2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
45 #include "transaction.h"
46 #include "btrfs_inode.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
53 #include "compression.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
58 struct btrfs_iget_args
{
60 struct btrfs_root
*root
;
63 static const struct inode_operations btrfs_dir_inode_operations
;
64 static const struct inode_operations btrfs_symlink_inode_operations
;
65 static const struct inode_operations btrfs_dir_ro_inode_operations
;
66 static const struct inode_operations btrfs_special_inode_operations
;
67 static const struct inode_operations btrfs_file_inode_operations
;
68 static const struct address_space_operations btrfs_aops
;
69 static const struct address_space_operations btrfs_symlink_aops
;
70 static const struct file_operations btrfs_dir_file_operations
;
71 static struct extent_io_ops btrfs_extent_io_ops
;
73 static struct kmem_cache
*btrfs_inode_cachep
;
74 static struct kmem_cache
*btrfs_delalloc_work_cachep
;
75 struct kmem_cache
*btrfs_trans_handle_cachep
;
76 struct kmem_cache
*btrfs_transaction_cachep
;
77 struct kmem_cache
*btrfs_path_cachep
;
78 struct kmem_cache
*btrfs_free_space_cachep
;
81 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
82 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
83 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
84 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
85 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
86 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
87 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
88 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
91 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
);
92 static int btrfs_truncate(struct inode
*inode
);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
94 static noinline
int cow_file_range(struct inode
*inode
,
95 struct page
*locked_page
,
96 u64 start
, u64 end
, int *page_started
,
97 unsigned long *nr_written
, int unlock
);
98 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
99 u64 len
, u64 orig_start
,
100 u64 block_start
, u64 block_len
,
101 u64 orig_block_len
, int type
);
103 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
104 struct inode
*inode
, struct inode
*dir
,
105 const struct qstr
*qstr
)
109 err
= btrfs_init_acl(trans
, inode
, dir
);
111 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
116 * this does all the hard work for inserting an inline extent into
117 * the btree. The caller should have done a btrfs_drop_extents so that
118 * no overlapping inline items exist in the btree
120 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
121 struct btrfs_root
*root
, struct inode
*inode
,
122 u64 start
, size_t size
, size_t compressed_size
,
124 struct page
**compressed_pages
)
126 struct btrfs_key key
;
127 struct btrfs_path
*path
;
128 struct extent_buffer
*leaf
;
129 struct page
*page
= NULL
;
132 struct btrfs_file_extent_item
*ei
;
135 size_t cur_size
= size
;
137 unsigned long offset
;
139 if (compressed_size
&& compressed_pages
)
140 cur_size
= compressed_size
;
142 path
= btrfs_alloc_path();
146 path
->leave_spinning
= 1;
148 key
.objectid
= btrfs_ino(inode
);
150 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
151 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
153 inode_add_bytes(inode
, size
);
154 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
160 leaf
= path
->nodes
[0];
161 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
162 struct btrfs_file_extent_item
);
163 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
164 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
165 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
166 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
167 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
168 ptr
= btrfs_file_extent_inline_start(ei
);
170 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
173 while (compressed_size
> 0) {
174 cpage
= compressed_pages
[i
];
175 cur_size
= min_t(unsigned long, compressed_size
,
178 kaddr
= kmap_atomic(cpage
);
179 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
180 kunmap_atomic(kaddr
);
184 compressed_size
-= cur_size
;
186 btrfs_set_file_extent_compression(leaf
, ei
,
189 page
= find_get_page(inode
->i_mapping
,
190 start
>> PAGE_CACHE_SHIFT
);
191 btrfs_set_file_extent_compression(leaf
, ei
, 0);
192 kaddr
= kmap_atomic(page
);
193 offset
= start
& (PAGE_CACHE_SIZE
- 1);
194 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
195 kunmap_atomic(kaddr
);
196 page_cache_release(page
);
198 btrfs_mark_buffer_dirty(leaf
);
199 btrfs_free_path(path
);
202 * we're an inline extent, so nobody can
203 * extend the file past i_size without locking
204 * a page we already have locked.
206 * We must do any isize and inode updates
207 * before we unlock the pages. Otherwise we
208 * could end up racing with unlink.
210 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
211 ret
= btrfs_update_inode(trans
, root
, inode
);
215 btrfs_free_path(path
);
221 * conditionally insert an inline extent into the file. This
222 * does the checks required to make sure the data is small enough
223 * to fit as an inline extent.
225 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
226 struct btrfs_root
*root
,
227 struct inode
*inode
, u64 start
, u64 end
,
228 size_t compressed_size
, int compress_type
,
229 struct page
**compressed_pages
)
231 u64 isize
= i_size_read(inode
);
232 u64 actual_end
= min(end
+ 1, isize
);
233 u64 inline_len
= actual_end
- start
;
234 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
235 ~((u64
)root
->sectorsize
- 1);
236 u64 data_len
= inline_len
;
240 data_len
= compressed_size
;
243 actual_end
>= PAGE_CACHE_SIZE
||
244 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
246 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
248 data_len
> root
->fs_info
->max_inline
) {
252 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, aligned_end
, 1);
256 if (isize
> actual_end
)
257 inline_len
= min_t(u64
, isize
, actual_end
);
258 ret
= insert_inline_extent(trans
, root
, inode
, start
,
259 inline_len
, compressed_size
,
260 compress_type
, compressed_pages
);
261 if (ret
&& ret
!= -ENOSPC
) {
262 btrfs_abort_transaction(trans
, root
, ret
);
264 } else if (ret
== -ENOSPC
) {
268 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
269 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
273 struct async_extent
{
278 unsigned long nr_pages
;
280 struct list_head list
;
285 struct btrfs_root
*root
;
286 struct page
*locked_page
;
289 struct list_head extents
;
290 struct btrfs_work work
;
293 static noinline
int add_async_extent(struct async_cow
*cow
,
294 u64 start
, u64 ram_size
,
297 unsigned long nr_pages
,
300 struct async_extent
*async_extent
;
302 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
303 BUG_ON(!async_extent
); /* -ENOMEM */
304 async_extent
->start
= start
;
305 async_extent
->ram_size
= ram_size
;
306 async_extent
->compressed_size
= compressed_size
;
307 async_extent
->pages
= pages
;
308 async_extent
->nr_pages
= nr_pages
;
309 async_extent
->compress_type
= compress_type
;
310 list_add_tail(&async_extent
->list
, &cow
->extents
);
315 * we create compressed extents in two phases. The first
316 * phase compresses a range of pages that have already been
317 * locked (both pages and state bits are locked).
319 * This is done inside an ordered work queue, and the compression
320 * is spread across many cpus. The actual IO submission is step
321 * two, and the ordered work queue takes care of making sure that
322 * happens in the same order things were put onto the queue by
323 * writepages and friends.
325 * If this code finds it can't get good compression, it puts an
326 * entry onto the work queue to write the uncompressed bytes. This
327 * makes sure that both compressed inodes and uncompressed inodes
328 * are written in the same order that the flusher thread sent them
331 static noinline
int compress_file_range(struct inode
*inode
,
332 struct page
*locked_page
,
334 struct async_cow
*async_cow
,
337 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
338 struct btrfs_trans_handle
*trans
;
340 u64 blocksize
= root
->sectorsize
;
342 u64 isize
= i_size_read(inode
);
344 struct page
**pages
= NULL
;
345 unsigned long nr_pages
;
346 unsigned long nr_pages_ret
= 0;
347 unsigned long total_compressed
= 0;
348 unsigned long total_in
= 0;
349 unsigned long max_compressed
= 128 * 1024;
350 unsigned long max_uncompressed
= 128 * 1024;
353 int compress_type
= root
->fs_info
->compress_type
;
355 /* if this is a small write inside eof, kick off a defrag */
356 if ((end
- start
+ 1) < 16 * 1024 &&
357 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
358 btrfs_add_inode_defrag(NULL
, inode
);
360 actual_end
= min_t(u64
, isize
, end
+ 1);
363 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
364 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
367 * we don't want to send crud past the end of i_size through
368 * compression, that's just a waste of CPU time. So, if the
369 * end of the file is before the start of our current
370 * requested range of bytes, we bail out to the uncompressed
371 * cleanup code that can deal with all of this.
373 * It isn't really the fastest way to fix things, but this is a
374 * very uncommon corner.
376 if (actual_end
<= start
)
377 goto cleanup_and_bail_uncompressed
;
379 total_compressed
= actual_end
- start
;
381 /* we want to make sure that amount of ram required to uncompress
382 * an extent is reasonable, so we limit the total size in ram
383 * of a compressed extent to 128k. This is a crucial number
384 * because it also controls how easily we can spread reads across
385 * cpus for decompression.
387 * We also want to make sure the amount of IO required to do
388 * a random read is reasonably small, so we limit the size of
389 * a compressed extent to 128k.
391 total_compressed
= min(total_compressed
, max_uncompressed
);
392 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
393 num_bytes
= max(blocksize
, num_bytes
);
398 * we do compression for mount -o compress and when the
399 * inode has not been flagged as nocompress. This flag can
400 * change at any time if we discover bad compression ratios.
402 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
403 (btrfs_test_opt(root
, COMPRESS
) ||
404 (BTRFS_I(inode
)->force_compress
) ||
405 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
407 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
409 /* just bail out to the uncompressed code */
413 if (BTRFS_I(inode
)->force_compress
)
414 compress_type
= BTRFS_I(inode
)->force_compress
;
416 ret
= btrfs_compress_pages(compress_type
,
417 inode
->i_mapping
, start
,
418 total_compressed
, pages
,
419 nr_pages
, &nr_pages_ret
,
425 unsigned long offset
= total_compressed
&
426 (PAGE_CACHE_SIZE
- 1);
427 struct page
*page
= pages
[nr_pages_ret
- 1];
430 /* zero the tail end of the last page, we might be
431 * sending it down to disk
434 kaddr
= kmap_atomic(page
);
435 memset(kaddr
+ offset
, 0,
436 PAGE_CACHE_SIZE
- offset
);
437 kunmap_atomic(kaddr
);
444 trans
= btrfs_join_transaction(root
);
446 ret
= PTR_ERR(trans
);
448 goto cleanup_and_out
;
450 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
452 /* lets try to make an inline extent */
453 if (ret
|| total_in
< (actual_end
- start
)) {
454 /* we didn't compress the entire range, try
455 * to make an uncompressed inline extent.
457 ret
= cow_file_range_inline(trans
, root
, inode
,
458 start
, end
, 0, 0, NULL
);
460 /* try making a compressed inline extent */
461 ret
= cow_file_range_inline(trans
, root
, inode
,
464 compress_type
, pages
);
468 * inline extent creation worked or returned error,
469 * we don't need to create any more async work items.
470 * Unlock and free up our temp pages.
472 extent_clear_unlock_delalloc(inode
,
473 &BTRFS_I(inode
)->io_tree
,
475 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
476 EXTENT_CLEAR_DELALLOC
|
477 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
479 btrfs_end_transaction(trans
, root
);
482 btrfs_end_transaction(trans
, root
);
487 * we aren't doing an inline extent round the compressed size
488 * up to a block size boundary so the allocator does sane
491 total_compressed
= (total_compressed
+ blocksize
- 1) &
495 * one last check to make sure the compression is really a
496 * win, compare the page count read with the blocks on disk
498 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
499 ~(PAGE_CACHE_SIZE
- 1);
500 if (total_compressed
>= total_in
) {
503 num_bytes
= total_in
;
506 if (!will_compress
&& pages
) {
508 * the compression code ran but failed to make things smaller,
509 * free any pages it allocated and our page pointer array
511 for (i
= 0; i
< nr_pages_ret
; i
++) {
512 WARN_ON(pages
[i
]->mapping
);
513 page_cache_release(pages
[i
]);
517 total_compressed
= 0;
520 /* flag the file so we don't compress in the future */
521 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
522 !(BTRFS_I(inode
)->force_compress
)) {
523 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
529 /* the async work queues will take care of doing actual
530 * allocation on disk for these compressed pages,
531 * and will submit them to the elevator.
533 add_async_extent(async_cow
, start
, num_bytes
,
534 total_compressed
, pages
, nr_pages_ret
,
537 if (start
+ num_bytes
< end
) {
544 cleanup_and_bail_uncompressed
:
546 * No compression, but we still need to write the pages in
547 * the file we've been given so far. redirty the locked
548 * page if it corresponds to our extent and set things up
549 * for the async work queue to run cow_file_range to do
550 * the normal delalloc dance
552 if (page_offset(locked_page
) >= start
&&
553 page_offset(locked_page
) <= end
) {
554 __set_page_dirty_nobuffers(locked_page
);
555 /* unlocked later on in the async handlers */
557 add_async_extent(async_cow
, start
, end
- start
+ 1,
558 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
566 for (i
= 0; i
< nr_pages_ret
; i
++) {
567 WARN_ON(pages
[i
]->mapping
);
568 page_cache_release(pages
[i
]);
575 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
577 EXTENT_CLEAR_UNLOCK_PAGE
|
579 EXTENT_CLEAR_DELALLOC
|
580 EXTENT_SET_WRITEBACK
|
581 EXTENT_END_WRITEBACK
);
582 if (!trans
|| IS_ERR(trans
))
583 btrfs_error(root
->fs_info
, ret
, "Failed to join transaction");
585 btrfs_abort_transaction(trans
, root
, ret
);
590 * phase two of compressed writeback. This is the ordered portion
591 * of the code, which only gets called in the order the work was
592 * queued. We walk all the async extents created by compress_file_range
593 * and send them down to the disk.
595 static noinline
int submit_compressed_extents(struct inode
*inode
,
596 struct async_cow
*async_cow
)
598 struct async_extent
*async_extent
;
600 struct btrfs_trans_handle
*trans
;
601 struct btrfs_key ins
;
602 struct extent_map
*em
;
603 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
604 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
605 struct extent_io_tree
*io_tree
;
608 if (list_empty(&async_cow
->extents
))
612 while (!list_empty(&async_cow
->extents
)) {
613 async_extent
= list_entry(async_cow
->extents
.next
,
614 struct async_extent
, list
);
615 list_del(&async_extent
->list
);
617 io_tree
= &BTRFS_I(inode
)->io_tree
;
620 /* did the compression code fall back to uncompressed IO? */
621 if (!async_extent
->pages
) {
622 int page_started
= 0;
623 unsigned long nr_written
= 0;
625 lock_extent(io_tree
, async_extent
->start
,
626 async_extent
->start
+
627 async_extent
->ram_size
- 1);
629 /* allocate blocks */
630 ret
= cow_file_range(inode
, async_cow
->locked_page
,
632 async_extent
->start
+
633 async_extent
->ram_size
- 1,
634 &page_started
, &nr_written
, 0);
639 * if page_started, cow_file_range inserted an
640 * inline extent and took care of all the unlocking
641 * and IO for us. Otherwise, we need to submit
642 * all those pages down to the drive.
644 if (!page_started
&& !ret
)
645 extent_write_locked_range(io_tree
,
646 inode
, async_extent
->start
,
647 async_extent
->start
+
648 async_extent
->ram_size
- 1,
656 lock_extent(io_tree
, async_extent
->start
,
657 async_extent
->start
+ async_extent
->ram_size
- 1);
659 trans
= btrfs_join_transaction(root
);
661 ret
= PTR_ERR(trans
);
663 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
664 ret
= btrfs_reserve_extent(trans
, root
,
665 async_extent
->compressed_size
,
666 async_extent
->compressed_size
,
667 0, alloc_hint
, &ins
, 1);
668 if (ret
&& ret
!= -ENOSPC
)
669 btrfs_abort_transaction(trans
, root
, ret
);
670 btrfs_end_transaction(trans
, root
);
675 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
676 WARN_ON(async_extent
->pages
[i
]->mapping
);
677 page_cache_release(async_extent
->pages
[i
]);
679 kfree(async_extent
->pages
);
680 async_extent
->nr_pages
= 0;
681 async_extent
->pages
= NULL
;
682 unlock_extent(io_tree
, async_extent
->start
,
683 async_extent
->start
+
684 async_extent
->ram_size
- 1);
687 goto out_free
; /* JDM: Requeue? */
691 * here we're doing allocation and writeback of the
694 btrfs_drop_extent_cache(inode
, async_extent
->start
,
695 async_extent
->start
+
696 async_extent
->ram_size
- 1, 0);
698 em
= alloc_extent_map();
699 BUG_ON(!em
); /* -ENOMEM */
700 em
->start
= async_extent
->start
;
701 em
->len
= async_extent
->ram_size
;
702 em
->orig_start
= em
->start
;
704 em
->block_start
= ins
.objectid
;
705 em
->block_len
= ins
.offset
;
706 em
->orig_block_len
= ins
.offset
;
707 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
708 em
->compress_type
= async_extent
->compress_type
;
709 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
710 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
714 write_lock(&em_tree
->lock
);
715 ret
= add_extent_mapping(em_tree
, em
);
718 &em_tree
->modified_extents
);
719 write_unlock(&em_tree
->lock
);
720 if (ret
!= -EEXIST
) {
724 btrfs_drop_extent_cache(inode
, async_extent
->start
,
725 async_extent
->start
+
726 async_extent
->ram_size
- 1, 0);
729 ret
= btrfs_add_ordered_extent_compress(inode
,
732 async_extent
->ram_size
,
734 BTRFS_ORDERED_COMPRESSED
,
735 async_extent
->compress_type
);
736 BUG_ON(ret
); /* -ENOMEM */
739 * clear dirty, set writeback and unlock the pages.
741 extent_clear_unlock_delalloc(inode
,
742 &BTRFS_I(inode
)->io_tree
,
744 async_extent
->start
+
745 async_extent
->ram_size
- 1,
746 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
747 EXTENT_CLEAR_UNLOCK
|
748 EXTENT_CLEAR_DELALLOC
|
749 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
751 ret
= btrfs_submit_compressed_write(inode
,
753 async_extent
->ram_size
,
755 ins
.offset
, async_extent
->pages
,
756 async_extent
->nr_pages
);
758 BUG_ON(ret
); /* -ENOMEM */
759 alloc_hint
= ins
.objectid
+ ins
.offset
;
771 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
774 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
775 struct extent_map
*em
;
778 read_lock(&em_tree
->lock
);
779 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
782 * if block start isn't an actual block number then find the
783 * first block in this inode and use that as a hint. If that
784 * block is also bogus then just don't worry about it.
786 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
788 em
= search_extent_mapping(em_tree
, 0, 0);
789 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
790 alloc_hint
= em
->block_start
;
794 alloc_hint
= em
->block_start
;
798 read_unlock(&em_tree
->lock
);
804 * when extent_io.c finds a delayed allocation range in the file,
805 * the call backs end up in this code. The basic idea is to
806 * allocate extents on disk for the range, and create ordered data structs
807 * in ram to track those extents.
809 * locked_page is the page that writepage had locked already. We use
810 * it to make sure we don't do extra locks or unlocks.
