4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy
)
124 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
129 static inline int task_has_rt_policy(struct task_struct
*p
)
131 return rt_policy(p
->policy
);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array
{
138 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
139 struct list_head queue
[MAX_RT_PRIO
];
142 struct rt_bandwidth
{
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock
;
147 struct hrtimer rt_period_timer
;
150 static struct rt_bandwidth def_rt_bandwidth
;
152 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
154 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
156 struct rt_bandwidth
*rt_b
=
157 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
163 now
= hrtimer_cb_get_time(timer
);
164 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
169 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
172 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
176 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
178 rt_b
->rt_period
= ns_to_ktime(period
);
179 rt_b
->rt_runtime
= runtime
;
181 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
183 hrtimer_init(&rt_b
->rt_period_timer
,
184 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
185 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime
>= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
197 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
200 if (hrtimer_active(&rt_b
->rt_period_timer
))
203 raw_spin_lock(&rt_b
->rt_runtime_lock
);
208 if (hrtimer_active(&rt_b
->rt_period_timer
))
211 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
212 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
214 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
215 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
216 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
217 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
218 HRTIMER_MODE_ABS_PINNED
, 0);
220 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 hrtimer_cancel(&rt_b
->rt_period_timer
);
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex
);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
242 static LIST_HEAD(task_groups
);
244 /* task group related information */
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css
;
250 #ifdef CONFIG_USER_SCHED
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity
**se
;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq
**cfs_rq
;
259 unsigned long shares
;
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity
**rt_se
;
264 struct rt_rq
**rt_rq
;
266 struct rt_bandwidth rt_bandwidth
;
270 struct list_head list
;
272 struct task_group
*parent
;
273 struct list_head siblings
;
274 struct list_head children
;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct
*user
)
282 user
->tg
->uid
= user
->uid
;
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group
;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq
, init_tg_cfs_rq
);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq
, init_rt_rq_var
);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock
);
312 #ifdef CONFIG_FAIR_GROUP_SCHED
315 static int root_task_group_empty(void)
317 return list_empty(&root_task_group
.children
);
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
336 #define MAX_SHARES (1UL << 18)
338 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
344 struct task_group init_task_group
;
346 /* return group to which a task belongs */
347 static inline struct task_group
*task_group(struct task_struct
*p
)
349 struct task_group
*tg
;
351 #ifdef CONFIG_USER_SCHED
353 tg
= __task_cred(p
)->user
->tg
;
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
357 struct task_group
, css
);
359 tg
= &init_task_group
;
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
369 p
->se
.parent
= task_group(p
)->se
[cpu
];
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
374 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
380 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
381 static inline struct task_group
*task_group(struct task_struct
*p
)
386 #endif /* CONFIG_GROUP_SCHED */
388 /* CFS-related fields in a runqueue */
390 struct load_weight load
;
391 unsigned long nr_running
;
396 struct rb_root tasks_timeline
;
397 struct rb_node
*rb_leftmost
;
399 struct list_head tasks
;
400 struct list_head
*balance_iterator
;
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
406 struct sched_entity
*curr
, *next
, *last
;
408 unsigned int nr_spread_over
;
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
421 struct list_head leaf_cfs_rq_list
;
422 struct task_group
*tg
; /* group that "owns" this runqueue */
426 * the part of load.weight contributed by tasks
428 unsigned long task_weight
;
431 * h_load = weight * f(tg)
433 * Where f(tg) is the recursive weight fraction assigned to
436 unsigned long h_load
;
439 * this cpu's part of tg->shares
441 unsigned long shares
;
444 * load.weight at the time we set shares
446 unsigned long rq_weight
;
451 /* Real-Time classes' related field in a runqueue: */
453 struct rt_prio_array active
;
454 unsigned long rt_nr_running
;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
457 int curr
; /* highest queued rt task prio */
459 int next
; /* next highest */
464 unsigned long rt_nr_migratory
;
465 unsigned long rt_nr_total
;
467 struct plist_head pushable_tasks
;
472 /* Nests inside the rq lock: */
473 raw_spinlock_t rt_runtime_lock
;
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted
;
479 struct list_head leaf_rt_rq_list
;
480 struct task_group
*tg
;
481 struct sched_rt_entity
*rt_se
;
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
498 cpumask_var_t online
;
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
504 cpumask_var_t rto_mask
;
507 struct cpupri cpupri
;
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
515 static struct root_domain def_root_domain
;
520 * This is the main, per-CPU runqueue data structure.
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
534 unsigned long nr_running
;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
538 unsigned char in_nohz_recently
;
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load
;
542 unsigned long nr_load_updates
;
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list
;
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list
;
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
562 unsigned long nr_uninterruptible
;
564 struct task_struct
*curr
, *idle
;
565 unsigned long next_balance
;
566 struct mm_struct
*prev_mm
;
573 struct root_domain
*rd
;
574 struct sched_domain
*sd
;
576 unsigned char idle_at_tick
;
577 /* For active balancing */
581 /* cpu of this runqueue: */
585 unsigned long avg_load_per_task
;
587 struct task_struct
*migration_thread
;
588 struct list_head migration_queue
;
596 /* calc_load related fields */
597 unsigned long calc_load_update
;
598 long calc_load_active
;
600 #ifdef CONFIG_SCHED_HRTICK
602 int hrtick_csd_pending
;
603 struct call_single_data hrtick_csd
;
605 struct hrtimer hrtick_timer
;
608 #ifdef CONFIG_SCHEDSTATS
610 struct sched_info rq_sched_info
;
611 unsigned long long rq_cpu_time
;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
614 /* sys_sched_yield() stats */
615 unsigned int yld_count
;
617 /* schedule() stats */
618 unsigned int sched_switch
;
619 unsigned int sched_count
;
620 unsigned int sched_goidle
;
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count
;
624 unsigned int ttwu_local
;
627 unsigned int bkl_count
;
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
634 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
636 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
639 static inline int cpu_of(struct rq
*rq
)
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
664 inline void update_rq_clock(struct rq
*rq
)
666 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
675 # define const_debug static const
680 * @cpu: the processor in question.
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
686 int runqueue_is_locked(int cpu
)
688 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
692 * Debugging: various feature bits
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
699 #include "sched_features.h"
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
707 const_debug
unsigned int sysctl_sched_features
=
708 #include "sched_features.h"
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
717 static __read_mostly
char *sched_feat_names
[] = {
718 #include "sched_features.h"
724 static int sched_feat_show(struct seq_file
*m
, void *v
)
728 for (i
= 0; sched_feat_names
[i
]; i
++) {
729 if (!(sysctl_sched_features
& (1UL << i
)))
731 seq_printf(m
, "%s ", sched_feat_names
[i
]);
739 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
740 size_t cnt
, loff_t
*ppos
)
750 if (copy_from_user(&buf
, ubuf
, cnt
))
755 if (strncmp(buf
, "NO_", 3) == 0) {
760 for (i
= 0; sched_feat_names
[i
]; i
++) {
761 int len
= strlen(sched_feat_names
[i
]);
763 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
765 sysctl_sched_features
&= ~(1UL << i
);
767 sysctl_sched_features
|= (1UL << i
);
772 if (!sched_feat_names
[i
])
780 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
782 return single_open(filp
, sched_feat_show
, NULL
);
785 static const struct file_operations sched_feat_fops
= {
786 .open
= sched_feat_open
,
787 .write
= sched_feat_write
,
790 .release
= single_release
,
793 static __init
int sched_init_debug(void)
795 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
800 late_initcall(sched_init_debug
);
804 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
810 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
813 * ratelimit for updating the group shares.
816 unsigned int sysctl_sched_shares_ratelimit
= 250000;
817 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
824 unsigned int sysctl_sched_shares_thresh
= 4;
827 * period over which we average the RT time consumption, measured
832 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
835 * period over which we measure -rt task cpu usage in us.
838 unsigned int sysctl_sched_rt_period
= 1000000;
840 static __read_mostly
int scheduler_running
;
843 * part of the period that we allow rt tasks to run in us.
846 int sysctl_sched_rt_runtime
= 950000;
848 static inline u64
global_rt_period(void)
850 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
853 static inline u64
global_rt_runtime(void)
855 if (sysctl_sched_rt_runtime
< 0)
858 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
868 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
870 return rq
->curr
== p
;
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
876 return task_current(rq
, p
);
879 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
883 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq
->lock
.owner
= current
;
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
894 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
896 raw_spin_unlock_irq(&rq
->lock
);
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
905 return task_current(rq
, p
);
909 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 raw_spin_unlock_irq(&rq
->lock
);
922 raw_spin_unlock(&rq
->lock
);
926 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
947 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
951 struct rq
*rq
= task_rq(p
);
952 raw_spin_lock(&rq
->lock
);
953 if (likely(rq
== task_rq(p
)))
955 raw_spin_unlock(&rq
->lock
);
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
964 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
970 local_irq_save(*flags
);
972 raw_spin_lock(&rq
->lock
);
973 if (likely(rq
== task_rq(p
)))
975 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
979 void task_rq_unlock_wait(struct task_struct
*p
)
981 struct rq
*rq
= task_rq(p
);
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 raw_spin_unlock_wait(&rq
->lock
);
987 static void __task_rq_unlock(struct rq
*rq
)
990 raw_spin_unlock(&rq
->lock
);
993 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
996 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1002 static struct rq
*this_rq_lock(void)
1003 __acquires(rq
->lock
)
1007 local_irq_disable();
1009 raw_spin_lock(&rq
->lock
);
1014 #ifdef CONFIG_SCHED_HRTICK
1016 * Use HR-timers to deliver accurate preemption points.
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1028 * - enabled by features
1029 * - hrtimer is actually high res
1031 static inline int hrtick_enabled(struct rq
*rq
)
1033 if (!sched_feat(HRTICK
))
1035 if (!cpu_active(cpu_of(rq
)))
1037 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1040 static void hrtick_clear(struct rq
*rq
)
1042 if (hrtimer_active(&rq
->hrtick_timer
))
1043 hrtimer_cancel(&rq
->hrtick_timer
);
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1050 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1052 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1054 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1056 raw_spin_lock(&rq
->lock
);
1057 update_rq_clock(rq
);
1058 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1059 raw_spin_unlock(&rq
->lock
);
1061 return HRTIMER_NORESTART
;
1066 * called from hardirq (IPI) context
1068 static void __hrtick_start(void *arg
)
1070 struct rq
*rq
= arg
;
1072 raw_spin_lock(&rq
->lock
);
1073 hrtimer_restart(&rq
->hrtick_timer
);
1074 rq
->hrtick_csd_pending
= 0;
1075 raw_spin_unlock(&rq
->lock
);
1079 * Called to set the hrtick timer state.
1081 * called with rq->lock held and irqs disabled
1083 static void hrtick_start(struct rq
*rq
, u64 delay
)
1085 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1086 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1088 hrtimer_set_expires(timer
, time
);
1090 if (rq
== this_rq()) {
1091 hrtimer_restart(timer
);
1092 } else if (!rq
->hrtick_csd_pending
) {
1093 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1094 rq
->hrtick_csd_pending
= 1;
1099 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1101 int cpu
= (int)(long)hcpu
;
1104 case CPU_UP_CANCELED
:
1105 case CPU_UP_CANCELED_FROZEN
:
1106 case CPU_DOWN_PREPARE
:
1107 case CPU_DOWN_PREPARE_FROZEN
:
1109 case CPU_DEAD_FROZEN
:
1110 hrtick_clear(cpu_rq(cpu
));
1117 static __init
void init_hrtick(void)
1119 hotcpu_notifier(hotplug_hrtick
, 0);
1123 * Called to set the hrtick timer state.
1125 * called with rq->lock held and irqs disabled
1127 static void hrtick_start(struct rq
*rq
, u64 delay
)
1129 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1130 HRTIMER_MODE_REL_PINNED
, 0);
1133 static inline void init_hrtick(void)
1136 #endif /* CONFIG_SMP */
1138 static void init_rq_hrtick(struct rq
*rq
)
1141 rq
->hrtick_csd_pending
= 0;
1143 rq
->hrtick_csd
.flags
= 0;
1144 rq
->hrtick_csd
.func
= __hrtick_start
;
1145 rq
->hrtick_csd
.info
= rq
;
1148 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1149 rq
->hrtick_timer
.function
= hrtick
;
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq
*rq
)
1156 static inline void init_rq_hrtick(struct rq
*rq
)
1160 static inline void init_hrtick(void)
1163 #endif /* CONFIG_SCHED_HRTICK */
1166 * resched_task - mark a task 'to be rescheduled now'.
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 static void resched_task(struct task_struct
*p
)
1182 assert_raw_spin_locked(&task_rq(p
)->lock
);
1184 if (test_tsk_need_resched(p
))
1187 set_tsk_need_resched(p
);
1190 if (cpu
== smp_processor_id())
1193 /* NEED_RESCHED must be visible before we test polling */
1195 if (!tsk_is_polling(p
))
1196 smp_send_reschedule(cpu
);
1199 static void resched_cpu(int cpu
)
1201 struct rq
*rq
= cpu_rq(cpu
);
1202 unsigned long flags
;
1204 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1206 resched_task(cpu_curr(cpu
));
1207 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1221 void wake_up_idle_cpu(int cpu
)
1223 struct rq
*rq
= cpu_rq(cpu
);
1225 if (cpu
== smp_processor_id())
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1235 if (rq
->curr
!= rq
->idle
)
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1243 set_tsk_need_resched(rq
->idle
);
1245 /* NEED_RESCHED must be visible before we test polling */
1247 if (!tsk_is_polling(rq
->idle
))
1248 smp_send_reschedule(cpu
);
1250 #endif /* CONFIG_NO_HZ */
1252 static u64
sched_avg_period(void)
1254 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1257 static void sched_avg_update(struct rq
*rq
)
1259 s64 period
= sched_avg_period();
1261 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1262 rq
->age_stamp
+= period
;
1267 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1269 rq
->rt_avg
+= rt_delta
;
1270 sched_avg_update(rq
);
1273 #else /* !CONFIG_SMP */
1274 static void resched_task(struct task_struct
*p
)
1276 assert_raw_spin_locked(&task_rq(p
)->lock
);
1277 set_tsk_need_resched(p
);
1280 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1283 #endif /* CONFIG_SMP */
1285 #if BITS_PER_LONG == 32
1286 # define WMULT_CONST (~0UL)
1288 # define WMULT_CONST (1UL << 32)
1291 #define WMULT_SHIFT 32
1294 * Shift right and round:
1296 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1299 * delta *= weight / lw
1301 static unsigned long
1302 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1303 struct load_weight
*lw
)
1307 if (!lw
->inv_weight
) {
1308 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1311 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1315 tmp
= (u64
)delta_exec
* weight
;
1317 * Check whether we'd overflow the 64-bit multiplication:
1319 if (unlikely(tmp
> WMULT_CONST
))
1320 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1323 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1325 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1328 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1334 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 * scaled version of the new time slice allocation that they receive on time
1349 #define WEIGHT_IDLEPRIO 3
1350 #define WMULT_IDLEPRIO 1431655765
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
1364 static const int prio_to_weight
[40] = {
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1382 static const u32 prio_to_wmult
[40] = {
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1393 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1400 struct rq_iterator
{
1402 struct task_struct
*(*start
)(void *);
1403 struct task_struct
*(*next
)(void *);
1407 static unsigned long
1408 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1409 unsigned long max_load_move
, struct sched_domain
*sd
,
1410 enum cpu_idle_type idle
, int *all_pinned
,
1411 int *this_best_prio
, struct rq_iterator
*iterator
);
1414 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1415 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1416 struct rq_iterator
*iterator
);
1419 /* Time spent by the tasks of the cpu accounting group executing in ... */
1420 enum cpuacct_stat_index
{
1421 CPUACCT_STAT_USER
, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1424 CPUACCT_STAT_NSTATS
,
1427 #ifdef CONFIG_CGROUP_CPUACCT
1428 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1429 static void cpuacct_update_stats(struct task_struct
*tsk
,
1430 enum cpuacct_stat_index idx
, cputime_t val
);
1432 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1433 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1434 enum cpuacct_stat_index idx
, cputime_t val
) {}
1437 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1439 update_load_add(&rq
->load
, load
);
1442 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1444 update_load_sub(&rq
->load
, load
);
1447 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1448 typedef int (*tg_visitor
)(struct task_group
*, void *);
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1454 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1456 struct task_group
*parent
, *child
;
1460 parent
= &root_task_group
;
1462 ret
= (*down
)(parent
, data
);
1465 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1472 ret
= (*up
)(parent
, data
);
1477 parent
= parent
->parent
;
1486 static int tg_nop(struct task_group
*tg
, void *data
)
1493 /* Used instead of source_load when we know the type == 0 */
1494 static unsigned long weighted_cpuload(const int cpu
)
1496 return cpu_rq(cpu
)->load
.weight
;
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1506 static unsigned long source_load(int cpu
, int type
)
1508 struct rq
*rq
= cpu_rq(cpu
);
1509 unsigned long total
= weighted_cpuload(cpu
);
1511 if (type
== 0 || !sched_feat(LB_BIAS
))
1514 return min(rq
->cpu_load
[type
-1], total
);
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1521 static unsigned long target_load(int cpu
, int type
)
1523 struct rq
*rq
= cpu_rq(cpu
);
1524 unsigned long total
= weighted_cpuload(cpu
);
1526 if (type
== 0 || !sched_feat(LB_BIAS
))
1529 return max(rq
->cpu_load
[type
-1], total
);
1532 static struct sched_group
*group_of(int cpu
)
1534 struct sched_domain
*sd
= rcu_dereference(cpu_rq(cpu
)->sd
);
1542 static unsigned long power_of(int cpu
)
1544 struct sched_group
*group
= group_of(cpu
);
1547 return SCHED_LOAD_SCALE
;
1549 return group
->cpu_power
;
1552 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1554 static unsigned long cpu_avg_load_per_task(int cpu
)
1556 struct rq
*rq
= cpu_rq(cpu
);
1557 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1560 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1562 rq
->avg_load_per_task
= 0;
1564 return rq
->avg_load_per_task
;
1567 #ifdef CONFIG_FAIR_GROUP_SCHED
1569 static __read_mostly
unsigned long *update_shares_data
;
1571 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1574 * Calculate and set the cpu's group shares.
1576 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1577 unsigned long sd_shares
,
1578 unsigned long sd_rq_weight
,
1579 unsigned long *usd_rq_weight
)
1581 unsigned long shares
, rq_weight
;
1584 rq_weight
= usd_rq_weight
[cpu
];
1587 rq_weight
= NICE_0_LOAD
;
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
1595 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1596 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1598 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1599 sysctl_sched_shares_thresh
) {
1600 struct rq
*rq
= cpu_rq(cpu
);
1601 unsigned long flags
;
1603 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1604 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1605 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1606 __set_se_shares(tg
->se
[cpu
], shares
);
1607 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
1616 static int tg_shares_up(struct task_group
*tg
, void *data
)
1618 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1619 unsigned long *usd_rq_weight
;
1620 struct sched_domain
*sd
= data
;
1621 unsigned long flags
;
1627 local_irq_save(flags
);
1628 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1630 for_each_cpu(i
, sched_domain_span(sd
)) {
1631 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1632 usd_rq_weight
[i
] = weight
;
1634 rq_weight
+= weight
;
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1641 weight
= NICE_0_LOAD
;
1643 sum_weight
+= weight
;
1644 shares
+= tg
->cfs_rq
[i
]->shares
;
1648 rq_weight
= sum_weight
;
1650 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1651 shares
= tg
->shares
;
1653 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1654 shares
= tg
->shares
;
1656 for_each_cpu(i
, sched_domain_span(sd
))
1657 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1659 local_irq_restore(flags
);
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
1669 static int tg_load_down(struct task_group
*tg
, void *data
)
1672 long cpu
= (long)data
;
1675 load
= cpu_rq(cpu
)->load
.weight
;
1677 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1678 load
*= tg
->cfs_rq
[cpu
]->shares
;
1679 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1682 tg
->cfs_rq
[cpu
]->h_load
= load
;
1687 static void update_shares(struct sched_domain
*sd
)
1692 if (root_task_group_empty())
1695 now
= cpu_clock(raw_smp_processor_id());
1696 elapsed
= now
- sd
->last_update
;
1698 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1699 sd
->last_update
= now
;
1700 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1704 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1706 if (root_task_group_empty())
1709 raw_spin_unlock(&rq
->lock
);
1711 raw_spin_lock(&rq
->lock
);
1714 static void update_h_load(long cpu
)
1716 if (root_task_group_empty())
1719 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1724 static inline void update_shares(struct sched_domain
*sd
)
1728 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1734 #ifdef CONFIG_PREEMPT
1736 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
1746 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1747 __releases(this_rq
->lock
)
1748 __acquires(busiest
->lock
)
1749 __acquires(this_rq
->lock
)
1751 raw_spin_unlock(&this_rq
->lock
);
1752 double_rq_lock(this_rq
, busiest
);
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1765 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1766 __releases(this_rq
->lock
)
1767 __acquires(busiest
->lock
)
1768 __acquires(this_rq
->lock
)
1772 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1773 if (busiest
< this_rq
) {
1774 raw_spin_unlock(&this_rq
->lock
);
1775 raw_spin_lock(&busiest
->lock
);
1776 raw_spin_lock_nested(&this_rq
->lock
,
1777 SINGLE_DEPTH_NESTING
);
1780 raw_spin_lock_nested(&busiest
->lock
,
1781 SINGLE_DEPTH_NESTING
);
1786 #endif /* CONFIG_PREEMPT */
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
1795 raw_spin_unlock(&this_rq
->lock
);
1799 return _double_lock_balance(this_rq
, busiest
);
1802 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1803 __releases(busiest
->lock
)
1805 raw_spin_unlock(&busiest
->lock
);
1806 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1810 #ifdef CONFIG_FAIR_GROUP_SCHED
1811 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1814 cfs_rq
->shares
= shares
;
1819 static void calc_load_account_active(struct rq
*this_rq
);
1820 static void update_sysctl(void);
1821 static int get_update_sysctl_factor(void);
1823 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1825 set_task_rq(p
, cpu
);
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1833 task_thread_info(p
)->cpu
= cpu
;
1837 #include "sched_stats.h"
1838 #include "sched_idletask.c"
1839 #include "sched_fair.c"
1840 #include "sched_rt.c"
1841 #ifdef CONFIG_SCHED_DEBUG
1842 # include "sched_debug.c"
1845 #define sched_class_highest (&rt_sched_class)
1846 #define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
1849 static void inc_nr_running(struct rq
*rq
)
1854 static void dec_nr_running(struct rq
*rq
)
1859 static void set_load_weight(struct task_struct
*p
)
1861 if (task_has_rt_policy(p
)) {
1862 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1863 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1868 * SCHED_IDLE tasks get minimal weight:
1870 if (p
->policy
== SCHED_IDLE
) {
1871 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1872 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1876 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1877 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1880 static void update_avg(u64
*avg
, u64 sample
)
1882 s64 diff
= sample
- *avg
;
1886 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1889 p
->se
.start_runtime
= p
->se
.sum_exec_runtime
;
1891 sched_info_queued(p
);
1892 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1896 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1899 if (p
->se
.last_wakeup
) {
1900 update_avg(&p
->se
.avg_overlap
,
1901 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1902 p
->se
.last_wakeup
= 0;
1904 update_avg(&p
->se
.avg_wakeup
,
1905 sysctl_sched_wakeup_granularity
);
1909 sched_info_dequeued(p
);
1910 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1915 * __normal_prio - return the priority that is based on the static prio
1917 static inline int __normal_prio(struct task_struct
*p
)
1919 return p
->static_prio
;
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1929 static inline int normal_prio(struct task_struct
*p
)
1933 if (task_has_rt_policy(p
))
1934 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1936 prio
= __normal_prio(p
);
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1947 static int effective_prio(struct task_struct
*p
)
1949 p
->normal_prio
= normal_prio(p
);
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1955 if (!rt_prio(p
->prio
))
1956 return p
->normal_prio
;
1961 * activate_task - move a task to the runqueue.
1963 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1965 if (task_contributes_to_load(p
))
1966 rq
->nr_uninterruptible
--;
1968 enqueue_task(rq
, p
, wakeup
);
1973 * deactivate_task - remove a task from the runqueue.
1975 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1977 if (task_contributes_to_load(p
))
1978 rq
->nr_uninterruptible
++;
1980 dequeue_task(rq
, p
, sleep
);
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1988 inline int task_curr(const struct task_struct
*p
)
1990 return cpu_curr(task_cpu(p
)) == p
;
1993 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1994 const struct sched_class
*prev_class
,
1995 int oldprio
, int running
)
1997 if (prev_class
!= p
->sched_class
) {
1998 if (prev_class
->switched_from
)
1999 prev_class
->switched_from(rq
, p
, running
);
2000 p
->sched_class
->switched_to(rq
, p
, running
);
2002 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2006 * kthread_bind - bind a just-created kthread to a cpu.
2007 * @p: thread created by kthread_create().
2008 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2010 * Description: This function is equivalent to set_cpus_allowed(),
2011 * except that @cpu doesn't need to be online, and the thread must be
2012 * stopped (i.e., just returned from kthread_create()).
2014 * Function lives here instead of kthread.c because it messes with
2015 * scheduler internals which require locking.
2017 void kthread_bind(struct task_struct
*p
, unsigned int cpu
)
2019 struct rq
*rq
= cpu_rq(cpu
);
2020 unsigned long flags
;
2022 /* Must have done schedule() in kthread() before we set_task_cpu */
2023 if (!wait_task_inactive(p
, TASK_UNINTERRUPTIBLE
)) {
2028 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2029 update_rq_clock(rq
);
2030 set_task_cpu(p
, cpu
);
2031 p
->cpus_allowed
= cpumask_of_cpu(cpu
);
2032 p
->rt
.nr_cpus_allowed
= 1;
2033 p
->flags
|= PF_THREAD_BOUND
;
2034 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2036 EXPORT_SYMBOL(kthread_bind
);
2040 * Is this task likely cache-hot:
2043 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2048 * Buddy candidates are cache hot:
2050 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2051 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2052 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2055 if (p
->sched_class
!= &fair_sched_class
)
2058 if (sysctl_sched_migration_cost
== -1)
2060 if (sysctl_sched_migration_cost
== 0)
2063 delta
= now
- p
->se
.exec_start
;
2065 return delta
< (s64
)sysctl_sched_migration_cost
;
2069 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2071 int old_cpu
= task_cpu(p
);
2072 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
2073 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
2075 trace_sched_migrate_task(p
, new_cpu
);
2077 if (old_cpu
!= new_cpu
) {
2078 p
->se
.nr_migrations
++;
2079 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
,
2082 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
2083 new_cfsrq
->min_vruntime
;
2085 __set_task_cpu(p
, new_cpu
);
2088 struct migration_req
{
2089 struct list_head list
;
2091 struct task_struct
*task
;
2094 struct completion done
;
2098 * The task's runqueue lock must be held.
