hwmon: Add driver for ADT7411 voltage and temperature sensor
[linux-2.6/cjktty.git] / fs / nilfs2 / the_nilfs.c
blob92733d5651d24ed68c8c5081346155554d62c520
1 /*
2 * the_nilfs.c - the_nilfs shared structure.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
24 #include <linux/buffer_head.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/crc32.h>
29 #include "nilfs.h"
30 #include "segment.h"
31 #include "alloc.h"
32 #include "cpfile.h"
33 #include "sufile.h"
34 #include "dat.h"
35 #include "segbuf.h"
38 static LIST_HEAD(nilfs_objects);
39 static DEFINE_SPINLOCK(nilfs_lock);
41 void nilfs_set_last_segment(struct the_nilfs *nilfs,
42 sector_t start_blocknr, u64 seq, __u64 cno)
44 spin_lock(&nilfs->ns_last_segment_lock);
45 nilfs->ns_last_pseg = start_blocknr;
46 nilfs->ns_last_seq = seq;
47 nilfs->ns_last_cno = cno;
48 spin_unlock(&nilfs->ns_last_segment_lock);
51 /**
52 * alloc_nilfs - allocate the_nilfs structure
53 * @bdev: block device to which the_nilfs is related
55 * alloc_nilfs() allocates memory for the_nilfs and
56 * initializes its reference count and locks.
58 * Return Value: On success, pointer to the_nilfs is returned.
59 * On error, NULL is returned.
61 static struct the_nilfs *alloc_nilfs(struct block_device *bdev)
63 struct the_nilfs *nilfs;
65 nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
66 if (!nilfs)
67 return NULL;
69 nilfs->ns_bdev = bdev;
70 atomic_set(&nilfs->ns_count, 1);
71 atomic_set(&nilfs->ns_ndirtyblks, 0);
72 init_rwsem(&nilfs->ns_sem);
73 init_rwsem(&nilfs->ns_super_sem);
74 mutex_init(&nilfs->ns_mount_mutex);
75 init_rwsem(&nilfs->ns_writer_sem);
76 INIT_LIST_HEAD(&nilfs->ns_list);
77 INIT_LIST_HEAD(&nilfs->ns_supers);
78 spin_lock_init(&nilfs->ns_last_segment_lock);
79 nilfs->ns_gc_inodes_h = NULL;
80 init_rwsem(&nilfs->ns_segctor_sem);
82 return nilfs;
85 /**
86 * find_or_create_nilfs - find or create nilfs object
87 * @bdev: block device to which the_nilfs is related
89 * find_nilfs() looks up an existent nilfs object created on the
90 * device and gets the reference count of the object. If no nilfs object
91 * is found on the device, a new nilfs object is allocated.
93 * Return Value: On success, pointer to the nilfs object is returned.
94 * On error, NULL is returned.
96 struct the_nilfs *find_or_create_nilfs(struct block_device *bdev)
98 struct the_nilfs *nilfs, *new = NULL;
100 retry:
101 spin_lock(&nilfs_lock);
102 list_for_each_entry(nilfs, &nilfs_objects, ns_list) {
103 if (nilfs->ns_bdev == bdev) {
104 get_nilfs(nilfs);
105 spin_unlock(&nilfs_lock);
106 if (new)
107 put_nilfs(new);
108 return nilfs; /* existing object */
111 if (new) {
112 list_add_tail(&new->ns_list, &nilfs_objects);
113 spin_unlock(&nilfs_lock);
114 return new; /* new object */
116 spin_unlock(&nilfs_lock);
118 new = alloc_nilfs(bdev);
119 if (new)
120 goto retry;
121 return NULL; /* insufficient memory */
125 * put_nilfs - release a reference to the_nilfs
126 * @nilfs: the_nilfs structure to be released
128 * put_nilfs() decrements a reference counter of the_nilfs.
129 * If the reference count reaches zero, the_nilfs is freed.
131 void put_nilfs(struct the_nilfs *nilfs)
133 spin_lock(&nilfs_lock);
134 if (!atomic_dec_and_test(&nilfs->ns_count)) {
135 spin_unlock(&nilfs_lock);
136 return;
138 list_del_init(&nilfs->ns_list);
139 spin_unlock(&nilfs_lock);
142 * Increment of ns_count never occurs below because the caller
143 * of get_nilfs() holds at least one reference to the_nilfs.