812 * *page_started is set to one if we unlock locked_page and do everything
813 * required to start IO on it. It may be clean and already done with
816 static noinline
int __cow_file_range(struct btrfs_trans_handle
*trans
,
818 struct btrfs_root
*root
,
819 struct page
*locked_page
,
820 u64 start
, u64 end
, int *page_started
,
821 unsigned long *nr_written
,
826 unsigned long ram_size
;
829 u64 blocksize
= root
->sectorsize
;
830 struct btrfs_key ins
;
831 struct extent_map
*em
;
832 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
835 BUG_ON(btrfs_is_free_space_inode(inode
));
837 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
838 num_bytes
= max(blocksize
, num_bytes
);
839 disk_num_bytes
= num_bytes
;
841 /* if this is a small write inside eof, kick off defrag */
842 if (num_bytes
< 64 * 1024 &&
843 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
844 btrfs_add_inode_defrag(trans
, inode
);
847 /* lets try to make an inline extent */
848 ret
= cow_file_range_inline(trans
, root
, inode
,
849 start
, end
, 0, 0, NULL
);
851 extent_clear_unlock_delalloc(inode
,
852 &BTRFS_I(inode
)->io_tree
,
854 EXTENT_CLEAR_UNLOCK_PAGE
|
855 EXTENT_CLEAR_UNLOCK
|
856 EXTENT_CLEAR_DELALLOC
|
858 EXTENT_SET_WRITEBACK
|
859 EXTENT_END_WRITEBACK
);
861 *nr_written
= *nr_written
+
862 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
865 } else if (ret
< 0) {
866 btrfs_abort_transaction(trans
, root
, ret
);
871 BUG_ON(disk_num_bytes
>
872 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
874 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
875 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
877 while (disk_num_bytes
> 0) {
880 cur_alloc_size
= disk_num_bytes
;
881 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
882 root
->sectorsize
, 0, alloc_hint
,
885 btrfs_abort_transaction(trans
, root
, ret
);
889 em
= alloc_extent_map();
890 BUG_ON(!em
); /* -ENOMEM */
892 em
->orig_start
= em
->start
;
893 ram_size
= ins
.offset
;
894 em
->len
= ins
.offset
;
896 em
->block_start
= ins
.objectid
;
897 em
->block_len
= ins
.offset
;
898 em
->orig_block_len
= ins
.offset
;
899 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
900 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
904 write_lock(&em_tree
->lock
);
905 ret
= add_extent_mapping(em_tree
, em
);
908 &em_tree
->modified_extents
);
909 write_unlock(&em_tree
->lock
);
910 if (ret
!= -EEXIST
) {
914 btrfs_drop_extent_cache(inode
, start
,
915 start
+ ram_size
- 1, 0);
918 cur_alloc_size
= ins
.offset
;
919 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
920 ram_size
, cur_alloc_size
, 0);
921 BUG_ON(ret
); /* -ENOMEM */
923 if (root
->root_key
.objectid
==
924 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
925 ret
= btrfs_reloc_clone_csums(inode
, start
,
928 btrfs_abort_transaction(trans
, root
, ret
);
933 if (disk_num_bytes
< cur_alloc_size
)
936 /* we're not doing compressed IO, don't unlock the first
937 * page (which the caller expects to stay locked), don't
938 * clear any dirty bits and don't set any writeback bits
940 * Do set the Private2 bit so we know this page was properly
941 * setup for writepage
943 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
944 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
947 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
948 start
, start
+ ram_size
- 1,
950 disk_num_bytes
-= cur_alloc_size
;
951 num_bytes
-= cur_alloc_size
;
952 alloc_hint
= ins
.objectid
+ ins
.offset
;
953 start
+= cur_alloc_size
;
959 extent_clear_unlock_delalloc(inode
,
960 &BTRFS_I(inode
)->io_tree
,
961 start
, end
, locked_page
,
962 EXTENT_CLEAR_UNLOCK_PAGE
|
963 EXTENT_CLEAR_UNLOCK
|
964 EXTENT_CLEAR_DELALLOC
|
966 EXTENT_SET_WRITEBACK
|
967 EXTENT_END_WRITEBACK
);
972 static noinline
int cow_file_range(struct inode
*inode
,
973 struct page
*locked_page
,
974 u64 start
, u64 end
, int *page_started
,
975 unsigned long *nr_written
,
978 struct btrfs_trans_handle
*trans
;
979 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
982 trans
= btrfs_join_transaction(root
);
984 extent_clear_unlock_delalloc(inode
,
985 &BTRFS_I(inode
)->io_tree
,
986 start
, end
, locked_page
,
987 EXTENT_CLEAR_UNLOCK_PAGE
|
988 EXTENT_CLEAR_UNLOCK
|
989 EXTENT_CLEAR_DELALLOC
|
991 EXTENT_SET_WRITEBACK
|
992 EXTENT_END_WRITEBACK
);
993 return PTR_ERR(trans
);
995 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
997 ret
= __cow_file_range(trans
, inode
, root
, locked_page
, start
, end
,
998 page_started
, nr_written
, unlock
);
1000 btrfs_end_transaction(trans
, root
);
1006 * work queue call back to started compression on a file and pages
1008 static noinline
void async_cow_start(struct btrfs_work
*work
)
1010 struct async_cow
*async_cow
;
1012 async_cow
= container_of(work
, struct async_cow
, work
);
1014 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1015 async_cow
->start
, async_cow
->end
, async_cow
,
1017 if (num_added
== 0) {
1018 btrfs_add_delayed_iput(async_cow
->inode
);
1019 async_cow
->inode
= NULL
;
1024 * work queue call back to submit previously compressed pages
1026 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1028 struct async_cow
*async_cow
;
1029 struct btrfs_root
*root
;
1030 unsigned long nr_pages
;
1032 async_cow
= container_of(work
, struct async_cow
, work
);
1034 root
= async_cow
->root
;
1035 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
1038 if (atomic_sub_return(nr_pages
, &root
->fs_info
->async_delalloc_pages
) <
1040 waitqueue_active(&root
->fs_info
->async_submit_wait
))
1041 wake_up(&root
->fs_info
->async_submit_wait
);
1043 if (async_cow
->inode
)
1044 submit_compressed_extents(async_cow
->inode
, async_cow
);
1047 static noinline
void async_cow_free(struct btrfs_work
*work
)
1049 struct async_cow
*async_cow
;
1050 async_cow
= container_of(work
, struct async_cow
, work
);
1051 if (async_cow
->inode
)
1052 btrfs_add_delayed_iput(async_cow
->inode
);
1056 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1057 u64 start
, u64 end
, int *page_started
,
1058 unsigned long *nr_written
)
1060 struct async_cow
*async_cow
;
1061 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1062 unsigned long nr_pages
;
1064 int limit
= 10 * 1024 * 1024;
1066 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1067 1, 0, NULL
, GFP_NOFS
);
1068 while (start
< end
) {
1069 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1070 BUG_ON(!async_cow
); /* -ENOMEM */
1071 async_cow
->inode
= igrab(inode
);
1072 async_cow
->root
= root
;
1073 async_cow
->locked_page
= locked_page
;
1074 async_cow
->start
= start
;
1076 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
1079 cur_end
= min(end
, start
+ 512 * 1024 - 1);
1081 async_cow
->end
= cur_end
;
1082 INIT_LIST_HEAD(&async_cow
->extents
);
1084 async_cow
->work
.func
= async_cow_start
;
1085 async_cow
->work
.ordered_func
= async_cow_submit
;
1086 async_cow
->work
.ordered_free
= async_cow_free
;
1087 async_cow
->work
.flags
= 0;
1089 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
1091 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
1093 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
1096 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1097 wait_event(root
->fs_info
->async_submit_wait
,
1098 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1102 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1103 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1104 wait_event(root
->fs_info
->async_submit_wait
,
1105 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1109 *nr_written
+= nr_pages
;
1110 start
= cur_end
+ 1;
1116 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1117 u64 bytenr
, u64 num_bytes
)
1120 struct btrfs_ordered_sum
*sums
;
1123 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1124 bytenr
+ num_bytes
- 1, &list
, 0);
1125 if (ret
== 0 && list_empty(&list
))
1128 while (!list_empty(&list
)) {
1129 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1130 list_del(&sums
->list
);
1137 * when nowcow writeback call back. This checks for snapshots or COW copies
1138 * of the extents that exist in the file, and COWs the file as required.
1140 * If no cow copies or snapshots exist, we write directly to the existing
1143 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1144 struct page
*locked_page
,
1145 u64 start
, u64 end
, int *page_started
, int force
,
1146 unsigned long *nr_written
)
1148 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1149 struct btrfs_trans_handle
*trans
;
1150 struct extent_buffer
*leaf
;
1151 struct btrfs_path
*path
;
1152 struct btrfs_file_extent_item
*fi
;
1153 struct btrfs_key found_key
;
1167 u64 ino
= btrfs_ino(inode
);
1169 path
= btrfs_alloc_path();
1171 extent_clear_unlock_delalloc(inode
,
1172 &BTRFS_I(inode
)->io_tree
,
1173 start
, end
, locked_page
,
1174 EXTENT_CLEAR_UNLOCK_PAGE
|
1175 EXTENT_CLEAR_UNLOCK
|
1176 EXTENT_CLEAR_DELALLOC
|
1177 EXTENT_CLEAR_DIRTY
|
1178 EXTENT_SET_WRITEBACK
|
1179 EXTENT_END_WRITEBACK
);
1183 nolock
= btrfs_is_free_space_inode(inode
);
1186 trans
= btrfs_join_transaction_nolock(root
);
1188 trans
= btrfs_join_transaction(root
);
1190 if (IS_ERR(trans
)) {
1191 extent_clear_unlock_delalloc(inode
,
1192 &BTRFS_I(inode
)->io_tree
,
1193 start
, end
, locked_page
,
1194 EXTENT_CLEAR_UNLOCK_PAGE
|
1195 EXTENT_CLEAR_UNLOCK
|
1196 EXTENT_CLEAR_DELALLOC
|
1197 EXTENT_CLEAR_DIRTY
|
1198 EXTENT_SET_WRITEBACK
|
1199 EXTENT_END_WRITEBACK
);
1200 btrfs_free_path(path
);
1201 return PTR_ERR(trans
);
1204 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1206 cow_start
= (u64
)-1;
1209 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1212 btrfs_abort_transaction(trans
, root
, ret
);
1215 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1216 leaf
= path
->nodes
[0];
1217 btrfs_item_key_to_cpu(leaf
, &found_key
,
1218 path
->slots
[0] - 1);
1219 if (found_key
.objectid
== ino
&&
1220 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1225 leaf
= path
->nodes
[0];
1226 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1227 ret
= btrfs_next_leaf(root
, path
);
1229 btrfs_abort_transaction(trans
, root
, ret
);
1234 leaf
= path
->nodes
[0];
1240 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1242 if (found_key
.objectid
> ino
||
1243 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1244 found_key
.offset
> end
)
1247 if (found_key
.offset
> cur_offset
) {
1248 extent_end
= found_key
.offset
;
1253 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1254 struct btrfs_file_extent_item
);
1255 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1257 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1258 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1259 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1260 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1261 extent_end
= found_key
.offset
+
1262 btrfs_file_extent_num_bytes(leaf
, fi
);
1264 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1265 if (extent_end
<= start
) {
1269 if (disk_bytenr
== 0)
1271 if (btrfs_file_extent_compression(leaf
, fi
) ||
1272 btrfs_file_extent_encryption(leaf
, fi
) ||
1273 btrfs_file_extent_other_encoding(leaf
, fi
))
1275 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1277 if (btrfs_extent_readonly(root
, disk_bytenr
))
1279 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1281 extent_offset
, disk_bytenr
))
1283 disk_bytenr
+= extent_offset
;
1284 disk_bytenr
+= cur_offset
- found_key
.offset
;
1285 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1287 * force cow if csum exists in the range.
1288 * this ensure that csum for a given extent are
1289 * either valid or do not exist.
1291 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1294 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1295 extent_end
= found_key
.offset
+
1296 btrfs_file_extent_inline_len(leaf
, fi
);
1297 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1302 if (extent_end
<= start
) {
1307 if (cow_start
== (u64
)-1)
1308 cow_start
= cur_offset
;
1309 cur_offset
= extent_end
;
1310 if (cur_offset
> end
)
1316 btrfs_release_path(path
);
1317 if (cow_start
!= (u64
)-1) {
1318 ret
= __cow_file_range(trans
, inode
, root
, locked_page
,
1319 cow_start
, found_key
.offset
- 1,
1320 page_started
, nr_written
, 1);
1322 btrfs_abort_transaction(trans
, root
, ret
);
1325 cow_start
= (u64
)-1;
1328 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1329 struct extent_map
*em
;
1330 struct extent_map_tree
*em_tree
;
1331 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1332 em
= alloc_extent_map();
1333 BUG_ON(!em
); /* -ENOMEM */
1334 em
->start
= cur_offset
;
1335 em
->orig_start
= found_key
.offset
- extent_offset
;
1336 em
->len
= num_bytes
;
1337 em
->block_len
= num_bytes
;
1338 em
->block_start
= disk_bytenr
;
1339 em
->orig_block_len
= disk_num_bytes
;
1340 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1341 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1342 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
1343 em
->generation
= -1;
1345 write_lock(&em_tree
->lock
);
1346 ret
= add_extent_mapping(em_tree
, em
);
1348 list_move(&em
->list
,
1349 &em_tree
->modified_extents
);
1350 write_unlock(&em_tree
->lock
);
1351 if (ret
!= -EEXIST
) {
1352 free_extent_map(em
);
1355 btrfs_drop_extent_cache(inode
, em
->start
,
1356 em
->start
+ em
->len
- 1, 0);
1358 type
= BTRFS_ORDERED_PREALLOC
;
1360 type
= BTRFS_ORDERED_NOCOW
;
1363 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1364 num_bytes
, num_bytes
, type
);
1365 BUG_ON(ret
); /* -ENOMEM */
1367 if (root
->root_key
.objectid
==
1368 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1369 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1372 btrfs_abort_transaction(trans
, root
, ret
);
1377 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1378 cur_offset
, cur_offset
+ num_bytes
- 1,
1379 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1380 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1381 EXTENT_SET_PRIVATE2
);
1382 cur_offset
= extent_end
;
1383 if (cur_offset
> end
)
1386 btrfs_release_path(path
);
1388 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1389 cow_start
= cur_offset
;
1393 if (cow_start
!= (u64
)-1) {
1394 ret
= __cow_file_range(trans
, inode
, root
, locked_page
,
1396 page_started
, nr_written
, 1);
1398 btrfs_abort_transaction(trans
, root
, ret
);
1404 err
= btrfs_end_transaction(trans
, root
);
1408 if (ret
&& cur_offset
< end
)
1409 extent_clear_unlock_delalloc(inode
,
1410 &BTRFS_I(inode
)->io_tree
,
1411 cur_offset
, end
, locked_page
,
1412 EXTENT_CLEAR_UNLOCK_PAGE
|
1413 EXTENT_CLEAR_UNLOCK
|
1414 EXTENT_CLEAR_DELALLOC
|
1415 EXTENT_CLEAR_DIRTY
|
1416 EXTENT_SET_WRITEBACK
|
1417 EXTENT_END_WRITEBACK
);
1419 btrfs_free_path(path
);
1424 * extent_io.c call back to do delayed allocation processing
1426 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1427 u64 start
, u64 end
, int *page_started
,
1428 unsigned long *nr_written
)
1431 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1433 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) {
1434 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1435 page_started
, 1, nr_written
);
1436 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
) {
1437 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1438 page_started
, 0, nr_written
);
1439 } else if (!btrfs_test_opt(root
, COMPRESS
) &&
1440 !(BTRFS_I(inode
)->force_compress
) &&
1441 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
)) {
1442 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1443 page_started
, nr_written
, 1);
1445 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1446 &BTRFS_I(inode
)->runtime_flags
);
1447 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1448 page_started
, nr_written
);
1453 static void btrfs_split_extent_hook(struct inode
*inode
,
1454 struct extent_state
*orig
, u64 split
)
1456 /* not delalloc, ignore it */
1457 if (!(orig
->state
& EXTENT_DELALLOC
))
1460 spin_lock(&BTRFS_I(inode
)->lock
);
1461 BTRFS_I(inode
)->outstanding_extents
++;
1462 spin_unlock(&BTRFS_I(inode
)->lock
);
1466 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1467 * extents so we can keep track of new extents that are just merged onto old
1468 * extents, such as when we are doing sequential writes, so we can properly
1469 * account for the metadata space we'll need.
1471 static void btrfs_merge_extent_hook(struct inode
*inode
,
1472 struct extent_state
*new,
1473 struct extent_state
*other
)
1475 /* not delalloc, ignore it */
1476 if (!(other
->state
& EXTENT_DELALLOC
))
1479 spin_lock(&BTRFS_I(inode
)->lock
);
1480 BTRFS_I(inode
)->outstanding_extents
--;
1481 spin_unlock(&BTRFS_I(inode
)->lock
);
1485 * extent_io.c set_bit_hook, used to track delayed allocation
1486 * bytes in this file, and to maintain the list of inodes that
1487 * have pending delalloc work to be done.
1489 static void btrfs_set_bit_hook(struct inode
*inode
,
1490 struct extent_state
*state
, int *bits
)
1494 * set_bit and clear bit hooks normally require _irqsave/restore
1495 * but in this case, we are only testing for the DELALLOC
1496 * bit, which is only set or cleared with irqs on
1498 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1499 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1500 u64 len
= state
->end
+ 1 - state
->start
;
1501 bool do_list
= !btrfs_is_free_space_inode(inode
);
1503 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1504 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1506 spin_lock(&BTRFS_I(inode
)->lock
);
1507 BTRFS_I(inode
)->outstanding_extents
++;
1508 spin_unlock(&BTRFS_I(inode
)->lock
);
1511 spin_lock(&root
->fs_info
->delalloc_lock
);
1512 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1513 root
->fs_info
->delalloc_bytes
+= len
;
1514 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1515 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1516 &root
->fs_info
->delalloc_inodes
);
1518 spin_unlock(&root
->fs_info
->delalloc_lock
);
1523 * extent_io.c clear_bit_hook, see set_bit_hook for why
1525 static void btrfs_clear_bit_hook(struct inode
*inode
,
1526 struct extent_state
*state
, int *bits
)
1529 * set_bit and clear bit hooks normally require _irqsave/restore
1530 * but in this case, we are only testing for the DELALLOC
1531 * bit, which is only set or cleared with irqs on
1533 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1534 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1535 u64 len
= state
->end
+ 1 - state
->start
;
1536 bool do_list
= !btrfs_is_free_space_inode(inode
);
1538 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1539 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1540 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1541 spin_lock(&BTRFS_I(inode
)->lock
);
1542 BTRFS_I(inode
)->outstanding_extents
--;
1543 spin_unlock(&BTRFS_I(inode
)->lock
);
1546 if (*bits
& EXTENT_DO_ACCOUNTING
)
1547 btrfs_delalloc_release_metadata(inode
, len
);
1549 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1551 btrfs_free_reserved_data_space(inode
, len
);
1553 spin_lock(&root
->fs_info
->delalloc_lock
);
1554 root
->fs_info
->delalloc_bytes
-= len
;
1555 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1557 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1558 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1559 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1561 spin_unlock(&root
->fs_info
->delalloc_lock
);
1566 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1567 * we don't create bios that span stripes or chunks
1569 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1570 size_t size
, struct bio
*bio
,
1571 unsigned long bio_flags
)
1573 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1574 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1579 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1582 length
= bio
->bi_size
;
1583 map_length
= length
;
1584 ret
= btrfs_map_block(root
->fs_info
, READ
, logical
,
1585 &map_length
, NULL
, 0);
1586 /* Will always return 0 with map_multi == NULL */
1588 if (map_length
< length
+ size
)
1594 * in order to insert checksums into the metadata in large chunks,
1595 * we wait until bio submission time. All the pages in the bio are
1596 * checksummed and sums are attached onto the ordered extent record.
1598 * At IO completion time the cums attached on the ordered extent record
1599 * are inserted into the btree
1601 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1602 struct bio
*bio
, int mirror_num
,
1603 unsigned long bio_flags
,
1606 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1609 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1610 BUG_ON(ret
); /* -ENOMEM */
1615 * in order to insert checksums into the metadata in large chunks,
1616 * we wait until bio submission time. All the pages in the bio are
1617 * checksummed and sums are attached onto the ordered extent record.
1619 * At IO completion time the cums attached on the ordered extent record
1620 * are inserted into the btree
1622 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1623 int mirror_num
, unsigned long bio_flags
,
1626 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1629 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1631 bio_endio(bio
, ret
);
1636 * extent_io.c submission hook. This does the right thing for csum calculation
1637 * on write, or reading the csums from the tree before a read
1639 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1640 int mirror_num
, unsigned long bio_flags
,
1643 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1647 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1649 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1651 if (btrfs_is_free_space_inode(inode
))
1654 if (!(rw
& REQ_WRITE
)) {
1655 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, metadata
);
1659 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1660 ret
= btrfs_submit_compressed_read(inode
, bio
,
1664 } else if (!skip_sum
) {
1665 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1670 } else if (async
&& !skip_sum
) {
1671 /* csum items have already been cloned */
1672 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1674 /* we're doing a write, do the async checksumming */
1675 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1676 inode
, rw
, bio
, mirror_num
,
1677 bio_flags
, bio_offset
,
1678 __btrfs_submit_bio_start
,
1679 __btrfs_submit_bio_done
);
1681 } else if (!skip_sum
) {
1682 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1688 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1692 bio_endio(bio
, ret
);
1697 * given a list of ordered sums record them in the inode. This happens
1698 * at IO completion time based on sums calculated at bio submission time.
1700 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1701 struct inode
*inode
, u64 file_offset
,
1702 struct list_head
*list
)
1704 struct btrfs_ordered_sum
*sum
;
1706 list_for_each_entry(sum
, list
, list
) {
1707 btrfs_csum_file_blocks(trans
,
1708 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1713 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1714 struct extent_state
**cached_state
)
1716 WARN_ON((end
& (PAGE_CACHE_SIZE
- 1)) == 0);
1717 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1718 cached_state
, GFP_NOFS
);
1721 /* see btrfs_writepage_start_hook for details on why this is required */
1722 struct btrfs_writepage_fixup
{
1724 struct btrfs_work work
;
1727 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1729 struct btrfs_writepage_fixup
*fixup
;
1730 struct btrfs_ordered_extent
*ordered
;
1731 struct extent_state
*cached_state
= NULL
;
1733 struct inode
*inode
;
1738 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1742 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1743 ClearPageChecked(page
);
1747 inode
= page
->mapping
->host
;
1748 page_start
= page_offset(page
);
1749 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1751 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1754 /* already ordered? We're done */
1755 if (PagePrivate2(page
))
1758 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1760 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1761 page_end
, &cached_state
, GFP_NOFS
);
1763 btrfs_start_ordered_extent(inode
, ordered
, 1);
1764 btrfs_put_ordered_extent(ordered
);
1768 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
1770 mapping_set_error(page
->mapping
, ret
);
1771 end_extent_writepage(page
, ret
, page_start
, page_end
);
1772 ClearPageChecked(page
);
1776 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1777 ClearPageChecked(page
);
1778 set_page_dirty(page
);
1780 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1781 &cached_state
, GFP_NOFS
);
1784 page_cache_release(page
);
1789 * There are a few paths in the higher layers of the kernel that directly
1790 * set the page dirty bit without asking the filesystem if it is a
1791 * good idea. This causes problems because we want to make sure COW
1792 * properly happens and the data=ordered rules are followed.
1794 * In our case any range that doesn't have the ORDERED bit set
1795 * hasn't been properly setup for IO. We kick off an async process
1796 * to fix it up. The async helper will wait for ordered extents, set
1797 * the delalloc bit and make it safe to write the page.
1799 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1801 struct inode
*inode
= page
->mapping
->host
;
1802 struct btrfs_writepage_fixup
*fixup
;
1803 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1805 /* this page is properly in the ordered list */
1806 if (TestClearPagePrivate2(page
))
1809 if (PageChecked(page
))
1812 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1816 SetPageChecked(page
);
1817 page_cache_get(page
);
1818 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1820 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1824 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1825 struct inode
*inode
, u64 file_pos
,
1826 u64 disk_bytenr
, u64 disk_num_bytes
,
1827 u64 num_bytes
, u64 ram_bytes
,
1828 u8 compression
, u8 encryption
,
1829 u16 other_encoding
, int extent_type
)
1831 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1832 struct btrfs_file_extent_item
*fi
;
1833 struct btrfs_path
*path
;
1834 struct extent_buffer
*leaf
;
1835 struct btrfs_key ins
;
1838 path
= btrfs_alloc_path();
1842 path
->leave_spinning
= 1;
1845 * we may be replacing one extent in the tree with another.
1846 * The new extent is pinned in the extent map, and we don't want
1847 * to drop it from the cache until it is completely in the btree.
1849 * So, tell btrfs_drop_extents to leave this extent in the cache.