2099 * Returns true if you have to wait for migration thread.
2102 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2104 struct rq
*rq
= task_rq(p
);
2107 * If the task is not on a runqueue (and not running), then
2108 * it is sufficient to simply update the task's cpu field.
2110 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
2111 update_rq_clock(rq
);
2112 set_task_cpu(p
, dest_cpu
);
2116 init_completion(&req
->done
);
2118 req
->dest_cpu
= dest_cpu
;
2119 list_add(&req
->list
, &rq
->migration_queue
);
2125 * wait_task_context_switch - wait for a thread to complete at least one
2128 * @p must not be current.
2130 void wait_task_context_switch(struct task_struct
*p
)
2132 unsigned long nvcsw
, nivcsw
, flags
;
2140 * The runqueue is assigned before the actual context
2141 * switch. We need to take the runqueue lock.
2143 * We could check initially without the lock but it is
2144 * very likely that we need to take the lock in every
2147 rq
= task_rq_lock(p
, &flags
);
2148 running
= task_running(rq
, p
);
2149 task_rq_unlock(rq
, &flags
);
2151 if (likely(!running
))
2154 * The switch count is incremented before the actual
2155 * context switch. We thus wait for two switches to be
2156 * sure at least one completed.
2158 if ((p
->nvcsw
- nvcsw
) > 1)
2160 if ((p
->nivcsw
- nivcsw
) > 1)
2168 * wait_task_inactive - wait for a thread to unschedule.
2170 * If @match_state is nonzero, it's the @p->state value just checked and
2171 * not expected to change. If it changes, i.e. @p might have woken up,
2172 * then return zero. When we succeed in waiting for @p to be off its CPU,
2173 * we return a positive number (its total switch count). If a second call
2174 * a short while later returns the same number, the caller can be sure that
2175 * @p has remained unscheduled the whole time.
2177 * The caller must ensure that the task *will* unschedule sometime soon,
2178 * else this function might spin for a *long* time. This function can't
2179 * be called with interrupts off, or it may introduce deadlock with
2180 * smp_call_function() if an IPI is sent by the same process we are
2181 * waiting to become inactive.
2183 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2185 unsigned long flags
;
2192 * We do the initial early heuristics without holding
2193 * any task-queue locks at all. We'll only try to get
2194 * the runqueue lock when things look like they will
2200 * If the task is actively running on another CPU
2201 * still, just relax and busy-wait without holding
2204 * NOTE! Since we don't hold any locks, it's not
2205 * even sure that "rq" stays as the right runqueue!
2206 * But we don't care, since "task_running()" will
2207 * return false if the runqueue has changed and p
2208 * is actually now running somewhere else!
2210 while (task_running(rq
, p
)) {
2211 if (match_state
&& unlikely(p
->state
!= match_state
))
2217 * Ok, time to look more closely! We need the rq
2218 * lock now, to be *sure*. If we're wrong, we'll
2219 * just go back and repeat.
2221 rq
= task_rq_lock(p
, &flags
);
2222 trace_sched_wait_task(rq
, p
);
2223 running
= task_running(rq
, p
);
2224 on_rq
= p
->se
.on_rq
;
2226 if (!match_state
|| p
->state
== match_state
)
2227 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2228 task_rq_unlock(rq
, &flags
);
2231 * If it changed from the expected state, bail out now.
2233 if (unlikely(!ncsw
))
2237 * Was it really running after all now that we
2238 * checked with the proper locks actually held?
2240 * Oops. Go back and try again..
2242 if (unlikely(running
)) {
2248 * It's not enough that it's not actively running,
2249 * it must be off the runqueue _entirely_, and not
2252 * So if it was still runnable (but just not actively
2253 * running right now), it's preempted, and we should
2254 * yield - it could be a while.
2256 if (unlikely(on_rq
)) {
2257 schedule_timeout_uninterruptible(1);
2262 * Ahh, all good. It wasn't running, and it wasn't
2263 * runnable, which means that it will never become
2264 * running in the future either. We're all done!
2273 * kick_process - kick a running thread to enter/exit the kernel
2274 * @p: the to-be-kicked thread
2276 * Cause a process which is running on another CPU to enter
2277 * kernel-mode, without any delay. (to get signals handled.)
2279 * NOTE: this function doesnt have to take the runqueue lock,
2280 * because all it wants to ensure is that the remote task enters
2281 * the kernel. If the IPI races and the task has been migrated
2282 * to another CPU then no harm is done and the purpose has been
2285 void kick_process(struct task_struct
*p
)
2291 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2292 smp_send_reschedule(cpu
);
2295 EXPORT_SYMBOL_GPL(kick_process
);
2296 #endif /* CONFIG_SMP */
2299 * task_oncpu_function_call - call a function on the cpu on which a task runs
2300 * @p: the task to evaluate
2301 * @func: the function to be called
2302 * @info: the function call argument
2304 * Calls the function @func when the task is currently running. This might
2305 * be on the current CPU, which just calls the function directly
2307 void task_oncpu_function_call(struct task_struct
*p
,
2308 void (*func
) (void *info
), void *info
)
2315 smp_call_function_single(cpu
, func
, info
, 1);
2321 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2323 return p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2339 * returns failure only if the task is already active.
2341 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2344 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2345 unsigned long flags
;
2346 struct rq
*rq
, *orig_rq
;
2348 if (!sched_feat(SYNC_WAKEUPS
))
2349 wake_flags
&= ~WF_SYNC
;
2351 this_cpu
= get_cpu();
2354 rq
= orig_rq
= task_rq_lock(p
, &flags
);
2355 update_rq_clock(rq
);
2356 if (!(p
->state
& state
))
2366 if (unlikely(task_running(rq
, p
)))
2370 * In order to handle concurrent wakeups and release the rq->lock
2371 * we put the task in TASK_WAKING state.
2373 * First fix up the nr_uninterruptible count:
2375 if (task_contributes_to_load(p
))
2376 rq
->nr_uninterruptible
--;
2377 p
->state
= TASK_WAKING
;
2378 __task_rq_unlock(rq
);
2380 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2381 if (cpu
!= orig_cpu
)
2382 set_task_cpu(p
, cpu
);
2384 rq
= __task_rq_lock(p
);
2385 update_rq_clock(rq
);
2387 WARN_ON(p
->state
!= TASK_WAKING
);
2390 #ifdef CONFIG_SCHEDSTATS
2391 schedstat_inc(rq
, ttwu_count
);
2392 if (cpu
== this_cpu
)
2393 schedstat_inc(rq
, ttwu_local
);
2395 struct sched_domain
*sd
;
2396 for_each_domain(this_cpu
, sd
) {
2397 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2398 schedstat_inc(sd
, ttwu_wake_remote
);
2403 #endif /* CONFIG_SCHEDSTATS */
2406 #endif /* CONFIG_SMP */
2407 schedstat_inc(p
, se
.nr_wakeups
);
2408 if (wake_flags
& WF_SYNC
)
2409 schedstat_inc(p
, se
.nr_wakeups_sync
);
2410 if (orig_cpu
!= cpu
)
2411 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2412 if (cpu
== this_cpu
)
2413 schedstat_inc(p
, se
.nr_wakeups_local
);
2415 schedstat_inc(p
, se
.nr_wakeups_remote
);
2416 activate_task(rq
, p
, 1);
2420 * Only attribute actual wakeups done by this task.
2422 if (!in_interrupt()) {
2423 struct sched_entity
*se
= ¤t
->se
;
2424 u64 sample
= se
->sum_exec_runtime
;
2426 if (se
->last_wakeup
)
2427 sample
-= se
->last_wakeup
;
2429 sample
-= se
->start_runtime
;
2430 update_avg(&se
->avg_wakeup
, sample
);
2432 se
->last_wakeup
= se
->sum_exec_runtime
;
2436 trace_sched_wakeup(rq
, p
, success
);
2437 check_preempt_curr(rq
, p
, wake_flags
);
2439 p
->state
= TASK_RUNNING
;
2441 if (p
->sched_class
->task_wake_up
)
2442 p
->sched_class
->task_wake_up(rq
, p
);
2444 if (unlikely(rq
->idle_stamp
)) {
2445 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2446 u64 max
= 2*sysctl_sched_migration_cost
;
2451 update_avg(&rq
->avg_idle
, delta
);
2456 task_rq_unlock(rq
, &flags
);
2463 * wake_up_process - Wake up a specific process
2464 * @p: The process to be woken up.
2466 * Attempt to wake up the nominated process and move it to the set of runnable
2467 * processes. Returns 1 if the process was woken up, 0 if it was already
2470 * It may be assumed that this function implies a write memory barrier before
2471 * changing the task state if and only if any tasks are woken up.
2473 int wake_up_process(struct task_struct
*p
)
2475 return try_to_wake_up(p
, TASK_ALL
, 0);
2477 EXPORT_SYMBOL(wake_up_process
);
2479 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2481 return try_to_wake_up(p
, state
, 0);
2485 * Perform scheduler related setup for a newly forked process p.
2486 * p is forked by current.
2488 * __sched_fork() is basic setup used by init_idle() too:
2490 static void __sched_fork(struct task_struct
*p
)
2492 p
->se
.exec_start
= 0;
2493 p
->se
.sum_exec_runtime
= 0;
2494 p
->se
.prev_sum_exec_runtime
= 0;
2495 p
->se
.nr_migrations
= 0;
2496 p
->se
.last_wakeup
= 0;
2497 p
->se
.avg_overlap
= 0;
2498 p
->se
.start_runtime
= 0;
2499 p
->se
.avg_wakeup
= sysctl_sched_wakeup_granularity
;
2501 #ifdef CONFIG_SCHEDSTATS
2502 p
->se
.wait_start
= 0;
2504 p
->se
.wait_count
= 0;
2507 p
->se
.sleep_start
= 0;
2508 p
->se
.sleep_max
= 0;
2509 p
->se
.sum_sleep_runtime
= 0;
2511 p
->se
.block_start
= 0;
2512 p
->se
.block_max
= 0;
2514 p
->se
.slice_max
= 0;
2516 p
->se
.nr_migrations_cold
= 0;
2517 p
->se
.nr_failed_migrations_affine
= 0;
2518 p
->se
.nr_failed_migrations_running
= 0;
2519 p
->se
.nr_failed_migrations_hot
= 0;
2520 p
->se
.nr_forced_migrations
= 0;
2522 p
->se
.nr_wakeups
= 0;
2523 p
->se
.nr_wakeups_sync
= 0;
2524 p
->se
.nr_wakeups_migrate
= 0;
2525 p
->se
.nr_wakeups_local
= 0;
2526 p
->se
.nr_wakeups_remote
= 0;
2527 p
->se
.nr_wakeups_affine
= 0;
2528 p
->se
.nr_wakeups_affine_attempts
= 0;
2529 p
->se
.nr_wakeups_passive
= 0;
2530 p
->se
.nr_wakeups_idle
= 0;
2534 INIT_LIST_HEAD(&p
->rt
.run_list
);
2536 INIT_LIST_HEAD(&p
->se
.group_node
);
2538 #ifdef CONFIG_PREEMPT_NOTIFIERS
2539 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2543 * We mark the process as running here, but have not actually
2544 * inserted it onto the runqueue yet. This guarantees that
2545 * nobody will actually run it, and a signal or other external
2546 * event cannot wake it up and insert it on the runqueue either.
2548 p
->state
= TASK_RUNNING
;
2552 * fork()/clone()-time setup:
2554 void sched_fork(struct task_struct
*p
, int clone_flags
)
2556 int cpu
= get_cpu();
2561 * Revert to default priority/policy on fork if requested.
2563 if (unlikely(p
->sched_reset_on_fork
)) {
2564 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2565 p
->policy
= SCHED_NORMAL
;
2566 p
->normal_prio
= p
->static_prio
;
2569 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2570 p
->static_prio
= NICE_TO_PRIO(0);
2571 p
->normal_prio
= p
->static_prio
;
2576 * We don't need the reset flag anymore after the fork. It has
2577 * fulfilled its duty:
2579 p
->sched_reset_on_fork
= 0;
2583 * Make sure we do not leak PI boosting priority to the child.
2585 p
->prio
= current
->normal_prio
;
2587 if (!rt_prio(p
->prio
))
2588 p
->sched_class
= &fair_sched_class
;
2590 if (p
->sched_class
->task_fork
)
2591 p
->sched_class
->task_fork(p
);
2594 cpu
= select_task_rq(p
, SD_BALANCE_FORK
, 0);
2596 set_task_cpu(p
, cpu
);
2598 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2599 if (likely(sched_info_on()))
2600 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2602 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2605 #ifdef CONFIG_PREEMPT
2606 /* Want to start with kernel preemption disabled. */
2607 task_thread_info(p
)->preempt_count
= 1;
2609 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2615 * wake_up_new_task - wake up a newly created task for the first time.
2617 * This function will do some initial scheduler statistics housekeeping
2618 * that must be done for every newly created context, then puts the task
2619 * on the runqueue and wakes it.
2621 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2623 unsigned long flags
;
2626 rq
= task_rq_lock(p
, &flags
);
2627 BUG_ON(p
->state
!= TASK_RUNNING
);
2628 update_rq_clock(rq
);
2629 activate_task(rq
, p
, 0);
2630 trace_sched_wakeup_new(rq
, p
, 1);
2631 check_preempt_curr(rq
, p
, WF_FORK
);
2633 if (p
->sched_class
->task_wake_up
)
2634 p
->sched_class
->task_wake_up(rq
, p
);
2636 task_rq_unlock(rq
, &flags
);
2639 #ifdef CONFIG_PREEMPT_NOTIFIERS
2642 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2643 * @notifier: notifier struct to register
2645 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2647 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2649 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2652 * preempt_notifier_unregister - no longer interested in preemption notifications
2653 * @notifier: notifier struct to unregister
2655 * This is safe to call from within a preemption notifier.
2657 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2659 hlist_del(¬ifier
->link
);
2661 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2663 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2665 struct preempt_notifier
*notifier
;
2666 struct hlist_node
*node
;
2668 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2669 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2673 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2674 struct task_struct
*next
)
2676 struct preempt_notifier
*notifier
;
2677 struct hlist_node
*node
;
2679 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2680 notifier
->ops
->sched_out(notifier
, next
);
2683 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2685 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2690 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2691 struct task_struct
*next
)
2695 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2698 * prepare_task_switch - prepare to switch tasks
2699 * @rq: the runqueue preparing to switch
2700 * @prev: the current task that is being switched out
2701 * @next: the task we are going to switch to.
2703 * This is called with the rq lock held and interrupts off. It must
2704 * be paired with a subsequent finish_task_switch after the context
2707 * prepare_task_switch sets up locking and calls architecture specific
2711 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2712 struct task_struct
*next
)
2714 fire_sched_out_preempt_notifiers(prev
, next
);
2715 prepare_lock_switch(rq
, next
);
2716 prepare_arch_switch(next
);
2720 * finish_task_switch - clean up after a task-switch
2721 * @rq: runqueue associated with task-switch
2722 * @prev: the thread we just switched away from.
2724 * finish_task_switch must be called after the context switch, paired
2725 * with a prepare_task_switch call before the context switch.
2726 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2727 * and do any other architecture-specific cleanup actions.
2729 * Note that we may have delayed dropping an mm in context_switch(). If
2730 * so, we finish that here outside of the runqueue lock. (Doing it
2731 * with the lock held can cause deadlocks; see schedule() for
2734 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2735 __releases(rq
->lock
)
2737 struct mm_struct
*mm
= rq
->prev_mm
;
2743 * A task struct has one reference for the use as "current".
2744 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2745 * schedule one last time. The schedule call will never return, and
2746 * the scheduled task must drop that reference.
2747 * The test for TASK_DEAD must occur while the runqueue locks are
2748 * still held, otherwise prev could be scheduled on another cpu, die
2749 * there before we look at prev->state, and then the reference would
2751 * Manfred Spraul <manfred@colorfullife.com>
2753 prev_state
= prev
->state
;
2754 finish_arch_switch(prev
);
2755 perf_event_task_sched_in(current
, cpu_of(rq
));
2756 finish_lock_switch(rq
, prev
);
2758 fire_sched_in_preempt_notifiers(current
);
2761 if (unlikely(prev_state
== TASK_DEAD
)) {
2763 * Remove function-return probe instances associated with this
2764 * task and put them back on the free list.
2766 kprobe_flush_task(prev
);
2767 put_task_struct(prev
);
2773 /* assumes rq->lock is held */
2774 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2776 if (prev
->sched_class
->pre_schedule
)
2777 prev
->sched_class
->pre_schedule(rq
, prev
);
2780 /* rq->lock is NOT held, but preemption is disabled */
2781 static inline void post_schedule(struct rq
*rq
)
2783 if (rq
->post_schedule
) {
2784 unsigned long flags
;
2786 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2787 if (rq
->curr
->sched_class
->post_schedule
)
2788 rq
->curr
->sched_class
->post_schedule(rq
);
2789 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2791 rq
->post_schedule
= 0;
2797 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2801 static inline void post_schedule(struct rq
*rq
)
2808 * schedule_tail - first thing a freshly forked thread must call.
2809 * @prev: the thread we just switched away from.
2811 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2812 __releases(rq
->lock
)
2814 struct rq
*rq
= this_rq();
2816 finish_task_switch(rq
, prev
);
2819 * FIXME: do we need to worry about rq being invalidated by the
2824 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2825 /* In this case, finish_task_switch does not reenable preemption */
2828 if (current
->set_child_tid
)
2829 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2833 * context_switch - switch to the new MM and the new
2834 * thread's register state.
2837 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2838 struct task_struct
*next
)
2840 struct mm_struct
*mm
, *oldmm
;
2842 prepare_task_switch(rq
, prev
, next
);
2843 trace_sched_switch(rq
, prev
, next
);
2845 oldmm
= prev
->active_mm
;
2847 * For paravirt, this is coupled with an exit in switch_to to
2848 * combine the page table reload and the switch backend into
2851 arch_start_context_switch(prev
);
2854 next
->active_mm
= oldmm
;
2855 atomic_inc(&oldmm
->mm_count
);
2856 enter_lazy_tlb(oldmm
, next
);
2858 switch_mm(oldmm
, mm
, next
);
2860 if (likely(!prev
->mm
)) {
2861 prev
->active_mm
= NULL
;
2862 rq
->prev_mm
= oldmm
;
2865 * Since the runqueue lock will be released by the next
2866 * task (which is an invalid locking op but in the case
2867 * of the scheduler it's an obvious special-case), so we
2868 * do an early lockdep release here:
2870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2871 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2874 /* Here we just switch the register state and the stack. */
2875 switch_to(prev
, next
, prev
);
2879 * this_rq must be evaluated again because prev may have moved
2880 * CPUs since it called schedule(), thus the 'rq' on its stack
2881 * frame will be invalid.
2883 finish_task_switch(this_rq(), prev
);
2887 * nr_running, nr_uninterruptible and nr_context_switches:
2889 * externally visible scheduler statistics: current number of runnable
2890 * threads, current number of uninterruptible-sleeping threads, total
2891 * number of context switches performed since bootup.
2893 unsigned long nr_running(void)
2895 unsigned long i
, sum
= 0;
2897 for_each_online_cpu(i
)
2898 sum
+= cpu_rq(i
)->nr_running
;
2903 unsigned long nr_uninterruptible(void)
2905 unsigned long i
, sum
= 0;
2907 for_each_possible_cpu(i
)
2908 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2911 * Since we read the counters lockless, it might be slightly
2912 * inaccurate. Do not allow it to go below zero though:
2914 if (unlikely((long)sum
< 0))
2920 unsigned long long nr_context_switches(void)
2923 unsigned long long sum
= 0;
2925 for_each_possible_cpu(i
)
2926 sum
+= cpu_rq(i
)->nr_switches
;
2931 unsigned long nr_iowait(void)
2933 unsigned long i
, sum
= 0;
2935 for_each_possible_cpu(i
)
2936 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2941 unsigned long nr_iowait_cpu(void)
2943 struct rq
*this = this_rq();
2944 return atomic_read(&this->nr_iowait
);
2947 unsigned long this_cpu_load(void)
2949 struct rq
*this = this_rq();
2950 return this->cpu_load
[0];
2954 /* Variables and functions for calc_load */
2955 static atomic_long_t calc_load_tasks
;
2956 static unsigned long calc_load_update
;
2957 unsigned long avenrun
[3];
2958 EXPORT_SYMBOL(avenrun
);
2961 * get_avenrun - get the load average array
2962 * @loads: pointer to dest load array
2963 * @offset: offset to add
2964 * @shift: shift count to shift the result left
2966 * These values are estimates at best, so no need for locking.
2968 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2970 loads
[0] = (avenrun
[0] + offset
) << shift
;
2971 loads
[1] = (avenrun
[1] + offset
) << shift
;
2972 loads
[2] = (avenrun
[2] + offset
) << shift
;
2975 static unsigned long
2976 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2979 load
+= active
* (FIXED_1
- exp
);
2980 return load
>> FSHIFT
;
2984 * calc_load - update the avenrun load estimates 10 ticks after the
2985 * CPUs have updated calc_load_tasks.
2987 void calc_global_load(void)
2989 unsigned long upd
= calc_load_update
+ 10;
2992 if (time_before(jiffies
, upd
))
2995 active
= atomic_long_read(&calc_load_tasks
);
2996 active
= active
> 0 ? active
* FIXED_1
: 0;
2998 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
2999 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3000 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3002 calc_load_update
+= LOAD_FREQ
;
3006 * Either called from update_cpu_load() or from a cpu going idle
3008 static void calc_load_account_active(struct rq
*this_rq
)
3010 long nr_active
, delta
;
3012 nr_active
= this_rq
->nr_running
;
3013 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3015 if (nr_active
!= this_rq
->calc_load_active
) {
3016 delta
= nr_active
- this_rq
->calc_load_active
;
3017 this_rq
->calc_load_active
= nr_active
;
3018 atomic_long_add(delta
, &calc_load_tasks
);
3023 * Update rq->cpu_load[] statistics. This function is usually called every
3024 * scheduler tick (TICK_NSEC).
3026 static void update_cpu_load(struct rq
*this_rq
)
3028 unsigned long this_load
= this_rq
->load
.weight
;
3031 this_rq
->nr_load_updates
++;
3033 /* Update our load: */
3034 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3035 unsigned long old_load
, new_load
;
3037 /* scale is effectively 1 << i now, and >> i divides by scale */
3039 old_load
= this_rq
->cpu_load
[i
];
3040 new_load
= this_load
;
3042 * Round up the averaging division if load is increasing. This
3043 * prevents us from getting stuck on 9 if the load is 10, for
3046 if (new_load
> old_load
)
3047 new_load
+= scale
-1;
3048 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3051 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3052 this_rq
->calc_load_update
+= LOAD_FREQ
;
3053 calc_load_account_active(this_rq
);
3060 * double_rq_lock - safely lock two runqueues
3062 * Note this does not disable interrupts like task_rq_lock,
3063 * you need to do so manually before calling.
3065 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
3066 __acquires(rq1
->lock
)
3067 __acquires(rq2
->lock
)
3069 BUG_ON(!irqs_disabled());
3071 raw_spin_lock(&rq1
->lock
);
3072 __acquire(rq2
->lock
); /* Fake it out ;) */
3075 raw_spin_lock(&rq1
->lock
);
3076 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
3078 raw_spin_lock(&rq2
->lock
);
3079 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
3082 update_rq_clock(rq1
);
3083 update_rq_clock(rq2
);
3087 * double_rq_unlock - safely unlock two runqueues
3089 * Note this does not restore interrupts like task_rq_unlock,
3090 * you need to do so manually after calling.
3092 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3093 __releases(rq1
->lock
)
3094 __releases(rq2
->lock
)
3096 raw_spin_unlock(&rq1
->lock
);
3098 raw_spin_unlock(&rq2
->lock
);
3100 __release(rq2
->lock
);
3104 * If dest_cpu is allowed for this process, migrate the task to it.
3105 * This is accomplished by forcing the cpu_allowed mask to only
3106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3107 * the cpu_allowed mask is restored.
3109 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
3111 struct migration_req req
;
3112 unsigned long flags
;
3115 rq
= task_rq_lock(p
, &flags
);
3116 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
3117 || unlikely(!cpu_active(dest_cpu
)))
3120 /* force the process onto the specified CPU */
3121 if (migrate_task(p
, dest_cpu
, &req
)) {
3122 /* Need to wait for migration thread (might exit: take ref). */
3123 struct task_struct
*mt
= rq
->migration_thread
;
3125 get_task_struct(mt
);
3126 task_rq_unlock(rq
, &flags
);
3127 wake_up_process(mt
);
3128 put_task_struct(mt
);
3129 wait_for_completion(&req
.done
);
3134 task_rq_unlock(rq
, &flags
);
3138 * sched_exec - execve() is a valuable balancing opportunity, because at
3139 * this point the task has the smallest effective memory and cache footprint.
3141 void sched_exec(void)
3143 int new_cpu
, this_cpu
= get_cpu();
3144 new_cpu
= select_task_rq(current
, SD_BALANCE_EXEC
, 0);
3146 if (new_cpu
!= this_cpu
)
3147 sched_migrate_task(current
, new_cpu
);
3151 * pull_task - move a task from a remote runqueue to the local runqueue.
3152 * Both runqueues must be locked.
3154 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3155 struct rq
*this_rq
, int this_cpu
)
3157 deactivate_task(src_rq
, p
, 0);
3158 set_task_cpu(p
, this_cpu
);
3159 activate_task(this_rq
, p
, 0);
3160 check_preempt_curr(this_rq
, p
, 0);
3164 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3167 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3168 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3171 int tsk_cache_hot
= 0;
3173 * We do not migrate tasks that are:
3174 * 1) running (obviously), or
3175 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3176 * 3) are cache-hot on their current CPU.
3178 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
3179 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3184 if (task_running(rq
, p
)) {
3185 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3190 * Aggressive migration if:
3191 * 1) task is cache cold, or
3192 * 2) too many balance attempts have failed.
