2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
35 #include <asm/scatterlist.h>
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
41 #define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
60 static char *io_tlb_start
, *io_tlb_end
;
63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
66 static unsigned long io_tlb_nslabs
;
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
71 static unsigned long io_tlb_overflow
= 32*1024;
73 static void *io_tlb_overflow_buffer
;
76 * This is a free list describing the number of free entries available from
79 static unsigned int *io_tlb_list
;
80 static unsigned int io_tlb_index
;
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
86 static phys_addr_t
*io_tlb_orig_addr
;
89 * Protect the above data structures in the map and unmap calls
91 static DEFINE_SPINLOCK(io_tlb_lock
);
93 static int late_alloc
;
96 setup_io_tlb_npages(char *str
)
99 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
105 if (!strcmp(str
, "force"))
110 __setup("swiotlb=", setup_io_tlb_npages
);
111 /* make io_tlb_overflow tunable too? */
113 unsigned long swiotlb_nr_tbl(void)
115 return io_tlb_nslabs
;
117 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl
);
118 /* Note that this doesn't work with highmem page */
119 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
120 volatile void *address
)
122 return phys_to_dma(hwdev
, virt_to_phys(address
));
125 void swiotlb_print_info(void)
127 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
128 phys_addr_t pstart
, pend
;
130 pstart
= virt_to_phys(io_tlb_start
);
131 pend
= virt_to_phys(io_tlb_end
);
133 printk(KERN_INFO
"Placing %luMB software IO TLB between %p - %p\n",
134 bytes
>> 20, io_tlb_start
, io_tlb_end
);
135 printk(KERN_INFO
"software IO TLB at phys %#llx - %#llx\n",
136 (unsigned long long)pstart
,
137 (unsigned long long)pend
);
140 void __init
swiotlb_init_with_tbl(char *tlb
, unsigned long nslabs
, int verbose
)
142 unsigned long i
, bytes
;
144 bytes
= nslabs
<< IO_TLB_SHIFT
;
146 io_tlb_nslabs
= nslabs
;
148 io_tlb_end
= io_tlb_start
+ bytes
;
151 * Allocate and initialize the free list array. This array is used
152 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
153 * between io_tlb_start and io_tlb_end.
155 io_tlb_list
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
156 for (i
= 0; i
< io_tlb_nslabs
; i
++)
157 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
159 io_tlb_orig_addr
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
162 * Get the overflow emergency buffer
164 io_tlb_overflow_buffer
= alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow
));
165 if (!io_tlb_overflow_buffer
)
166 panic("Cannot allocate SWIOTLB overflow buffer!\n");
168 swiotlb_print_info();
172 * Statically reserve bounce buffer space and initialize bounce buffer data
173 * structures for the software IO TLB used to implement the DMA API.
176 swiotlb_init_with_default_size(size_t default_size
, int verbose
)
180 if (!io_tlb_nslabs
) {
181 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
182 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
185 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
188 * Get IO TLB memory from the low pages
190 io_tlb_start
= alloc_bootmem_low_pages(PAGE_ALIGN(bytes
));
192 panic("Cannot allocate SWIOTLB buffer");
194 swiotlb_init_with_tbl(io_tlb_start
, io_tlb_nslabs
, verbose
);
198 swiotlb_init(int verbose
)
200 swiotlb_init_with_default_size(64 * (1<<20), verbose
); /* default to 64MB */
204 * Systems with larger DMA zones (those that don't support ISA) can
205 * initialize the swiotlb later using the slab allocator if needed.
206 * This should be just like above, but with some error catching.
209 swiotlb_late_init_with_default_size(size_t default_size
)
211 unsigned long i
, bytes
, req_nslabs
= io_tlb_nslabs
;
214 if (!io_tlb_nslabs
) {
215 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
216 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
220 * Get IO TLB memory from the low pages
222 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
223 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
224 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
226 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
227 io_tlb_start
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
237 if (order
!= get_order(bytes
)) {
238 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
239 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
240 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
241 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
243 io_tlb_end
= io_tlb_start
+ bytes
;
244 memset(io_tlb_start
, 0, bytes
);
247 * Allocate and initialize the free list array. This array is used
248 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
249 * between io_tlb_start and io_tlb_end.