1850 * the caller is expected to unpin it and allow it to be merged
1853 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1854 file_pos
+ num_bytes
, 0);
1858 ins
.objectid
= btrfs_ino(inode
);
1859 ins
.offset
= file_pos
;
1860 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1861 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1864 leaf
= path
->nodes
[0];
1865 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1866 struct btrfs_file_extent_item
);
1867 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1868 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1869 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1870 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1871 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1872 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1873 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1874 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1875 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1876 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1878 btrfs_mark_buffer_dirty(leaf
);
1879 btrfs_release_path(path
);
1881 inode_add_bytes(inode
, num_bytes
);
1883 ins
.objectid
= disk_bytenr
;
1884 ins
.offset
= disk_num_bytes
;
1885 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1886 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1887 root
->root_key
.objectid
,
1888 btrfs_ino(inode
), file_pos
, &ins
);
1890 btrfs_free_path(path
);
1896 * helper function for btrfs_finish_ordered_io, this
1897 * just reads in some of the csum leaves to prime them into ram
1898 * before we start the transaction. It limits the amount of btree
1899 * reads required while inside the transaction.
1901 /* as ordered data IO finishes, this gets called so we can finish
1902 * an ordered extent if the range of bytes in the file it covers are
1905 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
1907 struct inode
*inode
= ordered_extent
->inode
;
1908 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1909 struct btrfs_trans_handle
*trans
= NULL
;
1910 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1911 struct extent_state
*cached_state
= NULL
;
1912 int compress_type
= 0;
1916 nolock
= btrfs_is_free_space_inode(inode
);
1918 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
1923 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1924 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
1925 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1927 trans
= btrfs_join_transaction_nolock(root
);
1929 trans
= btrfs_join_transaction(root
);
1930 if (IS_ERR(trans
)) {
1931 ret
= PTR_ERR(trans
);
1935 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1936 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1937 if (ret
) /* -ENOMEM or corruption */
1938 btrfs_abort_transaction(trans
, root
, ret
);
1942 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1943 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1947 trans
= btrfs_join_transaction_nolock(root
);
1949 trans
= btrfs_join_transaction(root
);
1950 if (IS_ERR(trans
)) {
1951 ret
= PTR_ERR(trans
);
1955 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1957 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1958 compress_type
= ordered_extent
->compress_type
;
1959 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1960 BUG_ON(compress_type
);
1961 ret
= btrfs_mark_extent_written(trans
, inode
,
1962 ordered_extent
->file_offset
,
1963 ordered_extent
->file_offset
+
1964 ordered_extent
->len
);
1966 BUG_ON(root
== root
->fs_info
->tree_root
);
1967 ret
= insert_reserved_file_extent(trans
, inode
,
1968 ordered_extent
->file_offset
,
1969 ordered_extent
->start
,
1970 ordered_extent
->disk_len
,
1971 ordered_extent
->len
,
1972 ordered_extent
->len
,
1973 compress_type
, 0, 0,
1974 BTRFS_FILE_EXTENT_REG
);
1976 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1977 ordered_extent
->file_offset
, ordered_extent
->len
,
1980 btrfs_abort_transaction(trans
, root
, ret
);
1984 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1985 &ordered_extent
->list
);
1987 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1988 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1989 if (ret
) { /* -ENOMEM or corruption */
1990 btrfs_abort_transaction(trans
, root
, ret
);
1995 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1996 ordered_extent
->file_offset
+
1997 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1999 if (root
!= root
->fs_info
->tree_root
)
2000 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
2002 btrfs_end_transaction(trans
, root
);
2005 clear_extent_uptodate(io_tree
, ordered_extent
->file_offset
,
2006 ordered_extent
->file_offset
+
2007 ordered_extent
->len
- 1, NULL
, GFP_NOFS
);
2010 * This needs to be done to make sure anybody waiting knows we are done
2011 * updating everything for this ordered extent.
2013 btrfs_remove_ordered_extent(inode
, ordered_extent
);
2016 btrfs_put_ordered_extent(ordered_extent
);
2017 /* once for the tree */
2018 btrfs_put_ordered_extent(ordered_extent
);
2023 static void finish_ordered_fn(struct btrfs_work
*work
)
2025 struct btrfs_ordered_extent
*ordered_extent
;
2026 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
2027 btrfs_finish_ordered_io(ordered_extent
);
2030 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
2031 struct extent_state
*state
, int uptodate
)
2033 struct inode
*inode
= page
->mapping
->host
;
2034 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2035 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
2036 struct btrfs_workers
*workers
;
2038 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
2040 ClearPagePrivate2(page
);
2041 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
2042 end
- start
+ 1, uptodate
))
2045 ordered_extent
->work
.func
= finish_ordered_fn
;
2046 ordered_extent
->work
.flags
= 0;
2048 if (btrfs_is_free_space_inode(inode
))
2049 workers
= &root
->fs_info
->endio_freespace_worker
;
2051 workers
= &root
->fs_info
->endio_write_workers
;
2052 btrfs_queue_worker(workers
, &ordered_extent
->work
);
2058 * when reads are done, we need to check csums to verify the data is correct
2059 * if there's a match, we allow the bio to finish. If not, the code in
2060 * extent_io.c will try to find good copies for us.
2062 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
2063 struct extent_state
*state
, int mirror
)
2065 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
2066 struct inode
*inode
= page
->mapping
->host
;
2067 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2069 u64
private = ~(u32
)0;
2071 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2074 if (PageChecked(page
)) {
2075 ClearPageChecked(page
);
2079 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
2082 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
2083 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
2084 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
2089 if (state
&& state
->start
== start
) {
2090 private = state
->private;
2093 ret
= get_state_private(io_tree
, start
, &private);
2095 kaddr
= kmap_atomic(page
);
2099 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
2100 btrfs_csum_final(csum
, (char *)&csum
);
2101 if (csum
!= private)
2104 kunmap_atomic(kaddr
);
2109 printk_ratelimited(KERN_INFO
"btrfs csum failed ino %llu off %llu csum %u "
2111 (unsigned long long)btrfs_ino(page
->mapping
->host
),
2112 (unsigned long long)start
, csum
,
2113 (unsigned long long)private);
2114 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2115 flush_dcache_page(page
);
2116 kunmap_atomic(kaddr
);
2122 struct delayed_iput
{
2123 struct list_head list
;
2124 struct inode
*inode
;
2127 /* JDM: If this is fs-wide, why can't we add a pointer to
2128 * btrfs_inode instead and avoid the allocation? */
2129 void btrfs_add_delayed_iput(struct inode
*inode
)
2131 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2132 struct delayed_iput
*delayed
;
2134 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2137 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2138 delayed
->inode
= inode
;
2140 spin_lock(&fs_info
->delayed_iput_lock
);
2141 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2142 spin_unlock(&fs_info
->delayed_iput_lock
);
2145 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2148 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2149 struct delayed_iput
*delayed
;
2152 spin_lock(&fs_info
->delayed_iput_lock
);
2153 empty
= list_empty(&fs_info
->delayed_iputs
);
2154 spin_unlock(&fs_info
->delayed_iput_lock
);
2158 spin_lock(&fs_info
->delayed_iput_lock
);
2159 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2160 spin_unlock(&fs_info
->delayed_iput_lock
);
2162 while (!list_empty(&list
)) {
2163 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2164 list_del(&delayed
->list
);
2165 iput(delayed
->inode
);
2170 enum btrfs_orphan_cleanup_state
{
2171 ORPHAN_CLEANUP_STARTED
= 1,
2172 ORPHAN_CLEANUP_DONE
= 2,
2176 * This is called in transaction commit time. If there are no orphan
2177 * files in the subvolume, it removes orphan item and frees block_rsv
2180 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2181 struct btrfs_root
*root
)
2183 struct btrfs_block_rsv
*block_rsv
;
2186 if (atomic_read(&root
->orphan_inodes
) ||
2187 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2190 spin_lock(&root
->orphan_lock
);
2191 if (atomic_read(&root
->orphan_inodes
)) {
2192 spin_unlock(&root
->orphan_lock
);
2196 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
2197 spin_unlock(&root
->orphan_lock
);
2201 block_rsv
= root
->orphan_block_rsv
;
2202 root
->orphan_block_rsv
= NULL
;
2203 spin_unlock(&root
->orphan_lock
);
2205 if (root
->orphan_item_inserted
&&
2206 btrfs_root_refs(&root
->root_item
) > 0) {
2207 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2208 root
->root_key
.objectid
);
2210 root
->orphan_item_inserted
= 0;
2214 WARN_ON(block_rsv
->size
> 0);
2215 btrfs_free_block_rsv(root
, block_rsv
);
2220 * This creates an orphan entry for the given inode in case something goes
2221 * wrong in the middle of an unlink/truncate.
2223 * NOTE: caller of this function should reserve 5 units of metadata for
2226 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2228 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2229 struct btrfs_block_rsv
*block_rsv
= NULL
;
2234 if (!root
->orphan_block_rsv
) {
2235 block_rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
2240 spin_lock(&root
->orphan_lock
);
2241 if (!root
->orphan_block_rsv
) {
2242 root
->orphan_block_rsv
= block_rsv
;
2243 } else if (block_rsv
) {
2244 btrfs_free_block_rsv(root
, block_rsv
);
2248 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2249 &BTRFS_I(inode
)->runtime_flags
)) {
2252 * For proper ENOSPC handling, we should do orphan
2253 * cleanup when mounting. But this introduces backward
2254 * compatibility issue.
2256 if (!xchg(&root
->orphan_item_inserted
, 1))
2262 atomic_inc(&root
->orphan_inodes
);
2265 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
2266 &BTRFS_I(inode
)->runtime_flags
))
2268 spin_unlock(&root
->orphan_lock
);
2270 /* grab metadata reservation from transaction handle */
2272 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2273 BUG_ON(ret
); /* -ENOSPC in reservation; Logic error? JDM */
2276 /* insert an orphan item to track this unlinked/truncated file */
2278 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
2279 if (ret
&& ret
!= -EEXIST
) {
2280 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2281 &BTRFS_I(inode
)->runtime_flags
);
2282 btrfs_abort_transaction(trans
, root
, ret
);
2288 /* insert an orphan item to track subvolume contains orphan files */
2290 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2291 root
->root_key
.objectid
);
2292 if (ret
&& ret
!= -EEXIST
) {
2293 btrfs_abort_transaction(trans
, root
, ret
);
2301 * We have done the truncate/delete so we can go ahead and remove the orphan
2302 * item for this particular inode.
2304 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2306 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2307 int delete_item
= 0;
2308 int release_rsv
= 0;
2311 spin_lock(&root
->orphan_lock
);
2312 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2313 &BTRFS_I(inode
)->runtime_flags
))
2316 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
2317 &BTRFS_I(inode
)->runtime_flags
))
2319 spin_unlock(&root
->orphan_lock
);
2321 if (trans
&& delete_item
) {
2322 ret
= btrfs_del_orphan_item(trans
, root
, btrfs_ino(inode
));
2323 BUG_ON(ret
); /* -ENOMEM or corruption (JDM: Recheck) */
2327 btrfs_orphan_release_metadata(inode
);
2328 atomic_dec(&root
->orphan_inodes
);
2335 * this cleans up any orphans that may be left on the list from the last use
2338 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2340 struct btrfs_path
*path
;
2341 struct extent_buffer
*leaf
;
2342 struct btrfs_key key
, found_key
;
2343 struct btrfs_trans_handle
*trans
;
2344 struct inode
*inode
;
2345 u64 last_objectid
= 0;
2346 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2348 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2351 path
= btrfs_alloc_path();
2358 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2359 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2360 key
.offset
= (u64
)-1;
2363 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2368 * if ret == 0 means we found what we were searching for, which
2369 * is weird, but possible, so only screw with path if we didn't
2370 * find the key and see if we have stuff that matches
2374 if (path
->slots
[0] == 0)
2379 /* pull out the item */
2380 leaf
= path
->nodes
[0];
2381 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2383 /* make sure the item matches what we want */
2384 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2386 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2389 /* release the path since we're done with it */
2390 btrfs_release_path(path
);
2393 * this is where we are basically btrfs_lookup, without the
2394 * crossing root thing. we store the inode number in the
2395 * offset of the orphan item.
2398 if (found_key
.offset
== last_objectid
) {
2399 printk(KERN_ERR
"btrfs: Error removing orphan entry, "
2400 "stopping orphan cleanup\n");
2405 last_objectid
= found_key
.offset
;
2407 found_key
.objectid
= found_key
.offset
;
2408 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2409 found_key
.offset
= 0;
2410 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2411 ret
= PTR_RET(inode
);
2412 if (ret
&& ret
!= -ESTALE
)
2415 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
2416 struct btrfs_root
*dead_root
;
2417 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2418 int is_dead_root
= 0;
2421 * this is an orphan in the tree root. Currently these
2422 * could come from 2 sources:
2423 * a) a snapshot deletion in progress
2424 * b) a free space cache inode
2425 * We need to distinguish those two, as the snapshot
2426 * orphan must not get deleted.
2427 * find_dead_roots already ran before us, so if this
2428 * is a snapshot deletion, we should find the root
2429 * in the dead_roots list
2431 spin_lock(&fs_info
->trans_lock
);
2432 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
2434 if (dead_root
->root_key
.objectid
==
2435 found_key
.objectid
) {
2440 spin_unlock(&fs_info
->trans_lock
);
2442 /* prevent this orphan from being found again */
2443 key
.offset
= found_key
.objectid
- 1;
2448 * Inode is already gone but the orphan item is still there,
2449 * kill the orphan item.
2451 if (ret
== -ESTALE
) {
2452 trans
= btrfs_start_transaction(root
, 1);
2453 if (IS_ERR(trans
)) {
2454 ret
= PTR_ERR(trans
);
2457 printk(KERN_ERR
"auto deleting %Lu\n",
2458 found_key
.objectid
);
2459 ret
= btrfs_del_orphan_item(trans
, root
,
2460 found_key
.objectid
);
2461 BUG_ON(ret
); /* -ENOMEM or corruption (JDM: Recheck) */
2462 btrfs_end_transaction(trans
, root
);
2467 * add this inode to the orphan list so btrfs_orphan_del does
2468 * the proper thing when we hit it
2470 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
2471 &BTRFS_I(inode
)->runtime_flags
);
2473 /* if we have links, this was a truncate, lets do that */
2474 if (inode
->i_nlink
) {
2475 if (!S_ISREG(inode
->i_mode
)) {
2481 ret
= btrfs_truncate(inode
);
2486 /* this will do delete_inode and everything for us */
2491 /* release the path since we're done with it */
2492 btrfs_release_path(path
);
2494 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2496 if (root
->orphan_block_rsv
)
2497 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2500 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2501 trans
= btrfs_join_transaction(root
);
2503 btrfs_end_transaction(trans
, root
);
2507 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2509 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2513 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2514 btrfs_free_path(path
);
2519 * very simple check to peek ahead in the leaf looking for xattrs. If we
2520 * don't find any xattrs, we know there can't be any acls.
2522 * slot is the slot the inode is in, objectid is the objectid of the inode
2524 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2525 int slot
, u64 objectid
)
2527 u32 nritems
= btrfs_header_nritems(leaf
);
2528 struct btrfs_key found_key
;
2532 while (slot
< nritems
) {
2533 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2535 /* we found a different objectid, there must not be acls */
2536 if (found_key
.objectid
!= objectid
)
2539 /* we found an xattr, assume we've got an acl */
2540 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2544 * we found a key greater than an xattr key, there can't
2545 * be any acls later on
2547 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2554 * it goes inode, inode backrefs, xattrs, extents,
2555 * so if there are a ton of hard links to an inode there can
2556 * be a lot of backrefs. Don't waste time searching too hard,
2557 * this is just an optimization
2562 /* we hit the end of the leaf before we found an xattr or
2563 * something larger than an xattr. We have to assume the inode
2570 * read an inode from the btree into the in-memory inode
2572 static void btrfs_read_locked_inode(struct inode
*inode
)
2574 struct btrfs_path
*path
;
2575 struct extent_buffer
*leaf
;
2576 struct btrfs_inode_item
*inode_item
;
2577 struct btrfs_timespec
*tspec
;
2578 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2579 struct btrfs_key location
;
2583 bool filled
= false;
2585 ret
= btrfs_fill_inode(inode
, &rdev
);
2589 path
= btrfs_alloc_path();
2593 path
->leave_spinning
= 1;
2594 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2596 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2600 leaf
= path
->nodes
[0];
2605 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2606 struct btrfs_inode_item
);
2607 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2608 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
2609 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
2610 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
2611 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2613 tspec
= btrfs_inode_atime(inode_item
);
2614 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2615 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2617 tspec
= btrfs_inode_mtime(inode_item
);
2618 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2619 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2621 tspec
= btrfs_inode_ctime(inode_item
);
2622 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2623 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2625 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2626 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2627 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
2630 * If we were modified in the current generation and evicted from memory
2631 * and then re-read we need to do a full sync since we don't have any
2632 * idea about which extents were modified before we were evicted from
2635 if (BTRFS_I(inode
)->last_trans
== root
->fs_info
->generation
)
2636 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2637 &BTRFS_I(inode
)->runtime_flags
);
2639 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
2640 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2642 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2644 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2645 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2648 * try to precache a NULL acl entry for files that don't have
2649 * any xattrs or acls
2651 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
2654 cache_no_acl(inode
);
2656 btrfs_free_path(path
);
2658 switch (inode
->i_mode
& S_IFMT
) {
2660 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2661 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2662 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2663 inode
->i_fop
= &btrfs_file_operations
;
2664 inode
->i_op
= &btrfs_file_inode_operations
;
2667 inode
->i_fop
= &btrfs_dir_file_operations
;
2668 if (root
== root
->fs_info
->tree_root
)
2669 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2671 inode
->i_op
= &btrfs_dir_inode_operations
;
2674 inode
->i_op
= &btrfs_symlink_inode_operations
;
2675 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2676 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2679 inode
->i_op
= &btrfs_special_inode_operations
;
2680 init_special_inode(inode
, inode
->i_mode
, rdev
);
2684 btrfs_update_iflags(inode
);
2688 btrfs_free_path(path
);
2689 make_bad_inode(inode
);
2693 * given a leaf and an inode, copy the inode fields into the leaf
2695 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2696 struct extent_buffer
*leaf
,
2697 struct btrfs_inode_item
*item
,
2698 struct inode
*inode
)
2700 btrfs_set_inode_uid(leaf
, item
, i_uid_read(inode
));
2701 btrfs_set_inode_gid(leaf
, item
, i_gid_read(inode
));
2702 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2703 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2704 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2706 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2707 inode
->i_atime
.tv_sec
);
2708 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2709 inode
->i_atime
.tv_nsec
);
2711 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2712 inode
->i_mtime
.tv_sec
);
2713 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2714 inode
->i_mtime
.tv_nsec
);
2716 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2717 inode
->i_ctime
.tv_sec
);
2718 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2719 inode
->i_ctime
.tv_nsec
);
2721 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2722 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2723 btrfs_set_inode_sequence(leaf
, item
, inode
->i_version
);
2724 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2725 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2726 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2727 btrfs_set_inode_block_group(leaf
, item
, 0);
2731 * copy everything in the in-memory inode into the btree.
2733 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
2734 struct btrfs_root
*root
, struct inode
*inode
)
2736 struct btrfs_inode_item
*inode_item
;
2737 struct btrfs_path
*path
;
2738 struct extent_buffer
*leaf
;
2741 path
= btrfs_alloc_path();
2745 path
->leave_spinning
= 1;
2746 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
2754 btrfs_unlock_up_safe(path
, 1);
2755 leaf
= path
->nodes
[0];
2756 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2757 struct btrfs_inode_item
);
2759 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2760 btrfs_mark_buffer_dirty(leaf
);
2761 btrfs_set_inode_last_trans(trans
, inode
);
2764 btrfs_free_path(path
);
2769 * copy everything in the in-memory inode into the btree.
2771 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2772 struct btrfs_root
*root
, struct inode
*inode
)
2777 * If the inode is a free space inode, we can deadlock during commit
2778 * if we put it into the delayed code.
2780 * The data relocation inode should also be directly updated
2783 if (!btrfs_is_free_space_inode(inode
)
2784 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
2785 btrfs_update_root_times(trans
, root
);
2787 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
2789 btrfs_set_inode_last_trans(trans
, inode
);
2793 return btrfs_update_inode_item(trans
, root
, inode
);
2796 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
2797 struct btrfs_root
*root
,
2798 struct inode
*inode
)
2802 ret
= btrfs_update_inode(trans
, root
, inode
);
2804 return btrfs_update_inode_item(trans
, root
, inode
);
2809 * unlink helper that gets used here in inode.c and in the tree logging
2810 * recovery code. It remove a link in a directory with a given name, and
2811 * also drops the back refs in the inode to the directory
2813 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2814 struct btrfs_root
*root
,
2815 struct inode
*dir
, struct inode
*inode
,
2816 const char *name
, int name_len
)
2818 struct btrfs_path
*path
;
2820 struct extent_buffer
*leaf
;
2821 struct btrfs_dir_item
*di
;
2822 struct btrfs_key key
;
2824 u64 ino
= btrfs_ino(inode
);
2825 u64 dir_ino
= btrfs_ino(dir
);
2827 path
= btrfs_alloc_path();
2833 path
->leave_spinning
= 1;
2834 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2835 name
, name_len
, -1);
2844 leaf
= path
->nodes
[0];
2845 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2846 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2849 btrfs_release_path(path
);
2851 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
2854 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2855 "inode %llu parent %llu\n", name_len
, name
,
2856 (unsigned long long)ino
, (unsigned long long)dir_ino
);
2857 btrfs_abort_transaction(trans
, root
, ret
);
2861 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2863 btrfs_abort_transaction(trans
, root
, ret
);
2867 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2869 if (ret
!= 0 && ret
!= -ENOENT
) {
2870 btrfs_abort_transaction(trans
, root
, ret
);
2874 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2879 btrfs_free_path(path
);
2883 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2884 inode_inc_iversion(inode
);
2885 inode_inc_iversion(dir
);
2886 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2887 ret
= btrfs_update_inode(trans
, root
, dir
);
2892 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2893 struct btrfs_root
*root
,
2894 struct inode
*dir
, struct inode
*inode
,
2895 const char *name
, int name_len
)
2898 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2900 btrfs_drop_nlink(inode
);
2901 ret
= btrfs_update_inode(trans
, root
, inode
);
2907 /* helper to check if there is any shared block in the path */
2908 static int check_path_shared(struct btrfs_root
*root
,
2909 struct btrfs_path
*path
)
2911 struct extent_buffer
*eb
;
2915 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2918 if (!path
->nodes
[level
])
2920 eb
= path
->nodes
[level
];
2921 if (!btrfs_block_can_be_shared(root
, eb
))
2923 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2932 * helper to start transaction for unlink and rmdir.