3195 tsk_cache_hot
= task_hot(p
, rq
->clock
, sd
);
3196 if (!tsk_cache_hot
||
3197 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3198 #ifdef CONFIG_SCHEDSTATS
3199 if (tsk_cache_hot
) {
3200 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3201 schedstat_inc(p
, se
.nr_forced_migrations
);
3207 if (tsk_cache_hot
) {
3208 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3214 static unsigned long
3215 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3216 unsigned long max_load_move
, struct sched_domain
*sd
,
3217 enum cpu_idle_type idle
, int *all_pinned
,
3218 int *this_best_prio
, struct rq_iterator
*iterator
)
3220 int loops
= 0, pulled
= 0, pinned
= 0;
3221 struct task_struct
*p
;
3222 long rem_load_move
= max_load_move
;
3224 if (max_load_move
== 0)
3230 * Start the load-balancing iterator:
3232 p
= iterator
->start(iterator
->arg
);
3234 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3237 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3238 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3239 p
= iterator
->next(iterator
->arg
);
3243 pull_task(busiest
, p
, this_rq
, this_cpu
);
3245 rem_load_move
-= p
->se
.load
.weight
;
3247 #ifdef CONFIG_PREEMPT
3249 * NEWIDLE balancing is a source of latency, so preemptible kernels
3250 * will stop after the first task is pulled to minimize the critical
3253 if (idle
== CPU_NEWLY_IDLE
)
3258 * We only want to steal up to the prescribed amount of weighted load.
3260 if (rem_load_move
> 0) {
3261 if (p
->prio
< *this_best_prio
)
3262 *this_best_prio
= p
->prio
;
3263 p
= iterator
->next(iterator
->arg
);
3268 * Right now, this is one of only two places pull_task() is called,
3269 * so we can safely collect pull_task() stats here rather than
3270 * inside pull_task().
3272 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3275 *all_pinned
= pinned
;
3277 return max_load_move
- rem_load_move
;
3281 * move_tasks tries to move up to max_load_move weighted load from busiest to
3282 * this_rq, as part of a balancing operation within domain "sd".
3283 * Returns 1 if successful and 0 otherwise.
3285 * Called with both runqueues locked.
3287 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3288 unsigned long max_load_move
,
3289 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3292 const struct sched_class
*class = sched_class_highest
;
3293 unsigned long total_load_moved
= 0;
3294 int this_best_prio
= this_rq
->curr
->prio
;
3298 class->load_balance(this_rq
, this_cpu
, busiest
,
3299 max_load_move
- total_load_moved
,
3300 sd
, idle
, all_pinned
, &this_best_prio
);
3301 class = class->next
;
3303 #ifdef CONFIG_PREEMPT
3305 * NEWIDLE balancing is a source of latency, so preemptible
3306 * kernels will stop after the first task is pulled to minimize
3307 * the critical section.
3309 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3312 } while (class && max_load_move
> total_load_moved
);
3314 return total_load_moved
> 0;
3318 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3319 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3320 struct rq_iterator
*iterator
)
3322 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3326 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3327 pull_task(busiest
, p
, this_rq
, this_cpu
);
3329 * Right now, this is only the second place pull_task()
3330 * is called, so we can safely collect pull_task()
3331 * stats here rather than inside pull_task().
3333 schedstat_inc(sd
, lb_gained
[idle
]);
3337 p
= iterator
->next(iterator
->arg
);
3344 * move_one_task tries to move exactly one task from busiest to this_rq, as
3345 * part of active balancing operations within "domain".
3346 * Returns 1 if successful and 0 otherwise.
3348 * Called with both runqueues locked.
3350 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3351 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3353 const struct sched_class
*class;
3355 for_each_class(class) {
3356 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3362 /********** Helpers for find_busiest_group ************************/
3364 * sd_lb_stats - Structure to store the statistics of a sched_domain
3365 * during load balancing.
3367 struct sd_lb_stats
{
3368 struct sched_group
*busiest
; /* Busiest group in this sd */
3369 struct sched_group
*this; /* Local group in this sd */
3370 unsigned long total_load
; /* Total load of all groups in sd */
3371 unsigned long total_pwr
; /* Total power of all groups in sd */
3372 unsigned long avg_load
; /* Average load across all groups in sd */
3374 /** Statistics of this group */
3375 unsigned long this_load
;
3376 unsigned long this_load_per_task
;
3377 unsigned long this_nr_running
;
3379 /* Statistics of the busiest group */
3380 unsigned long max_load
;
3381 unsigned long busiest_load_per_task
;
3382 unsigned long busiest_nr_running
;
3384 int group_imb
; /* Is there imbalance in this sd */
3385 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3386 int power_savings_balance
; /* Is powersave balance needed for this sd */
3387 struct sched_group
*group_min
; /* Least loaded group in sd */
3388 struct sched_group
*group_leader
; /* Group which relieves group_min */
3389 unsigned long min_load_per_task
; /* load_per_task in group_min */
3390 unsigned long leader_nr_running
; /* Nr running of group_leader */
3391 unsigned long min_nr_running
; /* Nr running of group_min */
3396 * sg_lb_stats - stats of a sched_group required for load_balancing
3398 struct sg_lb_stats
{
3399 unsigned long avg_load
; /*Avg load across the CPUs of the group */
3400 unsigned long group_load
; /* Total load over the CPUs of the group */
3401 unsigned long sum_nr_running
; /* Nr tasks running in the group */
3402 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
3403 unsigned long group_capacity
;
3404 int group_imb
; /* Is there an imbalance in the group ? */
3408 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3409 * @group: The group whose first cpu is to be returned.
3411 static inline unsigned int group_first_cpu(struct sched_group
*group
)
3413 return cpumask_first(sched_group_cpus(group
));
3417 * get_sd_load_idx - Obtain the load index for a given sched domain.
3418 * @sd: The sched_domain whose load_idx is to be obtained.
3419 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3421 static inline int get_sd_load_idx(struct sched_domain
*sd
,
3422 enum cpu_idle_type idle
)
3428 load_idx
= sd
->busy_idx
;
3431 case CPU_NEWLY_IDLE
:
3432 load_idx
= sd
->newidle_idx
;
3435 load_idx
= sd
->idle_idx
;
3443 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3445 * init_sd_power_savings_stats - Initialize power savings statistics for
3446 * the given sched_domain, during load balancing.
3448 * @sd: Sched domain whose power-savings statistics are to be initialized.
3449 * @sds: Variable containing the statistics for sd.
3450 * @idle: Idle status of the CPU at which we're performing load-balancing.
3452 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3453 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3456 * Busy processors will not participate in power savings
3459 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3460 sds
->power_savings_balance
= 0;
3462 sds
->power_savings_balance
= 1;
3463 sds
->min_nr_running
= ULONG_MAX
;
3464 sds
->leader_nr_running
= 0;
3469 * update_sd_power_savings_stats - Update the power saving stats for a
3470 * sched_domain while performing load balancing.
3472 * @group: sched_group belonging to the sched_domain under consideration.
3473 * @sds: Variable containing the statistics of the sched_domain
3474 * @local_group: Does group contain the CPU for which we're performing
3476 * @sgs: Variable containing the statistics of the group.
3478 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3479 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3482 if (!sds
->power_savings_balance
)
3486 * If the local group is idle or completely loaded
3487 * no need to do power savings balance at this domain
3489 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
3490 !sds
->this_nr_running
))
3491 sds
->power_savings_balance
= 0;
3494 * If a group is already running at full capacity or idle,
3495 * don't include that group in power savings calculations
3497 if (!sds
->power_savings_balance
||
3498 sgs
->sum_nr_running
>= sgs
->group_capacity
||
3499 !sgs
->sum_nr_running
)
3503 * Calculate the group which has the least non-idle load.
3504 * This is the group from where we need to pick up the load
3507 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
3508 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
3509 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
3510 sds
->group_min
= group
;
3511 sds
->min_nr_running
= sgs
->sum_nr_running
;
3512 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
3513 sgs
->sum_nr_running
;
3517 * Calculate the group which is almost near its
3518 * capacity but still has some space to pick up some load
3519 * from other group and save more power
3521 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
3524 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
3525 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
3526 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
3527 sds
->group_leader
= group
;
3528 sds
->leader_nr_running
= sgs
->sum_nr_running
;
3533 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3534 * @sds: Variable containing the statistics of the sched_domain
3535 * under consideration.
3536 * @this_cpu: Cpu at which we're currently performing load-balancing.
3537 * @imbalance: Variable to store the imbalance.
3540 * Check if we have potential to perform some power-savings balance.
3541 * If yes, set the busiest group to be the least loaded group in the
3542 * sched_domain, so that it's CPUs can be put to idle.
3544 * Returns 1 if there is potential to perform power-savings balance.
3547 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3548 int this_cpu
, unsigned long *imbalance
)
3550 if (!sds
->power_savings_balance
)
3553 if (sds
->this != sds
->group_leader
||
3554 sds
->group_leader
== sds
->group_min
)
3557 *imbalance
= sds
->min_load_per_task
;
3558 sds
->busiest
= sds
->group_min
;
3563 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3564 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
3565 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
3570 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
3571 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
3576 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
3577 int this_cpu
, unsigned long *imbalance
)
3581 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3584 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3586 return SCHED_LOAD_SCALE
;
3589 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
3591 return default_scale_freq_power(sd
, cpu
);
3594 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3596 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3597 unsigned long smt_gain
= sd
->smt_gain
;
3604 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
3606 return default_scale_smt_power(sd
, cpu
);
3609 unsigned long scale_rt_power(int cpu
)
3611 struct rq
*rq
= cpu_rq(cpu
);
3612 u64 total
, available
;
3614 sched_avg_update(rq
);
3616 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
3617 available
= total
- rq
->rt_avg
;
3619 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
3620 total
= SCHED_LOAD_SCALE
;
3622 total
>>= SCHED_LOAD_SHIFT
;
3624 return div_u64(available
, total
);
3627 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
3629 unsigned long weight
= cpumask_weight(sched_domain_span(sd
));
3630 unsigned long power
= SCHED_LOAD_SCALE
;
3631 struct sched_group
*sdg
= sd
->groups
;
3633 if (sched_feat(ARCH_POWER
))
3634 power
*= arch_scale_freq_power(sd
, cpu
);
3636 power
*= default_scale_freq_power(sd
, cpu
);
3638 power
>>= SCHED_LOAD_SHIFT
;
3640 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
3641 if (sched_feat(ARCH_POWER
))
3642 power
*= arch_scale_smt_power(sd
, cpu
);
3644 power
*= default_scale_smt_power(sd
, cpu
);
3646 power
>>= SCHED_LOAD_SHIFT
;
3649 power
*= scale_rt_power(cpu
);
3650 power
>>= SCHED_LOAD_SHIFT
;
3655 sdg
->cpu_power
= power
;
3658 static void update_group_power(struct sched_domain
*sd
, int cpu
)
3660 struct sched_domain
*child
= sd
->child
;
3661 struct sched_group
*group
, *sdg
= sd
->groups
;
3662 unsigned long power
;
3665 update_cpu_power(sd
, cpu
);
3671 group
= child
->groups
;
3673 power
+= group
->cpu_power
;
3674 group
= group
->next
;
3675 } while (group
!= child
->groups
);
3677 sdg
->cpu_power
= power
;
3681 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3682 * @sd: The sched_domain whose statistics are to be updated.
3683 * @group: sched_group whose statistics are to be updated.
3684 * @this_cpu: Cpu for which load balance is currently performed.
3685 * @idle: Idle status of this_cpu
3686 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3687 * @sd_idle: Idle status of the sched_domain containing group.
3688 * @local_group: Does group contain this_cpu.
3689 * @cpus: Set of cpus considered for load balancing.
3690 * @balance: Should we balance.
3691 * @sgs: variable to hold the statistics for this group.
3693 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
3694 struct sched_group
*group
, int this_cpu
,
3695 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
3696 int local_group
, const struct cpumask
*cpus
,
3697 int *balance
, struct sg_lb_stats
*sgs
)
3699 unsigned long load
, max_cpu_load
, min_cpu_load
;
3701 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3702 unsigned long sum_avg_load_per_task
;
3703 unsigned long avg_load_per_task
;
3706 balance_cpu
= group_first_cpu(group
);
3707 if (balance_cpu
== this_cpu
)
3708 update_group_power(sd
, this_cpu
);
3711 /* Tally up the load of all CPUs in the group */
3712 sum_avg_load_per_task
= avg_load_per_task
= 0;
3714 min_cpu_load
= ~0UL;
3716 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3717 struct rq
*rq
= cpu_rq(i
);
3719 if (*sd_idle
&& rq
->nr_running
)
3722 /* Bias balancing toward cpus of our domain */
3724 if (idle_cpu(i
) && !first_idle_cpu
) {
3729 load
= target_load(i
, load_idx
);
3731 load
= source_load(i
, load_idx
);
3732 if (load
> max_cpu_load
)
3733 max_cpu_load
= load
;
3734 if (min_cpu_load
> load
)
3735 min_cpu_load
= load
;
3738 sgs
->group_load
+= load
;
3739 sgs
->sum_nr_running
+= rq
->nr_running
;
3740 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
3742 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3746 * First idle cpu or the first cpu(busiest) in this sched group
3747 * is eligible for doing load balancing at this and above
3748 * domains. In the newly idle case, we will allow all the cpu's
3749 * to do the newly idle load balance.
3751 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3752 balance_cpu
!= this_cpu
&& balance
) {
3757 /* Adjust by relative CPU power of the group */
3758 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
3762 * Consider the group unbalanced when the imbalance is larger
3763 * than the average weight of two tasks.
3765 * APZ: with cgroup the avg task weight can vary wildly and
3766 * might not be a suitable number - should we keep a
3767 * normalized nr_running number somewhere that negates
3770 avg_load_per_task
= (sum_avg_load_per_task
* SCHED_LOAD_SCALE
) /
3773 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3776 sgs
->group_capacity
=
3777 DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
3781 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3782 * @sd: sched_domain whose statistics are to be updated.
3783 * @this_cpu: Cpu for which load balance is currently performed.
3784 * @idle: Idle status of this_cpu
3785 * @sd_idle: Idle status of the sched_domain containing group.
3786 * @cpus: Set of cpus considered for load balancing.
3787 * @balance: Should we balance.
3788 * @sds: variable to hold the statistics for this sched_domain.
3790 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
3791 enum cpu_idle_type idle
, int *sd_idle
,
3792 const struct cpumask
*cpus
, int *balance
,
3793 struct sd_lb_stats
*sds
)
3795 struct sched_domain
*child
= sd
->child
;
3796 struct sched_group
*group
= sd
->groups
;
3797 struct sg_lb_stats sgs
;
3798 int load_idx
, prefer_sibling
= 0;
3800 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
3803 init_sd_power_savings_stats(sd
, sds
, idle
);
3804 load_idx
= get_sd_load_idx(sd
, idle
);
3809 local_group
= cpumask_test_cpu(this_cpu
,
3810 sched_group_cpus(group
));
3811 memset(&sgs
, 0, sizeof(sgs
));
3812 update_sg_lb_stats(sd
, group
, this_cpu
, idle
, load_idx
, sd_idle
,
3813 local_group
, cpus
, balance
, &sgs
);
3815 if (local_group
&& balance
&& !(*balance
))
3818 sds
->total_load
+= sgs
.group_load
;
3819 sds
->total_pwr
+= group
->cpu_power
;
3822 * In case the child domain prefers tasks go to siblings
3823 * first, lower the group capacity to one so that we'll try
3824 * and move all the excess tasks away.
3827 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
3830 sds
->this_load
= sgs
.avg_load
;
3832 sds
->this_nr_running
= sgs
.sum_nr_running
;
3833 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
3834 } else if (sgs
.avg_load
> sds
->max_load
&&
3835 (sgs
.sum_nr_running
> sgs
.group_capacity
||
3837 sds
->max_load
= sgs
.avg_load
;
3838 sds
->busiest
= group
;
3839 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
3840 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
3841 sds
->group_imb
= sgs
.group_imb
;
3844 update_sd_power_savings_stats(group
, sds
, local_group
, &sgs
);
3845 group
= group
->next
;
3846 } while (group
!= sd
->groups
);
3850 * fix_small_imbalance - Calculate the minor imbalance that exists
3851 * amongst the groups of a sched_domain, during
3853 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3854 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3855 * @imbalance: Variable to store the imbalance.
3857 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
3858 int this_cpu
, unsigned long *imbalance
)
3860 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
3861 unsigned int imbn
= 2;
3863 if (sds
->this_nr_running
) {
3864 sds
->this_load_per_task
/= sds
->this_nr_running
;
3865 if (sds
->busiest_load_per_task
>
3866 sds
->this_load_per_task
)
3869 sds
->this_load_per_task
=
3870 cpu_avg_load_per_task(this_cpu
);
3872 if (sds
->max_load
- sds
->this_load
+ sds
->busiest_load_per_task
>=
3873 sds
->busiest_load_per_task
* imbn
) {
3874 *imbalance
= sds
->busiest_load_per_task
;
3879 * OK, we don't have enough imbalance to justify moving tasks,
3880 * however we may be able to increase total CPU power used by
3884 pwr_now
+= sds
->busiest
->cpu_power
*
3885 min(sds
->busiest_load_per_task
, sds
->max_load
);
3886 pwr_now
+= sds
->this->cpu_power
*
3887 min(sds
->this_load_per_task
, sds
->this_load
);
3888 pwr_now
/= SCHED_LOAD_SCALE
;
3890 /* Amount of load we'd subtract */
3891 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3892 sds
->busiest
->cpu_power
;
3893 if (sds
->max_load
> tmp
)
3894 pwr_move
+= sds
->busiest
->cpu_power
*
3895 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
3897 /* Amount of load we'd add */
3898 if (sds
->max_load
* sds
->busiest
->cpu_power
<
3899 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
3900 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
3901 sds
->this->cpu_power
;
3903 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
3904 sds
->this->cpu_power
;
3905 pwr_move
+= sds
->this->cpu_power
*
3906 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
3907 pwr_move
/= SCHED_LOAD_SCALE
;
3909 /* Move if we gain throughput */
3910 if (pwr_move
> pwr_now
)
3911 *imbalance
= sds
->busiest_load_per_task
;
3915 * calculate_imbalance - Calculate the amount of imbalance present within the
3916 * groups of a given sched_domain during load balance.
3917 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3918 * @this_cpu: Cpu for which currently load balance is being performed.
3919 * @imbalance: The variable to store the imbalance.
3921 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3922 unsigned long *imbalance
)
3924 unsigned long max_pull
;
3926 * In the presence of smp nice balancing, certain scenarios can have
3927 * max load less than avg load(as we skip the groups at or below
3928 * its cpu_power, while calculating max_load..)
3930 if (sds
->max_load
< sds
->avg_load
) {
3932 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3935 /* Don't want to pull so many tasks that a group would go idle */
3936 max_pull
= min(sds
->max_load
- sds
->avg_load
,
3937 sds
->max_load
- sds
->busiest_load_per_task
);
3939 /* How much load to actually move to equalise the imbalance */
3940 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
3941 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
3945 * if *imbalance is less than the average load per runnable task
3946 * there is no gaurantee that any tasks will be moved so we'll have
3947 * a think about bumping its value to force at least one task to be
3950 if (*imbalance
< sds
->busiest_load_per_task
)
3951 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3954 /******* find_busiest_group() helpers end here *********************/
3957 * find_busiest_group - Returns the busiest group within the sched_domain
3958 * if there is an imbalance. If there isn't an imbalance, and
3959 * the user has opted for power-savings, it returns a group whose
3960 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3961 * such a group exists.
3963 * Also calculates the amount of weighted load which should be moved
3964 * to restore balance.
3966 * @sd: The sched_domain whose busiest group is to be returned.
3967 * @this_cpu: The cpu for which load balancing is currently being performed.
3968 * @imbalance: Variable which stores amount of weighted load which should
3969 * be moved to restore balance/put a group to idle.
3970 * @idle: The idle status of this_cpu.
3971 * @sd_idle: The idleness of sd
3972 * @cpus: The set of CPUs under consideration for load-balancing.
3973 * @balance: Pointer to a variable indicating if this_cpu
3974 * is the appropriate cpu to perform load balancing at this_level.
3976 * Returns: - the busiest group if imbalance exists.
3977 * - If no imbalance and user has opted for power-savings balance,
3978 * return the least loaded group whose CPUs can be
3979 * put to idle by rebalancing its tasks onto our group.
3981 static struct sched_group
*
3982 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3983 unsigned long *imbalance
, enum cpu_idle_type idle
,
3984 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3986 struct sd_lb_stats sds
;
3988 memset(&sds
, 0, sizeof(sds
));
3991 * Compute the various statistics relavent for load balancing at
3994 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
3997 /* Cases where imbalance does not exist from POV of this_cpu */
3998 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4000 * 2) There is no busy sibling group to pull from.
4001 * 3) This group is the busiest group.
4002 * 4) This group is more busy than the avg busieness at this
4004 * 5) The imbalance is within the specified limit.
4005 * 6) Any rebalance would lead to ping-pong
4007 if (balance
&& !(*balance
))
4010 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
4013 if (sds
.this_load
>= sds
.max_load
)
4016 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
4018 if (sds
.this_load
>= sds
.avg_load
)
4021 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
4024 sds
.busiest_load_per_task
/= sds
.busiest_nr_running
;
4026 sds
.busiest_load_per_task
=
4027 min(sds
.busiest_load_per_task
, sds
.avg_load
);
4030 * We're trying to get all the cpus to the average_load, so we don't
4031 * want to push ourselves above the average load, nor do we wish to
4032 * reduce the max loaded cpu below the average load, as either of these
4033 * actions would just result in more rebalancing later, and ping-pong
4034 * tasks around. Thus we look for the minimum possible imbalance.
4035 * Negative imbalances (*we* are more loaded than anyone else) will
4036 * be counted as no imbalance for these purposes -- we can't fix that
4037 * by pulling tasks to us. Be careful of negative numbers as they'll
4038 * appear as very large values with unsigned longs.
4040 if (sds
.max_load
<= sds
.busiest_load_per_task
)
4043 /* Looks like there is an imbalance. Compute it */
4044 calculate_imbalance(&sds
, this_cpu
, imbalance
);
4049 * There is no obvious imbalance. But check if we can do some balancing
4052 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
4060 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4063 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
4064 unsigned long imbalance
, const struct cpumask
*cpus
)
4066 struct rq
*busiest
= NULL
, *rq
;
4067 unsigned long max_load
= 0;
4070 for_each_cpu(i
, sched_group_cpus(group
)) {
4071 unsigned long power
= power_of(i
);
4072 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
4075 if (!cpumask_test_cpu(i
, cpus
))
4079 wl
= weighted_cpuload(i
) * SCHED_LOAD_SCALE
;
4082 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
4085 if (wl
> max_load
) {
4095 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4096 * so long as it is large enough.
4098 #define MAX_PINNED_INTERVAL 512
4100 /* Working cpumask for load_balance and load_balance_newidle. */
4101 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
4104 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4105 * tasks if there is an imbalance.
4107 static int load_balance(int this_cpu
, struct rq
*this_rq
,
4108 struct sched_domain
*sd
, enum cpu_idle_type idle
,
4111 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
4112 struct sched_group
*group
;
4113 unsigned long imbalance
;
4115 unsigned long flags
;
4116 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4118 cpumask_copy(cpus
, cpu_active_mask
);
4121 * When power savings policy is enabled for the parent domain, idle
4122 * sibling can pick up load irrespective of busy siblings. In this case,
4123 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4124 * portraying it as CPU_NOT_IDLE.
4126 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4127 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4130 schedstat_inc(sd
, lb_count
[idle
]);
4134 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
4141 schedstat_inc(sd
, lb_nobusyg
[idle
]);
4145 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
4147 schedstat_inc(sd
, lb_nobusyq
[idle
]);
4151 BUG_ON(busiest
== this_rq
);
4153 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
4156 if (busiest
->nr_running
> 1) {
4158 * Attempt to move tasks. If find_busiest_group has found
4159 * an imbalance but busiest->nr_running <= 1, the group is
4160 * still unbalanced. ld_moved simply stays zero, so it is
4161 * correctly treated as an imbalance.
4163 local_irq_save(flags
);
4164 double_rq_lock(this_rq
, busiest
);
4165 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4166 imbalance
, sd
, idle
, &all_pinned
);
4167 double_rq_unlock(this_rq
, busiest
);
4168 local_irq_restore(flags
);
4171 * some other cpu did the load balance for us.
4173 if (ld_moved
&& this_cpu
!= smp_processor_id())
4174 resched_cpu(this_cpu
);
4176 /* All tasks on this runqueue were pinned by CPU affinity */
4177 if (unlikely(all_pinned
)) {
4178 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4179 if (!cpumask_empty(cpus
))
4186 schedstat_inc(sd
, lb_failed
[idle
]);
4187 sd
->nr_balance_failed
++;
4189 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
4191 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
4193 /* don't kick the migration_thread, if the curr
4194 * task on busiest cpu can't be moved to this_cpu
4196 if (!cpumask_test_cpu(this_cpu
,
4197 &busiest
->curr
->cpus_allowed
)) {
4198 raw_spin_unlock_irqrestore(&busiest
->lock
,
4201 goto out_one_pinned
;
4204 if (!busiest
->active_balance
) {
4205 busiest
->active_balance
= 1;
4206 busiest
->push_cpu
= this_cpu
;
4209 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
4211 wake_up_process(busiest
->migration_thread
);
4214 * We've kicked active balancing, reset the failure
4217 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
4220 sd
->nr_balance_failed
= 0;
4222 if (likely(!active_balance
)) {
4223 /* We were unbalanced, so reset the balancing interval */
4224 sd
->balance_interval
= sd
->min_interval
;
4227 * If we've begun active balancing, start to back off. This
4228 * case may not be covered by the all_pinned logic if there
4229 * is only 1 task on the busy runqueue (because we don't call
4232 if (sd
->balance_interval
< sd
->max_interval
)
4233 sd
->balance_interval
*= 2;
4236 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4237 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4243 schedstat_inc(sd
, lb_balanced
[idle
]);
4245 sd
->nr_balance_failed
= 0;
4248 /* tune up the balancing interval */
4249 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
4250 (sd
->balance_interval
< sd
->max_interval
))
4251 sd
->balance_interval
*= 2;
4253 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4254 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4265 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4266 * tasks if there is an imbalance.
4268 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4269 * this_rq is locked.
4272 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
4274 struct sched_group
*group
;
4275 struct rq
*busiest
= NULL
;
4276 unsigned long imbalance
;
4280 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
4282 cpumask_copy(cpus
, cpu_active_mask
);
4285 * When power savings policy is enabled for the parent domain, idle
4286 * sibling can pick up load irrespective of busy siblings. In this case,
4287 * let the state of idle sibling percolate up as IDLE, instead of
4288 * portraying it as CPU_NOT_IDLE.