251 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
252 get_order(io_tlb_nslabs
* sizeof(int)));
256 for (i
= 0; i
< io_tlb_nslabs
; i
++)
257 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
260 io_tlb_orig_addr
= (phys_addr_t
*)
261 __get_free_pages(GFP_KERNEL
,
262 get_order(io_tlb_nslabs
*
263 sizeof(phys_addr_t
)));
264 if (!io_tlb_orig_addr
)
267 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(phys_addr_t
));
270 * Get the overflow emergency buffer
272 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
273 get_order(io_tlb_overflow
));
274 if (!io_tlb_overflow_buffer
)
277 swiotlb_print_info();
284 free_pages((unsigned long)io_tlb_orig_addr
,
285 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
286 io_tlb_orig_addr
= NULL
;
288 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
293 free_pages((unsigned long)io_tlb_start
, order
);
296 io_tlb_nslabs
= req_nslabs
;
300 void __init
swiotlb_free(void)
302 if (!io_tlb_overflow_buffer
)
306 free_pages((unsigned long)io_tlb_overflow_buffer
,
307 get_order(io_tlb_overflow
));
308 free_pages((unsigned long)io_tlb_orig_addr
,
309 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
310 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
312 free_pages((unsigned long)io_tlb_start
,
313 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
315 free_bootmem_late(__pa(io_tlb_overflow_buffer
),
316 PAGE_ALIGN(io_tlb_overflow
));
317 free_bootmem_late(__pa(io_tlb_orig_addr
),
318 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
319 free_bootmem_late(__pa(io_tlb_list
),
320 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
321 free_bootmem_late(__pa(io_tlb_start
),
322 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
327 static int is_swiotlb_buffer(phys_addr_t paddr
)
329 return paddr
>= virt_to_phys(io_tlb_start
) &&
330 paddr
< virt_to_phys(io_tlb_end
);
334 * Bounce: copy the swiotlb buffer back to the original dma location
336 void swiotlb_bounce(phys_addr_t phys
, char *dma_addr
, size_t size
,
337 enum dma_data_direction dir
)
339 unsigned long pfn
= PFN_DOWN(phys
);
341 if (PageHighMem(pfn_to_page(pfn
))) {
342 /* The buffer does not have a mapping. Map it in and copy */
343 unsigned int offset
= phys
& ~PAGE_MASK
;
349 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
351 local_irq_save(flags
);
352 buffer
= kmap_atomic(pfn_to_page(pfn
));
353 if (dir
== DMA_TO_DEVICE
)
354 memcpy(dma_addr
, buffer
+ offset
, sz
);
356 memcpy(buffer
+ offset
, dma_addr
, sz
);
357 kunmap_atomic(buffer
);
358 local_irq_restore(flags
);
366 if (dir
== DMA_TO_DEVICE
)
367 memcpy(dma_addr
, phys_to_virt(phys
), size
);
369 memcpy(phys_to_virt(phys
), dma_addr
, size
);
372 EXPORT_SYMBOL_GPL(swiotlb_bounce
);
374 void *swiotlb_tbl_map_single(struct device
*hwdev
, dma_addr_t tbl_dma_addr
,
375 phys_addr_t phys
, size_t size
,
376 enum dma_data_direction dir
)
380 unsigned int nslots
, stride
, index
, wrap
;
383 unsigned long offset_slots
;
384 unsigned long max_slots
;
386 mask
= dma_get_seg_boundary(hwdev
);
388 tbl_dma_addr
&= mask
;
390 offset_slots
= ALIGN(tbl_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
393 * Carefully handle integer overflow which can occur when mask == ~0UL.
396 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
397 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
400 * For mappings greater than a page, we limit the stride (and
401 * hence alignment) to a page size.