144 * Thus its exclusion control is not required here.
147 might_sleep();
148 if (nilfs_loaded(nilfs)) {
149 nilfs_mdt_destroy(nilfs->ns_sufile);
150 nilfs_mdt_destroy(nilfs->ns_cpfile);
151 nilfs_mdt_destroy(nilfs->ns_dat);
152 nilfs_mdt_destroy(nilfs->ns_gc_dat);
154 if (nilfs_init(nilfs)) {
155 nilfs_destroy_gccache(nilfs);
156 brelse(nilfs->ns_sbh[0]);
157 brelse(nilfs->ns_sbh[1]);
159 kfree(nilfs);
162 static int nilfs_load_super_root(struct the_nilfs *nilfs,
163 struct nilfs_sb_info *sbi, sector_t sr_block)
165 struct buffer_head *bh_sr;
166 struct nilfs_super_root *raw_sr;
167 struct nilfs_super_block **sbp = nilfs->ns_sbp;
168 unsigned dat_entry_size, segment_usage_size, checkpoint_size;
169 unsigned inode_size;
170 int err;
172 err = nilfs_read_super_root_block(sbi->s_super, sr_block, &bh_sr, 1);
173 if (unlikely(err))
174 return err;
176 down_read(&nilfs->ns_sem);
177 dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
178 checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
179 segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
180 up_read(&nilfs->ns_sem);
182 inode_size = nilfs->ns_inode_size;
184 err = -ENOMEM;
185 nilfs->ns_dat = nilfs_dat_new(nilfs, dat_entry_size);
186 if (unlikely(!nilfs->ns_dat))
187 goto failed;
189 nilfs->ns_gc_dat = nilfs_dat_new(nilfs, dat_entry_size);
190 if (unlikely(!nilfs->ns_gc_dat))
191 goto failed_dat;
193 nilfs->ns_cpfile = nilfs_cpfile_new(nilfs, checkpoint_size);
194 if (unlikely(!nilfs->ns_cpfile))
195 goto failed_gc_dat;
197 nilfs->ns_sufile = nilfs_sufile_new(nilfs, segment_usage_size);
198 if (unlikely(!nilfs->ns_sufile))
199 goto failed_cpfile;
201 nilfs_mdt_set_shadow(nilfs->ns_dat, nilfs->ns_gc_dat);
203 err = nilfs_dat_read(nilfs->ns_dat, (void *)bh_sr->b_data +
204 NILFS_SR_DAT_OFFSET(inode_size));
205 if (unlikely(err))
206 goto failed_sufile;
208 err = nilfs_cpfile_read(nilfs->ns_cpfile, (void *)bh_sr->b_data +
209 NILFS_SR_CPFILE_OFFSET(inode_size));
210 if (unlikely(err))
211 goto failed_sufile;
213 err = nilfs_sufile_read(nilfs->ns_sufile, (void *)bh_sr->b_data +
214 NILFS_SR_SUFILE_OFFSET(inode_size));
215 if (unlikely(err))
216 goto failed_sufile;
218 raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
219 nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
221 failed:
222 brelse(bh_sr);
223 return err;
225 failed_sufile:
226 nilfs_mdt_destroy(nilfs->ns_sufile);
228 failed_cpfile:
229 nilfs_mdt_destroy(nilfs->ns_cpfile);
231 failed_gc_dat:
232 nilfs_mdt_destroy(nilfs->ns_gc_dat);
234 failed_dat:
235 nilfs_mdt_destroy(nilfs->ns_dat);
236 goto failed;
239 static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
241 memset(ri, 0, sizeof(*ri));
242 INIT_LIST_HEAD(&ri->ri_used_segments);
245 static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
247 nilfs_dispose_segment_list(&ri->ri_used_segments);
251 * load_nilfs - load and recover the nilfs
252 * @nilfs: the_nilfs structure to be released
253 * @sbi: nilfs_sb_info used to recover past segment
255 * load_nilfs() searches and load the latest super root,
256 * attaches the last segment, and does recovery if needed.
257 * The caller must call this exclusively for simultaneous mounts.