4290 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
4291 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4294 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
4296 update_shares_locked(this_rq
, sd
);
4297 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
4298 &sd_idle
, cpus
, NULL
);
4300 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
4304 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
4306 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
4310 BUG_ON(busiest
== this_rq
);
4312 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
4315 if (busiest
->nr_running
> 1) {
4316 /* Attempt to move tasks */
4317 double_lock_balance(this_rq
, busiest
);
4318 /* this_rq->clock is already updated */
4319 update_rq_clock(busiest
);
4320 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
4321 imbalance
, sd
, CPU_NEWLY_IDLE
,
4323 double_unlock_balance(this_rq
, busiest
);
4325 if (unlikely(all_pinned
)) {
4326 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
4327 if (!cpumask_empty(cpus
))
4333 int active_balance
= 0;
4335 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
4336 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4337 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4340 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
4343 if (sd
->nr_balance_failed
++ < 2)
4347 * The only task running in a non-idle cpu can be moved to this
4348 * cpu in an attempt to completely freeup the other CPU
4349 * package. The same method used to move task in load_balance()
4350 * have been extended for load_balance_newidle() to speedup
4351 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4353 * The package power saving logic comes from
4354 * find_busiest_group(). If there are no imbalance, then
4355 * f_b_g() will return NULL. However when sched_mc={1,2} then
4356 * f_b_g() will select a group from which a running task may be
4357 * pulled to this cpu in order to make the other package idle.
4358 * If there is no opportunity to make a package idle and if
4359 * there are no imbalance, then f_b_g() will return NULL and no
4360 * action will be taken in load_balance_newidle().
4362 * Under normal task pull operation due to imbalance, there
4363 * will be more than one task in the source run queue and
4364 * move_tasks() will succeed. ld_moved will be true and this
4365 * active balance code will not be triggered.
4368 /* Lock busiest in correct order while this_rq is held */
4369 double_lock_balance(this_rq
, busiest
);
4372 * don't kick the migration_thread, if the curr
4373 * task on busiest cpu can't be moved to this_cpu
4375 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
4376 double_unlock_balance(this_rq
, busiest
);
4381 if (!busiest
->active_balance
) {
4382 busiest
->active_balance
= 1;
4383 busiest
->push_cpu
= this_cpu
;
4387 double_unlock_balance(this_rq
, busiest
);
4389 * Should not call ttwu while holding a rq->lock
4391 raw_spin_unlock(&this_rq
->lock
);
4393 wake_up_process(busiest
->migration_thread
);
4394 raw_spin_lock(&this_rq
->lock
);
4397 sd
->nr_balance_failed
= 0;
4399 update_shares_locked(this_rq
, sd
);
4403 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
4404 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
4405 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
4407 sd
->nr_balance_failed
= 0;
4413 * idle_balance is called by schedule() if this_cpu is about to become
4414 * idle. Attempts to pull tasks from other CPUs.
4416 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
4418 struct sched_domain
*sd
;
4419 int pulled_task
= 0;
4420 unsigned long next_balance
= jiffies
+ HZ
;
4422 this_rq
->idle_stamp
= this_rq
->clock
;
4424 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
4427 for_each_domain(this_cpu
, sd
) {
4428 unsigned long interval
;
4430 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4433 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
4434 /* If we've pulled tasks over stop searching: */
4435 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
4438 interval
= msecs_to_jiffies(sd
->balance_interval
);
4439 if (time_after(next_balance
, sd
->last_balance
+ interval
))
4440 next_balance
= sd
->last_balance
+ interval
;
4442 this_rq
->idle_stamp
= 0;
4446 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
4448 * We are going idle. next_balance may be set based on
4449 * a busy processor. So reset next_balance.
4451 this_rq
->next_balance
= next_balance
;
4456 * active_load_balance is run by migration threads. It pushes running tasks
4457 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4458 * running on each physical CPU where possible, and avoids physical /
4459 * logical imbalances.
4461 * Called with busiest_rq locked.
4463 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
4465 int target_cpu
= busiest_rq
->push_cpu
;
4466 struct sched_domain
*sd
;
4467 struct rq
*target_rq
;
4469 /* Is there any task to move? */
4470 if (busiest_rq
->nr_running
<= 1)
4473 target_rq
= cpu_rq(target_cpu
);
4476 * This condition is "impossible", if it occurs
4477 * we need to fix it. Originally reported by
4478 * Bjorn Helgaas on a 128-cpu setup.
4480 BUG_ON(busiest_rq
== target_rq
);
4482 /* move a task from busiest_rq to target_rq */
4483 double_lock_balance(busiest_rq
, target_rq
);
4484 update_rq_clock(busiest_rq
);
4485 update_rq_clock(target_rq
);
4487 /* Search for an sd spanning us and the target CPU. */
4488 for_each_domain(target_cpu
, sd
) {
4489 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4490 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
4495 schedstat_inc(sd
, alb_count
);
4497 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4499 schedstat_inc(sd
, alb_pushed
);
4501 schedstat_inc(sd
, alb_failed
);
4503 double_unlock_balance(busiest_rq
, target_rq
);
4508 atomic_t load_balancer
;
4509 cpumask_var_t cpu_mask
;
4510 cpumask_var_t ilb_grp_nohz_mask
;
4511 } nohz ____cacheline_aligned
= {
4512 .load_balancer
= ATOMIC_INIT(-1),
4515 int get_nohz_load_balancer(void)
4517 return atomic_read(&nohz
.load_balancer
);
4520 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4522 * lowest_flag_domain - Return lowest sched_domain containing flag.
4523 * @cpu: The cpu whose lowest level of sched domain is to
4525 * @flag: The flag to check for the lowest sched_domain
4526 * for the given cpu.
4528 * Returns the lowest sched_domain of a cpu which contains the given flag.
4530 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
4532 struct sched_domain
*sd
;
4534 for_each_domain(cpu
, sd
)
4535 if (sd
&& (sd
->flags
& flag
))
4542 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4543 * @cpu: The cpu whose domains we're iterating over.
4544 * @sd: variable holding the value of the power_savings_sd
4546 * @flag: The flag to filter the sched_domains to be iterated.
4548 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4549 * set, starting from the lowest sched_domain to the highest.
4551 #define for_each_flag_domain(cpu, sd, flag) \
4552 for (sd = lowest_flag_domain(cpu, flag); \
4553 (sd && (sd->flags & flag)); sd = sd->parent)
4556 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4557 * @ilb_group: group to be checked for semi-idleness
4559 * Returns: 1 if the group is semi-idle. 0 otherwise.
4561 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4562 * and atleast one non-idle CPU. This helper function checks if the given
4563 * sched_group is semi-idle or not.
4565 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
4567 cpumask_and(nohz
.ilb_grp_nohz_mask
, nohz
.cpu_mask
,
4568 sched_group_cpus(ilb_group
));
4571 * A sched_group is semi-idle when it has atleast one busy cpu
4572 * and atleast one idle cpu.
4574 if (cpumask_empty(nohz
.ilb_grp_nohz_mask
))
4577 if (cpumask_equal(nohz
.ilb_grp_nohz_mask
, sched_group_cpus(ilb_group
)))
4583 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4584 * @cpu: The cpu which is nominating a new idle_load_balancer.
4586 * Returns: Returns the id of the idle load balancer if it exists,
4587 * Else, returns >= nr_cpu_ids.
4589 * This algorithm picks the idle load balancer such that it belongs to a
4590 * semi-idle powersavings sched_domain. The idea is to try and avoid
4591 * completely idle packages/cores just for the purpose of idle load balancing
4592 * when there are other idle cpu's which are better suited for that job.
4594 static int find_new_ilb(int cpu
)
4596 struct sched_domain
*sd
;
4597 struct sched_group
*ilb_group
;
4600 * Have idle load balancer selection from semi-idle packages only
4601 * when power-aware load balancing is enabled
4603 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
4607 * Optimize for the case when we have no idle CPUs or only one
4608 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4610 if (cpumask_weight(nohz
.cpu_mask
) < 2)
4613 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
4614 ilb_group
= sd
->groups
;
4617 if (is_semi_idle_group(ilb_group
))
4618 return cpumask_first(nohz
.ilb_grp_nohz_mask
);
4620 ilb_group
= ilb_group
->next
;
4622 } while (ilb_group
!= sd
->groups
);
4626 return cpumask_first(nohz
.cpu_mask
);
4628 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4629 static inline int find_new_ilb(int call_cpu
)
4631 return cpumask_first(nohz
.cpu_mask
);
4636 * This routine will try to nominate the ilb (idle load balancing)
4637 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4638 * load balancing on behalf of all those cpus. If all the cpus in the system
4639 * go into this tickless mode, then there will be no ilb owner (as there is
4640 * no need for one) and all the cpus will sleep till the next wakeup event
4643 * For the ilb owner, tick is not stopped. And this tick will be used
4644 * for idle load balancing. ilb owner will still be part of
4647 * While stopping the tick, this cpu will become the ilb owner if there
4648 * is no other owner. And will be the owner till that cpu becomes busy
4649 * or if all cpus in the system stop their ticks at which point
4650 * there is no need for ilb owner.
4652 * When the ilb owner becomes busy, it nominates another owner, during the
4653 * next busy scheduler_tick()
4655 int select_nohz_load_balancer(int stop_tick
)
4657 int cpu
= smp_processor_id();
4660 cpu_rq(cpu
)->in_nohz_recently
= 1;
4662 if (!cpu_active(cpu
)) {
4663 if (atomic_read(&nohz
.load_balancer
) != cpu
)
4667 * If we are going offline and still the leader,
4670 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4676 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
4678 /* time for ilb owner also to sleep */
4679 if (cpumask_weight(nohz
.cpu_mask
) == num_active_cpus()) {
4680 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4681 atomic_set(&nohz
.load_balancer
, -1);
4685 if (atomic_read(&nohz
.load_balancer
) == -1) {
4686 /* make me the ilb owner */
4687 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4689 } else if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4692 if (!(sched_smt_power_savings
||
4693 sched_mc_power_savings
))
4696 * Check to see if there is a more power-efficient
4699 new_ilb
= find_new_ilb(cpu
);
4700 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
4701 atomic_set(&nohz
.load_balancer
, -1);
4702 resched_cpu(new_ilb
);
4708 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4711 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4713 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4714 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4721 static DEFINE_SPINLOCK(balancing
);
4724 * It checks each scheduling domain to see if it is due to be balanced,
4725 * and initiates a balancing operation if so.
4727 * Balancing parameters are set up in arch_init_sched_domains.
4729 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4732 struct rq
*rq
= cpu_rq(cpu
);
4733 unsigned long interval
;
4734 struct sched_domain
*sd
;
4735 /* Earliest time when we have to do rebalance again */
4736 unsigned long next_balance
= jiffies
+ 60*HZ
;
4737 int update_next_balance
= 0;
4740 for_each_domain(cpu
, sd
) {
4741 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4744 interval
= sd
->balance_interval
;
4745 if (idle
!= CPU_IDLE
)
4746 interval
*= sd
->busy_factor
;
4748 /* scale ms to jiffies */
4749 interval
= msecs_to_jiffies(interval
);
4750 if (unlikely(!interval
))
4752 if (interval
> HZ
*NR_CPUS
/10)
4753 interval
= HZ
*NR_CPUS
/10;
4755 need_serialize
= sd
->flags
& SD_SERIALIZE
;
4757 if (need_serialize
) {
4758 if (!spin_trylock(&balancing
))
4762 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4763 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
4765 * We've pulled tasks over so either we're no
4766 * longer idle, or one of our SMT siblings is
4769 idle
= CPU_NOT_IDLE
;
4771 sd
->last_balance
= jiffies
;
4774 spin_unlock(&balancing
);
4776 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4777 next_balance
= sd
->last_balance
+ interval
;
4778 update_next_balance
= 1;
4782 * Stop the load balance at this level. There is another
4783 * CPU in our sched group which is doing load balancing more
4791 * next_balance will be updated only when there is a need.
4792 * When the cpu is attached to null domain for ex, it will not be
4795 if (likely(update_next_balance
))
4796 rq
->next_balance
= next_balance
;
4800 * run_rebalance_domains is triggered when needed from the scheduler tick.
4801 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4802 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4804 static void run_rebalance_domains(struct softirq_action
*h
)
4806 int this_cpu
= smp_processor_id();
4807 struct rq
*this_rq
= cpu_rq(this_cpu
);
4808 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4809 CPU_IDLE
: CPU_NOT_IDLE
;
4811 rebalance_domains(this_cpu
, idle
);
4815 * If this cpu is the owner for idle load balancing, then do the
4816 * balancing on behalf of the other idle cpus whose ticks are
4819 if (this_rq
->idle_at_tick
&&
4820 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4824 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4825 if (balance_cpu
== this_cpu
)
4829 * If this cpu gets work to do, stop the load balancing
4830 * work being done for other cpus. Next load
4831 * balancing owner will pick it up.
4836 rebalance_domains(balance_cpu
, CPU_IDLE
);
4838 rq
= cpu_rq(balance_cpu
);
4839 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4840 this_rq
->next_balance
= rq
->next_balance
;
4846 static inline int on_null_domain(int cpu
)
4848 return !rcu_dereference(cpu_rq(cpu
)->sd
);
4852 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4854 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4855 * idle load balancing owner or decide to stop the periodic load balancing,
4856 * if the whole system is idle.
4858 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4862 * If we were in the nohz mode recently and busy at the current
4863 * scheduler tick, then check if we need to nominate new idle
4866 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4867 rq
->in_nohz_recently
= 0;
4869 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4870 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4871 atomic_set(&nohz
.load_balancer
, -1);
4874 if (atomic_read(&nohz
.load_balancer
) == -1) {
4875 int ilb
= find_new_ilb(cpu
);
4877 if (ilb
< nr_cpu_ids
)
4883 * If this cpu is idle and doing idle load balancing for all the
4884 * cpus with ticks stopped, is it time for that to stop?
4886 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4887 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4893 * If this cpu is idle and the idle load balancing is done by
4894 * someone else, then no need raise the SCHED_SOFTIRQ
4896 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4897 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4900 /* Don't need to rebalance while attached to NULL domain */
4901 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4902 likely(!on_null_domain(cpu
)))
4903 raise_softirq(SCHED_SOFTIRQ
);
4906 #else /* CONFIG_SMP */
4909 * on UP we do not need to balance between CPUs:
4911 static inline void idle_balance(int cpu
, struct rq
*rq
)
4917 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4919 EXPORT_PER_CPU_SYMBOL(kstat
);
4922 * Return any ns on the sched_clock that have not yet been accounted in
4923 * @p in case that task is currently running.
4925 * Called with task_rq_lock() held on @rq.
4927 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4931 if (task_current(rq
, p
)) {
4932 update_rq_clock(rq
);
4933 ns
= rq
->clock
- p
->se
.exec_start
;
4941 unsigned long long task_delta_exec(struct task_struct
*p
)
4943 unsigned long flags
;
4947 rq
= task_rq_lock(p
, &flags
);
4948 ns
= do_task_delta_exec(p
, rq
);
4949 task_rq_unlock(rq
, &flags
);
4955 * Return accounted runtime for the task.
4956 * In case the task is currently running, return the runtime plus current's
4957 * pending runtime that have not been accounted yet.
4959 unsigned long long task_sched_runtime(struct task_struct
*p
)
4961 unsigned long flags
;
4965 rq
= task_rq_lock(p
, &flags
);
4966 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4967 task_rq_unlock(rq
, &flags
);
4973 * Return sum_exec_runtime for the thread group.
4974 * In case the task is currently running, return the sum plus current's
4975 * pending runtime that have not been accounted yet.
4977 * Note that the thread group might have other running tasks as well,
4978 * so the return value not includes other pending runtime that other
4979 * running tasks might have.
4981 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
4983 struct task_cputime totals
;
4984 unsigned long flags
;
4988 rq
= task_rq_lock(p
, &flags
);
4989 thread_group_cputime(p
, &totals
);
4990 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4991 task_rq_unlock(rq
, &flags
);
4997 * Account user cpu time to a process.
4998 * @p: the process that the cpu time gets accounted to
4999 * @cputime: the cpu time spent in user space since the last update
5000 * @cputime_scaled: cputime scaled by cpu frequency
5002 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
5003 cputime_t cputime_scaled
)
5005 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5008 /* Add user time to process. */
5009 p
->utime
= cputime_add(p
->utime
, cputime
);
5010 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5011 account_group_user_time(p
, cputime
);
5013 /* Add user time to cpustat. */
5014 tmp
= cputime_to_cputime64(cputime
);
5015 if (TASK_NICE(p
) > 0)
5016 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
5018 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5020 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
5021 /* Account for user time used */
5022 acct_update_integrals(p
);
5026 * Account guest cpu time to a process.
5027 * @p: the process that the cpu time gets accounted to
5028 * @cputime: the cpu time spent in virtual machine since the last update
5029 * @cputime_scaled: cputime scaled by cpu frequency
5031 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
5032 cputime_t cputime_scaled
)
5035 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5037 tmp
= cputime_to_cputime64(cputime
);
5039 /* Add guest time to process. */
5040 p
->utime
= cputime_add(p
->utime
, cputime
);
5041 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
5042 account_group_user_time(p
, cputime
);
5043 p
->gtime
= cputime_add(p
->gtime
, cputime
);
5045 /* Add guest time to cpustat. */
5046 if (TASK_NICE(p
) > 0) {
5047 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
5048 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
5050 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
5051 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
5056 * Account system cpu time to a process.
5057 * @p: the process that the cpu time gets accounted to
5058 * @hardirq_offset: the offset to subtract from hardirq_count()
5059 * @cputime: the cpu time spent in kernel space since the last update
5060 * @cputime_scaled: cputime scaled by cpu frequency
5062 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
5063 cputime_t cputime
, cputime_t cputime_scaled
)
5065 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5068 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
5069 account_guest_time(p
, cputime
, cputime_scaled
);
5073 /* Add system time to process. */
5074 p
->stime
= cputime_add(p
->stime
, cputime
);
5075 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
5076 account_group_system_time(p
, cputime
);
5078 /* Add system time to cpustat. */
5079 tmp
= cputime_to_cputime64(cputime
);
5080 if (hardirq_count() - hardirq_offset
)
5081 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
5082 else if (softirq_count())
5083 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
5085 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
5087 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
5089 /* Account for system time used */
5090 acct_update_integrals(p
);
5094 * Account for involuntary wait time.
5095 * @steal: the cpu time spent in involuntary wait
5097 void account_steal_time(cputime_t cputime
)
5099 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5100 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5102 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
5106 * Account for idle time.
5107 * @cputime: the cpu time spent in idle wait
5109 void account_idle_time(cputime_t cputime
)
5111 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
5112 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
5113 struct rq
*rq
= this_rq();
5115 if (atomic_read(&rq
->nr_iowait
) > 0)
5116 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
5118 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
5121 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5124 * Account a single tick of cpu time.
5125 * @p: the process that the cpu time gets accounted to
5126 * @user_tick: indicates if the tick is a user or a system tick
5128 void account_process_tick(struct task_struct
*p
, int user_tick
)
5130 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
5131 struct rq
*rq
= this_rq();
5134 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
5135 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
5136 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
5139 account_idle_time(cputime_one_jiffy
);
5143 * Account multiple ticks of steal time.
5144 * @p: the process from which the cpu time has been stolen
5145 * @ticks: number of stolen ticks
5147 void account_steal_ticks(unsigned long ticks
)
5149 account_steal_time(jiffies_to_cputime(ticks
));
5153 * Account multiple ticks of idle time.
5154 * @ticks: number of stolen ticks
5156 void account_idle_ticks(unsigned long ticks
)
5158 account_idle_time(jiffies_to_cputime(ticks
));
5164 * Use precise platform statistics if available:
5166 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5167 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5173 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5175 struct task_cputime cputime
;
5177 thread_group_cputime(p
, &cputime
);
5179 *ut
= cputime
.utime
;
5180 *st
= cputime
.stime
;
5184 #ifndef nsecs_to_cputime
5185 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5188 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5190 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
5193 * Use CFS's precise accounting:
5195 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
5200 temp
= (u64
)(rtime
* utime
);
5201 do_div(temp
, total
);
5202 utime
= (cputime_t
)temp
;
5207 * Compare with previous values, to keep monotonicity:
5209 p
->prev_utime
= max(p
->prev_utime
, utime
);
5210 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
5212 *ut
= p
->prev_utime
;
5213 *st
= p
->prev_stime
;
5217 * Must be called with siglock held.
5219 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
5221 struct signal_struct
*sig
= p
->signal
;
5222 struct task_cputime cputime
;
5223 cputime_t rtime
, utime
, total
;
5225 thread_group_cputime(p
, &cputime
);
5227 total
= cputime_add(cputime
.utime
, cputime
.stime
);
5228 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
5233 temp
= (u64
)(rtime
* cputime
.utime
);
5234 do_div(temp
, total
);
5235 utime
= (cputime_t
)temp
;
5239 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
5240 sig
->prev_stime
= max(sig
->prev_stime
,
5241 cputime_sub(rtime
, sig
->prev_utime
));
5243 *ut
= sig
->prev_utime
;
5244 *st
= sig
->prev_stime
;
5249 * This function gets called by the timer code, with HZ frequency.
5250 * We call it with interrupts disabled.
5252 * It also gets called by the fork code, when changing the parent's
5255 void scheduler_tick(void)
5257 int cpu
= smp_processor_id();
5258 struct rq
*rq
= cpu_rq(cpu
);
5259 struct task_struct
*curr
= rq
->curr
;
5263 raw_spin_lock(&rq
->lock
);
5264 update_rq_clock(rq
);
5265 update_cpu_load(rq
);
5266 curr
->sched_class
->task_tick(rq
, curr
, 0);
5267 raw_spin_unlock(&rq
->lock
);
5269 perf_event_task_tick(curr
, cpu
);
5272 rq
->idle_at_tick
= idle_cpu(cpu
);
5273 trigger_load_balance(rq
, cpu
);
5277 notrace
unsigned long get_parent_ip(unsigned long addr
)
5279 if (in_lock_functions(addr
)) {
5280 addr
= CALLER_ADDR2
;
5281 if (in_lock_functions(addr
))
5282 addr
= CALLER_ADDR3
;
5287 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5288 defined(CONFIG_PREEMPT_TRACER))
5290 void __kprobes
add_preempt_count(int val
)
5292 #ifdef CONFIG_DEBUG_PREEMPT
5296 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5299 preempt_count() += val
;
5300 #ifdef CONFIG_DEBUG_PREEMPT
5302 * Spinlock count overflowing soon?
5304 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
5307 if (preempt_count() == val
)
5308 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5310 EXPORT_SYMBOL(add_preempt_count
);
5312 void __kprobes
sub_preempt_count(int val
)
5314 #ifdef CONFIG_DEBUG_PREEMPT
5318 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
5321 * Is the spinlock portion underflowing?
5323 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
5324 !(preempt_count() & PREEMPT_MASK
)))
5328 if (preempt_count() == val
)
5329 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
5330 preempt_count() -= val
;
5332 EXPORT_SYMBOL(sub_preempt_count
);
5337 * Print scheduling while atomic bug:
5339 static noinline
void __schedule_bug(struct task_struct
*prev
)
5341 struct pt_regs
*regs
= get_irq_regs();
5343 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
5344 prev
->comm
, prev
->pid
, preempt_count());
5346 debug_show_held_locks(prev
);
5348 if (irqs_disabled())
5349 print_irqtrace_events(prev
);
5358 * Various schedule()-time debugging checks and statistics:
5360 static inline void schedule_debug(struct task_struct
*prev
)
5363 * Test if we are atomic. Since do_exit() needs to call into
5364 * schedule() atomically, we ignore that path for now.
5365 * Otherwise, whine if we are scheduling when we should not be.
5367 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
5368 __schedule_bug(prev
);
5370 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
5372 schedstat_inc(this_rq(), sched_count
);
5373 #ifdef CONFIG_SCHEDSTATS
5374 if (unlikely(prev
->lock_depth
>= 0)) {
5375 schedstat_inc(this_rq(), bkl_count
);
5376 schedstat_inc(prev
, sched_info
.bkl_count
);
5381 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
5383 if (prev
->state
== TASK_RUNNING
) {
5384 u64 runtime
= prev
->se
.sum_exec_runtime
;
5386 runtime
-= prev
->se
.prev_sum_exec_runtime
;
5387 runtime
= min_t(u64
, runtime
, 2*sysctl_sched_migration_cost
);
5390 * In order to avoid avg_overlap growing stale when we are
5391 * indeed overlapping and hence not getting put to sleep, grow
5392 * the avg_overlap on preemption.
5394 * We use the average preemption runtime because that
5395 * correlates to the amount of cache footprint a task can
5398 update_avg(&prev
->se
.avg_overlap
, runtime
);
5400 prev
->sched_class
->put_prev_task(rq
, prev
);
5404 * Pick up the highest-prio task:
5406 static inline struct task_struct
*
5407 pick_next_task(struct rq
*rq
)
5409 const struct sched_class
*class;
5410 struct task_struct
*p
;
5413 * Optimization: we know that if all tasks are in
5414 * the fair class we can call that function directly:
5416 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
5417 p
= fair_sched_class
.pick_next_task(rq
);
5422 class = sched_class_highest
;
5424 p
= class->pick_next_task(rq
);
5428 * Will never be NULL as the idle class always
5429 * returns a non-NULL p:
5431 class = class->next
;
5436 * schedule() is the main scheduler function.
5438 asmlinkage
void __sched
schedule(void)
5440 struct task_struct
*prev
, *next
;
5441 unsigned long *switch_count
;
5447 cpu
= smp_processor_id();
5451 switch_count
= &prev
->nivcsw
;
5453 release_kernel_lock(prev
);
5454 need_resched_nonpreemptible
:
5456 schedule_debug(prev
);
5458 if (sched_feat(HRTICK
))
5461 raw_spin_lock_irq(&rq
->lock
);
5462 update_rq_clock(rq
);
5463 clear_tsk_need_resched(prev
);
5465 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
5466 if (unlikely(signal_pending_state(prev
->state
, prev
)))
5467 prev
->state
= TASK_RUNNING
;
5469 deactivate_task(rq
, prev
, 1);
5470 switch_count
= &prev
->nvcsw
;
5473 pre_schedule(rq
, prev
);
5475 if (unlikely(!rq
->nr_running
))
5476 idle_balance(cpu
, rq
);
5478 put_prev_task(rq
, prev
);
5479 next
= pick_next_task(rq
);
5481 if (likely(prev
!= next
)) {
5482 sched_info_switch(prev
, next
);
5483 perf_event_task_sched_out(prev
, next
, cpu
);
5489 context_switch(rq
, prev
, next
); /* unlocks the rq */
5491 * the context switch might have flipped the stack from under
5492 * us, hence refresh the local variables.
