the page level allocator and map them into contiguous and
379 * executable kernel virtual space.
381 * For tight control over page level allocator and protection flags
382 * use __vmalloc() instead.
385 void *vmalloc_exec(unsigned long size
)
387 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
391 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
392 * @size: allocation size
394 * Allocate enough 32bit PA addressable pages to cover @size from the
395 * page level allocator and map them into continguos kernel virtual space.
397 void *vmalloc_32(unsigned long size
)
399 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
401 EXPORT_SYMBOL(vmalloc_32
);
404 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
405 * @size: allocation size
407 * The resulting memory area is 32bit addressable and zeroed so it can be
408 * mapped to userspace without leaking data.
410 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
411 * remap_vmalloc_range() are permissible.
413 void *vmalloc_32_user(unsigned long size
)
416 * We'll have to sort out the ZONE_DMA bits for 64-bit,
417 * but for now this can simply use vmalloc_user() directly.
419 return vmalloc_user(size
);
421 EXPORT_SYMBOL(vmalloc_32_user
);
423 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
430 void vunmap(const void *addr
)
434 EXPORT_SYMBOL(vunmap
);
436 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
441 EXPORT_SYMBOL(vm_map_ram
);
443 void vm_unmap_ram(const void *mem
, unsigned int count
)
447 EXPORT_SYMBOL(vm_unmap_ram
);
449 void vm_unmap_aliases(void)
452 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
455 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
458 void __attribute__((weak
)) vmalloc_sync_all(void)
463 * alloc_vm_area - allocate a range of kernel address space
464 * @size: size of the area
466 * Returns: NULL on failure, vm_struct on success
468 * This function reserves a range of kernel address space, and
469 * allocates pagetables to map that range. No actual mappings
470 * are created. If the kernel address space is not shared
471 * between processes, it syncs the pagetable across all
474 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
479 EXPORT_SYMBOL_GPL(alloc_vm_area
);
481 void free_vm_area(struct vm_struct
*area
)
485 EXPORT_SYMBOL_GPL(free_vm_area
);
487 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
492 EXPORT_SYMBOL(vm_insert_page
);
495 * sys_brk() for the most part doesn't need the global kernel
496 * lock, except when an application is doing something nasty
497 * like trying to un-brk an area that has already been mapped
498 * to a regular file. in this case, the unmapping will need
499 * to invoke file system routines that need the global lock.
501 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
503 struct mm_struct
*mm
= current
->mm
;
505 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
512 * Always allow shrinking brk
514 if (brk
<= mm
->brk
) {
520 * Ok, looks good - let it rip.
522 flush_icache_range(mm
->brk
, brk
);
523 return mm
->brk
= brk
;
527 * initialise the VMA and region record slabs
529 void __init
mmap_init(void)
533 ret
= percpu_counter_init(&vm_committed_as
, 0);
535 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
539 * validate the region tree
540 * - the caller must hold the region lock
542 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
543 static noinline
void validate_nommu_regions(void)
545 struct vm_region
*region
, *last
;
546 struct rb_node
*p
, *lastp
;
548 lastp
= rb_first(&nommu_region_tree
);
552 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
553 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
554 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
556 while ((p
= rb_next(lastp
))) {
557 region
= rb_entry(p
, struct vm_region
, vm_rb
);
558 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
560 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
561 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
562 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
568 static void validate_nommu_regions(void)
574 * add a region into the global tree
576 static void add_nommu_region(struct vm_region
*region
)
578 struct vm_region
*pregion
;
579 struct rb_node
**p
, *parent
;
581 validate_nommu_regions();
584 p
= &nommu_region_tree
.rb_node
;
587 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
588 if (region
->vm_start
< pregion
->vm_start
)
590 else if (region
->vm_start
> pregion
->vm_start
)
592 else if (pregion
== region
)
598 rb_link_node(®ion
->vm_rb
, parent
, p
);
599 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
601 validate_nommu_regions();
605 * delete a region from the global tree
607 static void delete_nommu_region(struct vm_region
*region