259 int load_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi)
261 struct nilfs_recovery_info ri;
262 unsigned int s_flags = sbi->s_super->s_flags;
263 int really_read_only = bdev_read_only(nilfs->ns_bdev);
264 int valid_fs = nilfs_valid_fs(nilfs);
265 int err;
267 if (nilfs_loaded(nilfs)) {
268 if (valid_fs ||
269 ((s_flags & MS_RDONLY) && nilfs_test_opt(sbi, NORECOVERY)))
270 return 0;
271 printk(KERN_ERR "NILFS: the filesystem is in an incomplete "
272 "recovery state.\n");
273 return -EINVAL;
276 if (!valid_fs) {
277 printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
278 if (s_flags & MS_RDONLY) {
279 printk(KERN_INFO "NILFS: INFO: recovery "
280 "required for readonly filesystem.\n");
281 printk(KERN_INFO "NILFS: write access will "
282 "be enabled during recovery.\n");
286 nilfs_init_recovery_info(&ri);
288 err = nilfs_search_super_root(nilfs, sbi, &ri);
289 if (unlikely(err)) {
290 printk(KERN_ERR "NILFS: error searching super root.\n");
291 goto failed;
294 err = nilfs_load_super_root(nilfs, sbi, ri.ri_super_root);
295 if (unlikely(err)) {
296 printk(KERN_ERR "NILFS: error loading super root.\n");
297 goto failed;
300 if (valid_fs)
301 goto skip_recovery;
303 if (s_flags & MS_RDONLY) {
304 if (nilfs_test_opt(sbi, NORECOVERY)) {
305 printk(KERN_INFO "NILFS: norecovery option specified. "
306 "skipping roll-forward recovery\n");
307 goto skip_recovery;
309 if (really_read_only) {
310 printk(KERN_ERR "NILFS: write access "
311 "unavailable, cannot proceed.\n");
312 err = -EROFS;
313 goto failed_unload;
315 sbi->s_super->s_flags &= ~MS_RDONLY;
316 } else if (nilfs_test_opt(sbi, NORECOVERY)) {
317 printk(KERN_ERR "NILFS: recovery cancelled because norecovery "
318 "option was specified for a read/write mount\n");
319 err = -EINVAL;
320 goto failed_unload;
323 err = nilfs_recover_logical_segments(nilfs, sbi, &ri);
324 if (err)
325 goto failed_unload;
327 down_write(&nilfs->ns_sem);
328 nilfs->ns_mount_state |= NILFS_VALID_FS;
329 nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
330 err = nilfs_commit_super(sbi, 1);
331 up_write(&nilfs->ns_sem);
333 if (err) {
334 printk(KERN_ERR "NILFS: failed to update super block. "
335 "recovery unfinished.\n");
336 goto failed_unload;
338 printk(KERN_INFO "NILFS: recovery complete.\n");
340 skip_recovery:
341 set_nilfs_loaded(nilfs);
342 nilfs_clear_recovery_info(&ri);
343 sbi->s_super->s_flags = s_flags;
344 return 0;
346 failed_unload:
347 nilfs_mdt_destroy(nilfs->ns_cpfile);
348 nilfs_mdt_destroy(nilfs->ns_sufile);
349 nilfs_mdt_destroy(nilfs->ns_dat);
351 failed:
352 nilfs_clear_recovery_info(&ri);
353 sbi->s_super->s_flags = s_flags;
354 return err;
357 static unsigned long long nilfs_max_size(unsigned int blkbits)
359 unsigned int max_bits;
360 unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
362 max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
363 if (max_bits < 64)
364 res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
365 return res;
368 static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
369 struct nilfs_super_block *sbp)
371 if (le32_to_cpu(sbp->s_rev_level) != NILFS_CURRENT_REV) {
372 printk(KERN_ERR "NILFS: revision mismatch "
373 "(superblock rev.=%d.%d, current rev.=%d.%d). "
374 "Please check the version of mkfs.nilfs.\n",
375 le32_to_cpu(sbp->s_rev_level),
376 le16_to_cpu(sbp->s_minor_rev_level),
377 NILFS_CURRENT_REV, NILFS_MINOR_REV);
378 return -EINVAL;
380 nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
381 if (nilfs->ns_sbsize > BLOCK_SIZE)
382 return -EINVAL;
384 nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
385 nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
387 nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
388 if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