403 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
404 if (size
> PAGE_SIZE
)
405 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
412 * Find suitable number of IO TLB entries size that will fit this
413 * request and allocate a buffer from that IO TLB pool.
415 spin_lock_irqsave(&io_tlb_lock
, flags
);
416 index
= ALIGN(io_tlb_index
, stride
);
417 if (index
>= io_tlb_nslabs
)
422 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
425 if (index
>= io_tlb_nslabs
)
432 * If we find a slot that indicates we have 'nslots' number of
433 * contiguous buffers, we allocate the buffers from that slot
434 * and mark the entries as '0' indicating unavailable.
436 if (io_tlb_list
[index
] >= nslots
) {
439 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
441 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
442 io_tlb_list
[i
] = ++count
;
443 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
446 * Update the indices to avoid searching in the next
449 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
450 ? (index
+ nslots
) : 0);
455 if (index
>= io_tlb_nslabs
)
457 } while (index
!= wrap
);
460 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
463 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
466 * Save away the mapping from the original address to the DMA address.
467 * This is needed when we sync the memory. Then we sync the buffer if
470 for (i
= 0; i
< nslots
; i
++)
471 io_tlb_orig_addr
[index
+i
] = phys
+ (i
<< IO_TLB_SHIFT
);
472 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
473 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
477 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single
);
480 * Allocates bounce buffer and returns its kernel virtual address.
484 map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
,
485 enum dma_data_direction dir
)
487 dma_addr_t start_dma_addr
= swiotlb_virt_to_bus(hwdev
, io_tlb_start
);
489 return swiotlb_tbl_map_single(hwdev
, start_dma_addr
, phys
, size
, dir
);
493 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
496 swiotlb_tbl_unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
497 enum dma_data_direction dir
)
500 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
501 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
502 phys_addr_t phys
= io_tlb_orig_addr
[index
];
505 * First, sync the memory before unmapping the entry
507 if (phys
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
508 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
511 * Return the buffer to the free list by setting the corresponding
512 * entries to indicate the number of contiguous entries available.
513 * While returning the entries to the free list, we merge the entries
514 * with slots below and above the pool being returned.
516 spin_lock_irqsave(&io_tlb_lock
, flags
);
518 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
519 io_tlb_list
[index
+ nslots
] : 0);
521 * Step 1: return the slots to the free list, merging the
522 * slots with superceeding slots
524 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
525 io_tlb_list
[i
] = ++count
;
527 * Step 2: merge the returned slots with the preceding slots,
528 * if available (non zero)
530 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
531 io_tlb_list
[i
] = ++count
;
533 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
535 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single
);
538 swiotlb_tbl_sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
539 enum dma_data_direction dir
,
540 enum dma_sync_target target
)
542 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
543 phys_addr_t phys
= io_tlb_orig_addr
[index
];
545 phys
+= ((unsigned long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1));
549 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
550 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
552 BUG_ON(dir
!= DMA_TO_DEVICE
);
554 case SYNC_FOR_DEVICE
:
555 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
556 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
558 BUG_ON(dir
!= DMA_FROM_DEVICE
);
564 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single
);
567 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
568 dma_addr_t
*dma_handle
, gfp_t flags
)
572 int order
= get_order(size
);
573 u64 dma_mask
= DMA_BIT_MASK(32);
575 if (hwdev
&& hwdev
->coherent_dma_mask
)
576 dma_mask
= hwdev
->coherent_dma_mask
;
578 ret
= (void *)__get_free_pages(flags
, order
);
579 if (ret
&& swiotlb_virt_to_bus(hwdev
, ret
) + size
- 1 > dma_mask
) {
581 * The allocated memory isn't reachable by the device.
583 free_pages((unsigned long) ret
, order
);
588 * We are either out of memory or the device can't DMA to
589 * GFP_DMA memory; fall back on map_single(), which
590 * will grab memory from the lowest available address range.