)
609 BUG_ON(!nommu_region_tree
.rb_node
);
611 validate_nommu_regions();
612 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
613 validate_nommu_regions();
617 * free a contiguous series of pages
619 static void free_page_series(unsigned long from
, unsigned long to
)
621 for (; from
< to
; from
+= PAGE_SIZE
) {
622 struct page
*page
= virt_to_page(from
);
624 kdebug("- free %lx", from
);
625 atomic_long_dec(&mmap_pages_allocated
);
626 if (page_count(page
) != 1)
627 kdebug("free page %p: refcount not one: %d",
628 page
, page_count(page
));
634 * release a reference to a region
635 * - the caller must hold the region semaphore for writing, which this releases
636 * - the region may not have been added to the tree yet, in which case vm_top
637 * will equal vm_start
639 static void __put_nommu_region(struct vm_region
*region
)
640 __releases(nommu_region_sem
)
642 kenter("%p{%d}", region
, region
->vm_usage
);
644 BUG_ON(!nommu_region_tree
.rb_node
);
646 if (--region
->vm_usage
== 0) {
647 if (region
->vm_top
> region
->vm_start
)
648 delete_nommu_region(region
);
649 up_write(&nommu_region_sem
);
652 fput(region
->vm_file
);
654 /* IO memory and memory shared directly out of the pagecache
655 * from ramfs/tmpfs mustn't be released here */
656 if (region
->vm_flags
& VM_MAPPED_COPY
) {
657 kdebug("free series");
658 free_page_series(region
->vm_start
, region
->vm_top
);
660 kmem_cache_free(vm_region_jar
, region
);
662 up_write(&nommu_region_sem
);
667 * release a reference to a region
669 static void put_nommu_region(struct vm_region
*region
)
671 down_write(&nommu_region_sem
);
672 __put_nommu_region(region
);
676 * update protection on a vma
678 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
681 struct mm_struct
*mm
= vma
->vm_mm
;
682 long start
= vma
->vm_start
& PAGE_MASK
;
683 while (start
< vma
->vm_end
) {
684 protect_page(mm
, start
, flags
);
687 update_protections(mm
);
692 * add a VMA into a process's mm_struct in the appropriate place in the list
693 * and tree and add to the address space's page tree also if not an anonymous
695 * - should be called with mm->mmap_sem held writelocked
697 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
699 struct vm_area_struct
*pvma
, *prev
;
700 struct address_space
*mapping
;
701 struct rb_node
**p
, *parent
, *rb_prev
;
705 BUG_ON(!vma
->vm_region
);
710 protect_vma(vma
, vma
->vm_flags
);
712 /* add the VMA to the mapping */
714 mapping
= vma
->vm_file
->f_mapping
;
716 mutex_lock(&mapping
->i_mmap_mutex
);
717 flush_dcache_mmap_lock(mapping
);
718 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
719 flush_dcache_mmap_unlock(mapping
);
720 mutex_unlock(&mapping
->i_mmap_mutex
);
723 /* add the VMA to the tree */
724 parent
= rb_prev
= NULL
;
725 p
= &mm
->mm_rb
.rb_node
;
728 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
730 /* sort by: start addr, end addr, VMA struct addr in that order
731 * (the latter is necessary as we may get identical VMAs) */
732 if (vma
->vm_start
< pvma
->vm_start
)
734 else if (vma
->vm_start
> pvma
->vm_start
) {
737 } else if (vma
->vm_end
< pvma
->vm_end
)
739 else if (vma
->vm_end
> pvma
->vm_end
) {
742 } else if (vma
< pvma
)
744 else if (vma
> pvma
) {
751 rb_link_node(&vma
->vm_rb
, parent
, p
);
752 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
754 /* add VMA to the VMA list also */
757 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
759 __vma_link_list(mm
, vma
, prev
, parent
);
763 * delete a VMA from its owning mm_struct and address space
765 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
767 struct address_space
*mapping
;
768 struct mm_struct
*mm
= vma
->vm_mm
;
775 if (mm
->mmap_cache
== vma
)
776 mm
->mmap_cache
= NULL
;
778 /* remove the VMA from the mapping */
780 mapping
= vma
->vm_file
->f_mapping
;
782 mutex_lock(&mapping
->i_mmap_mutex
);
783 flush_dcache_mmap_lock(mapping
);
784 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
785 flush_dcache_mmap_unlock(mapping
);
786 mutex_unlock(&mapping
->i_mmap_mutex
);
789 /* remove from the MM's tree and list */
790 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
793 vma
->vm_prev
->vm_next
= vma
->vm_next
;
795 mm
->mmap
= vma
->vm_next
;
798 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
802 * destroy a VMA record
804 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
807 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
808 vma
->vm_ops
->close(vma
);
811 put_nommu_region(vma
->vm_region
);
812 kmem_cache_free(vm_area_cachep
, vma
);
816 * look up the first VMA in which addr resides, NULL if none
817 * - should be called with mm->mmap_sem at least held readlocked
819 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
821 struct vm_area_struct