389 printk(KERN_ERR "NILFS: too short segment. \n");
390 return -EINVAL;
393 nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
394 nilfs->ns_nsegments = le64_to_cpu(sbp->s_nsegments);
395 nilfs->ns_r_segments_percentage =
396 le32_to_cpu(sbp->s_r_segments_percentage);
397 nilfs->ns_nrsvsegs =
398 max_t(unsigned long, NILFS_MIN_NRSVSEGS,
399 DIV_ROUND_UP(nilfs->ns_nsegments *
400 nilfs->ns_r_segments_percentage, 100));
401 nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
402 return 0;
405 static int nilfs_valid_sb(struct nilfs_super_block *sbp)
407 static unsigned char sum[4];
408 const int sumoff = offsetof(struct nilfs_super_block, s_sum);
409 size_t bytes;
410 u32 crc;
412 if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
413 return 0;
414 bytes = le16_to_cpu(sbp->s_bytes);
415 if (bytes > BLOCK_SIZE)
416 return 0;
417 crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
418 sumoff);
419 crc = crc32_le(crc, sum, 4);
420 crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
421 bytes - sumoff - 4);
422 return crc == le32_to_cpu(sbp->s_sum);
425 static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
427 return offset < ((le64_to_cpu(sbp->s_nsegments) *
428 le32_to_cpu(sbp->s_blocks_per_segment)) <<
429 (le32_to_cpu(sbp->s_log_block_size) + 10));
432 static void nilfs_release_super_block(struct the_nilfs *nilfs)
434 int i;
436 for (i = 0; i < 2; i++) {
437 if (nilfs->ns_sbp[i]) {
438 brelse(nilfs->ns_sbh[i]);
439 nilfs->ns_sbh[i] = NULL;
440 nilfs->ns_sbp[i] = NULL;
445 void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
447 brelse(nilfs->ns_sbh[0]);
448 nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
449 nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
450 nilfs->ns_sbh[1] = NULL;
451 nilfs->ns_sbp[1] = NULL;
454 void nilfs_swap_super_block(struct the_nilfs *nilfs)
456 struct buffer_head *tsbh = nilfs->ns_sbh[0];
457 struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
459 nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
460 nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
461 nilfs->ns_sbh[1] = tsbh;
462 nilfs->ns_sbp[1] = tsbp;
465 static int nilfs_load_super_block(struct the_nilfs *nilfs,
466 struct super_block *sb, int blocksize,
467 struct nilfs_super_block **sbpp)
469 struct nilfs_super_block **sbp = nilfs->ns_sbp;
470 struct buffer_head **sbh = nilfs->ns_sbh;
471 u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
472 int valid[2], swp = 0;
474 sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
475 &sbh[0]);
476 sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
478 if (!sbp[0]) {
479 if (!sbp[1]) {
480 printk(KERN_ERR "NILFS: unable to read superblock\n");
481 return -EIO;
483 printk(KERN_WARNING
484 "NILFS warning: unable to read primary superblock\n");
485 } else if (!sbp[1])
486 printk(KERN_WARNING
487 "NILFS warning: unable to read secondary superblock\n");
489 valid[0] = nilfs_valid_sb(sbp[0]);
490 valid[1] = nilfs_valid_sb(sbp[1]);
491 swp = valid[1] &&
492 (!valid[0] ||
493 le64_to_cpu(sbp[1]->s_wtime) > le64_to_cpu(sbp[0]->s_wtime));
495 if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
496 brelse(sbh[1]);
497 sbh[1] = NULL;
498 sbp[1] = NULL;
499 swp = 0;
501 if (!valid[swp]) {
502 nilfs_release_super_block(nilfs);
503 printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
504 sb->s_id);
505 return -EINVAL;
508 if (swp) {
509 printk(KERN_WARNING "NILFS warning: broken superblock. "
510 "using spare superblock.\n");
511 nilfs_swap_super_block(nilfs);
514 nilfs->ns_sbwtime[0] = le64_to_cpu(sbp[0]->s_wtime);
515 nilfs->ns_sbwtime[1] = valid[!swp] ? le64_to_cpu(sbp[1]->s_wtime) : 0;
516 nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
517 *sbpp = sbp[0];
518 return 0;
522 * init_nilfs - initialize a NILFS instance.