592 ret
= map_single(hwdev
, 0, size
, DMA_FROM_DEVICE
);
597 memset(ret
, 0, size
);
598 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
600 /* Confirm address can be DMA'd by device */
601 if (dev_addr
+ size
- 1 > dma_mask
) {
602 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
603 (unsigned long long)dma_mask
,
604 (unsigned long long)dev_addr
);
606 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
607 swiotlb_tbl_unmap_single(hwdev
, ret
, size
, DMA_TO_DEVICE
);
610 *dma_handle
= dev_addr
;
613 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
616 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
619 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
621 WARN_ON(irqs_disabled());
622 if (!is_swiotlb_buffer(paddr
))
623 free_pages((unsigned long)vaddr
, get_order(size
));
625 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
626 swiotlb_tbl_unmap_single(hwdev
, vaddr
, size
, DMA_TO_DEVICE
);
628 EXPORT_SYMBOL(swiotlb_free_coherent
);
631 swiotlb_full(struct device
*dev
, size_t size
, enum dma_data_direction dir
,
635 * Ran out of IOMMU space for this operation. This is very bad.
636 * Unfortunately the drivers cannot handle this operation properly.
637 * unless they check for dma_mapping_error (most don't)
638 * When the mapping is small enough return a static buffer to limit
639 * the damage, or panic when the transfer is too big.
641 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
642 "device %s\n", size
, dev
? dev_name(dev
) : "?");
644 if (size
<= io_tlb_overflow
|| !do_panic
)
647 if (dir
== DMA_BIDIRECTIONAL
)
648 panic("DMA: Random memory could be DMA accessed\n");
649 if (dir
== DMA_FROM_DEVICE
)
650 panic("DMA: Random memory could be DMA written\n");
651 if (dir
== DMA_TO_DEVICE
)
652 panic("DMA: Random memory could be DMA read\n");
656 * Map a single buffer of the indicated size for DMA in streaming mode. The
657 * physical address to use is returned.
659 * Once the device is given the dma address, the device owns this memory until
660 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
662 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
663 unsigned long offset
, size_t size
,
664 enum dma_data_direction dir
,
665 struct dma_attrs
*attrs
)
667 phys_addr_t phys
= page_to_phys(page
) + offset
;
668 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
671 BUG_ON(dir
== DMA_NONE
);
673 * If the address happens to be in the device's DMA window,
674 * we can safely return the device addr and not worry about bounce
677 if (dma_capable(dev
, dev_addr
, size
) && !swiotlb_force
)
681 * Oh well, have to allocate and map a bounce buffer.
683 map
= map_single(dev
, phys
, size
, dir
);
685 swiotlb_full(dev
, size
, dir
, 1);
686 map
= io_tlb_overflow_buffer
;
689 dev_addr
= swiotlb_virt_to_bus(dev
, map
);
692 * Ensure that the address returned is DMA'ble
694 if (!dma_capable(dev
, dev_addr
, size
)) {
695 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
);
696 dev_addr
= swiotlb_virt_to_bus(dev
, io_tlb_overflow_buffer
);
701 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
704 * Unmap a single streaming mode DMA translation. The dma_addr and size must
705 * match what was provided for in a previous swiotlb_map_page call. All
706 * other usages are undefined.
708 * After this call, reads by the cpu to the buffer are guaranteed to see
709 * whatever the device wrote there.
711 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
712 size_t size
, enum dma_data_direction dir
)
714 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
716 BUG_ON(dir
== DMA_NONE
);
718 if (is_swiotlb_buffer(paddr
)) {
719 swiotlb_tbl_unmap_single(hwdev
, phys_to_virt(paddr
), size
, dir
);
723 if (dir
!= DMA_FROM_DEVICE
)
727 * phys_to_virt doesn't work with hihgmem page but we could
728 * call dma_mark_clean() with hihgmem page here. However, we
729 * are fine since dma_mark_clean() is null on POWERPC. We can
730 * make dma_mark_clean() take a physical address if necessary.