*vma
;
823 /* check the cache first */
824 vma
= mm
->mmap_cache
;
825 if (vma
&& vma
->vm_start
<= addr
&& vma
->vm_end
> addr
)
828 /* trawl the list (there may be multiple mappings in which addr
830 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
831 if (vma
->vm_start
> addr
)
833 if (vma
->vm_end
> addr
) {
834 mm
->mmap_cache
= vma
;
841 EXPORT_SYMBOL(find_vma
);
845 * - we don't extend stack VMAs under NOMMU conditions
847 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
849 return find_vma(mm
, addr
);
853 * expand a stack to a given address
854 * - not supported under NOMMU conditions
856 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
862 * look up the first VMA exactly that exactly matches addr
863 * - should be called with mm->mmap_sem at least held readlocked
865 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
869 struct vm_area_struct
*vma
;
870 unsigned long end
= addr
+ len
;
872 /* check the cache first */
873 vma
= mm
->mmap_cache
;
874 if (vma
&& vma
->vm_start
== addr
&& vma
->vm_end
== end
)
877 /* trawl the list (there may be multiple mappings in which addr
879 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
880 if (vma
->vm_start
< addr
)
882 if (vma
->vm_start
> addr
)
884 if (vma
->vm_end
== end
) {
885 mm
->mmap_cache
= vma
;
894 * determine whether a mapping should be permitted and, if so, what sort of
895 * mapping we're capable of supporting
897 static int validate_mmap_request(struct file
*file
,
903 unsigned long *_capabilities
)
905 unsigned long capabilities
, rlen
;
908 /* do the simple checks first */
909 if (flags
& MAP_FIXED
) {
911 "%d: Can't do fixed-address/overlay mmap of RAM\n",
916 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
917 (flags
& MAP_TYPE
) != MAP_SHARED
)
923 /* Careful about overflows.. */
924 rlen
= PAGE_ALIGN(len
);
925 if (!rlen
|| rlen
> TASK_SIZE
)
928 /* offset overflow? */
929 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
933 /* validate file mapping requests */
934 struct address_space
*mapping
;
936 /* files must support mmap */
937 if (!file
->f_op
|| !file
->f_op
->mmap
)
940 /* work out if what we've got could possibly be shared
941 * - we support chardevs that provide their own "memory"
942 * - we support files/blockdevs that are memory backed
944 mapping
= file
->f_mapping
;
946 mapping
= file_inode(file
)->i_mapping
;
949 if (mapping
&& mapping
->backing_dev_info
)
950 capabilities
= mapping
->backing_dev_info
->capabilities
;
953 /* no explicit capabilities set, so assume some
955 switch (file_inode(file
)->i_mode
& S_IFMT
) {
958 capabilities
= BDI_CAP_MAP_COPY
;
973 /* eliminate any capabilities that we can't support on this
975 if (!file
->f_op
->get_unmapped_area
)
976 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
977 if (!file
->f_op
->read
)
978 capabilities
&= ~BDI_CAP_MAP_COPY
;
980 /* The file shall have been opened with read permission. */
981 if (!(file
->f_mode
& FMODE_READ
))
984 if (flags
& MAP_SHARED
) {
985 /* do checks for writing, appending and locking */
986 if ((prot
& PROT_WRITE
) &&
987 !(file
->f_mode
& FMODE_WRITE
))
990 if (IS_APPEND(file_inode(file
)) &&
991 (file
->f_mode
& FMODE_WRITE
))
994 if (locks_verify_locked(file_inode(file
)))
997 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1000 /* we mustn't privatise shared mappings */
1001 capabilities
&= ~BDI_CAP_MAP_COPY
;
1004 /* we're going to read the file into private memory we
1006 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1009 /* we don't permit a private writable mapping to be
1010 * shared with the backing device */
1011 if (prot
& PROT_WRITE
)
1012 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1015 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1016 if (((prot
& PROT_READ
) && !(capabilities
& BDI_CAP_READ_MAP
)) ||
1017 ((prot
& PROT_WRITE
) && !(capabilities
& BDI_CAP_WRITE_MAP
)) ||
1018 ((prot
& PROT_EXEC
) && !(capabilities
& BDI_CAP_EXEC_MAP
))
1020 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1021 if (flags
& MAP_SHARED
) {
1023 "MAP_SHARED not completely supported on !MMU\n");
1029 /* handle executable mappings and implied executable
1031 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1032 if (prot
& PROT_EXEC
)
1035 else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1036 /* handle implication of PROT_EXEC by PROT_READ */
1037 if (current
->personality
& READ_IMPLIES_EXEC
) {
1038 if (capabilities
& BDI_CAP_EXEC_MAP
)
1042 else if ((prot
& PROT_READ
) &&
1043 (prot
& PROT_EXEC
) &&
1044 !(capabilities
& BDI_CAP_EXEC_MAP
)
1046 /* backing file is not executable, try to copy */
1047 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1051 /* anonymous mappings are always memory backed and can be