2934 * unlink and rmdir are special in btrfs, they do not always free space.
2935 * so in enospc case, we should make sure they will free space before
2936 * allowing them to use the global metadata reservation.
2938 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2939 struct dentry
*dentry
)
2941 struct btrfs_trans_handle
*trans
;
2942 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2943 struct btrfs_path
*path
;
2944 struct btrfs_dir_item
*di
;
2945 struct inode
*inode
= dentry
->d_inode
;
2950 u64 ino
= btrfs_ino(inode
);
2951 u64 dir_ino
= btrfs_ino(dir
);
2954 * 1 for the possible orphan item
2955 * 1 for the dir item
2956 * 1 for the dir index
2957 * 1 for the inode ref
2958 * 1 for the inode ref in the tree log
2959 * 2 for the dir entries in the log
2962 trans
= btrfs_start_transaction(root
, 8);
2963 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2966 if (ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2967 return ERR_PTR(-ENOSPC
);
2969 /* check if there is someone else holds reference */
2970 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2971 return ERR_PTR(-ENOSPC
);
2973 if (atomic_read(&inode
->i_count
) > 2)
2974 return ERR_PTR(-ENOSPC
);
2976 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2977 return ERR_PTR(-ENOSPC
);
2979 path
= btrfs_alloc_path();
2981 root
->fs_info
->enospc_unlink
= 0;
2982 return ERR_PTR(-ENOMEM
);
2985 /* 1 for the orphan item */
2986 trans
= btrfs_start_transaction(root
, 1);
2987 if (IS_ERR(trans
)) {
2988 btrfs_free_path(path
);
2989 root
->fs_info
->enospc_unlink
= 0;
2993 path
->skip_locking
= 1;
2994 path
->search_commit_root
= 1;
2996 ret
= btrfs_lookup_inode(trans
, root
, path
,
2997 &BTRFS_I(dir
)->location
, 0);
3003 if (check_path_shared(root
, path
))
3008 btrfs_release_path(path
);
3010 ret
= btrfs_lookup_inode(trans
, root
, path
,
3011 &BTRFS_I(inode
)->location
, 0);
3017 if (check_path_shared(root
, path
))
3022 btrfs_release_path(path
);
3024 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
3025 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
3031 BUG_ON(ret
== 0); /* Corruption */
3032 if (check_path_shared(root
, path
))
3034 btrfs_release_path(path
);
3042 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3043 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
3049 if (check_path_shared(root
, path
))
3055 btrfs_release_path(path
);
3057 ret
= btrfs_get_inode_ref_index(trans
, root
, path
, dentry
->d_name
.name
,
3058 dentry
->d_name
.len
, ino
, dir_ino
, 0,
3065 if (check_path_shared(root
, path
))
3068 btrfs_release_path(path
);
3071 * This is a commit root search, if we can lookup inode item and other
3072 * relative items in the commit root, it means the transaction of
3073 * dir/file creation has been committed, and the dir index item that we
3074 * delay to insert has also been inserted into the commit root. So
3075 * we needn't worry about the delayed insertion of the dir index item
3078 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir_ino
, index
,
3079 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
3084 BUG_ON(ret
== -ENOENT
);
3085 if (check_path_shared(root
, path
))
3090 btrfs_free_path(path
);
3091 /* Migrate the orphan reservation over */
3093 err
= btrfs_block_rsv_migrate(trans
->block_rsv
,
3094 &root
->fs_info
->global_block_rsv
,
3095 trans
->bytes_reserved
);
3098 btrfs_end_transaction(trans
, root
);
3099 root
->fs_info
->enospc_unlink
= 0;
3100 return ERR_PTR(err
);
3103 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
3107 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
3108 struct btrfs_root
*root
)
3110 if (trans
->block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
) {
3111 btrfs_block_rsv_release(root
, trans
->block_rsv
,
3112 trans
->bytes_reserved
);
3113 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3114 BUG_ON(!root
->fs_info
->enospc_unlink
);
3115 root
->fs_info
->enospc_unlink
= 0;
3117 btrfs_end_transaction(trans
, root
);
3120 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
3122 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3123 struct btrfs_trans_handle
*trans
;
3124 struct inode
*inode
= dentry
->d_inode
;
3127 trans
= __unlink_start_trans(dir
, dentry
);
3129 return PTR_ERR(trans
);
3131 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
3133 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3134 dentry
->d_name
.name
, dentry
->d_name
.len
);
3138 if (inode
->i_nlink
== 0) {
3139 ret
= btrfs_orphan_add(trans
, inode
);
3145 __unlink_end_trans(trans
, root
);
3146 btrfs_btree_balance_dirty(root
);
3150 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
3151 struct btrfs_root
*root
,
3152 struct inode
*dir
, u64 objectid
,
3153 const char *name
, int name_len
)
3155 struct btrfs_path
*path
;
3156 struct extent_buffer
*leaf
;
3157 struct btrfs_dir_item
*di
;
3158 struct btrfs_key key
;
3161 u64 dir_ino
= btrfs_ino(dir
);
3163 path
= btrfs_alloc_path();
3167 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3168 name
, name_len
, -1);
3169 if (IS_ERR_OR_NULL(di
)) {
3177 leaf
= path
->nodes
[0];
3178 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3179 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
3180 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3182 btrfs_abort_transaction(trans
, root
, ret
);
3185 btrfs_release_path(path
);
3187 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
3188 objectid
, root
->root_key
.objectid
,
3189 dir_ino
, &index
, name
, name_len
);
3191 if (ret
!= -ENOENT
) {
3192 btrfs_abort_transaction(trans
, root
, ret
);
3195 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
3197 if (IS_ERR_OR_NULL(di
)) {
3202 btrfs_abort_transaction(trans
, root
, ret
);
3206 leaf
= path
->nodes
[0];
3207 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3208 btrfs_release_path(path
);
3211 btrfs_release_path(path
);
3213 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
3215 btrfs_abort_transaction(trans
, root
, ret
);
3219 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
3220 inode_inc_iversion(dir
);
3221 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
3222 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
3224 btrfs_abort_transaction(trans
, root
, ret
);
3226 btrfs_free_path(path
);
3230 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3232 struct inode
*inode
= dentry
->d_inode
;
3234 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3235 struct btrfs_trans_handle
*trans
;
3237 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
3239 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
3242 trans
= __unlink_start_trans(dir
, dentry
);
3244 return PTR_ERR(trans
);
3246 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3247 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3248 BTRFS_I(inode
)->location
.objectid
,
3249 dentry
->d_name
.name
,
3250 dentry
->d_name
.len
);
3254 err
= btrfs_orphan_add(trans
, inode
);
3258 /* now the directory is empty */
3259 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3260 dentry
->d_name
.name
, dentry
->d_name
.len
);
3262 btrfs_i_size_write(inode
, 0);
3264 __unlink_end_trans(trans
, root
);
3265 btrfs_btree_balance_dirty(root
);
3271 * this can truncate away extent items, csum items and directory items.
3272 * It starts at a high offset and removes keys until it can't find
3273 * any higher than new_size
3275 * csum items that cross the new i_size are truncated to the new size
3278 * min_type is the minimum key type to truncate down to. If set to 0, this
3279 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3281 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3282 struct btrfs_root
*root
,
3283 struct inode
*inode
,
3284 u64 new_size
, u32 min_type
)
3286 struct btrfs_path
*path
;
3287 struct extent_buffer
*leaf
;
3288 struct btrfs_file_extent_item
*fi
;
3289 struct btrfs_key key
;
3290 struct btrfs_key found_key
;
3291 u64 extent_start
= 0;
3292 u64 extent_num_bytes
= 0;
3293 u64 extent_offset
= 0;
3295 u64 mask
= root
->sectorsize
- 1;
3296 u32 found_type
= (u8
)-1;
3299 int pending_del_nr
= 0;
3300 int pending_del_slot
= 0;
3301 int extent_type
= -1;
3304 u64 ino
= btrfs_ino(inode
);
3306 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3308 path
= btrfs_alloc_path();
3314 * We want to drop from the next block forward in case this new size is
3315 * not block aligned since we will be keeping the last block of the
3316 * extent just the way it is.
3318 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3319 btrfs_drop_extent_cache(inode
, (new_size
+ mask
) & (~mask
), (u64
)-1, 0);
3322 * This function is also used to drop the items in the log tree before
3323 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3324 * it is used to drop the loged items. So we shouldn't kill the delayed
3327 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
3328 btrfs_kill_delayed_inode_items(inode
);
3331 key
.offset
= (u64
)-1;
3335 path
->leave_spinning
= 1;
3336 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3343 /* there are no items in the tree for us to truncate, we're
3346 if (path
->slots
[0] == 0)
3353 leaf
= path
->nodes
[0];
3354 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3355 found_type
= btrfs_key_type(&found_key
);
3357 if (found_key
.objectid
!= ino
)
3360 if (found_type
< min_type
)
3363 item_end
= found_key
.offset
;
3364 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3365 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3366 struct btrfs_file_extent_item
);
3367 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3368 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3370 btrfs_file_extent_num_bytes(leaf
, fi
);
3371 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3372 item_end
+= btrfs_file_extent_inline_len(leaf
,
3377 if (found_type
> min_type
) {
3380 if (item_end
< new_size
)
3382 if (found_key
.offset
>= new_size
)
3388 /* FIXME, shrink the extent if the ref count is only 1 */
3389 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3392 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3394 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3396 u64 orig_num_bytes
=
3397 btrfs_file_extent_num_bytes(leaf
, fi
);
3398 extent_num_bytes
= new_size
-
3399 found_key
.offset
+ root
->sectorsize
- 1;
3400 extent_num_bytes
= extent_num_bytes
&
3401 ~((u64
)root
->sectorsize
- 1);
3402 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3404 num_dec
= (orig_num_bytes
-
3406 if (root
->ref_cows
&& extent_start
!= 0)
3407 inode_sub_bytes(inode
, num_dec
);
3408 btrfs_mark_buffer_dirty(leaf
);
3411 btrfs_file_extent_disk_num_bytes(leaf
,
3413 extent_offset
= found_key
.offset
-
3414 btrfs_file_extent_offset(leaf
, fi
);
3416 /* FIXME blocksize != 4096 */
3417 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3418 if (extent_start
!= 0) {
3421 inode_sub_bytes(inode
, num_dec
);
3424 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3426 * we can't truncate inline items that have had
3430 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3431 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3432 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3433 u32 size
= new_size
- found_key
.offset
;
3435 if (root
->ref_cows
) {
3436 inode_sub_bytes(inode
, item_end
+ 1 -
3440 btrfs_file_extent_calc_inline_size(size
);
3441 btrfs_truncate_item(trans
, root
, path
,
3443 } else if (root
->ref_cows
) {
3444 inode_sub_bytes(inode
, item_end
+ 1 -
3450 if (!pending_del_nr
) {
3451 /* no pending yet, add ourselves */
3452 pending_del_slot
= path
->slots
[0];
3454 } else if (pending_del_nr
&&
3455 path
->slots
[0] + 1 == pending_del_slot
) {
3456 /* hop on the pending chunk */
3458 pending_del_slot
= path
->slots
[0];
3465 if (found_extent
&& (root
->ref_cows
||
3466 root
== root
->fs_info
->tree_root
)) {
3467 btrfs_set_path_blocking(path
);
3468 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3469 extent_num_bytes
, 0,
3470 btrfs_header_owner(leaf
),
3471 ino
, extent_offset
, 0);
3475 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3478 if (path
->slots
[0] == 0 ||
3479 path
->slots
[0] != pending_del_slot
) {
3480 if (pending_del_nr
) {
3481 ret
= btrfs_del_items(trans
, root
, path
,
3485 btrfs_abort_transaction(trans
,
3491 btrfs_release_path(path
);
3498 if (pending_del_nr
) {
3499 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3502 btrfs_abort_transaction(trans
, root
, ret
);
3505 btrfs_free_path(path
);
3510 * btrfs_truncate_page - read, zero a chunk and write a page
3511 * @inode - inode that we're zeroing
3512 * @from - the offset to start zeroing
3513 * @len - the length to zero, 0 to zero the entire range respective to the
3515 * @front - zero up to the offset instead of from the offset on
3517 * This will find the page for the "from" offset and cow the page and zero the
3518 * part we want to zero. This is used with truncate and hole punching.
3520 int btrfs_truncate_page(struct inode
*inode
, loff_t from
, loff_t len
,
3523 struct address_space
*mapping
= inode
->i_mapping
;
3524 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3525 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3526 struct btrfs_ordered_extent
*ordered
;
3527 struct extent_state
*cached_state
= NULL
;
3529 u32 blocksize
= root
->sectorsize
;
3530 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3531 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3533 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
3538 if ((offset
& (blocksize
- 1)) == 0 &&
3539 (!len
|| ((len
& (blocksize
- 1)) == 0)))
3541 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3546 page
= find_or_create_page(mapping
, index
, mask
);
3548 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3553 page_start
= page_offset(page
);
3554 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3556 if (!PageUptodate(page
)) {
3557 ret
= btrfs_readpage(NULL
, page
);
3559 if (page
->mapping
!= mapping
) {
3561 page_cache_release(page
);
3564 if (!PageUptodate(page
)) {
3569 wait_on_page_writeback(page
);
3571 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
3572 set_page_extent_mapped(page
);
3574 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3576 unlock_extent_cached(io_tree
, page_start
, page_end
,
3577 &cached_state
, GFP_NOFS
);
3579 page_cache_release(page
);
3580 btrfs_start_ordered_extent(inode
, ordered
, 1);
3581 btrfs_put_ordered_extent(ordered
);
3585 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3586 EXTENT_DIRTY
| EXTENT_DELALLOC
|
3587 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
3588 0, 0, &cached_state
, GFP_NOFS
);
3590 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3593 unlock_extent_cached(io_tree
, page_start
, page_end
,
3594 &cached_state
, GFP_NOFS
);
3598 if (offset
!= PAGE_CACHE_SIZE
) {
3600 len
= PAGE_CACHE_SIZE
- offset
;
3603 memset(kaddr
, 0, offset
);
3605 memset(kaddr
+ offset
, 0, len
);
3606 flush_dcache_page(page
);
3609 ClearPageChecked(page
);
3610 set_page_dirty(page
);
3611 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3616 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3618 page_cache_release(page
);
3624 * This function puts in dummy file extents for the area we're creating a hole
3625 * for. So if we are truncating this file to a larger size we need to insert
3626 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3627 * the range between oldsize and size
3629 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3631 struct btrfs_trans_handle
*trans
;
3632 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3633 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3634 struct extent_map
*em
= NULL
;
3635 struct extent_state
*cached_state
= NULL
;
3636 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
3637 u64 mask
= root
->sectorsize
- 1;
3638 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3639 u64 block_end
= (size
+ mask
) & ~mask
;
3645 if (size
<= hole_start
)
3649 struct btrfs_ordered_extent
*ordered
;
3650 btrfs_wait_ordered_range(inode
, hole_start
,
3651 block_end
- hole_start
);
3652 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3654 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3657 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3658 &cached_state
, GFP_NOFS
);
3659 btrfs_put_ordered_extent(ordered
);
3662 cur_offset
= hole_start
;
3664 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3665 block_end
- cur_offset
, 0);
3670 last_byte
= min(extent_map_end(em
), block_end
);
3671 last_byte
= (last_byte
+ mask
) & ~mask
;
3672 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3673 struct extent_map
*hole_em
;
3674 hole_size
= last_byte
- cur_offset
;
3676 trans
= btrfs_start_transaction(root
, 3);
3677 if (IS_ERR(trans
)) {
3678 err
= PTR_ERR(trans
);
3682 err
= btrfs_drop_extents(trans
, root
, inode
,
3684 cur_offset
+ hole_size
, 1);
3686 btrfs_abort_transaction(trans
, root
, err
);
3687 btrfs_end_transaction(trans
, root
);
3691 err
= btrfs_insert_file_extent(trans
, root
,
3692 btrfs_ino(inode
), cur_offset
, 0,
3693 0, hole_size
, 0, hole_size
,
3696 btrfs_abort_transaction(trans
, root
, err
);
3697 btrfs_end_transaction(trans
, root
);
3701 btrfs_drop_extent_cache(inode
, cur_offset
,
3702 cur_offset
+ hole_size
- 1, 0);
3703 hole_em
= alloc_extent_map();
3705 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3706 &BTRFS_I(inode
)->runtime_flags
);
3709 hole_em
->start
= cur_offset
;
3710 hole_em
->len
= hole_size
;
3711 hole_em
->orig_start
= cur_offset
;
3713 hole_em
->block_start
= EXTENT_MAP_HOLE
;
3714 hole_em
->block_len
= 0;
3715 hole_em
->orig_block_len
= 0;
3716 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3717 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
3718 hole_em
->generation
= trans
->transid
;
3721 write_lock(&em_tree
->lock
);
3722 err
= add_extent_mapping(em_tree
, hole_em
);
3724 list_move(&hole_em
->list
,
3725 &em_tree
->modified_extents
);
3726 write_unlock(&em_tree
->lock
);
3729 btrfs_drop_extent_cache(inode
, cur_offset
,
3733 free_extent_map(hole_em
);
3735 btrfs_update_inode(trans
, root
, inode
);
3736 btrfs_end_transaction(trans
, root
);
3738 free_extent_map(em
);
3740 cur_offset
= last_byte
;
3741 if (cur_offset
>= block_end
)
3745 free_extent_map(em
);
3746 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3751 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
)
3753 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3754 struct btrfs_trans_handle
*trans
;
3755 loff_t oldsize
= i_size_read(inode
);
3758 if (newsize
== oldsize
)
3761 if (newsize
> oldsize
) {
3762 truncate_pagecache(inode
, oldsize
, newsize
);
3763 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3767 trans
= btrfs_start_transaction(root
, 1);
3769 return PTR_ERR(trans
);
3771 i_size_write(inode
, newsize
);
3772 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3773 ret
= btrfs_update_inode(trans
, root
, inode
);
3774 btrfs_end_transaction(trans
, root
);
3778 * We're truncating a file that used to have good data down to
3779 * zero. Make sure it gets into the ordered flush list so that
3780 * any new writes get down to disk quickly.
3783 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
3784 &BTRFS_I(inode
)->runtime_flags
);
3786 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3787 truncate_setsize(inode
, newsize
);
3788 ret
= btrfs_truncate(inode
);
3794 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3796 struct inode
*inode
= dentry
->d_inode
;
3797 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3800 if (btrfs_root_readonly(root
))
3803 err
= inode_change_ok(inode
, attr
);
3807 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3808 err
= btrfs_setsize(inode
, attr
->ia_size
);
3813 if (attr
->ia_valid
) {
3814 setattr_copy(inode
, attr
);
3815 inode_inc_iversion(inode
);
3816 err
= btrfs_dirty_inode(inode
);
3818 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
3819 err
= btrfs_acl_chmod(inode
);
3825 void btrfs_evict_inode(struct inode
*inode
)
3827 struct btrfs_trans_handle
*trans
;
3828 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3829 struct btrfs_block_rsv
*rsv
, *global_rsv
;
3830 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
3833 trace_btrfs_inode_evict(inode
);
3835 truncate_inode_pages(&inode
->i_data
, 0);
3836 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3837 btrfs_is_free_space_inode(inode
)))
3840 if (is_bad_inode(inode
)) {
3841 btrfs_orphan_del(NULL
, inode
);
3844 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3845 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3847 if (root
->fs_info
->log_root_recovering
) {
3848 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3849 &BTRFS_I(inode
)->runtime_flags
));
3853 if (inode
->i_nlink
> 0) {
3854 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3858 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
3860 btrfs_orphan_del(NULL
, inode
);
3863 rsv
->size
= min_size
;
3865 global_rsv
= &root
->fs_info
->global_block_rsv
;
3867 btrfs_i_size_write(inode
, 0);
3870 * This is a bit simpler than btrfs_truncate since we've already
3871 * reserved our space for our orphan item in the unlink, so we just
3872 * need to reserve some slack space in case we add bytes and update
3873 * inode item when doing the truncate.
3876 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
3877 BTRFS_RESERVE_FLUSH_LIMIT
);
3880 * Try and steal from the global reserve since we will
3881 * likely not use this space anyway, we want to try as
3882 * hard as possible to get this to work.
3885 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
);
3888 printk(KERN_WARNING
"Could not get space for a "
3889 "delete, will truncate on mount %d\n", ret
);
3890 btrfs_orphan_del(NULL
, inode
);
3891 btrfs_free_block_rsv(root
, rsv
);
3895 trans
= btrfs_start_transaction_lflush(root
, 1);
3896 if (IS_ERR(trans
)) {
3897 btrfs_orphan_del(NULL
, inode
);
3898 btrfs_free_block_rsv(root
, rsv
);
3902 trans
->block_rsv
= rsv
;
3904 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3908 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3909 ret
= btrfs_update_inode(trans
, root
, inode
);
3912 btrfs_end_transaction(trans
, root
);
3914 btrfs_btree_balance_dirty(root
);
3917 btrfs_free_block_rsv(root
, rsv
);
3920 trans
->block_rsv
= root
->orphan_block_rsv
;
3921 ret
= btrfs_orphan_del(trans
, inode
);
3925 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3926 if (!(root
== root
->fs_info
->tree_root
||
3927 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
3928 btrfs_return_ino(root
, btrfs_ino(inode
));
3930 btrfs_end_transaction(trans
, root
);
3931 btrfs_btree_balance_dirty(root
);
3938 * this returns the key found in the dir entry in the location pointer.
3939 * If no dir entries were found, location->objectid is 0.
3941 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3942 struct btrfs_key
*location
)
3944 const char *name
= dentry
->d_name
.name
;
3945 int namelen
= dentry
->d_name
.len
;
3946 struct btrfs_dir_item
*di
;
3947 struct btrfs_path
*path
;
3948 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3951 path
= btrfs_alloc_path();
3955 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
3960 if (IS_ERR_OR_NULL(di
))
3963 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3965 btrfs_free_path(path
);
3968 location
->objectid
= 0;
3973 * when we hit a tree root in a directory, the btrfs part of the inode
3974 * needs to be changed to reflect the root directory of the tree root. This
3975 * is kind of like crossing a mount point.