523 * @nilfs: the_nilfs structure
524 * @sbi: nilfs_sb_info
525 * @sb: super block
526 * @data: mount options
528 * init_nilfs() performs common initialization per block device (e.g.
529 * reading the super block, getting disk layout information, initializing
530 * shared fields in the_nilfs). It takes on some portion of the jobs
531 * typically done by a fill_super() routine. This division arises from
532 * the nature that multiple NILFS instances may be simultaneously
533 * mounted on a device.
534 * For multiple mounts on the same device, only the first mount
535 * invokes these tasks.
537 * Return Value: On success, 0 is returned. On error, a negative error
538 * code is returned.
540 int init_nilfs(struct the_nilfs *nilfs, struct nilfs_sb_info *sbi, char *data)
542 struct super_block *sb = sbi->s_super;
543 struct nilfs_super_block *sbp;
544 struct backing_dev_info *bdi;
545 int blocksize;
546 int err;
548 down_write(&nilfs->ns_sem);
549 if (nilfs_init(nilfs)) {
550 /* Load values from existing the_nilfs */
551 sbp = nilfs->ns_sbp[0];
552 err = nilfs_store_magic_and_option(sb, sbp, data);
553 if (err)
554 goto out;
556 blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
557 if (sb->s_blocksize != blocksize &&
558 !sb_set_blocksize(sb, blocksize)) {
559 printk(KERN_ERR "NILFS: blocksize %d unfit to device\n",
560 blocksize);
561 err = -EINVAL;
563 sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
564 goto out;
567 blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
568 if (!blocksize) {
569 printk(KERN_ERR "NILFS: unable to set blocksize\n");
570 err = -EINVAL;
571 goto out;
573 err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
574 if (err)
575 goto out;
577 err = nilfs_store_magic_and_option(sb, sbp, data);
578 if (err)
579 goto failed_sbh;
581 blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
582 if (sb->s_blocksize != blocksize) {
583 int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
585 if (blocksize < hw_blocksize) {
586 printk(KERN_ERR
587 "NILFS: blocksize %d too small for device "
588 "(sector-size = %d).\n",
589 blocksize, hw_blocksize);
590 err = -EINVAL;
591 goto failed_sbh;
593 nilfs_release_super_block(nilfs);
594 sb_set_blocksize(sb, blocksize);
596 err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
597 if (err)
598 goto out;
599 /* not failed_sbh; sbh is released automatically
600 when reloading fails. */
602 nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
604 err = nilfs_store_disk_layout(nilfs, sbp);
605 if (err)
606 goto failed_sbh;
608 sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
610 nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
612 bdi = nilfs->ns_bdev->bd_inode->i_mapping->backing_dev_info;
613 nilfs->ns_bdi = bdi ? : &default_backing_dev_info;
615 /* Finding last segment */
616 nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
617 nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
618 nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
620 nilfs->ns_seg_seq = nilfs->ns_last_seq;
621 nilfs->ns_segnum =
622 nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
623 nilfs->ns_cno = nilfs->ns_last_cno + 1;
624 if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
625 printk(KERN_ERR "NILFS invalid last segment number.\n");
626 err = -EINVAL;
627 goto failed_sbh;
629 /* Dummy values */
630 nilfs->ns_free_segments_count =
631 nilfs->ns_nsegments - (nilfs->ns_segnum + 1);
633 /* Initialize gcinode cache */
634 err = nilfs_init_gccache(nilfs);
635 if (err)
636 goto failed_sbh;
638 set_nilfs_init(nilfs);
639 err = 0;
640 out:
641 up_write(&nilfs->ns_sem);
642 return err;
644 failed_sbh:
645 nilfs_release_super_block(nilfs);
646 goto out;