1054 capabilities
= BDI_CAP_MAP_COPY
;
1056 /* handle PROT_EXEC implication by PROT_READ */
1057 if ((prot
& PROT_READ
) &&
1058 (current
->personality
& READ_IMPLIES_EXEC
))
1062 /* allow the security API to have its say */
1063 ret
= security_mmap_addr(addr
);
1068 *_capabilities
= capabilities
;
1073 * we've determined that we can make the mapping, now translate what we
1074 * now know into VMA flags
1076 static unsigned long determine_vm_flags(struct file
*file
,
1078 unsigned long flags
,
1079 unsigned long capabilities
)
1081 unsigned long vm_flags
;
1083 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1084 /* vm_flags |= mm->def_flags; */
1086 if (!(capabilities
& BDI_CAP_MAP_DIRECT
)) {
1087 /* attempt to share read-only copies of mapped file chunks */
1088 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1089 if (file
&& !(prot
& PROT_WRITE
))
1090 vm_flags
|= VM_MAYSHARE
;
1092 /* overlay a shareable mapping on the backing device or inode
1093 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1095 vm_flags
|= VM_MAYSHARE
| (capabilities
& BDI_CAP_VMFLAGS
);
1096 if (flags
& MAP_SHARED
)
1097 vm_flags
|= VM_SHARED
;
1100 /* refuse to let anyone share private mappings with this process if
1101 * it's being traced - otherwise breakpoints set in it may interfere
1102 * with another untraced process
1104 if ((flags
& MAP_PRIVATE
) && current
->ptrace
)
1105 vm_flags
&= ~VM_MAYSHARE
;
1111 * set up a shared mapping on a file (the driver or filesystem provides and
1114 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1118 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1120 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1126 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1127 * opposed to tried but failed) so we can only give a suitable error as
1128 * it's not possible to make a private copy if MAP_SHARED was given */
1133 * set up a private mapping or an anonymous shared mapping
1135 static int do_mmap_private(struct vm_area_struct
*vma
,
1136 struct vm_region
*region
,
1138 unsigned long capabilities
)
1141 unsigned long total
, point
, n
;
1145 /* invoke the file's mapping function so that it can keep track of
1146 * shared mappings on devices or memory
1147 * - VM_MAYSHARE will be set if it may attempt to share
1149 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1150 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1152 /* shouldn't return success if we're not sharing */
1153 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1154 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1160 /* getting an ENOSYS error indicates that direct mmap isn't
1161 * possible (as opposed to tried but failed) so we'll try to
1162 * make a private copy of the data and map that instead */
1166 /* allocate some memory to hold the mapping
1167 * - note that this may not return a page-aligned address if the object
1168 * we're allocating is smaller than a page
1170 order
= get_order(len
);
1171 kdebug("alloc order %d for %lx", order
, len
);
1173 pages
= alloc_pages(GFP_KERNEL
, order
);
1178 atomic_long_add(total
, &mmap_pages_allocated
);
1180 point
= len
>> PAGE_SHIFT
;
1182 /* we allocated a power-of-2 sized page set, so we may want to trim off
1184 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1185 while (total
> point
) {
1186 order
= ilog2(total
- point
);
1188 kdebug("shave %lu/%lu @%lu", n
, total
- point
, total
);
1189 atomic_long_sub(n
, &mmap_pages_allocated
);
1191 set_page_refcounted(pages
+ total
);
1192 __free_pages(pages
+ total
, order
);
1196 for (point
= 1; point
< total
; point
++)
1197 set_page_refcounted(&pages
[point
]);
1199 base
= page_address(pages
);
1200 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1201 region
->vm_start
= (unsigned long) base
;
1202 region
->vm_end
= region
->vm_start
+ len
;
1203 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1205 vma
->vm_start
= region
->vm_start
;
1206 vma
->vm_end
= region
->vm_start
+ len
;
1209 /* read the contents of a file into the copy */
1210 mm_segment_t old_fs
;
1213 fpos
= vma
->vm_pgoff
;
1214 fpos
<<= PAGE_SHIFT
;
1218 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, len
, &fpos
);
1224 /* clear the last little bit */
1226 memset(base
+ ret
, 0, len
- ret
);
1233 free_page_series(region
->vm_start
, region
->vm_top
);
1234 region
->vm_start
= vma
->vm_start
= 0;
1235 region
->vm_end
= vma
->vm_end
= 0;
1240 printk("Allocation of length %lu from process %d (%s) failed\n",
1241 len
, current
->pid
, current
->comm
);
1247 * handle mapping creation for uClinux
1249 unsigned long do_mmap_pgoff(struct file
*file
,
1253 unsigned long flags
,
1254 unsigned long pgoff
,
1255 unsigned long *populate
)
1257 struct vm_area_struct
*vma
;