3977 static int fixup_tree_root_location(struct btrfs_root
*root
,
3979 struct dentry
*dentry
,
3980 struct btrfs_key
*location
,
3981 struct btrfs_root
**sub_root
)
3983 struct btrfs_path
*path
;
3984 struct btrfs_root
*new_root
;
3985 struct btrfs_root_ref
*ref
;
3986 struct extent_buffer
*leaf
;
3990 path
= btrfs_alloc_path();
3997 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3998 BTRFS_I(dir
)->root
->root_key
.objectid
,
3999 location
->objectid
);
4006 leaf
= path
->nodes
[0];
4007 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
4008 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
4009 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
4012 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
4013 (unsigned long)(ref
+ 1),
4014 dentry
->d_name
.len
);
4018 btrfs_release_path(path
);
4020 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
4021 if (IS_ERR(new_root
)) {
4022 err
= PTR_ERR(new_root
);
4026 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
4031 *sub_root
= new_root
;
4032 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
4033 location
->type
= BTRFS_INODE_ITEM_KEY
;
4034 location
->offset
= 0;
4037 btrfs_free_path(path
);
4041 static void inode_tree_add(struct inode
*inode
)
4043 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4044 struct btrfs_inode
*entry
;
4046 struct rb_node
*parent
;
4047 u64 ino
= btrfs_ino(inode
);
4049 p
= &root
->inode_tree
.rb_node
;
4052 if (inode_unhashed(inode
))
4055 spin_lock(&root
->inode_lock
);
4058 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
4060 if (ino
< btrfs_ino(&entry
->vfs_inode
))
4061 p
= &parent
->rb_left
;
4062 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
4063 p
= &parent
->rb_right
;
4065 WARN_ON(!(entry
->vfs_inode
.i_state
&
4066 (I_WILL_FREE
| I_FREEING
)));
4067 rb_erase(parent
, &root
->inode_tree
);
4068 RB_CLEAR_NODE(parent
);
4069 spin_unlock(&root
->inode_lock
);
4073 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
4074 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
4075 spin_unlock(&root
->inode_lock
);
4078 static void inode_tree_del(struct inode
*inode
)
4080 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4083 spin_lock(&root
->inode_lock
);
4084 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
4085 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
4086 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
4087 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4089 spin_unlock(&root
->inode_lock
);
4092 * Free space cache has inodes in the tree root, but the tree root has a
4093 * root_refs of 0, so this could end up dropping the tree root as a
4094 * snapshot, so we need the extra !root->fs_info->tree_root check to
4095 * make sure we don't drop it.
4097 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
4098 root
!= root
->fs_info
->tree_root
) {
4099 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
4100 spin_lock(&root
->inode_lock
);
4101 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
4102 spin_unlock(&root
->inode_lock
);
4104 btrfs_add_dead_root(root
);
4108 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
4110 struct rb_node
*node
;
4111 struct rb_node
*prev
;
4112 struct btrfs_inode
*entry
;
4113 struct inode
*inode
;
4116 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4118 spin_lock(&root
->inode_lock
);
4120 node
= root
->inode_tree
.rb_node
;
4124 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4126 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
4127 node
= node
->rb_left
;
4128 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
4129 node
= node
->rb_right
;
4135 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4136 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
4140 prev
= rb_next(prev
);
4144 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4145 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
4146 inode
= igrab(&entry
->vfs_inode
);
4148 spin_unlock(&root
->inode_lock
);
4149 if (atomic_read(&inode
->i_count
) > 1)
4150 d_prune_aliases(inode
);
4152 * btrfs_drop_inode will have it removed from
4153 * the inode cache when its usage count
4158 spin_lock(&root
->inode_lock
);
4162 if (cond_resched_lock(&root
->inode_lock
))
4165 node
= rb_next(node
);
4167 spin_unlock(&root
->inode_lock
);
4170 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
4172 struct btrfs_iget_args
*args
= p
;
4173 inode
->i_ino
= args
->ino
;
4174 BTRFS_I(inode
)->root
= args
->root
;
4178 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
4180 struct btrfs_iget_args
*args
= opaque
;
4181 return args
->ino
== btrfs_ino(inode
) &&
4182 args
->root
== BTRFS_I(inode
)->root
;
4185 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
4187 struct btrfs_root
*root
)
4189 struct inode
*inode
;
4190 struct btrfs_iget_args args
;
4191 args
.ino
= objectid
;
4194 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
4195 btrfs_init_locked_inode
,
4200 /* Get an inode object given its location and corresponding root.
4201 * Returns in *is_new if the inode was read from disk
4203 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
4204 struct btrfs_root
*root
, int *new)
4206 struct inode
*inode
;
4208 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
4210 return ERR_PTR(-ENOMEM
);
4212 if (inode
->i_state
& I_NEW
) {
4213 BTRFS_I(inode
)->root
= root
;
4214 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
4215 btrfs_read_locked_inode(inode
);
4216 if (!is_bad_inode(inode
)) {
4217 inode_tree_add(inode
);
4218 unlock_new_inode(inode
);
4222 unlock_new_inode(inode
);
4224 inode
= ERR_PTR(-ESTALE
);
4231 static struct inode
*new_simple_dir(struct super_block
*s
,
4232 struct btrfs_key
*key
,
4233 struct btrfs_root
*root
)
4235 struct inode
*inode
= new_inode(s
);
4238 return ERR_PTR(-ENOMEM
);
4240 BTRFS_I(inode
)->root
= root
;
4241 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
4242 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
4244 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
4245 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
4246 inode
->i_fop
= &simple_dir_operations
;
4247 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
4248 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4253 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4255 struct inode
*inode
;
4256 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4257 struct btrfs_root
*sub_root
= root
;
4258 struct btrfs_key location
;
4262 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4263 return ERR_PTR(-ENAMETOOLONG
);
4265 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4267 return ERR_PTR(ret
);
4269 if (location
.objectid
== 0)
4272 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4273 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4277 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4279 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4280 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4281 &location
, &sub_root
);
4284 inode
= ERR_PTR(ret
);
4286 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4288 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4290 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4292 if (!IS_ERR(inode
) && root
!= sub_root
) {
4293 down_read(&root
->fs_info
->cleanup_work_sem
);
4294 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4295 ret
= btrfs_orphan_cleanup(sub_root
);
4296 up_read(&root
->fs_info
->cleanup_work_sem
);
4298 inode
= ERR_PTR(ret
);
4304 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4306 struct btrfs_root
*root
;
4307 struct inode
*inode
= dentry
->d_inode
;
4309 if (!inode
&& !IS_ROOT(dentry
))
4310 inode
= dentry
->d_parent
->d_inode
;
4313 root
= BTRFS_I(inode
)->root
;
4314 if (btrfs_root_refs(&root
->root_item
) == 0)
4317 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
4323 static void btrfs_dentry_release(struct dentry
*dentry
)
4325 if (dentry
->d_fsdata
)
4326 kfree(dentry
->d_fsdata
);
4329 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4334 ret
= d_splice_alias(btrfs_lookup_dentry(dir
, dentry
), dentry
);
4338 unsigned char btrfs_filetype_table
[] = {
4339 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4342 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4345 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4346 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4347 struct btrfs_item
*item
;
4348 struct btrfs_dir_item
*di
;
4349 struct btrfs_key key
;
4350 struct btrfs_key found_key
;
4351 struct btrfs_path
*path
;
4352 struct list_head ins_list
;
4353 struct list_head del_list
;
4355 struct extent_buffer
*leaf
;
4357 unsigned char d_type
;
4362 int key_type
= BTRFS_DIR_INDEX_KEY
;
4366 int is_curr
= 0; /* filp->f_pos points to the current index? */
4368 /* FIXME, use a real flag for deciding about the key type */
4369 if (root
->fs_info
->tree_root
== root
)
4370 key_type
= BTRFS_DIR_ITEM_KEY
;
4372 /* special case for "." */
4373 if (filp
->f_pos
== 0) {
4374 over
= filldir(dirent
, ".", 1,
4375 filp
->f_pos
, btrfs_ino(inode
), DT_DIR
);
4380 /* special case for .., just use the back ref */
4381 if (filp
->f_pos
== 1) {
4382 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4383 over
= filldir(dirent
, "..", 2,
4384 filp
->f_pos
, pino
, DT_DIR
);
4389 path
= btrfs_alloc_path();
4395 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4396 INIT_LIST_HEAD(&ins_list
);
4397 INIT_LIST_HEAD(&del_list
);
4398 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
4401 btrfs_set_key_type(&key
, key_type
);
4402 key
.offset
= filp
->f_pos
;
4403 key
.objectid
= btrfs_ino(inode
);
4405 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4410 leaf
= path
->nodes
[0];
4411 slot
= path
->slots
[0];
4412 if (slot
>= btrfs_header_nritems(leaf
)) {
4413 ret
= btrfs_next_leaf(root
, path
);
4421 item
= btrfs_item_nr(leaf
, slot
);
4422 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4424 if (found_key
.objectid
!= key
.objectid
)
4426 if (btrfs_key_type(&found_key
) != key_type
)
4428 if (found_key
.offset
< filp
->f_pos
)
4430 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
4431 btrfs_should_delete_dir_index(&del_list
,
4435 filp
->f_pos
= found_key
.offset
;
4438 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4440 di_total
= btrfs_item_size(leaf
, item
);
4442 while (di_cur
< di_total
) {
4443 struct btrfs_key location
;
4445 if (verify_dir_item(root
, leaf
, di
))
4448 name_len
= btrfs_dir_name_len(leaf
, di
);
4449 if (name_len
<= sizeof(tmp_name
)) {
4450 name_ptr
= tmp_name
;
4452 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4458 read_extent_buffer(leaf
, name_ptr
,
4459 (unsigned long)(di
+ 1), name_len
);
4461 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4462 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4465 /* is this a reference to our own snapshot? If so
4468 * In contrast to old kernels, we insert the snapshot's
4469 * dir item and dir index after it has been created, so
4470 * we won't find a reference to our own snapshot. We
4471 * still keep the following code for backward
4474 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4475 location
.objectid
== root
->root_key
.objectid
) {
4479 over
= filldir(dirent
, name_ptr
, name_len
,
4480 found_key
.offset
, location
.objectid
,
4484 if (name_ptr
!= tmp_name
)
4489 di_len
= btrfs_dir_name_len(leaf
, di
) +
4490 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4492 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4498 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4501 ret
= btrfs_readdir_delayed_dir_index(filp
, dirent
, filldir
,
4507 /* Reached end of directory/root. Bump pos past the last item. */
4508 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4510 * 32-bit glibc will use getdents64, but then strtol -
4511 * so the last number we can serve is this.
4513 filp
->f_pos
= 0x7fffffff;
4519 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4520 btrfs_put_delayed_items(&ins_list
, &del_list
);
4521 btrfs_free_path(path
);
4525 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4527 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4528 struct btrfs_trans_handle
*trans
;
4530 bool nolock
= false;
4532 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
4535 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(inode
))
4538 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4540 trans
= btrfs_join_transaction_nolock(root
);
4542 trans
= btrfs_join_transaction(root
);
4544 return PTR_ERR(trans
);
4545 ret
= btrfs_commit_transaction(trans
, root
);
4551 * This is somewhat expensive, updating the tree every time the
4552 * inode changes. But, it is most likely to find the inode in cache.
4553 * FIXME, needs more benchmarking...there are no reasons other than performance
4554 * to keep or drop this code.
4556 int btrfs_dirty_inode(struct inode
*inode
)
4558 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4559 struct btrfs_trans_handle
*trans
;
4562 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
4565 trans
= btrfs_join_transaction(root
);
4567 return PTR_ERR(trans
);
4569 ret
= btrfs_update_inode(trans
, root
, inode
);
4570 if (ret
&& ret
== -ENOSPC
) {
4571 /* whoops, lets try again with the full transaction */
4572 btrfs_end_transaction(trans
, root
);
4573 trans
= btrfs_start_transaction(root
, 1);
4575 return PTR_ERR(trans
);
4577 ret
= btrfs_update_inode(trans
, root
, inode
);
4579 btrfs_end_transaction(trans
, root
);
4580 if (BTRFS_I(inode
)->delayed_node
)
4581 btrfs_balance_delayed_items(root
);
4587 * This is a copy of file_update_time. We need this so we can return error on
4588 * ENOSPC for updating the inode in the case of file write and mmap writes.
4590 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
4593 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4595 if (btrfs_root_readonly(root
))
4598 if (flags
& S_VERSION
)
4599 inode_inc_iversion(inode
);
4600 if (flags
& S_CTIME
)
4601 inode
->i_ctime
= *now
;
4602 if (flags
& S_MTIME
)
4603 inode
->i_mtime
= *now
;
4604 if (flags
& S_ATIME
)
4605 inode
->i_atime
= *now
;
4606 return btrfs_dirty_inode(inode
);
4610 * find the highest existing sequence number in a directory
4611 * and then set the in-memory index_cnt variable to reflect
4612 * free sequence numbers
4614 static int btrfs_set_inode_index_count(struct inode
*inode
)
4616 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4617 struct btrfs_key key
, found_key
;
4618 struct btrfs_path
*path
;
4619 struct extent_buffer
*leaf
;
4622 key
.objectid
= btrfs_ino(inode
);
4623 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4624 key
.offset
= (u64
)-1;
4626 path
= btrfs_alloc_path();
4630 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4633 /* FIXME: we should be able to handle this */
4639 * MAGIC NUMBER EXPLANATION:
4640 * since we search a directory based on f_pos we have to start at 2
4641 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4642 * else has to start at 2
4644 if (path
->slots
[0] == 0) {
4645 BTRFS_I(inode
)->index_cnt
= 2;
4651 leaf
= path
->nodes
[0];
4652 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4654 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4655 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4656 BTRFS_I(inode
)->index_cnt
= 2;
4660 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4662 btrfs_free_path(path
);
4667 * helper to find a free sequence number in a given directory. This current
4668 * code is very simple, later versions will do smarter things in the btree
4670 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4674 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4675 ret
= btrfs_inode_delayed_dir_index_count(dir
);
4677 ret
= btrfs_set_inode_index_count(dir
);
4683 *index
= BTRFS_I(dir
)->index_cnt
;
4684 BTRFS_I(dir
)->index_cnt
++;
4689 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4690 struct btrfs_root
*root
,
4692 const char *name
, int name_len
,
4693 u64 ref_objectid
, u64 objectid
,
4694 umode_t mode
, u64
*index
)
4696 struct inode
*inode
;
4697 struct btrfs_inode_item
*inode_item
;
4698 struct btrfs_key
*location
;
4699 struct btrfs_path
*path
;
4700 struct btrfs_inode_ref
*ref
;
4701 struct btrfs_key key
[2];
4707 path
= btrfs_alloc_path();
4709 return ERR_PTR(-ENOMEM
);
4711 inode
= new_inode(root
->fs_info
->sb
);
4713 btrfs_free_path(path
);
4714 return ERR_PTR(-ENOMEM
);
4718 * we have to initialize this early, so we can reclaim the inode
4719 * number if we fail afterwards in this function.
4721 inode
->i_ino
= objectid
;
4724 trace_btrfs_inode_request(dir
);
4726 ret
= btrfs_set_inode_index(dir
, index
);
4728 btrfs_free_path(path
);
4730 return ERR_PTR(ret
);
4734 * index_cnt is ignored for everything but a dir,
4735 * btrfs_get_inode_index_count has an explanation for the magic
4738 BTRFS_I(inode
)->index_cnt
= 2;
4739 BTRFS_I(inode
)->root
= root
;
4740 BTRFS_I(inode
)->generation
= trans
->transid
;
4741 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4744 * We could have gotten an inode number from somebody who was fsynced
4745 * and then removed in this same transaction, so let's just set full
4746 * sync since it will be a full sync anyway and this will blow away the
4747 * old info in the log.
4749 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
4756 key
[0].objectid
= objectid
;
4757 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4761 * Start new inodes with an inode_ref. This is slightly more
4762 * efficient for small numbers of hard links since they will
4763 * be packed into one item. Extended refs will kick in if we
4764 * add more hard links than can fit in the ref item.
4766 key
[1].objectid
= objectid
;
4767 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4768 key
[1].offset
= ref_objectid
;
4770 sizes
[0] = sizeof(struct btrfs_inode_item
);
4771 sizes
[1] = name_len
+ sizeof(*ref
);
4773 path
->leave_spinning
= 1;
4774 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4778 inode_init_owner(inode
, dir
, mode
);
4779 inode_set_bytes(inode
, 0);
4780 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4781 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4782 struct btrfs_inode_item
);
4783 memset_extent_buffer(path
->nodes
[0], 0, (unsigned long)inode_item
,
4784 sizeof(*inode_item
));
4785 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4787 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4788 struct btrfs_inode_ref
);
4789 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4790 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4791 ptr
= (unsigned long)(ref
+ 1);
4792 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4794 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4795 btrfs_free_path(path
);
4797 location
= &BTRFS_I(inode
)->location
;
4798 location
->objectid
= objectid
;
4799 location
->offset
= 0;
4800 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4802 btrfs_inherit_iflags(inode
, dir
);
4804 if (S_ISREG(mode
)) {
4805 if (btrfs_test_opt(root
, NODATASUM
))
4806 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4807 if (btrfs_test_opt(root
, NODATACOW
))
4808 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4811 insert_inode_hash(inode
);
4812 inode_tree_add(inode
);
4814 trace_btrfs_inode_new(inode
);
4815 btrfs_set_inode_last_trans(trans
, inode
);
4817 btrfs_update_root_times(trans
, root
);
4822 BTRFS_I(dir
)->index_cnt
--;
4823 btrfs_free_path(path
);
4825 return ERR_PTR(ret
);
4828 static inline u8
btrfs_inode_type(struct inode
*inode
)
4830 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4834 * utility function to add 'inode' into 'parent_inode' with
4835 * a give name and a given sequence number.
4836 * if 'add_backref' is true, also insert a backref from the
4837 * inode to the parent directory.
4839 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4840 struct inode
*parent_inode
, struct inode
*inode
,
4841 const char *name
, int name_len
, int add_backref
, u64 index
)
4844 struct btrfs_key key
;
4845 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4846 u64 ino
= btrfs_ino(inode
);
4847 u64 parent_ino
= btrfs_ino(parent_inode
);
4849 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4850 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4853 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4857 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4858 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4859 key
.objectid
, root
->root_key
.objectid
,
4860 parent_ino
, index
, name
, name_len
);
4861 } else if (add_backref
) {
4862 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
4866 /* Nothing to clean up yet */
4870 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4872 btrfs_inode_type(inode
), index
);
4873 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
4876 btrfs_abort_transaction(trans
, root
, ret
);
4880 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4882 inode_inc_iversion(parent_inode
);
4883 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4884 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4886 btrfs_abort_transaction(trans
, root
, ret
);
4890 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4893 err
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
4894 key
.objectid
, root
->root_key
.objectid
,
4895 parent_ino
, &local_index
, name
, name_len
);
4897 } else if (add_backref
) {
4901 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
4902 ino
, parent_ino
, &local_index
);
4907 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4908 struct inode
*dir
, struct dentry
*dentry
,
4909 struct inode
*inode
, int backref
, u64 index
)
4911 int err
= btrfs_add_link(trans
, dir
, inode
,
4912 dentry
->d_name
.name
, dentry
->d_name
.len
,
4919 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4920 umode_t mode
, dev_t rdev
)
4922 struct btrfs_trans_handle
*trans
;
4923 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4924 struct inode
*inode
= NULL
;
4930 if (!new_valid_dev(rdev
))
4934 * 2 for inode item and ref
4936 * 1 for xattr if selinux is on
4938 trans
= btrfs_start_transaction(root
, 5);
4940 return PTR_ERR(trans
);
4942 err
= btrfs_find_free_ino(root
, &objectid
);
4946 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4947 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4949 if (IS_ERR(inode
)) {
4950 err
= PTR_ERR(inode
);
4954 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4960 err
= btrfs_update_inode(trans
, root
, inode
);
4967 * If the active LSM wants to access the inode during
4968 * d_instantiate it needs these. Smack checks to see
4969 * if the filesystem supports xattrs by looking at the
4973 inode
->i_op
= &btrfs_special_inode_operations
;
4974 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4978 init_special_inode(inode
, inode
->i_mode
, rdev
);
4979 btrfs_update_inode(trans
, root
, inode
);
4980 d_instantiate(dentry
, inode
);
4983 btrfs_end_transaction(trans
, root
);
4984 btrfs_btree_balance_dirty(root
);
4986 inode_dec_link_count(inode
);
4992 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4993 umode_t mode
, bool excl
)
4995 struct btrfs_trans_handle
*trans
;
4996 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4997 struct inode
*inode
= NULL
;
4998 int drop_inode_on_err
= 0;
5004 * 2 for inode item and ref
5006 * 1 for xattr if selinux is on
5008 trans
= btrfs_start_transaction(root
, 5);
5010 return PTR_ERR(trans
);
5012 err
= btrfs_find_free_ino(root
, &objectid
);
5016 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5017 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5019 if (IS_ERR(inode
)) {
5020 err
= PTR_ERR(inode
);
5023 drop_inode_on_err
= 1;
5025 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5029 err
= btrfs_update_inode(trans
, root
, inode
);
5034 * If the active LSM wants to access the inode during
5035 * d_instantiate it needs these. Smack checks to see
5036 * if the filesystem supports xattrs by looking at the
5039 inode
->i_fop
= &btrfs_file_operations
;
5040 inode
->i_op
= &btrfs_file_inode_operations
;
5042 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
5046 inode
->i_mapping
->a_ops
= &btrfs_aops
;
5047 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5048 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
5049 d_instantiate(dentry
, inode
);
5052 btrfs_end_transaction(trans
, root
);
5053 if (err
&& drop_inode_on_err
) {
5054 inode_dec_link_count(inode
);
5057 btrfs_btree_balance_dirty(root
);
5061 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
5062 struct dentry
*dentry
)
5064 struct btrfs_trans_handle
*trans
;
5065 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5066 struct inode
*inode
= old_dentry
->d_inode
;
5071 /* do not allow sys_link's with other subvols of the same device */
5072 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
5075 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
5078 err
= btrfs_set_inode_index(dir
, &index
);
5083 * 2 items for inode and inode ref
5084 * 2 items for dir items
5085 * 1 item for parent inode
5087 trans
= btrfs_start_transaction(root
, 5);
5088 if (IS_ERR(trans
)) {
5089 err
= PTR_ERR(trans
);
5093 btrfs_inc_nlink(inode
);
5094 inode_inc_iversion(inode
);
5095 inode
->i_ctime
= CURRENT_TIME
;
5097 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
5099 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
5104 struct dentry
*parent
= dentry
->d_parent
;
5105 err
= btrfs_update_inode(trans
, root
, inode
);
5108 d_instantiate(dentry
, inode
);
5109 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
5112 btrfs_end_transaction(trans
, root
);
5115 inode_dec_link_count(inode
);
5118 btrfs_btree_balance_dirty(root
);
5122 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
5124 struct inode
*inode
= NULL
;
5125 struct btrfs_trans_handle
*trans
;
5126 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5128 int drop_on_err
= 0;
5133 * 2 items for inode and ref
5134 * 2 items for dir items
5135 * 1 for xattr if selinux is on
5137 trans
= btrfs_start_transaction(root
, 5);
5139 return PTR_ERR(trans
);
5141 err
= btrfs_find_free_ino(root
, &objectid
);
5145 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5146 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
5147 S_IFDIR
| mode
, &index
);
5148 if (IS_ERR(inode
)) {
5149 err
= PTR_ERR(inode
);
5155 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
5159 inode
->i_op
= &btrfs_dir_inode_operations
;
5160 inode
->i_fop
= &btrfs_dir_file_operations
;
5162 btrfs_i_size_write(inode
, 0);
5163 err
= btrfs_update_inode(trans
, root
, inode
);
5167 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
5168 dentry
->d_name
.len
, 0, index
);
5172 d_instantiate(dentry
, inode
);
5176 btrfs_end_transaction(trans
, root
);
5179 btrfs_btree_balance_dirty(root
);
5183 /* helper for btfs_get_extent. Given an existing extent in the tree,
5184 * and an extent that you want to insert, deal with overlap and insert
5185 * the new extent into the tree.