649 int nilfs_discard_segments(struct the_nilfs *nilfs, __u64 *segnump,
650 size_t nsegs)
652 sector_t seg_start, seg_end;
653 sector_t start = 0, nblocks = 0;
654 unsigned int sects_per_block;
655 __u64 *sn;
656 int ret = 0;
658 sects_per_block = (1 << nilfs->ns_blocksize_bits) /
659 bdev_logical_block_size(nilfs->ns_bdev);
660 for (sn = segnump; sn < segnump + nsegs; sn++) {
661 nilfs_get_segment_range(nilfs, *sn, &seg_start, &seg_end);
663 if (!nblocks) {
664 start = seg_start;
665 nblocks = seg_end - seg_start + 1;
666 } else if (start + nblocks == seg_start) {
667 nblocks += seg_end - seg_start + 1;
668 } else {
669 ret = blkdev_issue_discard(nilfs->ns_bdev,
670 start * sects_per_block,
671 nblocks * sects_per_block,
672 GFP_NOFS,
673 DISCARD_FL_BARRIER);
674 if (ret < 0)
675 return ret;
676 nblocks = 0;
679 if (nblocks)
680 ret = blkdev_issue_discard(nilfs->ns_bdev,
681 start * sects_per_block,
682 nblocks * sects_per_block,
683 GFP_NOFS, DISCARD_FL_BARRIER);
684 return ret;
687 int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
689 struct inode *dat = nilfs_dat_inode(nilfs);
690 unsigned long ncleansegs;
692 down_read(&NILFS_MDT(dat)->mi_sem); /* XXX */
693 ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
694 up_read(&NILFS_MDT(dat)->mi_sem); /* XXX */
695 *nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
696 return 0;
699 int nilfs_near_disk_full(struct the_nilfs *nilfs)
701 unsigned long ncleansegs, nincsegs;
703 ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
704 nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
705 nilfs->ns_blocks_per_segment + 1;
707 return ncleansegs <= nilfs->ns_nrsvsegs + nincsegs;
711 * nilfs_find_sbinfo - find existing nilfs_sb_info structure
712 * @nilfs: nilfs object
713 * @rw_mount: mount type (non-zero value for read/write mount)
714 * @cno: checkpoint number (zero for read-only mount)
716 * nilfs_find_sbinfo() returns the nilfs_sb_info structure which
717 * @rw_mount and @cno (in case of snapshots) matched. If no instance
718 * was found, NULL is returned. Although the super block instance can
719 * be unmounted after this function returns, the nilfs_sb_info struct
720 * is kept on memory until nilfs_put_sbinfo() is called.
722 struct nilfs_sb_info *nilfs_find_sbinfo(struct the_nilfs *nilfs,
723 int rw_mount, __u64 cno)
725 struct nilfs_sb_info *sbi;
727 down_read(&nilfs->ns_super_sem);
729 * The SNAPSHOT flag and sb->s_flags are supposed to be
730 * protected with nilfs->ns_super_sem.
732 sbi = nilfs->ns_current;
733 if (rw_mount) {
734 if (sbi && !(sbi->s_super->s_flags & MS_RDONLY))
735 goto found; /* read/write mount */
736 else
737 goto out;
738 } else if (cno == 0) {
739 if (sbi && (sbi->s_super->s_flags & MS_RDONLY))
740 goto found; /* read-only mount */
741 else
742 goto out;
745 list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
746 if (nilfs_test_opt(sbi, SNAPSHOT) &&
747 sbi->s_snapshot_cno == cno)
748 goto found; /* snapshot mount */
750 out:
751 up_read(&nilfs->ns_super_sem);
752 return NULL;
754 found:
755 atomic_inc(&sbi->s_count);
756 up_read(&nilfs->ns_super_sem);
757 return sbi;
760 int nilfs_checkpoint_is_mounted(struct the_nilfs *nilfs, __u64 cno,
761 int snapshot_mount)
763 struct nilfs_sb_info *sbi;
764 int ret = 0;
766 down_read(&nilfs->ns_super_sem);
767 if (cno == 0 || cno > nilfs->ns_cno)
768 goto out_unlock;
770 list_for_each_entry(sbi, &nilfs->ns_supers, s_list) {
771 if (sbi->s_snapshot_cno == cno &&
772 (!snapshot_mount || nilfs_test_opt(sbi, SNAPSHOT))) {
773 /* exclude read-only mounts */
774 ret++;
775 break;
778 /* for protecting recent checkpoints */
779 if (cno >= nilfs_last_cno(nilfs))
780 ret++;
782 out_unlock:
783 up_read(&nilfs->ns_super_sem);
784 return ret;