1258 struct vm_region
*region
;
1260 unsigned long capabilities
, vm_flags
, result
;
1263 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1267 /* decide whether we should attempt the mapping, and if so what sort of
1269 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1272 kleave(" = %d [val]", ret
);
1276 /* we ignore the address hint */
1278 len
= PAGE_ALIGN(len
);
1280 /* we've determined that we can make the mapping, now translate what we
1281 * now know into VMA flags */
1282 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1284 /* we're going to need to record the mapping */
1285 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1287 goto error_getting_region
;
1289 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1291 goto error_getting_vma
;
1293 region
->vm_usage
= 1;
1294 region
->vm_flags
= vm_flags
;
1295 region
->vm_pgoff
= pgoff
;
1297 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1298 vma
->vm_flags
= vm_flags
;
1299 vma
->vm_pgoff
= pgoff
;
1302 region
->vm_file
= get_file(file
);
1303 vma
->vm_file
= get_file(file
);
1306 down_write(&nommu_region_sem
);
1308 /* if we want to share, we need to check for regions created by other
1309 * mmap() calls that overlap with our proposed mapping
1310 * - we can only share with a superset match on most regular files
1311 * - shared mappings on character devices and memory backed files are
1312 * permitted to overlap inexactly as far as we are concerned for in
1313 * these cases, sharing is handled in the driver or filesystem rather
1316 if (vm_flags
& VM_MAYSHARE
) {
1317 struct vm_region
*pregion
;
1318 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1320 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1321 pgend
= pgoff
+ pglen
;
1323 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1324 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1326 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1329 /* search for overlapping mappings on the same file */
1330 if (file_inode(pregion
->vm_file
) !=
1334 if (pregion
->vm_pgoff
>= pgend
)
1337 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1338 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1339 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1340 if (pgoff
>= rpgend
)
1343 /* handle inexactly overlapping matches between
1345 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1346 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1347 /* new mapping is not a subset of the region */
1348 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1349 goto sharing_violation
;
1353 /* we've found a region we can share */
1354 pregion
->vm_usage
++;
1355 vma
->vm_region
= pregion
;
1356 start
= pregion
->vm_start
;
1357 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1358 vma
->vm_start
= start
;
1359 vma
->vm_end
= start
+ len
;
1361 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1362 kdebug("share copy");
1363 vma
->vm_flags
|= VM_MAPPED_COPY
;
1365 kdebug("share mmap");
1366 ret
= do_mmap_shared_file(vma
);
1368 vma
->vm_region
= NULL
;
1371 pregion
->vm_usage
--;
1373 goto error_just_free
;
1376 fput(region
->vm_file
);
1377 kmem_cache_free(vm_region_jar
, region
);
1383 /* obtain the address at which to make a shared mapping
1384 * - this is the hook for quasi-memory character devices to
1385 * tell us the location of a shared mapping
1387 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1388 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1390 if (IS_ERR_VALUE(addr
)) {
1393 goto error_just_free
;
1395 /* the driver refused to tell us where to site
1396 * the mapping so we'll have to attempt to copy
1399 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1400 goto error_just_free
;
1402 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1404 vma
->vm_start
= region
->vm_start
= addr
;
1405 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1410 vma
->vm_region
= region
;
1412 /* set up the mapping
1413 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1415 if (file
&& vma
->vm_flags
& VM_SHARED
)
1416 ret
= do_mmap_shared_file(vma
);
1418 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1420 goto error_just_free
;
1421 add_nommu_region(region
);
1423 /* clear anonymous mappings that don't ask for uninitialized data */
1424 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1425 memset((void *)region
->vm_start
, 0,
1426 region
->vm_end
- region
->vm_start
);
1428 /* okay... we have a mapping; now we have to register it */
1429 result
= vma
->vm_start
;
1431 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1434 add_vma_to_mm(current
->mm
, vma
);
1436 /* we flush the region from the icache only when the first executable
1437 * mapping of it is made */