5187 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
5188 struct extent_map
*existing
,
5189 struct extent_map
*em
,
5190 u64 map_start
, u64 map_len
)
5194 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
5195 start_diff
= map_start
- em
->start
;
5196 em
->start
= map_start
;
5198 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
5199 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
5200 em
->block_start
+= start_diff
;
5201 em
->block_len
-= start_diff
;
5203 return add_extent_mapping(em_tree
, em
);
5206 static noinline
int uncompress_inline(struct btrfs_path
*path
,
5207 struct inode
*inode
, struct page
*page
,
5208 size_t pg_offset
, u64 extent_offset
,
5209 struct btrfs_file_extent_item
*item
)
5212 struct extent_buffer
*leaf
= path
->nodes
[0];
5215 unsigned long inline_size
;
5219 WARN_ON(pg_offset
!= 0);
5220 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5221 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
5222 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
5223 btrfs_item_nr(leaf
, path
->slots
[0]));
5224 tmp
= kmalloc(inline_size
, GFP_NOFS
);
5227 ptr
= btrfs_file_extent_inline_start(item
);
5229 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
5231 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
5232 ret
= btrfs_decompress(compress_type
, tmp
, page
,
5233 extent_offset
, inline_size
, max_size
);
5235 char *kaddr
= kmap_atomic(page
);
5236 unsigned long copy_size
= min_t(u64
,
5237 PAGE_CACHE_SIZE
- pg_offset
,
5238 max_size
- extent_offset
);
5239 memset(kaddr
+ pg_offset
, 0, copy_size
);
5240 kunmap_atomic(kaddr
);
5247 * a bit scary, this does extent mapping from logical file offset to the disk.
5248 * the ugly parts come from merging extents from the disk with the in-ram
5249 * representation. This gets more complex because of the data=ordered code,
5250 * where the in-ram extents might be locked pending data=ordered completion.
5252 * This also copies inline extents directly into the page.
5255 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
5256 size_t pg_offset
, u64 start
, u64 len
,
5262 u64 extent_start
= 0;
5264 u64 objectid
= btrfs_ino(inode
);
5266 struct btrfs_path
*path
= NULL
;
5267 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5268 struct btrfs_file_extent_item
*item
;
5269 struct extent_buffer
*leaf
;
5270 struct btrfs_key found_key
;
5271 struct extent_map
*em
= NULL
;
5272 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5273 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5274 struct btrfs_trans_handle
*trans
= NULL
;
5278 read_lock(&em_tree
->lock
);
5279 em
= lookup_extent_mapping(em_tree
, start
, len
);
5281 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5282 read_unlock(&em_tree
->lock
);
5285 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
5286 free_extent_map(em
);
5287 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
5288 free_extent_map(em
);
5292 em
= alloc_extent_map();
5297 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5298 em
->start
= EXTENT_MAP_HOLE
;
5299 em
->orig_start
= EXTENT_MAP_HOLE
;
5301 em
->block_len
= (u64
)-1;
5304 path
= btrfs_alloc_path();
5310 * Chances are we'll be called again, so go ahead and do
5316 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5317 objectid
, start
, trans
!= NULL
);
5324 if (path
->slots
[0] == 0)
5329 leaf
= path
->nodes
[0];
5330 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5331 struct btrfs_file_extent_item
);
5332 /* are we inside the extent that was found? */
5333 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5334 found_type
= btrfs_key_type(&found_key
);
5335 if (found_key
.objectid
!= objectid
||
5336 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5340 found_type
= btrfs_file_extent_type(leaf
, item
);
5341 extent_start
= found_key
.offset
;
5342 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5343 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5344 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5345 extent_end
= extent_start
+
5346 btrfs_file_extent_num_bytes(leaf
, item
);
5347 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5349 size
= btrfs_file_extent_inline_len(leaf
, item
);
5350 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5351 ~((u64
)root
->sectorsize
- 1);
5354 if (start
>= extent_end
) {
5356 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5357 ret
= btrfs_next_leaf(root
, path
);
5364 leaf
= path
->nodes
[0];
5366 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5367 if (found_key
.objectid
!= objectid
||
5368 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5370 if (start
+ len
<= found_key
.offset
)
5373 em
->orig_start
= start
;
5374 em
->len
= found_key
.offset
- start
;
5378 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5379 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5380 em
->start
= extent_start
;
5381 em
->len
= extent_end
- extent_start
;
5382 em
->orig_start
= extent_start
-
5383 btrfs_file_extent_offset(leaf
, item
);
5384 em
->orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5386 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5388 em
->block_start
= EXTENT_MAP_HOLE
;
5391 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5392 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5393 em
->compress_type
= compress_type
;
5394 em
->block_start
= bytenr
;
5395 em
->block_len
= em
->orig_block_len
;
5397 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5398 em
->block_start
= bytenr
;
5399 em
->block_len
= em
->len
;
5400 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5401 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5404 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5408 size_t extent_offset
;
5411 em
->block_start
= EXTENT_MAP_INLINE
;
5412 if (!page
|| create
) {
5413 em
->start
= extent_start
;
5414 em
->len
= extent_end
- extent_start
;
5418 size
= btrfs_file_extent_inline_len(leaf
, item
);
5419 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5420 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5421 size
- extent_offset
);
5422 em
->start
= extent_start
+ extent_offset
;
5423 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5424 ~((u64
)root
->sectorsize
- 1);
5425 em
->orig_block_len
= em
->len
;
5426 em
->orig_start
= em
->start
;
5427 if (compress_type
) {
5428 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5429 em
->compress_type
= compress_type
;
5431 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5432 if (create
== 0 && !PageUptodate(page
)) {
5433 if (btrfs_file_extent_compression(leaf
, item
) !=
5434 BTRFS_COMPRESS_NONE
) {
5435 ret
= uncompress_inline(path
, inode
, page
,
5437 extent_offset
, item
);
5438 BUG_ON(ret
); /* -ENOMEM */
5441 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5443 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5444 memset(map
+ pg_offset
+ copy_size
, 0,
5445 PAGE_CACHE_SIZE
- pg_offset
-
5450 flush_dcache_page(page
);
5451 } else if (create
&& PageUptodate(page
)) {
5455 free_extent_map(em
);
5458 btrfs_release_path(path
);
5459 trans
= btrfs_join_transaction(root
);
5462 return ERR_CAST(trans
);
5466 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5469 btrfs_mark_buffer_dirty(leaf
);
5471 set_extent_uptodate(io_tree
, em
->start
,
5472 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
5475 WARN(1, KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5479 em
->orig_start
= start
;
5482 em
->block_start
= EXTENT_MAP_HOLE
;
5483 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5485 btrfs_release_path(path
);
5486 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5487 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5488 "[%llu %llu]\n", (unsigned long long)em
->start
,
5489 (unsigned long long)em
->len
,
5490 (unsigned long long)start
,
5491 (unsigned long long)len
);
5497 write_lock(&em_tree
->lock
);
5498 ret
= add_extent_mapping(em_tree
, em
);
5499 /* it is possible that someone inserted the extent into the tree
5500 * while we had the lock dropped. It is also possible that
5501 * an overlapping map exists in the tree
5503 if (ret
== -EEXIST
) {
5504 struct extent_map
*existing
;
5508 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5509 if (existing
&& (existing
->start
> start
||
5510 existing
->start
+ existing
->len
<= start
)) {
5511 free_extent_map(existing
);
5515 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5518 err
= merge_extent_mapping(em_tree
, existing
,
5521 free_extent_map(existing
);
5523 free_extent_map(em
);
5528 free_extent_map(em
);
5532 free_extent_map(em
);
5537 write_unlock(&em_tree
->lock
);
5541 trace_btrfs_get_extent(root
, em
);
5544 btrfs_free_path(path
);
5546 ret
= btrfs_end_transaction(trans
, root
);
5551 free_extent_map(em
);
5552 return ERR_PTR(err
);
5554 BUG_ON(!em
); /* Error is always set */
5558 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5559 size_t pg_offset
, u64 start
, u64 len
,
5562 struct extent_map
*em
;
5563 struct extent_map
*hole_em
= NULL
;
5564 u64 range_start
= start
;
5570 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5575 * if our em maps to a hole, there might
5576 * actually be delalloc bytes behind it
5578 if (em
->block_start
!= EXTENT_MAP_HOLE
)
5584 /* check to see if we've wrapped (len == -1 or similar) */
5593 /* ok, we didn't find anything, lets look for delalloc */
5594 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5595 end
, len
, EXTENT_DELALLOC
, 1);
5596 found_end
= range_start
+ found
;
5597 if (found_end
< range_start
)
5598 found_end
= (u64
)-1;
5601 * we didn't find anything useful, return
5602 * the original results from get_extent()
5604 if (range_start
> end
|| found_end
<= start
) {
5610 /* adjust the range_start to make sure it doesn't
5611 * go backwards from the start they passed in
5613 range_start
= max(start
,range_start
);
5614 found
= found_end
- range_start
;
5617 u64 hole_start
= start
;
5620 em
= alloc_extent_map();
5626 * when btrfs_get_extent can't find anything it
5627 * returns one huge hole
5629 * make sure what it found really fits our range, and
5630 * adjust to make sure it is based on the start from
5634 u64 calc_end
= extent_map_end(hole_em
);
5636 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5637 free_extent_map(hole_em
);
5640 hole_start
= max(hole_em
->start
, start
);
5641 hole_len
= calc_end
- hole_start
;
5645 if (hole_em
&& range_start
> hole_start
) {
5646 /* our hole starts before our delalloc, so we
5647 * have to return just the parts of the hole
5648 * that go until the delalloc starts
5650 em
->len
= min(hole_len
,
5651 range_start
- hole_start
);
5652 em
->start
= hole_start
;
5653 em
->orig_start
= hole_start
;
5655 * don't adjust block start at all,
5656 * it is fixed at EXTENT_MAP_HOLE
5658 em
->block_start
= hole_em
->block_start
;
5659 em
->block_len
= hole_len
;
5661 em
->start
= range_start
;
5663 em
->orig_start
= range_start
;
5664 em
->block_start
= EXTENT_MAP_DELALLOC
;
5665 em
->block_len
= found
;
5667 } else if (hole_em
) {
5672 free_extent_map(hole_em
);
5674 free_extent_map(em
);
5675 return ERR_PTR(err
);
5680 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5683 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5684 struct btrfs_trans_handle
*trans
;
5685 struct extent_map
*em
;
5686 struct btrfs_key ins
;
5690 trans
= btrfs_join_transaction(root
);
5692 return ERR_CAST(trans
);
5694 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5696 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5697 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5698 alloc_hint
, &ins
, 1);
5704 em
= create_pinned_em(inode
, start
, ins
.offset
, start
, ins
.objectid
,
5705 ins
.offset
, ins
.offset
, 0);
5709 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5710 ins
.offset
, ins
.offset
, 0);
5712 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5716 btrfs_end_transaction(trans
, root
);
5721 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5722 * block must be cow'd
5724 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5725 struct inode
*inode
, u64 offset
, u64 len
)
5727 struct btrfs_path
*path
;
5729 struct extent_buffer
*leaf
;
5730 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5731 struct btrfs_file_extent_item
*fi
;
5732 struct btrfs_key key
;
5740 path
= btrfs_alloc_path();
5744 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
5749 slot
= path
->slots
[0];
5752 /* can't find the item, must cow */
5759 leaf
= path
->nodes
[0];
5760 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5761 if (key
.objectid
!= btrfs_ino(inode
) ||
5762 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5763 /* not our file or wrong item type, must cow */
5767 if (key
.offset
> offset
) {
5768 /* Wrong offset, must cow */
5772 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5773 found_type
= btrfs_file_extent_type(leaf
, fi
);
5774 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5775 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5776 /* not a regular extent, must cow */
5779 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5780 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5782 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5783 if (extent_end
< offset
+ len
) {
5784 /* extent doesn't include our full range, must cow */
5788 if (btrfs_extent_readonly(root
, disk_bytenr
))
5792 * look for other files referencing this extent, if we
5793 * find any we must cow
5795 if (btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
5796 key
.offset
- backref_offset
, disk_bytenr
))
5800 * adjust disk_bytenr and num_bytes to cover just the bytes
5801 * in this extent we are about to write. If there
5802 * are any csums in that range we have to cow in order
5803 * to keep the csums correct
5805 disk_bytenr
+= backref_offset
;
5806 disk_bytenr
+= offset
- key
.offset
;
5807 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5808 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5811 * all of the above have passed, it is safe to overwrite this extent
5816 btrfs_free_path(path
);
5820 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
5821 struct extent_state
**cached_state
, int writing
)
5823 struct btrfs_ordered_extent
*ordered
;
5827 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
5830 * We're concerned with the entire range that we're going to be
5831 * doing DIO to, so we need to make sure theres no ordered
5832 * extents in this range.
5834 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
5835 lockend
- lockstart
+ 1);
5838 * We need to make sure there are no buffered pages in this
5839 * range either, we could have raced between the invalidate in
5840 * generic_file_direct_write and locking the extent. The
5841 * invalidate needs to happen so that reads after a write do not
5844 if (!ordered
&& (!writing
||
5845 !test_range_bit(&BTRFS_I(inode
)->io_tree
,
5846 lockstart
, lockend
, EXTENT_UPTODATE
, 0,
5850 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
5851 cached_state
, GFP_NOFS
);
5854 btrfs_start_ordered_extent(inode
, ordered
, 1);
5855 btrfs_put_ordered_extent(ordered
);
5857 /* Screw you mmap */
5858 ret
= filemap_write_and_wait_range(inode
->i_mapping
,
5865 * If we found a page that couldn't be invalidated just
5866 * fall back to buffered.
5868 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
5869 lockstart
>> PAGE_CACHE_SHIFT
,
5870 lockend
>> PAGE_CACHE_SHIFT
);
5881 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
5882 u64 len
, u64 orig_start
,
5883 u64 block_start
, u64 block_len
,
5884 u64 orig_block_len
, int type
)
5886 struct extent_map_tree
*em_tree
;
5887 struct extent_map
*em
;
5888 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5891 em_tree
= &BTRFS_I(inode
)->extent_tree
;
5892 em
= alloc_extent_map();
5894 return ERR_PTR(-ENOMEM
);
5897 em
->orig_start
= orig_start
;
5899 em
->block_len
= block_len
;
5900 em
->block_start
= block_start
;
5901 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5902 em
->orig_block_len
= orig_block_len
;
5903 em
->generation
= -1;
5904 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5905 if (type
== BTRFS_ORDERED_PREALLOC
)
5906 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
5909 btrfs_drop_extent_cache(inode
, em
->start
,
5910 em
->start
+ em
->len
- 1, 0);
5911 write_lock(&em_tree
->lock
);
5912 ret
= add_extent_mapping(em_tree
, em
);
5914 list_move(&em
->list
,
5915 &em_tree
->modified_extents
);
5916 write_unlock(&em_tree
->lock
);
5917 } while (ret
== -EEXIST
);
5920 free_extent_map(em
);
5921 return ERR_PTR(ret
);
5928 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5929 struct buffer_head
*bh_result
, int create
)
5931 struct extent_map
*em
;
5932 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5933 struct extent_state
*cached_state
= NULL
;
5934 u64 start
= iblock
<< inode
->i_blkbits
;
5935 u64 lockstart
, lockend
;
5936 u64 len
= bh_result
->b_size
;
5937 struct btrfs_trans_handle
*trans
;
5938 int unlock_bits
= EXTENT_LOCKED
;
5942 ret
= btrfs_delalloc_reserve_space(inode
, len
);
5945 unlock_bits
|= EXTENT_DELALLOC
| EXTENT_DIRTY
;
5947 len
= min_t(u64
, len
, root
->sectorsize
);
5951 lockend
= start
+ len
- 1;
5954 * If this errors out it's because we couldn't invalidate pagecache for
5955 * this range and we need to fallback to buffered.
5957 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
, create
))
5961 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
5962 lockend
, EXTENT_DELALLOC
, NULL
,
5963 &cached_state
, GFP_NOFS
);
5968 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5975 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5976 * io. INLINE is special, and we could probably kludge it in here, but
5977 * it's still buffered so for safety lets just fall back to the generic
5980 * For COMPRESSED we _have_ to read the entire extent in so we can
5981 * decompress it, so there will be buffering required no matter what we
5982 * do, so go ahead and fallback to buffered.
5984 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5985 * to buffered IO. Don't blame me, this is the price we pay for using
5988 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5989 em
->block_start
== EXTENT_MAP_INLINE
) {
5990 free_extent_map(em
);
5995 /* Just a good old fashioned hole, return */
5996 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5997 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5998 free_extent_map(em
);
6004 * We don't allocate a new extent in the following cases
6006 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6008 * 2) The extent is marked as PREALLOC. We're good to go here and can
6009 * just use the extent.
6013 len
= min(len
, em
->len
- (start
- em
->start
));
6014 lockstart
= start
+ len
;
6018 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
6019 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
6020 em
->block_start
!= EXTENT_MAP_HOLE
)) {
6025 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6026 type
= BTRFS_ORDERED_PREALLOC
;
6028 type
= BTRFS_ORDERED_NOCOW
;
6029 len
= min(len
, em
->len
- (start
- em
->start
));
6030 block_start
= em
->block_start
+ (start
- em
->start
);
6033 * we're not going to log anything, but we do need
6034 * to make sure the current transaction stays open
6035 * while we look for nocow cross refs
6037 trans
= btrfs_join_transaction(root
);
6041 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
6042 u64 orig_start
= em
->orig_start
;
6043 u64 orig_block_len
= em
->orig_block_len
;
6045 if (type
== BTRFS_ORDERED_PREALLOC
) {
6046 free_extent_map(em
);
6047 em
= create_pinned_em(inode
, start
, len
,
6050 orig_block_len
, type
);
6052 btrfs_end_transaction(trans
, root
);
6057 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
6058 block_start
, len
, len
, type
);
6059 btrfs_end_transaction(trans
, root
);
6061 free_extent_map(em
);
6066 btrfs_end_transaction(trans
, root
);
6070 * this will cow the extent, reset the len in case we changed
6073 len
= bh_result
->b_size
;
6074 free_extent_map(em
);
6075 em
= btrfs_new_extent_direct(inode
, start
, len
);
6080 len
= min(len
, em
->len
- (start
- em
->start
));
6082 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
6084 bh_result
->b_size
= len
;
6085 bh_result
->b_bdev
= em
->bdev
;
6086 set_buffer_mapped(bh_result
);
6088 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
6089 set_buffer_new(bh_result
);
6092 * Need to update the i_size under the extent lock so buffered
6093 * readers will get the updated i_size when we unlock.
6095 if (start
+ len
> i_size_read(inode
))
6096 i_size_write(inode
, start
+ len
);
6100 * In the case of write we need to clear and unlock the entire range,
6101 * in the case of read we need to unlock only the end area that we
6102 * aren't using if there is any left over space.