5494 cpu
= smp_processor_id();
5497 raw_spin_unlock_irq(&rq
->lock
);
5501 if (unlikely(reacquire_kernel_lock(current
) < 0))
5502 goto need_resched_nonpreemptible
;
5504 preempt_enable_no_resched();
5508 EXPORT_SYMBOL(schedule
);
5510 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5512 * Look out! "owner" is an entirely speculative pointer
5513 * access and not reliable.
5515 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
5520 if (!sched_feat(OWNER_SPIN
))
5523 #ifdef CONFIG_DEBUG_PAGEALLOC
5525 * Need to access the cpu field knowing that
5526 * DEBUG_PAGEALLOC could have unmapped it if
5527 * the mutex owner just released it and exited.
5529 if (probe_kernel_address(&owner
->cpu
, cpu
))
5536 * Even if the access succeeded (likely case),
5537 * the cpu field may no longer be valid.
5539 if (cpu
>= nr_cpumask_bits
)
5543 * We need to validate that we can do a
5544 * get_cpu() and that we have the percpu area.
5546 if (!cpu_online(cpu
))
5553 * Owner changed, break to re-assess state.
5555 if (lock
->owner
!= owner
)
5559 * Is that owner really running on that cpu?
5561 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
5571 #ifdef CONFIG_PREEMPT
5573 * this is the entry point to schedule() from in-kernel preemption
5574 * off of preempt_enable. Kernel preemptions off return from interrupt
5575 * occur there and call schedule directly.
5577 asmlinkage
void __sched
preempt_schedule(void)
5579 struct thread_info
*ti
= current_thread_info();
5582 * If there is a non-zero preempt_count or interrupts are disabled,
5583 * we do not want to preempt the current task. Just return..
5585 if (likely(ti
->preempt_count
|| irqs_disabled()))
5589 add_preempt_count(PREEMPT_ACTIVE
);
5591 sub_preempt_count(PREEMPT_ACTIVE
);
5594 * Check again in case we missed a preemption opportunity
5595 * between schedule and now.
5598 } while (need_resched());
5600 EXPORT_SYMBOL(preempt_schedule
);
5603 * this is the entry point to schedule() from kernel preemption
5604 * off of irq context.
5605 * Note, that this is called and return with irqs disabled. This will
5606 * protect us against recursive calling from irq.
5608 asmlinkage
void __sched
preempt_schedule_irq(void)
5610 struct thread_info
*ti
= current_thread_info();
5612 /* Catch callers which need to be fixed */
5613 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
5616 add_preempt_count(PREEMPT_ACTIVE
);
5619 local_irq_disable();
5620 sub_preempt_count(PREEMPT_ACTIVE
);
5623 * Check again in case we missed a preemption opportunity
5624 * between schedule and now.
5627 } while (need_resched());
5630 #endif /* CONFIG_PREEMPT */
5632 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
5635 return try_to_wake_up(curr
->private, mode
, wake_flags
);
5637 EXPORT_SYMBOL(default_wake_function
);
5640 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5641 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5642 * number) then we wake all the non-exclusive tasks and one exclusive task.
5644 * There are circumstances in which we can try to wake a task which has already
5645 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5646 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5648 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
5649 int nr_exclusive
, int wake_flags
, void *key
)
5651 wait_queue_t
*curr
, *next
;
5653 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
5654 unsigned flags
= curr
->flags
;
5656 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
5657 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
5663 * __wake_up - wake up threads blocked on a waitqueue.
5665 * @mode: which threads
5666 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5667 * @key: is directly passed to the wakeup function
5669 * It may be assumed that this function implies a write memory barrier before
5670 * changing the task state if and only if any tasks are woken up.
5672 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
5673 int nr_exclusive
, void *key
)
5675 unsigned long flags
;
5677 spin_lock_irqsave(&q
->lock
, flags
);
5678 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
5679 spin_unlock_irqrestore(&q
->lock
, flags
);
5681 EXPORT_SYMBOL(__wake_up
);
5684 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5686 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
5688 __wake_up_common(q
, mode
, 1, 0, NULL
);
5691 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
5693 __wake_up_common(q
, mode
, 1, 0, key
);
5697 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5699 * @mode: which threads
5700 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5701 * @key: opaque value to be passed to wakeup targets
5703 * The sync wakeup differs that the waker knows that it will schedule
5704 * away soon, so while the target thread will be woken up, it will not
5705 * be migrated to another CPU - ie. the two threads are 'synchronized'
5706 * with each other. This can prevent needless bouncing between CPUs.
5708 * On UP it can prevent extra preemption.
5710 * It may be assumed that this function implies a write memory barrier before
5711 * changing the task state if and only if any tasks are woken up.
5713 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
5714 int nr_exclusive
, void *key
)
5716 unsigned long flags
;
5717 int wake_flags
= WF_SYNC
;
5722 if (unlikely(!nr_exclusive
))
5725 spin_lock_irqsave(&q
->lock
, flags
);
5726 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
5727 spin_unlock_irqrestore(&q
->lock
, flags
);
5729 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
5732 * __wake_up_sync - see __wake_up_sync_key()
5734 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
5736 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
5738 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
5741 * complete: - signals a single thread waiting on this completion
5742 * @x: holds the state of this particular completion
5744 * This will wake up a single thread waiting on this completion. Threads will be
5745 * awakened in the same order in which they were queued.
5747 * See also complete_all(), wait_for_completion() and related routines.
5749 * It may be assumed that this function implies a write memory barrier before
5750 * changing the task state if and only if any tasks are woken up.
5752 void complete(struct completion
*x
)
5754 unsigned long flags
;
5756 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5758 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
5759 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5761 EXPORT_SYMBOL(complete
);
5764 * complete_all: - signals all threads waiting on this completion
5765 * @x: holds the state of this particular completion
5767 * This will wake up all threads waiting on this particular completion event.
5769 * It may be assumed that this function implies a write memory barrier before
5770 * changing the task state if and only if any tasks are woken up.
5772 void complete_all(struct completion
*x
)
5774 unsigned long flags
;
5776 spin_lock_irqsave(&x
->wait
.lock
, flags
);
5777 x
->done
+= UINT_MAX
/2;
5778 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
5779 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
5781 EXPORT_SYMBOL(complete_all
);
5783 static inline long __sched
5784 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
5787 DECLARE_WAITQUEUE(wait
, current
);
5789 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
5790 __add_wait_queue_tail(&x
->wait
, &wait
);
5792 if (signal_pending_state(state
, current
)) {
5793 timeout
= -ERESTARTSYS
;
5796 __set_current_state(state
);
5797 spin_unlock_irq(&x
->wait
.lock
);
5798 timeout
= schedule_timeout(timeout
);
5799 spin_lock_irq(&x
->wait
.lock
);
5800 } while (!x
->done
&& timeout
);
5801 __remove_wait_queue(&x
->wait
, &wait
);
5806 return timeout
?: 1;
5810 wait_for_common(struct completion
*x
, long timeout
, int state
)
5814 spin_lock_irq(&x
->wait
.lock
);
5815 timeout
= do_wait_for_common(x
, timeout
, state
);
5816 spin_unlock_irq(&x
->wait
.lock
);
5821 * wait_for_completion: - waits for completion of a task
5822 * @x: holds the state of this particular completion
5824 * This waits to be signaled for completion of a specific task. It is NOT
5825 * interruptible and there is no timeout.
5827 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5828 * and interrupt capability. Also see complete().
5830 void __sched
wait_for_completion(struct completion
*x
)
5832 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
5834 EXPORT_SYMBOL(wait_for_completion
);
5837 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5838 * @x: holds the state of this particular completion
5839 * @timeout: timeout value in jiffies
5841 * This waits for either a completion of a specific task to be signaled or for a
5842 * specified timeout to expire. The timeout is in jiffies. It is not
5845 unsigned long __sched
5846 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
5848 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
5850 EXPORT_SYMBOL(wait_for_completion_timeout
);
5853 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5854 * @x: holds the state of this particular completion
5856 * This waits for completion of a specific task to be signaled. It is
5859 int __sched
wait_for_completion_interruptible(struct completion
*x
)
5861 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
5862 if (t
== -ERESTARTSYS
)
5866 EXPORT_SYMBOL(wait_for_completion_interruptible
);
5869 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5870 * @x: holds the state of this particular completion
5871 * @timeout: timeout value in jiffies
5873 * This waits for either a completion of a specific task to be signaled or for a
5874 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5876 unsigned long __sched
5877 wait_for_completion_interruptible_timeout(struct completion
*x
,
5878 unsigned long timeout
)
5880 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
5882 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
5885 * wait_for_completion_killable: - waits for completion of a task (killable)
5886 * @x: holds the state of this particular completion
5888 * This waits to be signaled for completion of a specific task. It can be
5889 * interrupted by a kill signal.
5891 int __sched
wait_for_completion_killable(struct completion
*x
)
5893 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
5894 if (t
== -ERESTARTSYS
)
5898 EXPORT_SYMBOL(wait_for_completion_killable
);
5901 * try_wait_for_completion - try to decrement a completion without blocking
5902 * @x: completion structure
5904 * Returns: 0 if a decrement cannot be done without blocking
5905 * 1 if a decrement succeeded.
5907 * If a completion is being used as a counting completion,
5908 * attempt to decrement the counter without blocking. This
5909 * enables us to avoid waiting if the resource the completion
5910 * is protecting is not available.
5912 bool try_wait_for_completion(struct completion
*x
)
5916 spin_lock_irq(&x
->wait
.lock
);
5921 spin_unlock_irq(&x
->wait
.lock
);
5924 EXPORT_SYMBOL(try_wait_for_completion
);
5927 * completion_done - Test to see if a completion has any waiters
5928 * @x: completion structure
5930 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5931 * 1 if there are no waiters.
5934 bool completion_done(struct completion
*x
)
5938 spin_lock_irq(&x
->wait
.lock
);
5941 spin_unlock_irq(&x
->wait
.lock
);
5944 EXPORT_SYMBOL(completion_done
);
5947 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5949 unsigned long flags
;
5952 init_waitqueue_entry(&wait
, current
);
5954 __set_current_state(state
);
5956 spin_lock_irqsave(&q
->lock
, flags
);
5957 __add_wait_queue(q
, &wait
);
5958 spin_unlock(&q
->lock
);
5959 timeout
= schedule_timeout(timeout
);
5960 spin_lock_irq(&q
->lock
);
5961 __remove_wait_queue(q
, &wait
);
5962 spin_unlock_irqrestore(&q
->lock
, flags
);
5967 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
5969 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5971 EXPORT_SYMBOL(interruptible_sleep_on
);
5974 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5976 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
5978 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5980 void __sched
sleep_on(wait_queue_head_t
*q
)
5982 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5984 EXPORT_SYMBOL(sleep_on
);
5986 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5988 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5990 EXPORT_SYMBOL(sleep_on_timeout
);
5992 #ifdef CONFIG_RT_MUTEXES
5995 * rt_mutex_setprio - set the current priority of a task
5997 * @prio: prio value (kernel-internal form)
5999 * This function changes the 'effective' priority of a task. It does
6000 * not touch ->normal_prio like __setscheduler().
6002 * Used by the rt_mutex code to implement priority inheritance logic.
6004 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
6006 unsigned long flags
;
6007 int oldprio
, on_rq
, running
;
6009 const struct sched_class
*prev_class
= p
->sched_class
;
6011 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
6013 rq
= task_rq_lock(p
, &flags
);
6014 update_rq_clock(rq
);
6017 on_rq
= p
->se
.on_rq
;
6018 running
= task_current(rq
, p
);
6020 dequeue_task(rq
, p
, 0);
6022 p
->sched_class
->put_prev_task(rq
, p
);
6025 p
->sched_class
= &rt_sched_class
;
6027 p
->sched_class
= &fair_sched_class
;
6032 p
->sched_class
->set_curr_task(rq
);
6034 enqueue_task(rq
, p
, 0);
6036 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6038 task_rq_unlock(rq
, &flags
);
6043 void set_user_nice(struct task_struct
*p
, long nice
)
6045 int old_prio
, delta
, on_rq
;
6046 unsigned long flags
;
6049 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
6052 * We have to be careful, if called from sys_setpriority(),
6053 * the task might be in the middle of scheduling on another CPU.
6055 rq
= task_rq_lock(p
, &flags
);
6056 update_rq_clock(rq
);
6058 * The RT priorities are set via sched_setscheduler(), but we still
6059 * allow the 'normal' nice value to be set - but as expected
6060 * it wont have any effect on scheduling until the task is
6061 * SCHED_FIFO/SCHED_RR:
6063 if (task_has_rt_policy(p
)) {
6064 p
->static_prio
= NICE_TO_PRIO(nice
);
6067 on_rq
= p
->se
.on_rq
;
6069 dequeue_task(rq
, p
, 0);
6071 p
->static_prio
= NICE_TO_PRIO(nice
);
6074 p
->prio
= effective_prio(p
);
6075 delta
= p
->prio
- old_prio
;
6078 enqueue_task(rq
, p
, 0);
6080 * If the task increased its priority or is running and
6081 * lowered its priority, then reschedule its CPU:
6083 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
6084 resched_task(rq
->curr
);
6087 task_rq_unlock(rq
, &flags
);
6089 EXPORT_SYMBOL(set_user_nice
);
6092 * can_nice - check if a task can reduce its nice value
6096 int can_nice(const struct task_struct
*p
, const int nice
)
6098 /* convert nice value [19,-20] to rlimit style value [1,40] */
6099 int nice_rlim
= 20 - nice
;
6101 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
6102 capable(CAP_SYS_NICE
));
6105 #ifdef __ARCH_WANT_SYS_NICE
6108 * sys_nice - change the priority of the current process.
6109 * @increment: priority increment
6111 * sys_setpriority is a more generic, but much slower function that
6112 * does similar things.
6114 SYSCALL_DEFINE1(nice
, int, increment
)
6119 * Setpriority might change our priority at the same moment.
6120 * We don't have to worry. Conceptually one call occurs first
6121 * and we have a single winner.
6123 if (increment
< -40)
6128 nice
= TASK_NICE(current
) + increment
;
6134 if (increment
< 0 && !can_nice(current
, nice
))
6137 retval
= security_task_setnice(current
, nice
);
6141 set_user_nice(current
, nice
);
6148 * task_prio - return the priority value of a given task.
6149 * @p: the task in question.
6151 * This is the priority value as seen by users in /proc.
6152 * RT tasks are offset by -200. Normal tasks are centered
6153 * around 0, value goes from -16 to +15.
6155 int task_prio(const struct task_struct
*p
)
6157 return p
->prio
- MAX_RT_PRIO
;
6161 * task_nice - return the nice value of a given task.
6162 * @p: the task in question.
6164 int task_nice(const struct task_struct
*p
)
6166 return TASK_NICE(p
);
6168 EXPORT_SYMBOL(task_nice
);
6171 * idle_cpu - is a given cpu idle currently?
6172 * @cpu: the processor in question.
6174 int idle_cpu(int cpu
)
6176 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
6180 * idle_task - return the idle task for a given cpu.
6181 * @cpu: the processor in question.
6183 struct task_struct
*idle_task(int cpu
)
6185 return cpu_rq(cpu
)->idle
;
6189 * find_process_by_pid - find a process with a matching PID value.
6190 * @pid: the pid in question.
6192 static struct task_struct
*find_process_by_pid(pid_t pid
)
6194 return pid
? find_task_by_vpid(pid
) : current
;
6197 /* Actually do priority change: must hold rq lock. */
6199 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
6201 BUG_ON(p
->se
.on_rq
);
6204 p
->rt_priority
= prio
;
6205 p
->normal_prio
= normal_prio(p
);
6206 /* we are holding p->pi_lock already */
6207 p
->prio
= rt_mutex_getprio(p
);
6208 if (rt_prio(p
->prio
))
6209 p
->sched_class
= &rt_sched_class
;
6211 p
->sched_class
= &fair_sched_class
;
6216 * check the target process has a UID that matches the current process's
6218 static bool check_same_owner(struct task_struct
*p
)
6220 const struct cred
*cred
= current_cred(), *pcred
;
6224 pcred
= __task_cred(p
);
6225 match
= (cred
->euid
== pcred
->euid
||
6226 cred
->euid
== pcred
->uid
);
6231 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
6232 struct sched_param
*param
, bool user
)
6234 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
6235 unsigned long flags
;
6236 const struct sched_class
*prev_class
= p
->sched_class
;
6240 /* may grab non-irq protected spin_locks */
6241 BUG_ON(in_interrupt());
6243 /* double check policy once rq lock held */
6245 reset_on_fork
= p
->sched_reset_on_fork
;
6246 policy
= oldpolicy
= p
->policy
;
6248 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
6249 policy
&= ~SCHED_RESET_ON_FORK
;
6251 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
6252 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
6253 policy
!= SCHED_IDLE
)
6258 * Valid priorities for SCHED_FIFO and SCHED_RR are
6259 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6260 * SCHED_BATCH and SCHED_IDLE is 0.
6262 if (param
->sched_priority
< 0 ||
6263 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
6264 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
6266 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
6270 * Allow unprivileged RT tasks to decrease priority:
6272 if (user
&& !capable(CAP_SYS_NICE
)) {
6273 if (rt_policy(policy
)) {
6274 unsigned long rlim_rtprio
;
6276 if (!lock_task_sighand(p
, &flags
))
6278 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
6279 unlock_task_sighand(p
, &flags
);
6281 /* can't set/change the rt policy */
6282 if (policy
!= p
->policy
&& !rlim_rtprio
)
6285 /* can't increase priority */
6286 if (param
->sched_priority
> p
->rt_priority
&&
6287 param
->sched_priority
> rlim_rtprio
)
6291 * Like positive nice levels, dont allow tasks to
6292 * move out of SCHED_IDLE either:
6294 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
6297 /* can't change other user's priorities */
6298 if (!check_same_owner(p
))
6301 /* Normal users shall not reset the sched_reset_on_fork flag */
6302 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
6307 #ifdef CONFIG_RT_GROUP_SCHED
6309 * Do not allow realtime tasks into groups that have no runtime
6312 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
6313 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
6317 retval
= security_task_setscheduler(p
, policy
, param
);
6323 * make sure no PI-waiters arrive (or leave) while we are
6324 * changing the priority of the task:
6326 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
6328 * To be able to change p->policy safely, the apropriate
6329 * runqueue lock must be held.
6331 rq
= __task_rq_lock(p
);
6332 /* recheck policy now with rq lock held */
6333 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
6334 policy
= oldpolicy
= -1;
6335 __task_rq_unlock(rq
);
6336 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6339 update_rq_clock(rq
);
6340 on_rq
= p
->se
.on_rq
;
6341 running
= task_current(rq
, p
);
6343 deactivate_task(rq
, p
, 0);
6345 p
->sched_class
->put_prev_task(rq
, p
);
6347 p
->sched_reset_on_fork
= reset_on_fork
;
6350 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
6353 p
->sched_class
->set_curr_task(rq
);
6355 activate_task(rq
, p
, 0);
6357 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
6359 __task_rq_unlock(rq
);
6360 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6362 rt_mutex_adjust_pi(p
);
6368 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6369 * @p: the task in question.
6370 * @policy: new policy.
6371 * @param: structure containing the new RT priority.
6373 * NOTE that the task may be already dead.
6375 int sched_setscheduler(struct task_struct
*p
, int policy
,
6376 struct sched_param
*param
)
6378 return __sched_setscheduler(p
, policy
, param
, true);
6380 EXPORT_SYMBOL_GPL(sched_setscheduler
);
6383 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6384 * @p: the task in question.
6385 * @policy: new policy.
6386 * @param: structure containing the new RT priority.
6388 * Just like sched_setscheduler, only don't bother checking if the
6389 * current context has permission. For example, this is needed in
6390 * stop_machine(): we create temporary high priority worker threads,
6391 * but our caller might not have that capability.
6393 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
6394 struct sched_param
*param
)
6396 return __sched_setscheduler(p
, policy
, param
, false);
6400 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
6402 struct sched_param lparam
;
6403 struct task_struct
*p
;
6406 if (!param
|| pid
< 0)
6408 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
6413 p
= find_process_by_pid(pid
);
6415 retval
= sched_setscheduler(p
, policy
, &lparam
);
6422 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6423 * @pid: the pid in question.
6424 * @policy: new policy.
6425 * @param: structure containing the new RT priority.
6427 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
6428 struct sched_param __user
*, param
)
6430 /* negative values for policy are not valid */
6434 return do_sched_setscheduler(pid
, policy
, param
);
6438 * sys_sched_setparam - set/change the RT priority of a thread
6439 * @pid: the pid in question.
6440 * @param: structure containing the new RT priority.
6442 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6444 return do_sched_setscheduler(pid
, -1, param
);
6448 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6449 * @pid: the pid in question.
6451 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
6453 struct task_struct
*p
;
6460 read_lock(&tasklist_lock
);
6461 p
= find_process_by_pid(pid
);
6463 retval
= security_task_getscheduler(p
);
6466 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
6468 read_unlock(&tasklist_lock
);
6473 * sys_sched_getparam - get the RT priority of a thread
6474 * @pid: the pid in question.
6475 * @param: structure containing the RT priority.
6477 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
6479 struct sched_param lp
;
6480 struct task_struct
*p
;
6483 if (!param
|| pid
< 0)
6486 read_lock(&tasklist_lock
);
6487 p
= find_process_by_pid(pid
);
6492 retval
= security_task_getscheduler(p
);
6496 lp
.sched_priority
= p
->rt_priority
;
6497 read_unlock(&tasklist_lock
);
6500 * This one might sleep, we cannot do it with a spinlock held ...
6502 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
6507 read_unlock(&tasklist_lock
);
6511 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
6513 cpumask_var_t cpus_allowed
, new_mask
;
6514 struct task_struct
*p
;
6518 read_lock(&tasklist_lock
);
6520 p
= find_process_by_pid(pid
);
6522 read_unlock(&tasklist_lock
);
6528 * It is not safe to call set_cpus_allowed with the
6529 * tasklist_lock held. We will bump the task_struct's
6530 * usage count and then drop tasklist_lock.
6533 read_unlock(&tasklist_lock
);
6535 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
6539 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
6541 goto out_free_cpus_allowed
;
6544 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
6547 retval
= security_task_setscheduler(p
, 0, NULL
);
6551 cpuset_cpus_allowed(p
, cpus_allowed
);
6552 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
6554 retval
= set_cpus_allowed_ptr(p
, new_mask
);
6557 cpuset_cpus_allowed(p
, cpus_allowed
);
6558 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
6560 * We must have raced with a concurrent cpuset
6561 * update. Just reset the cpus_allowed to the
6562 * cpuset's cpus_allowed
6564 cpumask_copy(new_mask
, cpus_allowed
);
6569 free_cpumask_var(new_mask
);
6570 out_free_cpus_allowed
:
6571 free_cpumask_var(cpus_allowed
);
6578 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
6579 struct cpumask
*new_mask
)
6581 if (len
< cpumask_size())
6582 cpumask_clear(new_mask
);
6583 else if (len
> cpumask_size())
6584 len
= cpumask_size();
6586 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
6590 * sys_sched_setaffinity - set the cpu affinity of a process
6591 * @pid: pid of the process
6592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6593 * @user_mask_ptr: user-space pointer to the new cpu mask
6595 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
6596 unsigned long __user
*, user_mask_ptr
)
6598 cpumask_var_t new_mask
;
6601 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
6604 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
6606 retval
= sched_setaffinity(pid
, new_mask
);
6607 free_cpumask_var(new_mask
);
6611 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
6613 struct task_struct
*p
;
6614 unsigned long flags
;
6619 read_lock(&tasklist_lock
);
6622 p
= find_process_by_pid(pid
);
6626 retval
= security_task_getscheduler(p
);
6630 rq
= task_rq_lock(p
, &flags
);
6631 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
6632 task_rq_unlock(rq
, &flags
);
6635 read_unlock(&tasklist_lock
);
6642 * sys_sched_getaffinity - get the cpu affinity of a process
6643 * @pid: pid of the process
6644 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6645 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6647 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
6648 unsigned long __user
*, user_mask_ptr
)
6653 if (len
< cpumask_size())
6656 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
6659 ret
= sched_getaffinity(pid
, mask
);
6661 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
6664 ret
= cpumask_size();
6666 free_cpumask_var(mask
);
6672 * sys_sched_yield - yield the current processor to other threads.
6674 * This function yields the current CPU to other tasks. If there are no
6675 * other threads running on this CPU then this function will return.
6677 SYSCALL_DEFINE0(sched_yield
)
6679 struct rq
*rq
= this_rq_lock();
6681 schedstat_inc(rq
, yld_count
);
6682 current
->sched_class
->yield_task(rq
);
6685 * Since we are going to call schedule() anyway, there's
6686 * no need to preempt or enable interrupts:
6688 __release(rq
->lock
);
6689 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
6690 do_raw_spin_unlock(&rq
->lock
);
6691 preempt_enable_no_resched();
6698 static inline int should_resched(void)
6700 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
6703 static void __cond_resched(void)
6705 add_preempt_count(PREEMPT_ACTIVE
);
6707 sub_preempt_count(PREEMPT_ACTIVE
);
6710 int __sched
_cond_resched(void)
6712 if (should_resched()) {
6718 EXPORT_SYMBOL(_cond_resched
);
6721 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6722 * call schedule, and on return reacquire the lock.
6724 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6725 * operations here to prevent schedule() from being called twice (once via
6726 * spin_unlock(), once by hand).
6728 int __cond_resched_lock(spinlock_t
*lock
)
6730 int resched
= should_resched();
6733 lockdep_assert_held(lock
);
6735 if (spin_needbreak(lock
) || resched
) {
6746 EXPORT_SYMBOL(__cond_resched_lock
);
6748 int __sched
__cond_resched_softirq(void)
6750 BUG_ON(!in_softirq());
6752 if (should_resched()) {
6760 EXPORT_SYMBOL(__cond_resched_softirq
);
6763 * yield - yield the current processor to other threads.
6765 * This is a shortcut for kernel-space yielding - it marks the
6766 * thread runnable and calls sys_sched_yield().
6768 void __sched
yield(void)
6770 set_current_state(TASK_RUNNING
);
6773 EXPORT_SYMBOL(yield
);
6776 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6777 * that process accounting knows that this is a task in IO wait state.
6779 void __sched
io_schedule(void)
6781 struct rq
*rq
= raw_rq();
6783 delayacct_blkio_start();
6784 atomic_inc(&rq
->nr_iowait
);
6785 current
->in_iowait
= 1;
6787 current
->in_iowait
= 0;
6788 atomic_dec(&rq
->nr_iowait
);
6789 delayacct_blkio_end();
6791 EXPORT_SYMBOL(io_schedule
);
6793 long __sched
io_schedule_timeout(long timeout
)
6795 struct rq
*rq
= raw_rq();
6798 delayacct_blkio_start();
6799 atomic_inc(&rq
->nr_iowait
);
6800 current
->in_iowait
= 1;
6801 ret
= schedule_timeout(timeout
);
6802 current
->in_iowait
= 0;
6803 atomic_dec(&rq
->nr_iowait
);
6804 delayacct_blkio_end();
6809 * sys_sched_get_priority_max - return maximum RT priority.