1438 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1439 flush_icache_range(region
->vm_start
, region
->vm_end
);
1440 region
->vm_icache_flushed
= true;
1443 up_write(&nommu_region_sem
);
1445 kleave(" = %lx", result
);
1449 up_write(&nommu_region_sem
);
1451 if (region
->vm_file
)
1452 fput(region
->vm_file
);
1453 kmem_cache_free(vm_region_jar
, region
);
1456 kmem_cache_free(vm_area_cachep
, vma
);
1457 kleave(" = %d", ret
);
1461 up_write(&nommu_region_sem
);
1462 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1467 kmem_cache_free(vm_region_jar
, region
);
1468 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1469 " from process %d failed\n",
1474 error_getting_region
:
1475 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1476 " from process %d failed\n",
1482 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1483 unsigned long, prot
, unsigned long, flags
,
1484 unsigned long, fd
, unsigned long, pgoff
)
1486 struct file
*file
= NULL
;
1487 unsigned long retval
= -EBADF
;
1489 audit_mmap_fd(fd
, flags
);
1490 if (!(flags
& MAP_ANONYMOUS
)) {
1496 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1498 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1506 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1507 struct mmap_arg_struct
{
1511 unsigned long flags
;
1513 unsigned long offset
;
1516 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1518 struct mmap_arg_struct a
;
1520 if (copy_from_user(&a
, arg
, sizeof(a
)))
1522 if (a
.offset
& ~PAGE_MASK
)
1525 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1526 a
.offset
>> PAGE_SHIFT
);
1528 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1531 * split a vma into two pieces at address 'addr', a new vma is allocated either
1532 * for the first part or the tail.
1534 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1535 unsigned long addr
, int new_below
)
1537 struct vm_area_struct
*new;
1538 struct vm_region
*region
;
1539 unsigned long npages
;
1543 /* we're only permitted to split anonymous regions (these should have
1544 * only a single usage on the region) */
1548 if (mm
->map_count
>= sysctl_max_map_count
)
1551 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1555 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1557 kmem_cache_free(vm_region_jar
, region
);
1561 /* most fields are the same, copy all, and then fixup */
1563 *region
= *vma
->vm_region
;
1564 new->vm_region
= region
;
1566 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1569 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1571 region
->vm_start
= new->vm_start
= addr
;
1572 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1575 if (new->vm_ops
&& new->vm_ops
->open
)
1576 new->vm_ops
->open(new);
1578 delete_vma_from_mm(vma
);
1579 down_write(&nommu_region_sem
);
1580 delete_nommu_region(vma
->vm_region
);
1582 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1583 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1585 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1586 vma
->vm_region
->vm_top
= addr
;
1588 add_nommu_region(vma
->vm_region
);
1589 add_nommu_region(new->vm_region
);
1590 up_write(&nommu_region_sem
);
1591 add_vma_to_mm(mm
, vma
);
1592 add_vma_to_mm(mm
, new);
1597 * shrink a VMA by removing the specified chunk from either the beginning or
1600 static int shrink_vma(struct mm_struct
*mm
,
1601 struct vm_area_struct
*vma
,
1602 unsigned long from
, unsigned long to
)
1604 struct vm_region
*region
;
1608 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1610 delete_vma_from_mm(vma
);
1611 if (from
> vma
->vm_start
)
1615 add_vma_to_mm(mm
, vma
);
1617 /* cut the backing region down to size */
1618 region
= vma
->vm_region
;
1619 BUG_ON(region
->vm_usage
!= 1);
1621 down_write(&nommu_region_sem
);
1622 delete_nommu_region(region
);
1623 if (from
> region
->vm_start
) {
1624 to
= region
->vm_top
;
1625 region
->vm_top
= region
->vm_end
= from
;
1627 region
->vm_start
= to
;
1629 add_nommu_region(region
);
1630 up_write(&nommu_region_sem
);
1632 free_page_series(from
, to
);
1638 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1639 * VMA, though it need not cover the whole VMA
1641 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1643 struct vm_area_struct
*vma
;
1647 kenter(",%lx,%zx", start
, len
);
1649 len
= PAGE_ALIGN(len
);
1655 /* find the first potentially overlapping VMA */
1656 vma
= find_vma(mm
, start
);
1658 static int limit
= 0;
1661 "munmap of memory not mmapped by process %d"
1662 " (%s): 0x%lx-0x%lx\n",
1663 current
->pid
, current
->comm
,
1664 start
, start
+ len
- 1);
1670 /* we're allowed to split an anonymous VMA but not a file-backed one */
1673 if (start
> vma
->vm_start
) {
1674 kleave(" = -EINVAL [miss]");
1677 if (end