6104 if (lockstart
< lockend
) {
6105 if (create
&& len
< lockend
- lockstart
) {
6106 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6107 lockstart
+ len
- 1,
6108 unlock_bits
| EXTENT_DEFRAG
, 1, 0,
6109 &cached_state
, GFP_NOFS
);
6111 * Beside unlock, we also need to cleanup reserved space
6112 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6114 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
6115 lockstart
+ len
, lockend
,
6116 unlock_bits
| EXTENT_DO_ACCOUNTING
|
6117 EXTENT_DEFRAG
, 1, 0, NULL
, GFP_NOFS
);
6119 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6120 lockend
, unlock_bits
, 1, 0,
6121 &cached_state
, GFP_NOFS
);
6124 free_extent_state(cached_state
);
6127 free_extent_map(em
);
6133 unlock_bits
|= EXTENT_DO_ACCOUNTING
;
6135 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6136 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
6140 struct btrfs_dio_private
{
6141 struct inode
*inode
;
6147 /* number of bios pending for this dio */
6148 atomic_t pending_bios
;
6153 struct bio
*orig_bio
;
6156 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
6158 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6159 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
6160 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6161 struct inode
*inode
= dip
->inode
;
6162 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6165 start
= dip
->logical_offset
;
6167 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
6168 struct page
*page
= bvec
->bv_page
;
6171 u64
private = ~(u32
)0;
6172 unsigned long flags
;
6174 if (get_state_private(&BTRFS_I(inode
)->io_tree
,
6177 local_irq_save(flags
);
6178 kaddr
= kmap_atomic(page
);
6179 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
6180 csum
, bvec
->bv_len
);
6181 btrfs_csum_final(csum
, (char *)&csum
);
6182 kunmap_atomic(kaddr
);
6183 local_irq_restore(flags
);
6185 flush_dcache_page(bvec
->bv_page
);
6186 if (csum
!= private) {
6188 printk(KERN_ERR
"btrfs csum failed ino %llu off"
6189 " %llu csum %u private %u\n",
6190 (unsigned long long)btrfs_ino(inode
),
6191 (unsigned long long)start
,
6192 csum
, (unsigned)private);
6197 start
+= bvec
->bv_len
;
6199 } while (bvec
<= bvec_end
);
6201 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
6202 dip
->logical_offset
+ dip
->bytes
- 1);
6203 bio
->bi_private
= dip
->private;
6207 /* If we had a csum failure make sure to clear the uptodate flag */
6209 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
6210 dio_end_io(bio
, err
);
6213 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
6215 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6216 struct inode
*inode
= dip
->inode
;
6217 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6218 struct btrfs_ordered_extent
*ordered
= NULL
;
6219 u64 ordered_offset
= dip
->logical_offset
;
6220 u64 ordered_bytes
= dip
->bytes
;
6226 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
6228 ordered_bytes
, !err
);
6232 ordered
->work
.func
= finish_ordered_fn
;
6233 ordered
->work
.flags
= 0;
6234 btrfs_queue_worker(&root
->fs_info
->endio_write_workers
,
6238 * our bio might span multiple ordered extents. If we haven't
6239 * completed the accounting for the whole dio, go back and try again
6241 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
6242 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
6248 bio
->bi_private
= dip
->private;
6252 /* If we had an error make sure to clear the uptodate flag */
6254 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
6255 dio_end_io(bio
, err
);
6258 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
6259 struct bio
*bio
, int mirror_num
,
6260 unsigned long bio_flags
, u64 offset
)
6263 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6264 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
6265 BUG_ON(ret
); /* -ENOMEM */
6269 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
6271 struct btrfs_dio_private
*dip
= bio
->bi_private
;
6274 printk(KERN_ERR
"btrfs direct IO failed ino %llu rw %lu "
6275 "sector %#Lx len %u err no %d\n",
6276 (unsigned long long)btrfs_ino(dip
->inode
), bio
->bi_rw
,
6277 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
6281 * before atomic variable goto zero, we must make sure
6282 * dip->errors is perceived to be set.
6284 smp_mb__before_atomic_dec();
6287 /* if there are more bios still pending for this dio, just exit */
6288 if (!atomic_dec_and_test(&dip
->pending_bios
))
6292 bio_io_error(dip
->orig_bio
);
6294 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
6295 bio_endio(dip
->orig_bio
, 0);
6301 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
6302 u64 first_sector
, gfp_t gfp_flags
)
6304 int nr_vecs
= bio_get_nr_vecs(bdev
);
6305 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
6308 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
6309 int rw
, u64 file_offset
, int skip_sum
,
6312 int write
= rw
& REQ_WRITE
;
6313 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6317 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
6322 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
6330 if (write
&& async_submit
) {
6331 ret
= btrfs_wq_submit_bio(root
->fs_info
,
6332 inode
, rw
, bio
, 0, 0,
6334 __btrfs_submit_bio_start_direct_io
,
6335 __btrfs_submit_bio_done
);
6339 * If we aren't doing async submit, calculate the csum of the
6342 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
6345 } else if (!skip_sum
) {
6346 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
, file_offset
);
6352 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
6358 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
6361 struct inode
*inode
= dip
->inode
;
6362 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6364 struct bio
*orig_bio
= dip
->orig_bio
;
6365 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
6366 u64 start_sector
= orig_bio
->bi_sector
;
6367 u64 file_offset
= dip
->logical_offset
;
6372 int async_submit
= 0;
6374 map_length
= orig_bio
->bi_size
;
6375 ret
= btrfs_map_block(root
->fs_info
, READ
, start_sector
<< 9,
6376 &map_length
, NULL
, 0);
6382 if (map_length
>= orig_bio
->bi_size
) {
6388 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
6391 bio
->bi_private
= dip
;
6392 bio
->bi_end_io
= btrfs_end_dio_bio
;
6393 atomic_inc(&dip
->pending_bios
);
6395 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
6396 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
6397 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
6398 bvec
->bv_offset
) < bvec
->bv_len
)) {
6400 * inc the count before we submit the bio so
6401 * we know the end IO handler won't happen before
6402 * we inc the count. Otherwise, the dip might get freed
6403 * before we're done setting it up
6405 atomic_inc(&dip
->pending_bios
);
6406 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
6407 file_offset
, skip_sum
,
6411 atomic_dec(&dip
->pending_bios
);
6415 start_sector
+= submit_len
>> 9;
6416 file_offset
+= submit_len
;
6421 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
6422 start_sector
, GFP_NOFS
);
6425 bio
->bi_private
= dip
;
6426 bio
->bi_end_io
= btrfs_end_dio_bio
;
6428 map_length
= orig_bio
->bi_size
;
6429 ret
= btrfs_map_block(root
->fs_info
, READ
,
6431 &map_length
, NULL
, 0);
6437 submit_len
+= bvec
->bv_len
;
6444 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
6453 * before atomic variable goto zero, we must
6454 * make sure dip->errors is perceived to be set.
6456 smp_mb__before_atomic_dec();
6457 if (atomic_dec_and_test(&dip
->pending_bios
))
6458 bio_io_error(dip
->orig_bio
);
6460 /* bio_end_io() will handle error, so we needn't return it */
6464 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
6467 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6468 struct btrfs_dio_private
*dip
;
6469 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6471 int write
= rw
& REQ_WRITE
;
6474 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
6476 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
6482 dip
->private = bio
->bi_private
;
6484 dip
->logical_offset
= file_offset
;
6488 dip
->bytes
+= bvec
->bv_len
;
6490 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
6492 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
6493 bio
->bi_private
= dip
;
6495 dip
->orig_bio
= bio
;
6496 atomic_set(&dip
->pending_bios
, 0);
6499 bio
->bi_end_io
= btrfs_endio_direct_write
;
6501 bio
->bi_end_io
= btrfs_endio_direct_read
;
6503 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
6508 * If this is a write, we need to clean up the reserved space and kill
6509 * the ordered extent.
6512 struct btrfs_ordered_extent
*ordered
;
6513 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6514 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6515 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6516 btrfs_free_reserved_extent(root
, ordered
->start
,
6518 btrfs_put_ordered_extent(ordered
);
6519 btrfs_put_ordered_extent(ordered
);
6521 bio_endio(bio
, ret
);
6524 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6525 const struct iovec
*iov
, loff_t offset
,
6526 unsigned long nr_segs
)
6532 unsigned blocksize_mask
= root
->sectorsize
- 1;
6533 ssize_t retval
= -EINVAL
;
6534 loff_t end
= offset
;
6536 if (offset
& blocksize_mask
)
6539 /* Check the memory alignment. Blocks cannot straddle pages */
6540 for (seg
= 0; seg
< nr_segs
; seg
++) {
6541 addr
= (unsigned long)iov
[seg
].iov_base
;
6542 size
= iov
[seg
].iov_len
;
6544 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6547 /* If this is a write we don't need to check anymore */
6552 * Check to make sure we don't have duplicate iov_base's in this
6553 * iovec, if so return EINVAL, otherwise we'll get csum errors
6554 * when reading back.
6556 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
6557 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
6566 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6567 const struct iovec
*iov
, loff_t offset
,
6568 unsigned long nr_segs
)
6570 struct file
*file
= iocb
->ki_filp
;
6571 struct inode
*inode
= file
->f_mapping
->host
;
6573 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6577 return __blockdev_direct_IO(rw
, iocb
, inode
,
6578 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6579 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6580 btrfs_submit_direct
, 0);
6583 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
6585 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6586 __u64 start
, __u64 len
)
6590 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
6594 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6597 int btrfs_readpage(struct file
*file
, struct page
*page
)
6599 struct extent_io_tree
*tree
;
6600 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6601 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
6604 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6606 struct extent_io_tree
*tree
;
6609 if (current
->flags
& PF_MEMALLOC
) {
6610 redirty_page_for_writepage(wbc
, page
);
6614 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6615 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6618 int btrfs_writepages(struct address_space
*mapping
,
6619 struct writeback_control
*wbc
)
6621 struct extent_io_tree
*tree
;
6623 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6624 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6628 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6629 struct list_head
*pages
, unsigned nr_pages
)
6631 struct extent_io_tree
*tree
;
6632 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6633 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6636 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6638 struct extent_io_tree
*tree
;
6639 struct extent_map_tree
*map
;
6642 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6643 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6644 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6646 ClearPagePrivate(page
);
6647 set_page_private(page
, 0);
6648 page_cache_release(page
);
6653 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6655 if (PageWriteback(page
) || PageDirty(page
))
6657 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6660 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6662 struct inode
*inode
= page
->mapping
->host
;
6663 struct extent_io_tree
*tree
;
6664 struct btrfs_ordered_extent
*ordered
;
6665 struct extent_state
*cached_state
= NULL
;
6666 u64 page_start
= page_offset(page
);
6667 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6670 * we have the page locked, so new writeback can't start,
6671 * and the dirty bit won't be cleared while we are here.
6673 * Wait for IO on this page so that we can safely clear
6674 * the PagePrivate2 bit and do ordered accounting
6676 wait_on_page_writeback(page
);
6678 tree
= &BTRFS_I(inode
)->io_tree
;
6680 btrfs_releasepage(page
, GFP_NOFS
);
6683 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
6684 ordered
= btrfs_lookup_ordered_extent(inode
,
6688 * IO on this page will never be started, so we need
6689 * to account for any ordered extents now
6691 clear_extent_bit(tree
, page_start
, page_end
,
6692 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6693 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
6694 EXTENT_DEFRAG
, 1, 0, &cached_state
, GFP_NOFS
);
6696 * whoever cleared the private bit is responsible
6697 * for the finish_ordered_io
6699 if (TestClearPagePrivate2(page
) &&
6700 btrfs_dec_test_ordered_pending(inode
, &ordered
, page_start
,
6701 PAGE_CACHE_SIZE
, 1)) {
6702 btrfs_finish_ordered_io(ordered
);
6704 btrfs_put_ordered_extent(ordered
);
6705 cached_state
= NULL
;
6706 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
);
6708 clear_extent_bit(tree
, page_start
, page_end
,
6709 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6710 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
6711 &cached_state
, GFP_NOFS
);
6712 __btrfs_releasepage(page
, GFP_NOFS
);
6714 ClearPageChecked(page
);
6715 if (PagePrivate(page
)) {
6716 ClearPagePrivate(page
);
6717 set_page_private(page
, 0);
6718 page_cache_release(page
);
6723 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6724 * called from a page fault handler when a page is first dirtied. Hence we must
6725 * be careful to check for EOF conditions here. We set the page up correctly
6726 * for a written page which means we get ENOSPC checking when writing into
6727 * holes and correct delalloc and unwritten extent mapping on filesystems that
6728 * support these features.
6730 * We are not allowed to take the i_mutex here so we have to play games to
6731 * protect against truncate races as the page could now be beyond EOF. Because
6732 * vmtruncate() writes the inode size before removing pages, once we have the
6733 * page lock we can determine safely if the page is beyond EOF. If it is not
6734 * beyond EOF, then the page is guaranteed safe against truncation until we
6737 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6739 struct page
*page
= vmf
->page
;
6740 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6741 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6742 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6743 struct btrfs_ordered_extent
*ordered
;
6744 struct extent_state
*cached_state
= NULL
;
6746 unsigned long zero_start
;
6753 sb_start_pagefault(inode
->i_sb
);
6754 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6756 ret
= file_update_time(vma
->vm_file
);
6762 else /* -ENOSPC, -EIO, etc */
6763 ret
= VM_FAULT_SIGBUS
;
6769 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6772 size
= i_size_read(inode
);
6773 page_start
= page_offset(page
);
6774 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6776 if ((page
->mapping
!= inode
->i_mapping
) ||
6777 (page_start
>= size
)) {
6778 /* page got truncated out from underneath us */
6781 wait_on_page_writeback(page
);
6783 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
);
6784 set_page_extent_mapped(page
);
6787 * we can't set the delalloc bits if there are pending ordered
6788 * extents. Drop our locks and wait for them to finish
6790 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6792 unlock_extent_cached(io_tree
, page_start
, page_end
,
6793 &cached_state
, GFP_NOFS
);
6795 btrfs_start_ordered_extent(inode
, ordered
, 1);
6796 btrfs_put_ordered_extent(ordered
);
6801 * XXX - page_mkwrite gets called every time the page is dirtied, even
6802 * if it was already dirty, so for space accounting reasons we need to
6803 * clear any delalloc bits for the range we are fixing to save. There
6804 * is probably a better way to do this, but for now keep consistent with
6805 * prepare_pages in the normal write path.
6807 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6808 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6809 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
6810 0, 0, &cached_state
, GFP_NOFS
);
6812 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6815 unlock_extent_cached(io_tree
, page_start
, page_end
,
6816 &cached_state
, GFP_NOFS
);
6817 ret
= VM_FAULT_SIGBUS
;
6822 /* page is wholly or partially inside EOF */
6823 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6824 zero_start
= size
& ~PAGE_CACHE_MASK
;
6826 zero_start
= PAGE_CACHE_SIZE
;
6828 if (zero_start
!= PAGE_CACHE_SIZE
) {
6830 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6831 flush_dcache_page(page
);
6834 ClearPageChecked(page
);
6835 set_page_dirty(page
);
6836 SetPageUptodate(page
);
6838 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6839 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6840 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
6842 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6846 sb_end_pagefault(inode
->i_sb
);
6847 return VM_FAULT_LOCKED
;
6851 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6853 sb_end_pagefault(inode
->i_sb
);
6857 static int btrfs_truncate(struct inode
*inode
)
6859 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6860 struct btrfs_block_rsv
*rsv
;
6863 struct btrfs_trans_handle
*trans
;
6864 u64 mask
= root
->sectorsize
- 1;
6865 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
6867 ret
= btrfs_truncate_page(inode
, inode
->i_size
, 0, 0);
6871 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6872 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6875 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6876 * 3 things going on here
6878 * 1) We need to reserve space for our orphan item and the space to
6879 * delete our orphan item. Lord knows we don't want to have a dangling
6880 * orphan item because we didn't reserve space to remove it.
6882 * 2) We need to reserve space to update our inode.
6884 * 3) We need to have something to cache all the space that is going to
6885 * be free'd up by the truncate operation, but also have some slack
6886 * space reserved in case it uses space during the truncate (thank you
6887 * very much snapshotting).
6889 * And we need these to all be seperate. The fact is we can use alot of
6890 * space doing the truncate, and we have no earthly idea how much space
6891 * we will use, so we need the truncate reservation to be seperate so it
6892 * doesn't end up using space reserved for updating the inode or
6893 * removing the orphan item. We also need to be able to stop the
6894 * transaction and start a new one, which means we need to be able to
6895 * update the inode several times, and we have no idea of knowing how
6896 * many times that will be, so we can't just reserve 1 item for the
6897 * entirety of the opration, so that has to be done seperately as well.
6898 * Then there is the orphan item, which does indeed need to be held on
6899 * to for the whole operation, and we need nobody to touch this reserved
6900 * space except the orphan code.
6902 * So that leaves us with
6904 * 1) root->orphan_block_rsv - for the orphan deletion.
6905 * 2) rsv - for the truncate reservation, which we will steal from the
6906 * transaction reservation.
6907 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6908 * updating the inode.
6910 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
6913 rsv
->size
= min_size
;
6917 * 1 for the truncate slack space
6918 * 1 for the orphan item we're going to add
6919 * 1 for the orphan item deletion
6920 * 1 for updating the inode.
6922 trans
= btrfs_start_transaction(root
, 4);
6923 if (IS_ERR(trans
)) {
6924 err
= PTR_ERR(trans
);
6928 /* Migrate the slack space for the truncate to our reserve */
6929 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
6933 ret
= btrfs_orphan_add(trans
, inode
);
6935 btrfs_end_transaction(trans
, root
);
6940 * setattr is responsible for setting the ordered_data_close flag,
6941 * but that is only tested during the last file release. That
6942 * could happen well after the next commit, leaving a great big
6943 * window where new writes may get lost if someone chooses to write
6944 * to this file after truncating to zero
6946 * The inode doesn't have any dirty data here, and so if we commit
6947 * this is a noop. If someone immediately starts writing to the inode
6948 * it is very likely we'll catch some of their writes in this
6949 * transaction, and the commit will find this file on the ordered
6950 * data list with good things to send down.
6952 * This is a best effort solution, there is still a window where
6953 * using truncate to replace the contents of the file will
6954 * end up with a zero length file after a crash.
6956 if (inode
->i_size
== 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
6957 &BTRFS_I(inode
)->runtime_flags
))
6958 btrfs_add_ordered_operation(trans
, root
, inode
);
6961 * So if we truncate and then write and fsync we normally would just
6962 * write the extents that changed, which is a problem if we need to
6963 * first truncate that entire inode. So set this flag so we write out
6964 * all of the extents in the inode to the sync log so we're completely
6967 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6968 trans
->block_rsv
= rsv
;
6971 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6973 BTRFS_EXTENT_DATA_KEY
);
6974 if (ret
!= -ENOSPC
) {
6979 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6980 ret
= btrfs_update_inode(trans
, root
, inode
);
6986 btrfs_end_transaction(trans
, root
);
6987 btrfs_btree_balance_dirty(root
);
6989 trans
= btrfs_start_transaction(root
, 2);
6990 if (IS_ERR(trans
)) {
6991 ret
= err
= PTR_ERR(trans
);
6996 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
6998 BUG_ON(ret
); /* shouldn't happen */
6999 trans
->block_rsv
= rsv
;
7002 if (ret
== 0 && inode
->i_nlink
> 0) {
7003 trans
->block_rsv
= root
->orphan_block_rsv
;
7004 ret
= btrfs_orphan_del(trans
, inode
);
7007 } else if (ret
&& inode
->i_nlink
> 0) {
7009 * Failed to do the truncate, remove us from the in memory
7012 ret
= btrfs_orphan_del(NULL
, inode
);
7016 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
7017 ret
= btrfs_update_inode(trans
, root
, inode
);
7021 ret
= btrfs_end_transaction(trans
, root
);
7022 btrfs_btree_balance_dirty(root
);
7026 btrfs_free_block_rsv(root
, rsv
);
7035 * create a new subvolume directory/inode (helper for the ioctl).