6810 * @policy: scheduling class.
6812 * this syscall returns the maximum rt_priority that can be used
6813 * by a given scheduling class.
6815 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
6822 ret
= MAX_USER_RT_PRIO
-1;
6834 * sys_sched_get_priority_min - return minimum RT priority.
6835 * @policy: scheduling class.
6837 * this syscall returns the minimum rt_priority that can be used
6838 * by a given scheduling class.
6840 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
6858 * sys_sched_rr_get_interval - return the default timeslice of a process.
6859 * @pid: pid of the process.
6860 * @interval: userspace pointer to the timeslice value.
6862 * this syscall writes the default timeslice value of a given process
6863 * into the user-space timespec buffer. A value of '0' means infinity.
6865 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
6866 struct timespec __user
*, interval
)
6868 struct task_struct
*p
;
6869 unsigned int time_slice
;
6870 unsigned long flags
;
6879 read_lock(&tasklist_lock
);
6880 p
= find_process_by_pid(pid
);
6884 retval
= security_task_getscheduler(p
);
6888 rq
= task_rq_lock(p
, &flags
);
6889 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
6890 task_rq_unlock(rq
, &flags
);
6892 read_unlock(&tasklist_lock
);
6893 jiffies_to_timespec(time_slice
, &t
);
6894 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
6898 read_unlock(&tasklist_lock
);
6902 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
6904 void sched_show_task(struct task_struct
*p
)
6906 unsigned long free
= 0;
6909 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
6910 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
6911 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
6912 #if BITS_PER_LONG == 32
6913 if (state
== TASK_RUNNING
)
6914 printk(KERN_CONT
" running ");
6916 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
6918 if (state
== TASK_RUNNING
)
6919 printk(KERN_CONT
" running task ");
6921 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6923 #ifdef CONFIG_DEBUG_STACK_USAGE
6924 free
= stack_not_used(p
);
6926 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
6927 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
6928 (unsigned long)task_thread_info(p
)->flags
);
6930 show_stack(p
, NULL
);
6933 void show_state_filter(unsigned long state_filter
)
6935 struct task_struct
*g
, *p
;
6937 #if BITS_PER_LONG == 32
6939 " task PC stack pid father\n");
6942 " task PC stack pid father\n");
6944 read_lock(&tasklist_lock
);
6945 do_each_thread(g
, p
) {
6947 * reset the NMI-timeout, listing all files on a slow
6948 * console might take alot of time:
6950 touch_nmi_watchdog();
6951 if (!state_filter
|| (p
->state
& state_filter
))
6953 } while_each_thread(g
, p
);
6955 touch_all_softlockup_watchdogs();
6957 #ifdef CONFIG_SCHED_DEBUG
6958 sysrq_sched_debug_show();
6960 read_unlock(&tasklist_lock
);
6962 * Only show locks if all tasks are dumped:
6965 debug_show_all_locks();
6968 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
6970 idle
->sched_class
= &idle_sched_class
;
6974 * init_idle - set up an idle thread for a given CPU
6975 * @idle: task in question
6976 * @cpu: cpu the idle task belongs to
6978 * NOTE: this function does not set the idle thread's NEED_RESCHED
6979 * flag, to make booting more robust.
6981 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6983 struct rq
*rq
= cpu_rq(cpu
);
6984 unsigned long flags
;
6986 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6989 idle
->se
.exec_start
= sched_clock();
6991 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
6992 __set_task_cpu(idle
, cpu
);
6994 rq
->curr
= rq
->idle
= idle
;
6995 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6998 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7000 /* Set the preempt count _outside_ the spinlocks! */
7001 #if defined(CONFIG_PREEMPT)
7002 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
7004 task_thread_info(idle
)->preempt_count
= 0;
7007 * The idle tasks have their own, simple scheduling class:
7009 idle
->sched_class
= &idle_sched_class
;
7010 ftrace_graph_init_task(idle
);
7014 * In a system that switches off the HZ timer nohz_cpu_mask
7015 * indicates which cpus entered this state. This is used
7016 * in the rcu update to wait only for active cpus. For system
7017 * which do not switch off the HZ timer nohz_cpu_mask should
7018 * always be CPU_BITS_NONE.
7020 cpumask_var_t nohz_cpu_mask
;
7023 * Increase the granularity value when there are more CPUs,
7024 * because with more CPUs the 'effective latency' as visible
7025 * to users decreases. But the relationship is not linear,
7026 * so pick a second-best guess by going with the log2 of the
7029 * This idea comes from the SD scheduler of Con Kolivas:
7031 static int get_update_sysctl_factor(void)
7033 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
7034 unsigned int factor
;
7036 switch (sysctl_sched_tunable_scaling
) {
7037 case SCHED_TUNABLESCALING_NONE
:
7040 case SCHED_TUNABLESCALING_LINEAR
:
7043 case SCHED_TUNABLESCALING_LOG
:
7045 factor
= 1 + ilog2(cpus
);
7052 static void update_sysctl(void)
7054 unsigned int factor
= get_update_sysctl_factor();
7056 #define SET_SYSCTL(name) \
7057 (sysctl_##name = (factor) * normalized_sysctl_##name)
7058 SET_SYSCTL(sched_min_granularity
);
7059 SET_SYSCTL(sched_latency
);
7060 SET_SYSCTL(sched_wakeup_granularity
);
7061 SET_SYSCTL(sched_shares_ratelimit
);
7065 static inline void sched_init_granularity(void)
7072 * This is how migration works:
7074 * 1) we queue a struct migration_req structure in the source CPU's
7075 * runqueue and wake up that CPU's migration thread.
7076 * 2) we down() the locked semaphore => thread blocks.
7077 * 3) migration thread wakes up (implicitly it forces the migrated
7078 * thread off the CPU)
7079 * 4) it gets the migration request and checks whether the migrated
7080 * task is still in the wrong runqueue.
7081 * 5) if it's in the wrong runqueue then the migration thread removes
7082 * it and puts it into the right queue.
7083 * 6) migration thread up()s the semaphore.
7084 * 7) we wake up and the migration is done.
7088 * Change a given task's CPU affinity. Migrate the thread to a
7089 * proper CPU and schedule it away if the CPU it's executing on
7090 * is removed from the allowed bitmask.
7092 * NOTE: the caller must have a valid reference to the task, the
7093 * task must not exit() & deallocate itself prematurely. The
7094 * call is not atomic; no spinlocks may be held.
7096 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
7098 struct migration_req req
;
7099 unsigned long flags
;
7103 rq
= task_rq_lock(p
, &flags
);
7104 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
7109 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
7110 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
7115 if (p
->sched_class
->set_cpus_allowed
)
7116 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
7118 cpumask_copy(&p
->cpus_allowed
, new_mask
);
7119 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
7122 /* Can the task run on the task's current CPU? If so, we're done */
7123 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
7126 if (migrate_task(p
, cpumask_any_and(cpu_active_mask
, new_mask
), &req
)) {
7127 /* Need help from migration thread: drop lock and wait. */
7128 struct task_struct
*mt
= rq
->migration_thread
;
7130 get_task_struct(mt
);
7131 task_rq_unlock(rq
, &flags
);
7132 wake_up_process(rq
->migration_thread
);
7133 put_task_struct(mt
);
7134 wait_for_completion(&req
.done
);
7135 tlb_migrate_finish(p
->mm
);
7139 task_rq_unlock(rq
, &flags
);
7143 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
7146 * Move (not current) task off this cpu, onto dest cpu. We're doing
7147 * this because either it can't run here any more (set_cpus_allowed()
7148 * away from this CPU, or CPU going down), or because we're
7149 * attempting to rebalance this task on exec (sched_exec).
7151 * So we race with normal scheduler movements, but that's OK, as long
7152 * as the task is no longer on this CPU.
7154 * Returns non-zero if task was successfully migrated.
7156 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7158 struct rq
*rq_dest
, *rq_src
;
7161 if (unlikely(!cpu_active(dest_cpu
)))
7164 rq_src
= cpu_rq(src_cpu
);
7165 rq_dest
= cpu_rq(dest_cpu
);
7167 double_rq_lock(rq_src
, rq_dest
);
7168 /* Already moved. */
7169 if (task_cpu(p
) != src_cpu
)
7171 /* Affinity changed (again). */
7172 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7175 on_rq
= p
->se
.on_rq
;
7177 deactivate_task(rq_src
, p
, 0);
7179 set_task_cpu(p
, dest_cpu
);
7181 activate_task(rq_dest
, p
, 0);
7182 check_preempt_curr(rq_dest
, p
, 0);
7187 double_rq_unlock(rq_src
, rq_dest
);
7191 #define RCU_MIGRATION_IDLE 0
7192 #define RCU_MIGRATION_NEED_QS 1
7193 #define RCU_MIGRATION_GOT_QS 2
7194 #define RCU_MIGRATION_MUST_SYNC 3
7197 * migration_thread - this is a highprio system thread that performs
7198 * thread migration by bumping thread off CPU then 'pushing' onto
7201 static int migration_thread(void *data
)
7204 int cpu
= (long)data
;
7208 BUG_ON(rq
->migration_thread
!= current
);
7210 set_current_state(TASK_INTERRUPTIBLE
);
7211 while (!kthread_should_stop()) {
7212 struct migration_req
*req
;
7213 struct list_head
*head
;
7215 raw_spin_lock_irq(&rq
->lock
);
7217 if (cpu_is_offline(cpu
)) {
7218 raw_spin_unlock_irq(&rq
->lock
);
7222 if (rq
->active_balance
) {
7223 active_load_balance(rq
, cpu
);
7224 rq
->active_balance
= 0;
7227 head
= &rq
->migration_queue
;
7229 if (list_empty(head
)) {
7230 raw_spin_unlock_irq(&rq
->lock
);
7232 set_current_state(TASK_INTERRUPTIBLE
);
7235 req
= list_entry(head
->next
, struct migration_req
, list
);
7236 list_del_init(head
->next
);
7238 if (req
->task
!= NULL
) {
7239 raw_spin_unlock(&rq
->lock
);
7240 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
7241 } else if (likely(cpu
== (badcpu
= smp_processor_id()))) {
7242 req
->dest_cpu
= RCU_MIGRATION_GOT_QS
;
7243 raw_spin_unlock(&rq
->lock
);
7245 req
->dest_cpu
= RCU_MIGRATION_MUST_SYNC
;
7246 raw_spin_unlock(&rq
->lock
);
7247 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu
, cpu
);
7251 complete(&req
->done
);
7253 __set_current_state(TASK_RUNNING
);
7258 #ifdef CONFIG_HOTPLUG_CPU
7260 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
7264 local_irq_disable();
7265 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
7271 * Figure out where task on dead CPU should go, use force if necessary.
7273 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
7276 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
7279 /* Look for allowed, online CPU in same node. */
7280 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
7281 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
7284 /* Any allowed, online CPU? */
7285 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
7286 if (dest_cpu
< nr_cpu_ids
)
7289 /* No more Mr. Nice Guy. */
7290 if (dest_cpu
>= nr_cpu_ids
) {
7291 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
7292 dest_cpu
= cpumask_any_and(cpu_active_mask
, &p
->cpus_allowed
);
7295 * Don't tell them about moving exiting tasks or
7296 * kernel threads (both mm NULL), since they never
7299 if (p
->mm
&& printk_ratelimit()) {
7300 printk(KERN_INFO
"process %d (%s) no "
7301 "longer affine to cpu%d\n",
7302 task_pid_nr(p
), p
->comm
, dead_cpu
);
7307 /* It can have affinity changed while we were choosing. */
7308 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
7313 * While a dead CPU has no uninterruptible tasks queued at this point,
7314 * it might still have a nonzero ->nr_uninterruptible counter, because
7315 * for performance reasons the counter is not stricly tracking tasks to
7316 * their home CPUs. So we just add the counter to another CPU's counter,
7317 * to keep the global sum constant after CPU-down:
7319 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
7321 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
7322 unsigned long flags
;
7324 local_irq_save(flags
);
7325 double_rq_lock(rq_src
, rq_dest
);
7326 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
7327 rq_src
->nr_uninterruptible
= 0;
7328 double_rq_unlock(rq_src
, rq_dest
);
7329 local_irq_restore(flags
);
7332 /* Run through task list and migrate tasks from the dead cpu. */
7333 static void migrate_live_tasks(int src_cpu
)
7335 struct task_struct
*p
, *t
;
7337 read_lock(&tasklist_lock
);
7339 do_each_thread(t
, p
) {
7343 if (task_cpu(p
) == src_cpu
)
7344 move_task_off_dead_cpu(src_cpu
, p
);
7345 } while_each_thread(t
, p
);
7347 read_unlock(&tasklist_lock
);
7351 * Schedules idle task to be the next runnable task on current CPU.
7352 * It does so by boosting its priority to highest possible.
7353 * Used by CPU offline code.
7355 void sched_idle_next(void)
7357 int this_cpu
= smp_processor_id();
7358 struct rq
*rq
= cpu_rq(this_cpu
);
7359 struct task_struct
*p
= rq
->idle
;
7360 unsigned long flags
;
7362 /* cpu has to be offline */
7363 BUG_ON(cpu_online(this_cpu
));
7366 * Strictly not necessary since rest of the CPUs are stopped by now
7367 * and interrupts disabled on the current cpu.
7369 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7371 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7373 update_rq_clock(rq
);
7374 activate_task(rq
, p
, 0);
7376 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7380 * Ensures that the idle task is using init_mm right before its cpu goes
7383 void idle_task_exit(void)
7385 struct mm_struct
*mm
= current
->active_mm
;
7387 BUG_ON(cpu_online(smp_processor_id()));
7390 switch_mm(mm
, &init_mm
, current
);
7394 /* called under rq->lock with disabled interrupts */
7395 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
7397 struct rq
*rq
= cpu_rq(dead_cpu
);
7399 /* Must be exiting, otherwise would be on tasklist. */
7400 BUG_ON(!p
->exit_state
);
7402 /* Cannot have done final schedule yet: would have vanished. */
7403 BUG_ON(p
->state
== TASK_DEAD
);
7408 * Drop lock around migration; if someone else moves it,
7409 * that's OK. No task can be added to this CPU, so iteration is
7412 raw_spin_unlock_irq(&rq
->lock
);
7413 move_task_off_dead_cpu(dead_cpu
, p
);
7414 raw_spin_lock_irq(&rq
->lock
);
7419 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7420 static void migrate_dead_tasks(unsigned int dead_cpu
)
7422 struct rq
*rq
= cpu_rq(dead_cpu
);
7423 struct task_struct
*next
;
7426 if (!rq
->nr_running
)
7428 update_rq_clock(rq
);
7429 next
= pick_next_task(rq
);
7432 next
->sched_class
->put_prev_task(rq
, next
);
7433 migrate_dead(dead_cpu
, next
);
7439 * remove the tasks which were accounted by rq from calc_load_tasks.
7441 static void calc_global_load_remove(struct rq
*rq
)
7443 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
7444 rq
->calc_load_active
= 0;
7446 #endif /* CONFIG_HOTPLUG_CPU */
7448 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7450 static struct ctl_table sd_ctl_dir
[] = {
7452 .procname
= "sched_domain",
7458 static struct ctl_table sd_ctl_root
[] = {
7460 .procname
= "kernel",
7462 .child
= sd_ctl_dir
,
7467 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
7469 struct ctl_table
*entry
=
7470 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
7475 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
7477 struct ctl_table
*entry
;
7480 * In the intermediate directories, both the child directory and
7481 * procname are dynamically allocated and could fail but the mode
7482 * will always be set. In the lowest directory the names are
7483 * static strings and all have proc handlers.
7485 for (entry
= *tablep
; entry
->mode
; entry
++) {
7487 sd_free_ctl_entry(&entry
->child
);
7488 if (entry
->proc_handler
== NULL
)
7489 kfree(entry
->procname
);
7497 set_table_entry(struct ctl_table
*entry
,
7498 const char *procname
, void *data
, int maxlen
,
7499 mode_t mode
, proc_handler
*proc_handler
)
7501 entry
->procname
= procname
;
7503 entry
->maxlen
= maxlen
;
7505 entry
->proc_handler
= proc_handler
;
7508 static struct ctl_table
*
7509 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
7511 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
7516 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
7517 sizeof(long), 0644, proc_doulongvec_minmax
);
7518 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
7519 sizeof(long), 0644, proc_doulongvec_minmax
);
7520 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
7521 sizeof(int), 0644, proc_dointvec_minmax
);
7522 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
7523 sizeof(int), 0644, proc_dointvec_minmax
);
7524 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
7525 sizeof(int), 0644, proc_dointvec_minmax
);
7526 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
7527 sizeof(int), 0644, proc_dointvec_minmax
);
7528 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
7529 sizeof(int), 0644, proc_dointvec_minmax
);
7530 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
7531 sizeof(int), 0644, proc_dointvec_minmax
);
7532 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
7533 sizeof(int), 0644, proc_dointvec_minmax
);
7534 set_table_entry(&table
[9], "cache_nice_tries",
7535 &sd
->cache_nice_tries
,
7536 sizeof(int), 0644, proc_dointvec_minmax
);
7537 set_table_entry(&table
[10], "flags", &sd
->flags
,
7538 sizeof(int), 0644, proc_dointvec_minmax
);
7539 set_table_entry(&table
[11], "name", sd
->name
,
7540 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
7541 /* &table[12] is terminator */
7546 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
7548 struct ctl_table
*entry
, *table
;
7549 struct sched_domain
*sd
;
7550 int domain_num
= 0, i
;
7553 for_each_domain(cpu
, sd
)
7555 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
7560 for_each_domain(cpu
, sd
) {
7561 snprintf(buf
, 32, "domain%d", i
);
7562 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7564 entry
->child
= sd_alloc_ctl_domain_table(sd
);
7571 static struct ctl_table_header
*sd_sysctl_header
;
7572 static void register_sched_domain_sysctl(void)
7574 int i
, cpu_num
= num_possible_cpus();
7575 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
7578 WARN_ON(sd_ctl_dir
[0].child
);
7579 sd_ctl_dir
[0].child
= entry
;
7584 for_each_possible_cpu(i
) {
7585 snprintf(buf
, 32, "cpu%d", i
);
7586 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
7588 entry
->child
= sd_alloc_ctl_cpu_table(i
);
7592 WARN_ON(sd_sysctl_header
);
7593 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
7596 /* may be called multiple times per register */
7597 static void unregister_sched_domain_sysctl(void)
7599 if (sd_sysctl_header
)
7600 unregister_sysctl_table(sd_sysctl_header
);
7601 sd_sysctl_header
= NULL
;
7602 if (sd_ctl_dir
[0].child
)
7603 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
7606 static void register_sched_domain_sysctl(void)
7609 static void unregister_sched_domain_sysctl(void)
7614 static void set_rq_online(struct rq
*rq
)
7617 const struct sched_class
*class;
7619 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
7622 for_each_class(class) {
7623 if (class->rq_online
)
7624 class->rq_online(rq
);
7629 static void set_rq_offline(struct rq
*rq
)
7632 const struct sched_class
*class;
7634 for_each_class(class) {
7635 if (class->rq_offline
)
7636 class->rq_offline(rq
);
7639 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
7645 * migration_call - callback that gets triggered when a CPU is added.
7646 * Here we can start up the necessary migration thread for the new CPU.
7648 static int __cpuinit
7649 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
7651 struct task_struct
*p
;
7652 int cpu
= (long)hcpu
;
7653 unsigned long flags
;
7658 case CPU_UP_PREPARE
:
7659 case CPU_UP_PREPARE_FROZEN
:
7660 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
7663 kthread_bind(p
, cpu
);
7664 /* Must be high prio: stop_machine expects to yield to it. */
7665 rq
= task_rq_lock(p
, &flags
);
7666 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
7667 task_rq_unlock(rq
, &flags
);
7669 cpu_rq(cpu
)->migration_thread
= p
;
7670 rq
->calc_load_update
= calc_load_update
;
7674 case CPU_ONLINE_FROZEN
:
7675 /* Strictly unnecessary, as first user will wake it. */
7676 wake_up_process(cpu_rq(cpu
)->migration_thread
);
7678 /* Update our root-domain */
7680 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7682 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7686 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7689 #ifdef CONFIG_HOTPLUG_CPU
7690 case CPU_UP_CANCELED
:
7691 case CPU_UP_CANCELED_FROZEN
:
7692 if (!cpu_rq(cpu
)->migration_thread
)
7694 /* Unbind it from offline cpu so it can run. Fall thru. */
7695 kthread_bind(cpu_rq(cpu
)->migration_thread
,
7696 cpumask_any(cpu_online_mask
));
7697 kthread_stop(cpu_rq(cpu
)->migration_thread
);
7698 put_task_struct(cpu_rq(cpu
)->migration_thread
);
7699 cpu_rq(cpu
)->migration_thread
= NULL
;
7703 case CPU_DEAD_FROZEN
:
7704 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7705 migrate_live_tasks(cpu
);
7707 kthread_stop(rq
->migration_thread
);
7708 put_task_struct(rq
->migration_thread
);
7709 rq
->migration_thread
= NULL
;
7710 /* Idle task back to normal (off runqueue, low prio) */
7711 raw_spin_lock_irq(&rq
->lock
);
7712 update_rq_clock(rq
);
7713 deactivate_task(rq
, rq
->idle
, 0);
7714 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
7715 rq
->idle
->sched_class
= &idle_sched_class
;
7716 migrate_dead_tasks(cpu
);
7717 raw_spin_unlock_irq(&rq
->lock
);
7719 migrate_nr_uninterruptible(rq
);
7720 BUG_ON(rq
->nr_running
!= 0);
7721 calc_global_load_remove(rq
);
7723 * No need to migrate the tasks: it was best-effort if
7724 * they didn't take sched_hotcpu_mutex. Just wake up
7727 raw_spin_lock_irq(&rq
->lock
);
7728 while (!list_empty(&rq
->migration_queue
)) {
7729 struct migration_req
*req
;
7731 req
= list_entry(rq
->migration_queue
.next
,
7732 struct migration_req
, list
);
7733 list_del_init(&req
->list
);
7734 raw_spin_unlock_irq(&rq
->lock
);
7735 complete(&req
->done
);
7736 raw_spin_lock_irq(&rq
->lock
);
7738 raw_spin_unlock_irq(&rq
->lock
);
7742 case CPU_DYING_FROZEN
:
7743 /* Update our root-domain */
7745 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7747 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
7750 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
7758 * Register at high priority so that task migration (migrate_all_tasks)
7759 * happens before everything else. This has to be lower priority than
7760 * the notifier in the perf_event subsystem, though.
7762 static struct notifier_block __cpuinitdata migration_notifier
= {
7763 .notifier_call
= migration_call
,
7767 static int __init
migration_init(void)
7769 void *cpu
= (void *)(long)smp_processor_id();
7772 /* Start one for the boot CPU: */
7773 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
7774 BUG_ON(err
== NOTIFY_BAD
);
7775 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
7776 register_cpu_notifier(&migration_notifier
);
7780 early_initcall(migration_init
);
7785 #ifdef CONFIG_SCHED_DEBUG
7787 static __read_mostly
int sched_domain_debug_enabled
;
7789 static int __init
sched_domain_debug_setup(char *str
)
7791 sched_domain_debug_enabled
= 1;
7795 early_param("sched_debug", sched_domain_debug_setup
);
7797 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
7798 struct cpumask
*groupmask
)
7800 struct sched_group
*group
= sd
->groups
;
7803 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
7804 cpumask_clear(groupmask
);
7806 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
7808 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
7809 printk("does not load-balance\n");
7811 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
7816 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
7818 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
7819 printk(KERN_ERR
"ERROR: domain->span does not contain "
7822 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
7823 printk(KERN_ERR
"ERROR: domain->groups does not contain"
7827 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
7831 printk(KERN_ERR
"ERROR: group is NULL\n");
7835 if (!group
->cpu_power
) {
7836 printk(KERN_CONT
"\n");
7837 printk(KERN_ERR
"ERROR: domain->cpu_power not "
7842 if (!cpumask_weight(sched_group_cpus(group
))) {
7843 printk(KERN_CONT
"\n");
7844 printk(KERN_ERR
"ERROR: empty group\n");
7848 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
7849 printk(KERN_CONT
"\n");
7850 printk(KERN_ERR
"ERROR: repeated CPUs\n");
7854 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
7856 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
7858 printk(KERN_CONT
" %s", str
);
7859 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
7860 printk(KERN_CONT
" (cpu_power = %d)",
7864 group
= group
->next
;
7865 } while (group
!= sd
->groups
);
7866 printk(KERN_CONT
"\n");
7868 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
7869 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
7872 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
7873 printk(KERN_ERR
"ERROR: parent span is not a superset "
7874 "of domain->span\n");
7878 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
7880 cpumask_var_t groupmask
;
7883 if (!sched_domain_debug_enabled
)
7887 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
7891 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
7893 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
7894 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
7899 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
7906 free_cpumask_var(groupmask
);
7908 #else /* !CONFIG_SCHED_DEBUG */
7909 # define sched_domain_debug(sd, cpu) do { } while (0)
7910 #endif /* CONFIG_SCHED_DEBUG */
7912 static int sd_degenerate(struct sched_domain
*sd
)
7914 if (cpumask_weight(sched_domain_span(sd
)) == 1)
7917 /* Following flags need at least 2 groups */
7918 if (sd
->flags
& (SD_LOAD_BALANCE
|
7919 SD_BALANCE_NEWIDLE
|
7923 SD_SHARE_PKG_RESOURCES
)) {
7924 if (sd
->groups
!= sd
->groups
->next
)
7928 /* Following flags don't use groups */
7929 if (sd
->flags
& (SD_WAKE_AFFINE
))
7936 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
7938 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
7940 if (sd_degenerate(parent
))
7943 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
7946 /* Flags needing groups don't count if only 1 group in parent */
7947 if (parent
->groups
== parent
->groups
->next
) {
7948 pflags
&= ~(SD_LOAD_BALANCE
|
7949 SD_BALANCE_NEWIDLE
|
7953 SD_SHARE_PKG_RESOURCES
);
7954 if (nr_node_ids
== 1)
7955 pflags
&= ~SD_SERIALIZE
;
7957 if (~cflags
& pflags
)
7963 static void free_rootdomain(struct root_domain
*rd
)
7965 synchronize_sched();
7967 cpupri_cleanup(&rd
->cpupri
);
7969 free_cpumask_var(rd
->rto_mask
);
7970 free_cpumask_var(rd
->online
);
7971 free_cpumask_var(rd
->span
);
7975 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7977 struct root_domain
*old_rd
= NULL
;
7978 unsigned long flags
;
7980 raw_spin_lock_irqsave(&rq
->lock
, flags
);
7985 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
7988 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
7991 * If we dont want to free the old_rt yet then
7992 * set old_rd to NULL to skip the freeing later
7995 if (!atomic_dec_and_test(&old_rd
->refcount
))
7999 atomic_inc(&rd
->refcount
);
8002 cpumask_set_cpu(rq
->cpu
, rd
->span
);
8003 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
8006 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8009 free_rootdomain(old_rd
);
8012 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
8014 gfp_t gfp
= GFP_KERNEL
;
8016 memset(rd
, 0, sizeof(*rd
));
8021 if (!alloc_cpumask_var(&rd
->span
, gfp
))
8023 if (!alloc_cpumask_var(&rd
->online
, gfp
))
8025 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
8028 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
8033 free_cpumask_var(rd
->rto_mask
);
8035 free_cpumask_var(rd
->online
);
8037 free_cpumask_var(rd
->span
);
8042 static void init_defrootdomain(void)
8044 init_rootdomain(&def_root_domain
, true);
8046 atomic_set(&def_root_domain
.refcount
, 1);
8049 static struct root_domain
*alloc_rootdomain(void)
8051 struct root_domain
*rd
;
8053 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
8057 if (init_rootdomain(rd
, false) != 0) {
8066 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8067 * hold the hotplug lock.