== vma
->vm_end
)
1678 goto erase_whole_vma
;
1681 kleave(" = -EINVAL [split file]");
1684 /* the chunk must be a subset of the VMA found */
1685 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1686 goto erase_whole_vma
;
1687 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1688 kleave(" = -EINVAL [superset]");
1691 if (start
& ~PAGE_MASK
) {
1692 kleave(" = -EINVAL [unaligned start]");
1695 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1696 kleave(" = -EINVAL [unaligned split]");
1699 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1700 ret
= split_vma(mm
, vma
, start
, 1);
1702 kleave(" = %d [split]", ret
);
1706 return shrink_vma(mm
, vma
, start
, end
);
1710 delete_vma_from_mm(vma
);
1711 delete_vma(mm
, vma
);
1715 EXPORT_SYMBOL(do_munmap
);
1717 int vm_munmap(unsigned long addr
, size_t len
)
1719 struct mm_struct
*mm
= current
->mm
;
1722 down_write(&mm
->mmap_sem
);
1723 ret
= do_munmap(mm
, addr
, len
);
1724 up_write(&mm
->mmap_sem
);
1727 EXPORT_SYMBOL(vm_munmap
);
1729 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1731 return vm_munmap(addr
, len
);
1735 * release all the mappings made in a process's VM space
1737 void exit_mmap(struct mm_struct
*mm
)
1739 struct vm_area_struct
*vma
;
1748 while ((vma
= mm
->mmap
)) {
1749 mm
->mmap
= vma
->vm_next
;
1750 delete_vma_from_mm(vma
);
1751 delete_vma(mm
, vma
);
1758 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
1764 * expand (or shrink) an existing mapping, potentially moving it at the same
1765 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1767 * under NOMMU conditions, we only permit changing a mapping's size, and only
1768 * as long as it stays within the region allocated by do_mmap_private() and the
1769 * block is not shareable
1771 * MREMAP_FIXED is not supported under NOMMU conditions
1773 unsigned long do_mremap(unsigned long addr
,
1774 unsigned long old_len
, unsigned long new_len
,
1775 unsigned long flags
, unsigned long new_addr
)
1777 struct vm_area_struct
*vma
;
1779 /* insanity checks first */
1780 old_len
= PAGE_ALIGN(old_len
);
1781 new_len
= PAGE_ALIGN(new_len
);
1782 if (old_len
== 0 || new_len
== 0)
1783 return (unsigned long) -EINVAL
;
1785 if (addr
& ~PAGE_MASK
)
1788 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1789 return (unsigned long) -EINVAL
;
1791 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1793 return (unsigned long) -EINVAL
;
1795 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1796 return (unsigned long) -EFAULT
;
1798 if (vma
->vm_flags
& VM_MAYSHARE
)
1799 return (unsigned long) -EPERM
;
1801 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1802 return (unsigned long) -ENOMEM
;
1804 /* all checks complete - do it */
1805 vma
->vm_end
= vma
->vm_start
+ new_len
;
1806 return vma
->vm_start
;
1808 EXPORT_SYMBOL(do_mremap
);
1810 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1811 unsigned long, new_len
, unsigned long, flags
,
1812 unsigned long, new_addr
)
1816 down_write(¤t
->mm
->mmap_sem
);
1817 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1818 up_write(¤t
->mm
->mmap_sem
);
1822 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1823 unsigned long address
, unsigned int flags
,
1824 unsigned int *page_mask
)
1830 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1831 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1833 if (addr
!= (pfn
<< PAGE_SHIFT
))
1836 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1839 EXPORT_SYMBOL(remap_pfn_range
);
1841 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1842 unsigned long pgoff
)
1844 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1846 if (!(vma
->vm_flags
& VM_USERMAP
))
1849 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1850 vma
->vm_end
= vma
->vm_start
+ size
;
1854 EXPORT_SYMBOL(remap_vmalloc_range
);
1856 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1857 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1862 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1866 void unmap_mapping_range(struct address_space
*mapping
,
1867 loff_t
const holebegin
, loff_t
const holelen
,
1871 EXPORT_SYMBOL(unmap_mapping_range
);
1874 * Check that a process has enough memory to allocate a new virtual
1875 * mapping. 0 means there is enough memory for the allocation to
1876 * succeed and -ENOMEM implies there is not.
1878 * We currently support three overcommit policies, which are set via the
1879 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1881 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1882 * Additional code 2002 Jul 20 by Robert Love.
1884 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1886 * Note this is a helper function intended to be used by LSMs which
1887 * wish to use this logic.