7037 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
7038 struct btrfs_root
*new_root
, u64 new_dirid
)
7040 struct inode
*inode
;
7044 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
7045 new_dirid
, new_dirid
,
7046 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
7049 return PTR_ERR(inode
);
7050 inode
->i_op
= &btrfs_dir_inode_operations
;
7051 inode
->i_fop
= &btrfs_dir_file_operations
;
7053 set_nlink(inode
, 1);
7054 btrfs_i_size_write(inode
, 0);
7056 err
= btrfs_update_inode(trans
, new_root
, inode
);
7062 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
7064 struct btrfs_inode
*ei
;
7065 struct inode
*inode
;
7067 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
7074 ei
->last_sub_trans
= 0;
7075 ei
->logged_trans
= 0;
7076 ei
->delalloc_bytes
= 0;
7077 ei
->disk_i_size
= 0;
7080 ei
->index_cnt
= (u64
)-1;
7081 ei
->last_unlink_trans
= 0;
7082 ei
->last_log_commit
= 0;
7084 spin_lock_init(&ei
->lock
);
7085 ei
->outstanding_extents
= 0;
7086 ei
->reserved_extents
= 0;
7088 ei
->runtime_flags
= 0;
7089 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
7091 ei
->delayed_node
= NULL
;
7093 inode
= &ei
->vfs_inode
;
7094 extent_map_tree_init(&ei
->extent_tree
);
7095 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
7096 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
7097 ei
->io_tree
.track_uptodate
= 1;
7098 ei
->io_failure_tree
.track_uptodate
= 1;
7099 atomic_set(&ei
->sync_writers
, 0);
7100 mutex_init(&ei
->log_mutex
);
7101 mutex_init(&ei
->delalloc_mutex
);
7102 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
7103 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
7104 INIT_LIST_HEAD(&ei
->ordered_operations
);
7105 RB_CLEAR_NODE(&ei
->rb_node
);
7110 static void btrfs_i_callback(struct rcu_head
*head
)
7112 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
7113 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
7116 void btrfs_destroy_inode(struct inode
*inode
)
7118 struct btrfs_ordered_extent
*ordered
;
7119 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7121 WARN_ON(!hlist_empty(&inode
->i_dentry
));
7122 WARN_ON(inode
->i_data
.nrpages
);
7123 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
7124 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
7125 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
7126 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
7129 * This can happen where we create an inode, but somebody else also
7130 * created the same inode and we need to destroy the one we already
7137 * Make sure we're properly removed from the ordered operation
7141 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
7142 spin_lock(&root
->fs_info
->ordered_extent_lock
);
7143 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
7144 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
7147 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
7148 &BTRFS_I(inode
)->runtime_flags
)) {
7149 printk(KERN_INFO
"BTRFS: inode %llu still on the orphan list\n",
7150 (unsigned long long)btrfs_ino(inode
));
7151 atomic_dec(&root
->orphan_inodes
);
7155 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
7159 printk(KERN_ERR
"btrfs found ordered "
7160 "extent %llu %llu on inode cleanup\n",
7161 (unsigned long long)ordered
->file_offset
,
7162 (unsigned long long)ordered
->len
);
7163 btrfs_remove_ordered_extent(inode
, ordered
);
7164 btrfs_put_ordered_extent(ordered
);
7165 btrfs_put_ordered_extent(ordered
);
7168 inode_tree_del(inode
);
7169 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
7171 btrfs_remove_delayed_node(inode
);
7172 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
7175 int btrfs_drop_inode(struct inode
*inode
)
7177 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7179 if (btrfs_root_refs(&root
->root_item
) == 0 &&
7180 !btrfs_is_free_space_inode(inode
))
7183 return generic_drop_inode(inode
);
7186 static void init_once(void *foo
)
7188 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
7190 inode_init_once(&ei
->vfs_inode
);
7193 void btrfs_destroy_cachep(void)
7196 * Make sure all delayed rcu free inodes are flushed before we
7200 if (btrfs_inode_cachep
)
7201 kmem_cache_destroy(btrfs_inode_cachep
);
7202 if (btrfs_trans_handle_cachep
)
7203 kmem_cache_destroy(btrfs_trans_handle_cachep
);
7204 if (btrfs_transaction_cachep
)
7205 kmem_cache_destroy(btrfs_transaction_cachep
);
7206 if (btrfs_path_cachep
)
7207 kmem_cache_destroy(btrfs_path_cachep
);
7208 if (btrfs_free_space_cachep
)
7209 kmem_cache_destroy(btrfs_free_space_cachep
);
7210 if (btrfs_delalloc_work_cachep
)
7211 kmem_cache_destroy(btrfs_delalloc_work_cachep
);
7214 int btrfs_init_cachep(void)
7216 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
7217 sizeof(struct btrfs_inode
), 0,
7218 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
7219 if (!btrfs_inode_cachep
)
7222 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
7223 sizeof(struct btrfs_trans_handle
), 0,
7224 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7225 if (!btrfs_trans_handle_cachep
)
7228 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction",
7229 sizeof(struct btrfs_transaction
), 0,
7230 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7231 if (!btrfs_transaction_cachep
)
7234 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
7235 sizeof(struct btrfs_path
), 0,
7236 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7237 if (!btrfs_path_cachep
)
7240 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
7241 sizeof(struct btrfs_free_space
), 0,
7242 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
7243 if (!btrfs_free_space_cachep
)
7246 btrfs_delalloc_work_cachep
= kmem_cache_create("btrfs_delalloc_work",
7247 sizeof(struct btrfs_delalloc_work
), 0,
7248 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
7250 if (!btrfs_delalloc_work_cachep
)
7255 btrfs_destroy_cachep();
7259 static int btrfs_getattr(struct vfsmount
*mnt
,
7260 struct dentry
*dentry
, struct kstat
*stat
)
7262 struct inode
*inode
= dentry
->d_inode
;
7263 u32 blocksize
= inode
->i_sb
->s_blocksize
;
7265 generic_fillattr(inode
, stat
);
7266 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
7267 stat
->blksize
= PAGE_CACHE_SIZE
;
7268 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
7269 ALIGN(BTRFS_I(inode
)->delalloc_bytes
, blocksize
)) >> 9;
7274 * If a file is moved, it will inherit the cow and compression flags of the new
7277 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
7279 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
7280 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
7282 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
7283 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
7285 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
7287 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
) {
7288 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
7289 b_inode
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
7291 b_inode
->flags
&= ~(BTRFS_INODE_COMPRESS
|
7292 BTRFS_INODE_NOCOMPRESS
);
7296 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
7297 struct inode
*new_dir
, struct dentry
*new_dentry
)
7299 struct btrfs_trans_handle
*trans
;
7300 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
7301 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
7302 struct inode
*new_inode
= new_dentry
->d_inode
;
7303 struct inode
*old_inode
= old_dentry
->d_inode
;
7304 struct timespec ctime
= CURRENT_TIME
;
7308 u64 old_ino
= btrfs_ino(old_inode
);
7310 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
7313 /* we only allow rename subvolume link between subvolumes */
7314 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
7317 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
7318 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
7321 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
7322 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
7326 /* check for collisions, even if the name isn't there */
7327 ret
= btrfs_check_dir_item_collision(root
, new_dir
->i_ino
,
7328 new_dentry
->d_name
.name
,
7329 new_dentry
->d_name
.len
);
7332 if (ret
== -EEXIST
) {
7334 * eexist without a new_inode */
7340 /* maybe -EOVERFLOW */
7347 * we're using rename to replace one file with another.
7348 * and the replacement file is large. Start IO on it now so
7349 * we don't add too much work to the end of the transaction
7351 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
7352 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
7353 filemap_flush(old_inode
->i_mapping
);
7355 /* close the racy window with snapshot create/destroy ioctl */
7356 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7357 down_read(&root
->fs_info
->subvol_sem
);
7359 * We want to reserve the absolute worst case amount of items. So if
7360 * both inodes are subvols and we need to unlink them then that would
7361 * require 4 item modifications, but if they are both normal inodes it
7362 * would require 5 item modifications, so we'll assume their normal
7363 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7364 * should cover the worst case number of items we'll modify.
7366 trans
= btrfs_start_transaction(root
, 20);
7367 if (IS_ERR(trans
)) {
7368 ret
= PTR_ERR(trans
);
7373 btrfs_record_root_in_trans(trans
, dest
);
7375 ret
= btrfs_set_inode_index(new_dir
, &index
);
7379 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7380 /* force full log commit if subvolume involved. */
7381 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7383 ret
= btrfs_insert_inode_ref(trans
, dest
,
7384 new_dentry
->d_name
.name
,
7385 new_dentry
->d_name
.len
,
7387 btrfs_ino(new_dir
), index
);
7391 * this is an ugly little race, but the rename is required
7392 * to make sure that if we crash, the inode is either at the
7393 * old name or the new one. pinning the log transaction lets
7394 * us make sure we don't allow a log commit to come in after
7395 * we unlink the name but before we add the new name back in.
7397 btrfs_pin_log_trans(root
);
7400 * make sure the inode gets flushed if it is replacing
7403 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
7404 btrfs_add_ordered_operation(trans
, root
, old_inode
);
7406 inode_inc_iversion(old_dir
);
7407 inode_inc_iversion(new_dir
);
7408 inode_inc_iversion(old_inode
);
7409 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
7410 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
7411 old_inode
->i_ctime
= ctime
;
7413 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
7414 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
7416 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7417 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
7418 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
7419 old_dentry
->d_name
.name
,
7420 old_dentry
->d_name
.len
);
7422 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
7423 old_dentry
->d_inode
,
7424 old_dentry
->d_name
.name
,
7425 old_dentry
->d_name
.len
);
7427 ret
= btrfs_update_inode(trans
, root
, old_inode
);
7430 btrfs_abort_transaction(trans
, root
, ret
);
7435 inode_inc_iversion(new_inode
);
7436 new_inode
->i_ctime
= CURRENT_TIME
;
7437 if (unlikely(btrfs_ino(new_inode
) ==
7438 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
7439 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
7440 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
7442 new_dentry
->d_name
.name
,
7443 new_dentry
->d_name
.len
);
7444 BUG_ON(new_inode
->i_nlink
== 0);
7446 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
7447 new_dentry
->d_inode
,
7448 new_dentry
->d_name
.name
,
7449 new_dentry
->d_name
.len
);
7451 if (!ret
&& new_inode
->i_nlink
== 0) {
7452 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
7456 btrfs_abort_transaction(trans
, root
, ret
);
7461 fixup_inode_flags(new_dir
, old_inode
);
7463 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
7464 new_dentry
->d_name
.name
,
7465 new_dentry
->d_name
.len
, 0, index
);
7467 btrfs_abort_transaction(trans
, root
, ret
);
7471 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
7472 struct dentry
*parent
= new_dentry
->d_parent
;
7473 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
7474 btrfs_end_log_trans(root
);
7477 btrfs_end_transaction(trans
, root
);
7479 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7480 up_read(&root
->fs_info
->subvol_sem
);
7485 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
7487 struct btrfs_delalloc_work
*delalloc_work
;
7489 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
7491 if (delalloc_work
->wait
)
7492 btrfs_wait_ordered_range(delalloc_work
->inode
, 0, (u64
)-1);
7494 filemap_flush(delalloc_work
->inode
->i_mapping
);
7496 if (delalloc_work
->delay_iput
)
7497 btrfs_add_delayed_iput(delalloc_work
->inode
);
7499 iput(delalloc_work
->inode
);
7500 complete(&delalloc_work
->completion
);
7503 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
7504 int wait
, int delay_iput
)
7506 struct btrfs_delalloc_work
*work
;
7508 work
= kmem_cache_zalloc(btrfs_delalloc_work_cachep
, GFP_NOFS
);
7512 init_completion(&work
->completion
);
7513 INIT_LIST_HEAD(&work
->list
);
7514 work
->inode
= inode
;
7516 work
->delay_iput
= delay_iput
;
7517 work
->work
.func
= btrfs_run_delalloc_work
;
7522 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
7524 wait_for_completion(&work
->completion
);
7525 kmem_cache_free(btrfs_delalloc_work_cachep
, work
);
7529 * some fairly slow code that needs optimization. This walks the list
7530 * of all the inodes with pending delalloc and forces them to disk.
7532 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
7534 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
7535 struct btrfs_inode
*binode
;
7536 struct inode
*inode
;
7537 struct btrfs_delalloc_work
*work
, *next
;
7538 struct list_head works
;
7541 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
7544 INIT_LIST_HEAD(&works
);
7546 spin_lock(&root
->fs_info
->delalloc_lock
);
7547 while (!list_empty(head
)) {
7548 binode
= list_entry(head
->next
, struct btrfs_inode
,
7550 inode
= igrab(&binode
->vfs_inode
);
7552 list_del_init(&binode
->delalloc_inodes
);
7553 spin_unlock(&root
->fs_info
->delalloc_lock
);
7555 work
= btrfs_alloc_delalloc_work(inode
, 0, delay_iput
);
7560 list_add_tail(&work
->list
, &works
);
7561 btrfs_queue_worker(&root
->fs_info
->flush_workers
,
7565 spin_lock(&root
->fs_info
->delalloc_lock
);
7567 spin_unlock(&root
->fs_info
->delalloc_lock
);
7569 /* the filemap_flush will queue IO into the worker threads, but
7570 * we have to make sure the IO is actually started and that
7571 * ordered extents get created before we return
7573 atomic_inc(&root
->fs_info
->async_submit_draining
);
7574 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7575 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7576 wait_event(root
->fs_info
->async_submit_wait
,
7577 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7578 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7580 atomic_dec(&root
->fs_info
->async_submit_draining
);
7582 list_for_each_entry_safe(work
, next
, &works
, list
) {
7583 list_del_init(&work
->list
);
7584 btrfs_wait_and_free_delalloc_work(work
);
7589 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7590 const char *symname
)
7592 struct btrfs_trans_handle
*trans
;
7593 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7594 struct btrfs_path
*path
;
7595 struct btrfs_key key
;
7596 struct inode
*inode
= NULL
;
7604 struct btrfs_file_extent_item
*ei
;
7605 struct extent_buffer
*leaf
;
7607 name_len
= strlen(symname
) + 1;
7608 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7609 return -ENAMETOOLONG
;
7612 * 2 items for inode item and ref
7613 * 2 items for dir items
7614 * 1 item for xattr if selinux is on
7616 trans
= btrfs_start_transaction(root
, 5);
7618 return PTR_ERR(trans
);
7620 err
= btrfs_find_free_ino(root
, &objectid
);
7624 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7625 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
7626 S_IFLNK
|S_IRWXUGO
, &index
);
7627 if (IS_ERR(inode
)) {
7628 err
= PTR_ERR(inode
);
7632 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7639 * If the active LSM wants to access the inode during
7640 * d_instantiate it needs these. Smack checks to see
7641 * if the filesystem supports xattrs by looking at the
7644 inode
->i_fop
= &btrfs_file_operations
;
7645 inode
->i_op
= &btrfs_file_inode_operations
;
7647 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7651 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7652 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7653 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7658 path
= btrfs_alloc_path();
7664 key
.objectid
= btrfs_ino(inode
);
7666 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7667 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7668 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7672 btrfs_free_path(path
);
7675 leaf
= path
->nodes
[0];
7676 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7677 struct btrfs_file_extent_item
);
7678 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7679 btrfs_set_file_extent_type(leaf
, ei
,
7680 BTRFS_FILE_EXTENT_INLINE
);
7681 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7682 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7683 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7684 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7686 ptr
= btrfs_file_extent_inline_start(ei
);
7687 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7688 btrfs_mark_buffer_dirty(leaf
);
7689 btrfs_free_path(path
);
7691 inode
->i_op
= &btrfs_symlink_inode_operations
;
7692 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7693 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7694 inode_set_bytes(inode
, name_len
);
7695 btrfs_i_size_write(inode
, name_len
- 1);
7696 err
= btrfs_update_inode(trans
, root
, inode
);
7702 d_instantiate(dentry
, inode
);
7703 btrfs_end_transaction(trans
, root
);
7705 inode_dec_link_count(inode
);
7708 btrfs_btree_balance_dirty(root
);
7712 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7713 u64 start
, u64 num_bytes
, u64 min_size
,
7714 loff_t actual_len
, u64
*alloc_hint
,
7715 struct btrfs_trans_handle
*trans
)
7717 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
7718 struct extent_map
*em
;
7719 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7720 struct btrfs_key ins
;
7721 u64 cur_offset
= start
;
7724 bool own_trans
= true;
7728 while (num_bytes
> 0) {
7730 trans
= btrfs_start_transaction(root
, 3);
7731 if (IS_ERR(trans
)) {
7732 ret
= PTR_ERR(trans
);
7737 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7738 0, *alloc_hint
, &ins
, 1);
7741 btrfs_end_transaction(trans
, root
);
7745 ret
= insert_reserved_file_extent(trans
, inode
,
7746 cur_offset
, ins
.objectid
,
7747 ins
.offset
, ins
.offset
,
7748 ins
.offset
, 0, 0, 0,
7749 BTRFS_FILE_EXTENT_PREALLOC
);
7751 btrfs_abort_transaction(trans
, root
, ret
);
7753 btrfs_end_transaction(trans
, root
);
7756 btrfs_drop_extent_cache(inode
, cur_offset
,
7757 cur_offset
+ ins
.offset
-1, 0);
7759 em
= alloc_extent_map();
7761 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
7762 &BTRFS_I(inode
)->runtime_flags
);
7766 em
->start
= cur_offset
;
7767 em
->orig_start
= cur_offset
;
7768 em
->len
= ins
.offset
;
7769 em
->block_start
= ins
.objectid
;
7770 em
->block_len
= ins
.offset
;
7771 em
->orig_block_len
= ins
.offset
;
7772 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7773 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7774 em
->generation
= trans
->transid
;
7777 write_lock(&em_tree
->lock
);
7778 ret
= add_extent_mapping(em_tree
, em
);
7780 list_move(&em
->list
,
7781 &em_tree
->modified_extents
);
7782 write_unlock(&em_tree
->lock
);
7785 btrfs_drop_extent_cache(inode
, cur_offset
,
7786 cur_offset
+ ins
.offset
- 1,
7789 free_extent_map(em
);
7791 num_bytes
-= ins
.offset
;
7792 cur_offset
+= ins
.offset
;
7793 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7795 inode_inc_iversion(inode
);
7796 inode
->i_ctime
= CURRENT_TIME
;
7797 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7798 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7799 (actual_len
> inode
->i_size
) &&
7800 (cur_offset
> inode
->i_size
)) {
7801 if (cur_offset
> actual_len
)
7802 i_size
= actual_len
;
7804 i_size
= cur_offset
;
7805 i_size_write(inode
, i_size
);
7806 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7809 ret
= btrfs_update_inode(trans
, root
, inode
);
7812 btrfs_abort_transaction(trans
, root
, ret
);
7814 btrfs_end_transaction(trans
, root
);
7819 btrfs_end_transaction(trans
, root
);
7824 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7825 u64 start
, u64 num_bytes
, u64 min_size
,
7826 loff_t actual_len
, u64
*alloc_hint
)
7828 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7829 min_size
, actual_len
, alloc_hint
,
7833 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7834 struct btrfs_trans_handle
*trans
, int mode
,
7835 u64 start
, u64 num_bytes
, u64 min_size
,
7836 loff_t actual_len
, u64
*alloc_hint
)
7838 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7839 min_size
, actual_len
, alloc_hint
, trans
);
7842 static int btrfs_set_page_dirty(struct page
*page
)
7844 return __set_page_dirty_nobuffers(page
);
7847 static int btrfs_permission(struct inode
*inode
, int mask
)
7849 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7850 umode_t mode
= inode
->i_mode
;
7852 if (mask
& MAY_WRITE
&&
7853 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
7854 if (btrfs_root_readonly(root
))
7856 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
7859 return generic_permission(inode
, mask
);
7862 static const struct inode_operations btrfs_dir_inode_operations
= {
7863 .getattr
= btrfs_getattr
,
7864 .lookup
= btrfs_lookup
,
7865 .create
= btrfs_create
,
7866 .unlink
= btrfs_unlink
,
7868 .mkdir
= btrfs_mkdir
,
7869 .rmdir
= btrfs_rmdir
,
7870 .rename
= btrfs_rename
,
7871 .symlink
= btrfs_symlink
,
7872 .setattr
= btrfs_setattr
,
7873 .mknod
= btrfs_mknod
,
7874 .setxattr
= btrfs_setxattr
,
7875 .getxattr
= btrfs_getxattr
,
7876 .listxattr
= btrfs_listxattr
,
7877 .removexattr
= btrfs_removexattr
,
7878 .permission
= btrfs_permission
,
7879 .get_acl
= btrfs_get_acl
,
7881 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7882 .lookup
= btrfs_lookup
,
7883 .permission
= btrfs_permission
,
7884 .get_acl
= btrfs_get_acl
,
7887 static const struct file_operations btrfs_dir_file_operations
= {
7888 .llseek
= generic_file_llseek
,
7889 .read
= generic_read_dir
,
7890 .readdir
= btrfs_real_readdir
,
7891 .unlocked_ioctl
= btrfs_ioctl
,
7892 #ifdef CONFIG_COMPAT
7893 .compat_ioctl
= btrfs_ioctl
,
7895 .release
= btrfs_release_file
,
7896 .fsync
= btrfs_sync_file
,
7899 static struct extent_io_ops btrfs_extent_io_ops
= {
7900 .fill_delalloc
= run_delalloc_range
,
7901 .submit_bio_hook
= btrfs_submit_bio_hook
,
7902 .merge_bio_hook
= btrfs_merge_bio_hook
,
7903 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7904 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7905 .writepage_start_hook
= btrfs_writepage_start_hook
,
7906 .set_bit_hook
= btrfs_set_bit_hook
,
7907 .clear_bit_hook
= btrfs_clear_bit_hook
,
7908 .merge_extent_hook
= btrfs_merge_extent_hook
,
7909 .split_extent_hook
= btrfs_split_extent_hook
,
7913 * btrfs doesn't support the bmap operation because swapfiles
7914 * use bmap to make a mapping of extents in the file. They assume
7915 * these extents won't change over the life of the file and they
7916 * use the bmap result to do IO directly to the drive.
7918 * the btrfs bmap call would return logical addresses that aren't
7919 * suitable for IO and they also will change frequently as COW
7920 * operations happen. So, swapfile + btrfs == corruption.
7922 * For now we're avoiding this by dropping bmap.
7924 static const struct address_space_operations btrfs_aops
= {
7925 .readpage
= btrfs_readpage
,
7926 .writepage
= btrfs_writepage
,
7927 .writepages
= btrfs_writepages
,
7928 .readpages
= btrfs_readpages
,
7929 .direct_IO
= btrfs_direct_IO
,
7930 .invalidatepage
= btrfs_invalidatepage
,
7931 .releasepage
= btrfs_releasepage
,
7932 .set_page_dirty
= btrfs_set_page_dirty
,
7933 .error_remove_page
= generic_error_remove_page
,
7936 static const struct address_space_operations btrfs_symlink_aops
= {
7937 .readpage
= btrfs_readpage
,
7938 .writepage
= btrfs_writepage
,
7939 .invalidatepage
= btrfs_invalidatepage
,
7940 .releasepage
= btrfs_releasepage
,
7943 static const struct inode_operations btrfs_file_inode_operations
= {
7944 .getattr
= btrfs_getattr
,
7945 .setattr
= btrfs_setattr
,
7946 .setxattr
= btrfs_setxattr
,
7947 .getxattr
= btrfs_getxattr
,
7948 .listxattr
= btrfs_listxattr
,
7949 .removexattr
= btrfs_removexattr
,
7950 .permission
= btrfs_permission
,
7951 .fiemap
= btrfs_fiemap
,
7952 .get_acl
= btrfs_get_acl
,
7953 .update_time
= btrfs_update_time
,
7955 static const struct inode_operations btrfs_special_inode_operations
= {
7956 .getattr
= btrfs_getattr
,
7957 .setattr
= btrfs_setattr
,
7958 .permission
= btrfs_permission
,
7959 .setxattr
= btrfs_setxattr
,
7960 .getxattr
= btrfs_getxattr
,
7961 .listxattr
= btrfs_listxattr
,
7962 .removexattr
= btrfs_removexattr
,
7963 .get_acl
= btrfs_get_acl
,
7964 .update_time
= btrfs_update_time
,
7966 static const struct inode_operations btrfs_symlink_inode_operations
= {
7967 .readlink
= generic_readlink
,
7968 .follow_link
= page_follow_link_light
,
7969 .put_link
= page_put_link
,
7970 .getattr
= btrfs_getattr
,
7971 .setattr
= btrfs_setattr
,
7972 .permission
= btrfs_permission
,
7973 .setxattr
= btrfs_setxattr
,
7974 .getxattr
= btrfs_getxattr
,
7975 .listxattr
= btrfs_listxattr
,
7976 .removexattr
= btrfs_removexattr
,
7977 .get_acl
= btrfs_get_acl
,
7978 .update_time
= btrfs_update_time
,
7981 const struct dentry_operations btrfs_dentry_operations
= {
7982 .d_delete
= btrfs_dentry_delete
,
7983 .d_release
= btrfs_dentry_release
,