8070 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
8072 struct rq
*rq
= cpu_rq(cpu
);
8073 struct sched_domain
*tmp
;
8075 /* Remove the sched domains which do not contribute to scheduling. */
8076 for (tmp
= sd
; tmp
; ) {
8077 struct sched_domain
*parent
= tmp
->parent
;
8081 if (sd_parent_degenerate(tmp
, parent
)) {
8082 tmp
->parent
= parent
->parent
;
8084 parent
->parent
->child
= tmp
;
8089 if (sd
&& sd_degenerate(sd
)) {
8095 sched_domain_debug(sd
, cpu
);
8097 rq_attach_root(rq
, rd
);
8098 rcu_assign_pointer(rq
->sd
, sd
);
8101 /* cpus with isolated domains */
8102 static cpumask_var_t cpu_isolated_map
;
8104 /* Setup the mask of cpus configured for isolated domains */
8105 static int __init
isolated_cpu_setup(char *str
)
8107 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
8108 cpulist_parse(str
, cpu_isolated_map
);
8112 __setup("isolcpus=", isolated_cpu_setup
);
8115 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8116 * to a function which identifies what group(along with sched group) a CPU
8117 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8118 * (due to the fact that we keep track of groups covered with a struct cpumask).
8120 * init_sched_build_groups will build a circular linked list of the groups
8121 * covered by the given span, and will set each group's ->cpumask correctly,
8122 * and ->cpu_power to 0.
8125 init_sched_build_groups(const struct cpumask
*span
,
8126 const struct cpumask
*cpu_map
,
8127 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
8128 struct sched_group
**sg
,
8129 struct cpumask
*tmpmask
),
8130 struct cpumask
*covered
, struct cpumask
*tmpmask
)
8132 struct sched_group
*first
= NULL
, *last
= NULL
;
8135 cpumask_clear(covered
);
8137 for_each_cpu(i
, span
) {
8138 struct sched_group
*sg
;
8139 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
8142 if (cpumask_test_cpu(i
, covered
))
8145 cpumask_clear(sched_group_cpus(sg
));
8148 for_each_cpu(j
, span
) {
8149 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
8152 cpumask_set_cpu(j
, covered
);
8153 cpumask_set_cpu(j
, sched_group_cpus(sg
));
8164 #define SD_NODES_PER_DOMAIN 16
8169 * find_next_best_node - find the next node to include in a sched_domain
8170 * @node: node whose sched_domain we're building
8171 * @used_nodes: nodes already in the sched_domain
8173 * Find the next node to include in a given scheduling domain. Simply
8174 * finds the closest node not already in the @used_nodes map.
8176 * Should use nodemask_t.
8178 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
8180 int i
, n
, val
, min_val
, best_node
= 0;
8184 for (i
= 0; i
< nr_node_ids
; i
++) {
8185 /* Start at @node */
8186 n
= (node
+ i
) % nr_node_ids
;
8188 if (!nr_cpus_node(n
))
8191 /* Skip already used nodes */
8192 if (node_isset(n
, *used_nodes
))
8195 /* Simple min distance search */
8196 val
= node_distance(node
, n
);
8198 if (val
< min_val
) {
8204 node_set(best_node
, *used_nodes
);
8209 * sched_domain_node_span - get a cpumask for a node's sched_domain
8210 * @node: node whose cpumask we're constructing
8211 * @span: resulting cpumask
8213 * Given a node, construct a good cpumask for its sched_domain to span. It
8214 * should be one that prevents unnecessary balancing, but also spreads tasks
8217 static void sched_domain_node_span(int node
, struct cpumask
*span
)
8219 nodemask_t used_nodes
;
8222 cpumask_clear(span
);
8223 nodes_clear(used_nodes
);
8225 cpumask_or(span
, span
, cpumask_of_node(node
));
8226 node_set(node
, used_nodes
);
8228 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
8229 int next_node
= find_next_best_node(node
, &used_nodes
);
8231 cpumask_or(span
, span
, cpumask_of_node(next_node
));
8234 #endif /* CONFIG_NUMA */
8236 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
8239 * The cpus mask in sched_group and sched_domain hangs off the end.
8241 * ( See the the comments in include/linux/sched.h:struct sched_group
8242 * and struct sched_domain. )
8244 struct static_sched_group
{
8245 struct sched_group sg
;
8246 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
8249 struct static_sched_domain
{
8250 struct sched_domain sd
;
8251 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
8257 cpumask_var_t domainspan
;
8258 cpumask_var_t covered
;
8259 cpumask_var_t notcovered
;
8261 cpumask_var_t nodemask
;
8262 cpumask_var_t this_sibling_map
;
8263 cpumask_var_t this_core_map
;
8264 cpumask_var_t send_covered
;
8265 cpumask_var_t tmpmask
;
8266 struct sched_group
**sched_group_nodes
;
8267 struct root_domain
*rd
;
8271 sa_sched_groups
= 0,
8276 sa_this_sibling_map
,
8278 sa_sched_group_nodes
,
8288 * SMT sched-domains:
8290 #ifdef CONFIG_SCHED_SMT
8291 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
8292 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
8295 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
8296 struct sched_group
**sg
, struct cpumask
*unused
)
8299 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
8302 #endif /* CONFIG_SCHED_SMT */
8305 * multi-core sched-domains:
8307 #ifdef CONFIG_SCHED_MC
8308 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
8309 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
8310 #endif /* CONFIG_SCHED_MC */
8312 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8314 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8315 struct sched_group
**sg
, struct cpumask
*mask
)
8319 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8320 group
= cpumask_first(mask
);
8322 *sg
= &per_cpu(sched_group_core
, group
).sg
;
8325 #elif defined(CONFIG_SCHED_MC)
8327 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
8328 struct sched_group
**sg
, struct cpumask
*unused
)
8331 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
8336 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
8337 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
8340 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
8341 struct sched_group
**sg
, struct cpumask
*mask
)
8344 #ifdef CONFIG_SCHED_MC
8345 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
8346 group
= cpumask_first(mask
);
8347 #elif defined(CONFIG_SCHED_SMT)
8348 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
8349 group
= cpumask_first(mask
);
8354 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
8360 * The init_sched_build_groups can't handle what we want to do with node
8361 * groups, so roll our own. Now each node has its own list of groups which
8362 * gets dynamically allocated.
8364 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
8365 static struct sched_group
***sched_group_nodes_bycpu
;
8367 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
8368 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
8370 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
8371 struct sched_group
**sg
,
8372 struct cpumask
*nodemask
)
8376 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
8377 group
= cpumask_first(nodemask
);
8380 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
8384 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
8386 struct sched_group
*sg
= group_head
;
8392 for_each_cpu(j
, sched_group_cpus(sg
)) {
8393 struct sched_domain
*sd
;
8395 sd
= &per_cpu(phys_domains
, j
).sd
;
8396 if (j
!= group_first_cpu(sd
->groups
)) {
8398 * Only add "power" once for each
8404 sg
->cpu_power
+= sd
->groups
->cpu_power
;
8407 } while (sg
!= group_head
);
8410 static int build_numa_sched_groups(struct s_data
*d
,
8411 const struct cpumask
*cpu_map
, int num
)
8413 struct sched_domain
*sd
;
8414 struct sched_group
*sg
, *prev
;
8417 cpumask_clear(d
->covered
);
8418 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
8419 if (cpumask_empty(d
->nodemask
)) {
8420 d
->sched_group_nodes
[num
] = NULL
;
8424 sched_domain_node_span(num
, d
->domainspan
);
8425 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
8427 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8430 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
8434 d
->sched_group_nodes
[num
] = sg
;
8436 for_each_cpu(j
, d
->nodemask
) {
8437 sd
= &per_cpu(node_domains
, j
).sd
;
8442 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
8444 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
8447 for (j
= 0; j
< nr_node_ids
; j
++) {
8448 n
= (num
+ j
) % nr_node_ids
;
8449 cpumask_complement(d
->notcovered
, d
->covered
);
8450 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
8451 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
8452 if (cpumask_empty(d
->tmpmask
))
8454 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
8455 if (cpumask_empty(d
->tmpmask
))
8457 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
8461 "Can not alloc domain group for node %d\n", j
);
8465 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
8466 sg
->next
= prev
->next
;
8467 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
8474 #endif /* CONFIG_NUMA */
8477 /* Free memory allocated for various sched_group structures */
8478 static void free_sched_groups(const struct cpumask
*cpu_map
,
8479 struct cpumask
*nodemask
)
8483 for_each_cpu(cpu
, cpu_map
) {
8484 struct sched_group
**sched_group_nodes
8485 = sched_group_nodes_bycpu
[cpu
];
8487 if (!sched_group_nodes
)
8490 for (i
= 0; i
< nr_node_ids
; i
++) {
8491 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
8493 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
8494 if (cpumask_empty(nodemask
))
8504 if (oldsg
!= sched_group_nodes
[i
])
8507 kfree(sched_group_nodes
);
8508 sched_group_nodes_bycpu
[cpu
] = NULL
;
8511 #else /* !CONFIG_NUMA */
8512 static void free_sched_groups(const struct cpumask
*cpu_map
,
8513 struct cpumask
*nodemask
)
8516 #endif /* CONFIG_NUMA */
8519 * Initialize sched groups cpu_power.
8521 * cpu_power indicates the capacity of sched group, which is used while
8522 * distributing the load between different sched groups in a sched domain.
8523 * Typically cpu_power for all the groups in a sched domain will be same unless
8524 * there are asymmetries in the topology. If there are asymmetries, group
8525 * having more cpu_power will pickup more load compared to the group having
8528 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
8530 struct sched_domain
*child
;
8531 struct sched_group
*group
;
8535 WARN_ON(!sd
|| !sd
->groups
);
8537 if (cpu
!= group_first_cpu(sd
->groups
))
8542 sd
->groups
->cpu_power
= 0;
8545 power
= SCHED_LOAD_SCALE
;
8546 weight
= cpumask_weight(sched_domain_span(sd
));
8548 * SMT siblings share the power of a single core.
8549 * Usually multiple threads get a better yield out of
8550 * that one core than a single thread would have,
8551 * reflect that in sd->smt_gain.
8553 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
8554 power
*= sd
->smt_gain
;
8556 power
>>= SCHED_LOAD_SHIFT
;
8558 sd
->groups
->cpu_power
+= power
;
8563 * Add cpu_power of each child group to this groups cpu_power.
8565 group
= child
->groups
;
8567 sd
->groups
->cpu_power
+= group
->cpu_power
;
8568 group
= group
->next
;
8569 } while (group
!= child
->groups
);
8573 * Initializers for schedule domains
8574 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8577 #ifdef CONFIG_SCHED_DEBUG
8578 # define SD_INIT_NAME(sd, type) sd->name = #type
8580 # define SD_INIT_NAME(sd, type) do { } while (0)
8583 #define SD_INIT(sd, type) sd_init_##type(sd)
8585 #define SD_INIT_FUNC(type) \
8586 static noinline void sd_init_##type(struct sched_domain *sd) \
8588 memset(sd, 0, sizeof(*sd)); \
8589 *sd = SD_##type##_INIT; \
8590 sd->level = SD_LV_##type; \
8591 SD_INIT_NAME(sd, type); \
8596 SD_INIT_FUNC(ALLNODES
)
8599 #ifdef CONFIG_SCHED_SMT
8600 SD_INIT_FUNC(SIBLING
)
8602 #ifdef CONFIG_SCHED_MC
8606 static int default_relax_domain_level
= -1;
8608 static int __init
setup_relax_domain_level(char *str
)
8612 val
= simple_strtoul(str
, NULL
, 0);
8613 if (val
< SD_LV_MAX
)
8614 default_relax_domain_level
= val
;
8618 __setup("relax_domain_level=", setup_relax_domain_level
);
8620 static void set_domain_attribute(struct sched_domain
*sd
,
8621 struct sched_domain_attr
*attr
)
8625 if (!attr
|| attr
->relax_domain_level
< 0) {
8626 if (default_relax_domain_level
< 0)
8629 request
= default_relax_domain_level
;
8631 request
= attr
->relax_domain_level
;
8632 if (request
< sd
->level
) {
8633 /* turn off idle balance on this domain */
8634 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8636 /* turn on idle balance on this domain */
8637 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
8641 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
8642 const struct cpumask
*cpu_map
)
8645 case sa_sched_groups
:
8646 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
8647 d
->sched_group_nodes
= NULL
;
8649 free_rootdomain(d
->rd
); /* fall through */
8651 free_cpumask_var(d
->tmpmask
); /* fall through */
8652 case sa_send_covered
:
8653 free_cpumask_var(d
->send_covered
); /* fall through */
8654 case sa_this_core_map
:
8655 free_cpumask_var(d
->this_core_map
); /* fall through */
8656 case sa_this_sibling_map
:
8657 free_cpumask_var(d
->this_sibling_map
); /* fall through */
8659 free_cpumask_var(d
->nodemask
); /* fall through */
8660 case sa_sched_group_nodes
:
8662 kfree(d
->sched_group_nodes
); /* fall through */
8664 free_cpumask_var(d
->notcovered
); /* fall through */
8666 free_cpumask_var(d
->covered
); /* fall through */
8668 free_cpumask_var(d
->domainspan
); /* fall through */
8675 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
8676 const struct cpumask
*cpu_map
)
8679 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
8681 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
8682 return sa_domainspan
;
8683 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
8685 /* Allocate the per-node list of sched groups */
8686 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
8687 sizeof(struct sched_group
*), GFP_KERNEL
);
8688 if (!d
->sched_group_nodes
) {
8689 printk(KERN_WARNING
"Can not alloc sched group node list\n");
8690 return sa_notcovered
;
8692 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
8694 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
8695 return sa_sched_group_nodes
;
8696 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
8698 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
8699 return sa_this_sibling_map
;
8700 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
8701 return sa_this_core_map
;
8702 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
8703 return sa_send_covered
;
8704 d
->rd
= alloc_rootdomain();
8706 printk(KERN_WARNING
"Cannot alloc root domain\n");
8709 return sa_rootdomain
;
8712 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
8713 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
8715 struct sched_domain
*sd
= NULL
;
8717 struct sched_domain
*parent
;
8720 if (cpumask_weight(cpu_map
) >
8721 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
8722 sd
= &per_cpu(allnodes_domains
, i
).sd
;
8723 SD_INIT(sd
, ALLNODES
);
8724 set_domain_attribute(sd
, attr
);
8725 cpumask_copy(sched_domain_span(sd
), cpu_map
);
8726 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8731 sd
= &per_cpu(node_domains
, i
).sd
;
8733 set_domain_attribute(sd
, attr
);
8734 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
8735 sd
->parent
= parent
;
8738 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
8743 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
8744 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8745 struct sched_domain
*parent
, int i
)
8747 struct sched_domain
*sd
;
8748 sd
= &per_cpu(phys_domains
, i
).sd
;
8750 set_domain_attribute(sd
, attr
);
8751 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
8752 sd
->parent
= parent
;
8755 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8759 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
8760 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8761 struct sched_domain
*parent
, int i
)
8763 struct sched_domain
*sd
= parent
;
8764 #ifdef CONFIG_SCHED_MC
8765 sd
= &per_cpu(core_domains
, i
).sd
;
8767 set_domain_attribute(sd
, attr
);
8768 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
8769 sd
->parent
= parent
;
8771 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8776 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
8777 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
8778 struct sched_domain
*parent
, int i
)
8780 struct sched_domain
*sd
= parent
;
8781 #ifdef CONFIG_SCHED_SMT
8782 sd
= &per_cpu(cpu_domains
, i
).sd
;
8783 SD_INIT(sd
, SIBLING
);
8784 set_domain_attribute(sd
, attr
);
8785 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
8786 sd
->parent
= parent
;
8788 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
8793 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
8794 const struct cpumask
*cpu_map
, int cpu
)
8797 #ifdef CONFIG_SCHED_SMT
8798 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
8799 cpumask_and(d
->this_sibling_map
, cpu_map
,
8800 topology_thread_cpumask(cpu
));
8801 if (cpu
== cpumask_first(d
->this_sibling_map
))
8802 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
8804 d
->send_covered
, d
->tmpmask
);
8807 #ifdef CONFIG_SCHED_MC
8808 case SD_LV_MC
: /* set up multi-core groups */
8809 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
8810 if (cpu
== cpumask_first(d
->this_core_map
))
8811 init_sched_build_groups(d
->this_core_map
, cpu_map
,
8813 d
->send_covered
, d
->tmpmask
);
8816 case SD_LV_CPU
: /* set up physical groups */
8817 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
8818 if (!cpumask_empty(d
->nodemask
))
8819 init_sched_build_groups(d
->nodemask
, cpu_map
,
8821 d
->send_covered
, d
->tmpmask
);
8824 case SD_LV_ALLNODES
:
8825 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
8826 d
->send_covered
, d
->tmpmask
);
8835 * Build sched domains for a given set of cpus and attach the sched domains
8836 * to the individual cpus
8838 static int __build_sched_domains(const struct cpumask
*cpu_map
,
8839 struct sched_domain_attr
*attr
)
8841 enum s_alloc alloc_state
= sa_none
;
8843 struct sched_domain
*sd
;
8849 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
8850 if (alloc_state
!= sa_rootdomain
)
8852 alloc_state
= sa_sched_groups
;
8855 * Set up domains for cpus specified by the cpu_map.
8857 for_each_cpu(i
, cpu_map
) {
8858 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
8861 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
8862 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8863 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8864 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
8867 for_each_cpu(i
, cpu_map
) {
8868 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
8869 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
8872 /* Set up physical groups */
8873 for (i
= 0; i
< nr_node_ids
; i
++)
8874 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
8877 /* Set up node groups */
8879 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
8881 for (i
= 0; i
< nr_node_ids
; i
++)
8882 if (build_numa_sched_groups(&d
, cpu_map
, i
))
8886 /* Calculate CPU power for physical packages and nodes */
8887 #ifdef CONFIG_SCHED_SMT
8888 for_each_cpu(i
, cpu_map
) {
8889 sd
= &per_cpu(cpu_domains
, i
).sd
;
8890 init_sched_groups_power(i
, sd
);
8893 #ifdef CONFIG_SCHED_MC
8894 for_each_cpu(i
, cpu_map
) {
8895 sd
= &per_cpu(core_domains
, i
).sd
;
8896 init_sched_groups_power(i
, sd
);
8900 for_each_cpu(i
, cpu_map
) {
8901 sd
= &per_cpu(phys_domains
, i
).sd
;
8902 init_sched_groups_power(i
, sd
);
8906 for (i
= 0; i
< nr_node_ids
; i
++)
8907 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
8909 if (d
.sd_allnodes
) {
8910 struct sched_group
*sg
;
8912 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
8914 init_numa_sched_groups_power(sg
);
8918 /* Attach the domains */
8919 for_each_cpu(i
, cpu_map
) {
8920 #ifdef CONFIG_SCHED_SMT
8921 sd
= &per_cpu(cpu_domains
, i
).sd
;
8922 #elif defined(CONFIG_SCHED_MC)
8923 sd
= &per_cpu(core_domains
, i
).sd
;
8925 sd
= &per_cpu(phys_domains
, i
).sd
;
8927 cpu_attach_domain(sd
, d
.rd
, i
);
8930 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
8931 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
8935 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
8939 static int build_sched_domains(const struct cpumask
*cpu_map
)
8941 return __build_sched_domains(cpu_map
, NULL
);
8944 static cpumask_var_t
*doms_cur
; /* current sched domains */
8945 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
8946 static struct sched_domain_attr
*dattr_cur
;
8947 /* attribues of custom domains in 'doms_cur' */
8950 * Special case: If a kmalloc of a doms_cur partition (array of
8951 * cpumask) fails, then fallback to a single sched domain,
8952 * as determined by the single cpumask fallback_doms.
8954 static cpumask_var_t fallback_doms
;
8957 * arch_update_cpu_topology lets virtualized architectures update the
8958 * cpu core maps. It is supposed to return 1 if the topology changed
8959 * or 0 if it stayed the same.
8961 int __attribute__((weak
)) arch_update_cpu_topology(void)
8966 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
8969 cpumask_var_t
*doms
;
8971 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
8974 for (i
= 0; i
< ndoms
; i
++) {
8975 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
8976 free_sched_domains(doms
, i
);
8983 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
8986 for (i
= 0; i
< ndoms
; i
++)
8987 free_cpumask_var(doms
[i
]);
8992 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8993 * For now this just excludes isolated cpus, but could be used to
8994 * exclude other special cases in the future.
8996 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
9000 arch_update_cpu_topology();
9002 doms_cur
= alloc_sched_domains(ndoms_cur
);
9004 doms_cur
= &fallback_doms
;
9005 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
9007 err
= build_sched_domains(doms_cur
[0]);
9008 register_sched_domain_sysctl();
9013 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
9014 struct cpumask
*tmpmask
)
9016 free_sched_groups(cpu_map
, tmpmask
);
9020 * Detach sched domains from a group of cpus specified in cpu_map
9021 * These cpus will now be attached to the NULL domain
9023 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
9025 /* Save because hotplug lock held. */
9026 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
9029 for_each_cpu(i
, cpu_map
)
9030 cpu_attach_domain(NULL
, &def_root_domain
, i
);
9031 synchronize_sched();
9032 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
9035 /* handle null as "default" */
9036 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
9037 struct sched_domain_attr
*new, int idx_new
)
9039 struct sched_domain_attr tmp
;
9046 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
9047 new ? (new + idx_new
) : &tmp
,
9048 sizeof(struct sched_domain_attr
));
9052 * Partition sched domains as specified by the 'ndoms_new'
9053 * cpumasks in the array doms_new[] of cpumasks. This compares
9054 * doms_new[] to the current sched domain partitioning, doms_cur[].
9055 * It destroys each deleted domain and builds each new domain.
9057 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9058 * The masks don't intersect (don't overlap.) We should setup one
9059 * sched domain for each mask. CPUs not in any of the cpumasks will
9060 * not be load balanced. If the same cpumask appears both in the
9061 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9064 * The passed in 'doms_new' should be allocated using
9065 * alloc_sched_domains. This routine takes ownership of it and will
9066 * free_sched_domains it when done with it. If the caller failed the
9067 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9068 * and partition_sched_domains() will fallback to the single partition
9069 * 'fallback_doms', it also forces the domains to be rebuilt.
9071 * If doms_new == NULL it will be replaced with cpu_online_mask.
9072 * ndoms_new == 0 is a special case for destroying existing domains,
9073 * and it will not create the default domain.
9075 * Call with hotplug lock held
9077 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
9078 struct sched_domain_attr
*dattr_new
)
9083 mutex_lock(&sched_domains_mutex
);
9085 /* always unregister in case we don't destroy any domains */
9086 unregister_sched_domain_sysctl();
9088 /* Let architecture update cpu core mappings. */
9089 new_topology
= arch_update_cpu_topology();
9091 n
= doms_new
? ndoms_new
: 0;
9093 /* Destroy deleted domains */
9094 for (i
= 0; i
< ndoms_cur
; i
++) {
9095 for (j
= 0; j
< n
&& !new_topology
; j
++) {
9096 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
9097 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
9100 /* no match - a current sched domain not in new doms_new[] */
9101 detach_destroy_domains(doms_cur
[i
]);
9106 if (doms_new
== NULL
) {
9108 doms_new
= &fallback_doms
;
9109 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
9110 WARN_ON_ONCE(dattr_new
);
9113 /* Build new domains */
9114 for (i
= 0; i
< ndoms_new
; i
++) {
9115 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
9116 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
9117 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
9120 /* no match - add a new doms_new */
9121 __build_sched_domains(doms_new
[i
],
9122 dattr_new
? dattr_new
+ i
: NULL
);
9127 /* Remember the new sched domains */
9128 if (doms_cur
!= &fallback_doms
)
9129 free_sched_domains(doms_cur
, ndoms_cur
);
9130 kfree(dattr_cur
); /* kfree(NULL) is safe */
9131 doms_cur
= doms_new
;
9132 dattr_cur
= dattr_new
;
9133 ndoms_cur
= ndoms_new
;
9135 register_sched_domain_sysctl();
9137 mutex_unlock(&sched_domains_mutex
);
9140 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9141 static void arch_reinit_sched_domains(void)
9145 /* Destroy domains first to force the rebuild */
9146 partition_sched_domains(0, NULL
, NULL
);
9148 rebuild_sched_domains();
9152 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
9154 unsigned int level
= 0;
9156 if (sscanf(buf
, "%u", &level
) != 1)
9160 * level is always be positive so don't check for
9161 * level < POWERSAVINGS_BALANCE_NONE which is 0
9162 * What happens on 0 or 1 byte write,
9163 * need to check for count as well?