732 dma_mark_clean(phys_to_virt(paddr
), size
);
735 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
736 size_t size
, enum dma_data_direction dir
,
737 struct dma_attrs
*attrs
)
739 unmap_single(hwdev
, dev_addr
, size
, dir
);
741 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
744 * Make physical memory consistent for a single streaming mode DMA translation
747 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
748 * using the cpu, yet do not wish to teardown the dma mapping, you must
749 * call this function before doing so. At the next point you give the dma
750 * address back to the card, you must first perform a
751 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
754 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
755 size_t size
, enum dma_data_direction dir
,
756 enum dma_sync_target target
)
758 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
760 BUG_ON(dir
== DMA_NONE
);
762 if (is_swiotlb_buffer(paddr
)) {
763 swiotlb_tbl_sync_single(hwdev
, phys_to_virt(paddr
), size
, dir
,
768 if (dir
!= DMA_FROM_DEVICE
)
771 dma_mark_clean(phys_to_virt(paddr
), size
);
775 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
776 size_t size
, enum dma_data_direction dir
)
778 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
780 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
783 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
784 size_t size
, enum dma_data_direction dir
)
786 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
788 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
791 * Map a set of buffers described by scatterlist in streaming mode for DMA.
792 * This is the scatter-gather version of the above swiotlb_map_page
793 * interface. Here the scatter gather list elements are each tagged with the
794 * appropriate dma address and length. They are obtained via
795 * sg_dma_{address,length}(SG).
797 * NOTE: An implementation may be able to use a smaller number of
798 * DMA address/length pairs than there are SG table elements.
799 * (for example via virtual mapping capabilities)
800 * The routine returns the number of addr/length pairs actually
801 * used, at most nents.
803 * Device ownership issues as mentioned above for swiotlb_map_page are the
807 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
808 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
810 struct scatterlist
*sg
;
813 BUG_ON(dir
== DMA_NONE
);
815 for_each_sg(sgl
, sg
, nelems
, i
) {
816 phys_addr_t paddr
= sg_phys(sg
);
817 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
820 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
821 void *map
= map_single(hwdev
, sg_phys(sg
),
824 /* Don't panic here, we expect map_sg users
825 to do proper error handling. */
826 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
827 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
829 sgl
[0].dma_length
= 0;
832 sg
->dma_address
= swiotlb_virt_to_bus(hwdev
, map
);
834 sg
->dma_address
= dev_addr
;
835 sg
->dma_length
= sg
->length
;
839 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
842 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
843 enum dma_data_direction dir
)
845 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
847 EXPORT_SYMBOL(swiotlb_map_sg
);
850 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
851 * concerning calls here are the same as for swiotlb_unmap_page() above.
854 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
855 int nelems
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
857 struct scatterlist
*sg
;
860 BUG_ON(dir
== DMA_NONE
);
862 for_each_sg(sgl
, sg
, nelems
, i
)
863 unmap_single(hwdev
, sg
->dma_address
, sg
->dma_length
, dir
);
866 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
869 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
870 enum dma_data_direction dir
)
872 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
874 EXPORT_SYMBOL(swiotlb_unmap_sg
);
877 * Make physical memory consistent for a set of streaming mode DMA translations
880 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
884 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
885 int nelems
, enum dma_data_direction dir
,
886 enum dma_sync_target target
)
888 struct scatterlist
*sg
;
891 for_each_sg(sgl
, sg
, nelems
, i
)
892 swiotlb_sync_single(hwdev
, sg
->dma_address
,
893 sg
->dma_length
, dir
, target
);
897 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
898 int nelems
, enum dma_data_direction dir
)
900 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
902 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
905 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
906 int nelems
, enum dma_data_direction dir
)
908 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
910 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
913 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
915 return (dma_addr
== swiotlb_virt_to_bus(hwdev
, io_tlb_overflow_buffer
));
917 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
920 * Return whether the given device DMA address mask can be supported
921 * properly. For example, if your device can only drive the low 24-bits
922 * during bus mastering, then you would pass 0x00ffffff as the mask to
926 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
928 return swiotlb_virt_to_bus(hwdev
, io_tlb_end
- 1) <= mask
;
930 EXPORT_SYMBOL(swiotlb_dma_supported
);