1889 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1891 unsigned long free
, allowed
;
1893 vm_acct_memory(pages
);
1896 * Sometimes we want to use more memory than we have
1898 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1901 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1902 free
= global_page_state(NR_FREE_PAGES
);
1903 free
+= global_page_state(NR_FILE_PAGES
);
1906 * shmem pages shouldn't be counted as free in this
1907 * case, they can't be purged, only swapped out, and
1908 * that won't affect the overall amount of available
1909 * memory in the system.
1911 free
-= global_page_state(NR_SHMEM
);
1913 free
+= get_nr_swap_pages();
1916 * Any slabs which are created with the
1917 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1918 * which are reclaimable, under pressure. The dentry
1919 * cache and most inode caches should fall into this
1921 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1924 * Leave reserved pages. The pages are not for anonymous pages.
1926 if (free
<= totalreserve_pages
)
1929 free
-= totalreserve_pages
;
1932 * Leave the last 3% for root
1943 allowed
= totalram_pages
* sysctl_overcommit_ratio
/ 100;
1945 * Leave the last 3% for root
1948 allowed
-= allowed
/ 32;
1949 allowed
+= total_swap_pages
;
1951 /* Don't let a single process grow too big:
1952 leave 3% of the size of this process for other processes */
1954 allowed
-= mm
->total_vm
/ 32;
1956 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1960 vm_unacct_memory(pages
);
1965 int in_gate_area_no_mm(unsigned long addr
)
1970 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1975 EXPORT_SYMBOL(filemap_fault
);
1977 int generic_file_remap_pages(struct vm_area_struct
*vma
, unsigned long addr
,
1978 unsigned long size
, pgoff_t pgoff
)
1983 EXPORT_SYMBOL(generic_file_remap_pages
);
1985 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
1986 unsigned long addr
, void *buf
, int len
, int write
)
1988 struct vm_area_struct
*vma
;
1990 down_read(&mm
->mmap_sem
);
1992 /* the access must start within one of the target process's mappings */
1993 vma
= find_vma(mm
, addr
);
1995 /* don't overrun this mapping */
1996 if (addr
+ len
>= vma
->vm_end
)
1997 len
= vma
->vm_end
- addr
;
1999 /* only read or write mappings where it is permitted */
2000 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
2001 copy_to_user_page(vma
, NULL
, addr
,
2002 (void *) addr
, buf
, len
);
2003 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
2004 copy_from_user_page(vma
, NULL
, addr
,
2005 buf
, (void *) addr
, len
);
2012 up_read(&mm
->mmap_sem
);
2018 * @access_remote_vm - access another process' address space
2019 * @mm: the mm_struct of the target address space
2020 * @addr: start address to access
2021 * @buf: source or destination buffer
2022 * @len: number of bytes to transfer
2023 * @write: whether the access is a write
2025 * The caller must hold a reference on @mm.
2027 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
2028 void *buf
, int len
, int write
)
2030 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
2034 * Access another process' address space.
2035 * - source/target buffer must be kernel space
2037 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2039 struct mm_struct
*mm
;
2041 if (addr
+ len
< addr
)
2044 mm
= get_task_mm(tsk
);
2048 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
2055 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2056 * @inode: The inode to check
2057 * @size: The current filesize of the inode
2058 * @newsize: The proposed filesize of the inode
2060 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2061 * make sure that that any outstanding VMAs aren't broken and then shrink the
2062 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2063 * automatically grant mappings that are too large.
2065 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
2068 struct vm_area_struct
*vma
;
2069 struct vm_region
*region
;
2071 size_t r_size
, r_top
;
2073 low
= newsize
>> PAGE_SHIFT
;
2074 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2076 down_write(&nommu_region_sem
);
2077 mutex_lock(&inode
->i_mapping
->i_mmap_mutex
);
2079 /* search for VMAs that fall within the dead zone */
2080 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, low
, high
) {
2081 /* found one - only interested if it's shared out of the page
2083 if (vma
->vm_flags
& VM_SHARED
) {
2084 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2085 up_write(&nommu_region_sem
);
2086 return -ETXTBSY
; /* not quite true, but near enough */
2090 /* reduce any regions that overlap the dead zone - if in existence,
2091 * these will be pointed to by VMAs that don't overlap the dead zone
2093 * we don't check for any regions that start beyond the EOF as there
2096 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
,
2098 if (!(vma
->vm_flags
& VM_SHARED
))
2101 region
= vma
->vm_region
;
2102 r_size
= region
->vm_top
- region
->vm_start
;
2103 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
2105 if (r_top
> newsize
) {
2106 region
->vm_top
-= r_top
- newsize
;
2107 if (region
->vm_end
> region
->vm_top
)
2108 region
->vm_end
= region
->vm_top
;
2112 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2113 up_write(&nommu_region_sem
);