9166 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
9170 sched_smt_power_savings
= level
;
9172 sched_mc_power_savings
= level
;
9174 arch_reinit_sched_domains();
9179 #ifdef CONFIG_SCHED_MC
9180 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
9183 return sprintf(page
, "%u\n", sched_mc_power_savings
);
9185 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
9186 const char *buf
, size_t count
)
9188 return sched_power_savings_store(buf
, count
, 0);
9190 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
9191 sched_mc_power_savings_show
,
9192 sched_mc_power_savings_store
);
9195 #ifdef CONFIG_SCHED_SMT
9196 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
9199 return sprintf(page
, "%u\n", sched_smt_power_savings
);
9201 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
9202 const char *buf
, size_t count
)
9204 return sched_power_savings_store(buf
, count
, 1);
9206 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
9207 sched_smt_power_savings_show
,
9208 sched_smt_power_savings_store
);
9211 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
9215 #ifdef CONFIG_SCHED_SMT
9217 err
= sysfs_create_file(&cls
->kset
.kobj
,
9218 &attr_sched_smt_power_savings
.attr
);
9220 #ifdef CONFIG_SCHED_MC
9221 if (!err
&& mc_capable())
9222 err
= sysfs_create_file(&cls
->kset
.kobj
,
9223 &attr_sched_mc_power_savings
.attr
);
9227 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9229 #ifndef CONFIG_CPUSETS
9231 * Add online and remove offline CPUs from the scheduler domains.
9232 * When cpusets are enabled they take over this function.
9234 static int update_sched_domains(struct notifier_block
*nfb
,
9235 unsigned long action
, void *hcpu
)
9239 case CPU_ONLINE_FROZEN
:
9240 case CPU_DOWN_PREPARE
:
9241 case CPU_DOWN_PREPARE_FROZEN
:
9242 case CPU_DOWN_FAILED
:
9243 case CPU_DOWN_FAILED_FROZEN
:
9244 partition_sched_domains(1, NULL
, NULL
);
9253 static int update_runtime(struct notifier_block
*nfb
,
9254 unsigned long action
, void *hcpu
)
9256 int cpu
= (int)(long)hcpu
;
9259 case CPU_DOWN_PREPARE
:
9260 case CPU_DOWN_PREPARE_FROZEN
:
9261 disable_runtime(cpu_rq(cpu
));
9264 case CPU_DOWN_FAILED
:
9265 case CPU_DOWN_FAILED_FROZEN
:
9267 case CPU_ONLINE_FROZEN
:
9268 enable_runtime(cpu_rq(cpu
));
9276 void __init
sched_init_smp(void)
9278 cpumask_var_t non_isolated_cpus
;
9280 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
9281 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
9283 #if defined(CONFIG_NUMA)
9284 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
9286 BUG_ON(sched_group_nodes_bycpu
== NULL
);
9289 mutex_lock(&sched_domains_mutex
);
9290 arch_init_sched_domains(cpu_active_mask
);
9291 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
9292 if (cpumask_empty(non_isolated_cpus
))
9293 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
9294 mutex_unlock(&sched_domains_mutex
);
9297 #ifndef CONFIG_CPUSETS
9298 /* XXX: Theoretical race here - CPU may be hotplugged now */
9299 hotcpu_notifier(update_sched_domains
, 0);
9302 /* RT runtime code needs to handle some hotplug events */
9303 hotcpu_notifier(update_runtime
, 0);
9307 /* Move init over to a non-isolated CPU */
9308 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
9310 sched_init_granularity();
9311 free_cpumask_var(non_isolated_cpus
);
9313 init_sched_rt_class();
9316 void __init
sched_init_smp(void)
9318 sched_init_granularity();
9320 #endif /* CONFIG_SMP */
9322 const_debug
unsigned int sysctl_timer_migration
= 1;
9324 int in_sched_functions(unsigned long addr
)
9326 return in_lock_functions(addr
) ||
9327 (addr
>= (unsigned long)__sched_text_start
9328 && addr
< (unsigned long)__sched_text_end
);
9331 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
9333 cfs_rq
->tasks_timeline
= RB_ROOT
;
9334 INIT_LIST_HEAD(&cfs_rq
->tasks
);
9335 #ifdef CONFIG_FAIR_GROUP_SCHED
9338 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
9341 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
9343 struct rt_prio_array
*array
;
9346 array
= &rt_rq
->active
;
9347 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
9348 INIT_LIST_HEAD(array
->queue
+ i
);
9349 __clear_bit(i
, array
->bitmap
);
9351 /* delimiter for bitsearch: */
9352 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
9354 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9355 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
9357 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
9361 rt_rq
->rt_nr_migratory
= 0;
9362 rt_rq
->overloaded
= 0;
9363 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
9367 rt_rq
->rt_throttled
= 0;
9368 rt_rq
->rt_runtime
= 0;
9369 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
9371 #ifdef CONFIG_RT_GROUP_SCHED
9372 rt_rq
->rt_nr_boosted
= 0;
9377 #ifdef CONFIG_FAIR_GROUP_SCHED
9378 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
9379 struct sched_entity
*se
, int cpu
, int add
,
9380 struct sched_entity
*parent
)
9382 struct rq
*rq
= cpu_rq(cpu
);
9383 tg
->cfs_rq
[cpu
] = cfs_rq
;
9384 init_cfs_rq(cfs_rq
, rq
);
9387 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
9390 /* se could be NULL for init_task_group */
9395 se
->cfs_rq
= &rq
->cfs
;
9397 se
->cfs_rq
= parent
->my_q
;
9400 se
->load
.weight
= tg
->shares
;
9401 se
->load
.inv_weight
= 0;
9402 se
->parent
= parent
;
9406 #ifdef CONFIG_RT_GROUP_SCHED
9407 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
9408 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
9409 struct sched_rt_entity
*parent
)
9411 struct rq
*rq
= cpu_rq(cpu
);
9413 tg
->rt_rq
[cpu
] = rt_rq
;
9414 init_rt_rq(rt_rq
, rq
);
9416 rt_rq
->rt_se
= rt_se
;
9417 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9419 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
9421 tg
->rt_se
[cpu
] = rt_se
;
9426 rt_se
->rt_rq
= &rq
->rt
;
9428 rt_se
->rt_rq
= parent
->my_q
;
9430 rt_se
->my_q
= rt_rq
;
9431 rt_se
->parent
= parent
;
9432 INIT_LIST_HEAD(&rt_se
->run_list
);
9436 void __init
sched_init(void)
9439 unsigned long alloc_size
= 0, ptr
;
9441 #ifdef CONFIG_FAIR_GROUP_SCHED
9442 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9444 #ifdef CONFIG_RT_GROUP_SCHED
9445 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
9447 #ifdef CONFIG_USER_SCHED
9450 #ifdef CONFIG_CPUMASK_OFFSTACK
9451 alloc_size
+= num_possible_cpus() * cpumask_size();
9454 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
9456 #ifdef CONFIG_FAIR_GROUP_SCHED
9457 init_task_group
.se
= (struct sched_entity
**)ptr
;
9458 ptr
+= nr_cpu_ids
* sizeof(void **);
9460 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9461 ptr
+= nr_cpu_ids
* sizeof(void **);
9463 #ifdef CONFIG_USER_SCHED
9464 root_task_group
.se
= (struct sched_entity
**)ptr
;
9465 ptr
+= nr_cpu_ids
* sizeof(void **);
9467 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
9468 ptr
+= nr_cpu_ids
* sizeof(void **);
9469 #endif /* CONFIG_USER_SCHED */
9470 #endif /* CONFIG_FAIR_GROUP_SCHED */
9471 #ifdef CONFIG_RT_GROUP_SCHED
9472 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9473 ptr
+= nr_cpu_ids
* sizeof(void **);
9475 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9476 ptr
+= nr_cpu_ids
* sizeof(void **);
9478 #ifdef CONFIG_USER_SCHED
9479 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
9480 ptr
+= nr_cpu_ids
* sizeof(void **);
9482 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
9483 ptr
+= nr_cpu_ids
* sizeof(void **);
9484 #endif /* CONFIG_USER_SCHED */
9485 #endif /* CONFIG_RT_GROUP_SCHED */
9486 #ifdef CONFIG_CPUMASK_OFFSTACK
9487 for_each_possible_cpu(i
) {
9488 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
9489 ptr
+= cpumask_size();
9491 #endif /* CONFIG_CPUMASK_OFFSTACK */
9495 init_defrootdomain();
9498 init_rt_bandwidth(&def_rt_bandwidth
,
9499 global_rt_period(), global_rt_runtime());
9501 #ifdef CONFIG_RT_GROUP_SCHED
9502 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
9503 global_rt_period(), global_rt_runtime());
9504 #ifdef CONFIG_USER_SCHED
9505 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
9506 global_rt_period(), RUNTIME_INF
);
9507 #endif /* CONFIG_USER_SCHED */
9508 #endif /* CONFIG_RT_GROUP_SCHED */
9510 #ifdef CONFIG_GROUP_SCHED
9511 list_add(&init_task_group
.list
, &task_groups
);
9512 INIT_LIST_HEAD(&init_task_group
.children
);
9514 #ifdef CONFIG_USER_SCHED
9515 INIT_LIST_HEAD(&root_task_group
.children
);
9516 init_task_group
.parent
= &root_task_group
;
9517 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
9518 #endif /* CONFIG_USER_SCHED */
9519 #endif /* CONFIG_GROUP_SCHED */
9521 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9522 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
9523 __alignof__(unsigned long));
9525 for_each_possible_cpu(i
) {
9529 raw_spin_lock_init(&rq
->lock
);
9531 rq
->calc_load_active
= 0;
9532 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
9533 init_cfs_rq(&rq
->cfs
, rq
);
9534 init_rt_rq(&rq
->rt
, rq
);
9535 #ifdef CONFIG_FAIR_GROUP_SCHED
9536 init_task_group
.shares
= init_task_group_load
;
9537 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
9538 #ifdef CONFIG_CGROUP_SCHED
9540 * How much cpu bandwidth does init_task_group get?
9542 * In case of task-groups formed thr' the cgroup filesystem, it
9543 * gets 100% of the cpu resources in the system. This overall
9544 * system cpu resource is divided among the tasks of
9545 * init_task_group and its child task-groups in a fair manner,
9546 * based on each entity's (task or task-group's) weight
9547 * (se->load.weight).
9549 * In other words, if init_task_group has 10 tasks of weight
9550 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9551 * then A0's share of the cpu resource is:
9553 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9555 * We achieve this by letting init_task_group's tasks sit
9556 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9558 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
9559 #elif defined CONFIG_USER_SCHED
9560 root_task_group
.shares
= NICE_0_LOAD
;
9561 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
9563 * In case of task-groups formed thr' the user id of tasks,
9564 * init_task_group represents tasks belonging to root user.
9565 * Hence it forms a sibling of all subsequent groups formed.
9566 * In this case, init_task_group gets only a fraction of overall
9567 * system cpu resource, based on the weight assigned to root
9568 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9569 * by letting tasks of init_task_group sit in a separate cfs_rq
9570 * (init_tg_cfs_rq) and having one entity represent this group of
9571 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9573 init_tg_cfs_entry(&init_task_group
,
9574 &per_cpu(init_tg_cfs_rq
, i
),
9575 &per_cpu(init_sched_entity
, i
), i
, 1,
9576 root_task_group
.se
[i
]);
9579 #endif /* CONFIG_FAIR_GROUP_SCHED */
9581 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
9582 #ifdef CONFIG_RT_GROUP_SCHED
9583 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
9584 #ifdef CONFIG_CGROUP_SCHED
9585 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
9586 #elif defined CONFIG_USER_SCHED
9587 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
9588 init_tg_rt_entry(&init_task_group
,
9589 &per_cpu(init_rt_rq_var
, i
),
9590 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
9591 root_task_group
.rt_se
[i
]);
9595 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
9596 rq
->cpu_load
[j
] = 0;
9600 rq
->post_schedule
= 0;
9601 rq
->active_balance
= 0;
9602 rq
->next_balance
= jiffies
;
9606 rq
->migration_thread
= NULL
;
9608 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
9609 INIT_LIST_HEAD(&rq
->migration_queue
);
9610 rq_attach_root(rq
, &def_root_domain
);
9613 atomic_set(&rq
->nr_iowait
, 0);
9616 set_load_weight(&init_task
);
9618 #ifdef CONFIG_PREEMPT_NOTIFIERS
9619 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
9623 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
9626 #ifdef CONFIG_RT_MUTEXES
9627 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
9631 * The boot idle thread does lazy MMU switching as well:
9633 atomic_inc(&init_mm
.mm_count
);
9634 enter_lazy_tlb(&init_mm
, current
);
9637 * Make us the idle thread. Technically, schedule() should not be
9638 * called from this thread, however somewhere below it might be,
9639 * but because we are the idle thread, we just pick up running again
9640 * when this runqueue becomes "idle".
9642 init_idle(current
, smp_processor_id());
9644 calc_load_update
= jiffies
+ LOAD_FREQ
;
9647 * During early bootup we pretend to be a normal task:
9649 current
->sched_class
= &fair_sched_class
;
9651 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9652 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
9655 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
9656 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
9658 /* May be allocated at isolcpus cmdline parse time */
9659 if (cpu_isolated_map
== NULL
)
9660 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
9665 scheduler_running
= 1;
9668 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9669 static inline int preempt_count_equals(int preempt_offset
)
9671 int nested
= preempt_count() & ~PREEMPT_ACTIVE
;
9673 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
9676 void __might_sleep(char *file
, int line
, int preempt_offset
)
9679 static unsigned long prev_jiffy
; /* ratelimiting */
9681 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
9682 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
9684 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
9686 prev_jiffy
= jiffies
;
9689 "BUG: sleeping function called from invalid context at %s:%d\n",
9692 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9693 in_atomic(), irqs_disabled(),
9694 current
->pid
, current
->comm
);
9696 debug_show_held_locks(current
);
9697 if (irqs_disabled())
9698 print_irqtrace_events(current
);
9702 EXPORT_SYMBOL(__might_sleep
);
9705 #ifdef CONFIG_MAGIC_SYSRQ
9706 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
9710 update_rq_clock(rq
);
9711 on_rq
= p
->se
.on_rq
;
9713 deactivate_task(rq
, p
, 0);
9714 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
9716 activate_task(rq
, p
, 0);
9717 resched_task(rq
->curr
);
9721 void normalize_rt_tasks(void)
9723 struct task_struct
*g
, *p
;
9724 unsigned long flags
;
9727 read_lock_irqsave(&tasklist_lock
, flags
);
9728 do_each_thread(g
, p
) {
9730 * Only normalize user tasks:
9735 p
->se
.exec_start
= 0;
9736 #ifdef CONFIG_SCHEDSTATS
9737 p
->se
.wait_start
= 0;
9738 p
->se
.sleep_start
= 0;
9739 p
->se
.block_start
= 0;
9744 * Renice negative nice level userspace
9747 if (TASK_NICE(p
) < 0 && p
->mm
)
9748 set_user_nice(p
, 0);
9752 raw_spin_lock(&p
->pi_lock
);
9753 rq
= __task_rq_lock(p
);
9755 normalize_task(rq
, p
);
9757 __task_rq_unlock(rq
);
9758 raw_spin_unlock(&p
->pi_lock
);
9759 } while_each_thread(g
, p
);
9761 read_unlock_irqrestore(&tasklist_lock
, flags
);
9764 #endif /* CONFIG_MAGIC_SYSRQ */
9768 * These functions are only useful for the IA64 MCA handling.
9770 * They can only be called when the whole system has been
9771 * stopped - every CPU needs to be quiescent, and no scheduling
9772 * activity can take place. Using them for anything else would
9773 * be a serious bug, and as a result, they aren't even visible
9774 * under any other configuration.
9778 * curr_task - return the current task for a given cpu.
9779 * @cpu: the processor in question.
9781 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9783 struct task_struct
*curr_task(int cpu
)
9785 return cpu_curr(cpu
);
9789 * set_curr_task - set the current task for a given cpu.
9790 * @cpu: the processor in question.
9791 * @p: the task pointer to set.
9793 * Description: This function must only be used when non-maskable interrupts
9794 * are serviced on a separate stack. It allows the architecture to switch the
9795 * notion of the current task on a cpu in a non-blocking manner. This function
9796 * must be called with all CPU's synchronized, and interrupts disabled, the
9797 * and caller must save the original value of the current task (see
9798 * curr_task() above) and restore that value before reenabling interrupts and
9799 * re-starting the system.
9801 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9803 void set_curr_task(int cpu
, struct task_struct
*p
)
9810 #ifdef CONFIG_FAIR_GROUP_SCHED
9811 static void free_fair_sched_group(struct task_group
*tg
)
9815 for_each_possible_cpu(i
) {
9817 kfree(tg
->cfs_rq
[i
]);
9827 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9829 struct cfs_rq
*cfs_rq
;
9830 struct sched_entity
*se
;
9834 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9837 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
9841 tg
->shares
= NICE_0_LOAD
;
9843 for_each_possible_cpu(i
) {
9846 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
9847 GFP_KERNEL
, cpu_to_node(i
));
9851 se
= kzalloc_node(sizeof(struct sched_entity
),
9852 GFP_KERNEL
, cpu_to_node(i
));
9856 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
9867 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9869 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
9870 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
9873 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9875 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
9877 #else /* !CONFG_FAIR_GROUP_SCHED */
9878 static inline void free_fair_sched_group(struct task_group
*tg
)
9883 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9888 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
9892 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
9895 #endif /* CONFIG_FAIR_GROUP_SCHED */
9897 #ifdef CONFIG_RT_GROUP_SCHED
9898 static void free_rt_sched_group(struct task_group
*tg
)
9902 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
9904 for_each_possible_cpu(i
) {
9906 kfree(tg
->rt_rq
[i
]);
9908 kfree(tg
->rt_se
[i
]);
9916 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9918 struct rt_rq
*rt_rq
;
9919 struct sched_rt_entity
*rt_se
;
9923 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
9926 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
9930 init_rt_bandwidth(&tg
->rt_bandwidth
,
9931 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
9933 for_each_possible_cpu(i
) {
9936 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
9937 GFP_KERNEL
, cpu_to_node(i
));
9941 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
9942 GFP_KERNEL
, cpu_to_node(i
));
9946 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
9957 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9959 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
9960 &cpu_rq(cpu
)->leaf_rt_rq_list
);
9963 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9965 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
9967 #else /* !CONFIG_RT_GROUP_SCHED */
9968 static inline void free_rt_sched_group(struct task_group
*tg
)
9973 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
9978 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
9982 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
9985 #endif /* CONFIG_RT_GROUP_SCHED */
9987 #ifdef CONFIG_GROUP_SCHED
9988 static void free_sched_group(struct task_group
*tg
)
9990 free_fair_sched_group(tg
);
9991 free_rt_sched_group(tg
);
9995 /* allocate runqueue etc for a new task group */
9996 struct task_group
*sched_create_group(struct task_group
*parent
)
9998 struct task_group
*tg
;
9999 unsigned long flags
;
10002 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
10004 return ERR_PTR(-ENOMEM
);
10006 if (!alloc_fair_sched_group(tg
, parent
))
10009 if (!alloc_rt_sched_group(tg
, parent
))
10012 spin_lock_irqsave(&task_group_lock
, flags
);
10013 for_each_possible_cpu(i
) {
10014 register_fair_sched_group(tg
, i
);
10015 register_rt_sched_group(tg
, i
);
10017 list_add_rcu(&tg
->list
, &task_groups
);
10019 WARN_ON(!parent
); /* root should already exist */
10021 tg
->parent
= parent
;
10022 INIT_LIST_HEAD(&tg
->children
);
10023 list_add_rcu(&tg
->siblings
, &parent
->children
);
10024 spin_unlock_irqrestore(&task_group_lock
, flags
);
10029 free_sched_group(tg
);
10030 return ERR_PTR(-ENOMEM
);
10033 /* rcu callback to free various structures associated with a task group */
10034 static void free_sched_group_rcu(struct rcu_head
*rhp
)
10036 /* now it should be safe to free those cfs_rqs */
10037 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
10040 /* Destroy runqueue etc associated with a task group */
10041 void sched_destroy_group(struct task_group
*tg
)
10043 unsigned long flags
;
10046 spin_lock_irqsave(&task_group_lock
, flags
);
10047 for_each_possible_cpu(i
) {
10048 unregister_fair_sched_group(tg
, i
);
10049 unregister_rt_sched_group(tg
, i
);
10051 list_del_rcu(&tg
->list
);
10052 list_del_rcu(&tg
->siblings
);
10053 spin_unlock_irqrestore(&task_group_lock
, flags
);
10055 /* wait for possible concurrent references to cfs_rqs complete */
10056 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
10059 /* change task's runqueue when it moves between groups.
10060 * The caller of this function should have put the task in its new group
10061 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10062 * reflect its new group.
10064 void sched_move_task(struct task_struct
*tsk
)
10066 int on_rq
, running
;
10067 unsigned long flags
;
10070 rq
= task_rq_lock(tsk
, &flags
);
10072 update_rq_clock(rq
);
10074 running
= task_current(rq
, tsk
);
10075 on_rq
= tsk
->se
.on_rq
;
10078 dequeue_task(rq
, tsk
, 0);
10079 if (unlikely(running
))
10080 tsk
->sched_class
->put_prev_task(rq
, tsk
);
10082 set_task_rq(tsk
, task_cpu(tsk
));
10084 #ifdef CONFIG_FAIR_GROUP_SCHED
10085 if (tsk
->sched_class
->moved_group
)
10086 tsk
->sched_class
->moved_group(tsk
);
10089 if (unlikely(running
))
10090 tsk
->sched_class
->set_curr_task(rq
);
10092 enqueue_task(rq
, tsk
, 0);
10094 task_rq_unlock(rq
, &flags
);
10096 #endif /* CONFIG_GROUP_SCHED */
10098 #ifdef CONFIG_FAIR_GROUP_SCHED
10099 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10101 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10106 dequeue_entity(cfs_rq
, se
, 0);
10108 se
->load
.weight
= shares
;
10109 se
->load
.inv_weight
= 0;
10112 enqueue_entity(cfs_rq
, se
, 0);
10115 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
10117 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
10118 struct rq
*rq
= cfs_rq
->rq
;
10119 unsigned long flags
;
10121 raw_spin_lock_irqsave(&rq
->lock
, flags
);
10122 __set_se_shares(se
, shares
);
10123 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
10126 static DEFINE_MUTEX(shares_mutex
);
10128 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
10131 unsigned long flags
;
10134 * We can't change the weight of the root cgroup.
10139 if (shares
< MIN_SHARES
)
10140 shares
= MIN_SHARES
;
10141 else if (shares
> MAX_SHARES
)
10142 shares
= MAX_SHARES
;
10144 mutex_lock(&shares_mutex
);
10145 if (tg
->shares
== shares
)
10148 spin_lock_irqsave(&task_group_lock
, flags
);
10149 for_each_possible_cpu(i
)
10150 unregister_fair_sched_group(tg
, i
);
10151 list_del_rcu(&tg
->siblings
);
10152 spin_unlock_irqrestore(&task_group_lock
, flags
);
10154 /* wait for any ongoing reference to this group to finish */
10155 synchronize_sched();
10158 * Now we are free to modify the group's share on each cpu
10159 * w/o tripping rebalance_share or load_balance_fair.
10161 tg
->shares
= shares
;
10162 for_each_possible_cpu(i
) {
10164 * force a rebalance
10166 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
10167 set_se_shares(tg
->se
[i
], shares
);
10171 * Enable load balance activity on this group, by inserting it back on
10172 * each cpu's rq->leaf_cfs_rq_list.
10174 spin_lock_irqsave(&task_group_lock
, flags
);
10175 for_each_possible_cpu(i
)
10176 register_fair_sched_group(tg
, i
);
10177 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
10178 spin_unlock_irqrestore(&task_group_lock
, flags
);
10180 mutex_unlock(&shares_mutex
);
10184 unsigned long sched_group_shares(struct task_group
*tg
)
10190 #ifdef CONFIG_RT_GROUP_SCHED
10192 * Ensure that the real time constraints are schedulable.
10194 static DEFINE_MUTEX(rt_constraints_mutex
);
10196 static unsigned long to_ratio(u64 period
, u64 runtime
)
10198 if (runtime
== RUNTIME_INF
)
10201 return div64_u64(runtime
<< 20, period
);
10204 /* Must be called with tasklist_lock held */
10205 static inline int tg_has_rt_tasks(struct task_group
*tg
)
10207 struct task_struct
*g
, *p
;
10209 do_each_thread(g
, p
) {
10210 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
10212 } while_each_thread(g
, p
);
10217 struct rt_schedulable_data
{
10218 struct task_group
*tg
;
10223 static int tg_schedulable(struct task_group
*tg
, void *data
)
10225 struct rt_schedulable_data
*d
= data
;
10226 struct task_group
*child
;
10227 unsigned long total
, sum
= 0;
10228 u64 period
, runtime
;
10230 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10231 runtime
= tg
->rt_bandwidth
.rt_runtime
;
10234 period
= d
->rt_period
;
10235 runtime
= d
->rt_runtime
;
10238 #ifdef CONFIG_USER_SCHED
10239 if (tg
== &root_task_group
) {
10240 period
= global_rt_period();
10241 runtime
= global_rt_runtime();
10246 * Cannot have more runtime than the period.
10248 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10252 * Ensure we don't starve existing RT tasks.
10254 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
10257 total
= to_ratio(period
, runtime
);
10260 * Nobody can have more than the global setting allows.
10262 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
10266 * The sum of our children's runtime should not exceed our own.
10268 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
10269 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
10270 runtime
= child
->rt_bandwidth
.rt_runtime
;
10272 if (child
== d
->tg
) {
10273 period
= d
->rt_period
;
10274 runtime
= d
->rt_runtime
;
10277 sum
+= to_ratio(period
, runtime
);
10286 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
10288 struct rt_schedulable_data data
= {
10290 .rt_period
= period
,
10291 .rt_runtime
= runtime
,
10294 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
10297 static int tg_set_bandwidth(struct task_group
*tg
,
10298 u64 rt_period
, u64 rt_runtime
)
10302 mutex_lock(&rt_constraints_mutex
);
10303 read_lock(&tasklist_lock
);
10304 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
10308 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10309 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
10310 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
10312 for_each_possible_cpu(i
) {
10313 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
10315 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
10316 rt_rq
->rt_runtime
= rt_runtime
;
10317 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
10319 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
10321 read_unlock(&tasklist_lock
);
10322 mutex_unlock(&rt_constraints_mutex
);
10327 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
10329 u64 rt_runtime
, rt_period
;
10331 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10332 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
10333 if (rt_runtime_us
< 0)
10334 rt_runtime
= RUNTIME_INF
;
10336 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10339 long sched_group_rt_runtime(struct task_group
*tg
)
10343 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
10346 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
10347 do_div(rt_runtime_us
, NSEC_PER_USEC
);
10348 return rt_runtime_us
;
10351 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
10353 u64 rt_runtime
, rt_period
;
10355 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
10356 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
10358 if (rt_period
== 0)
10361 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
10364 long sched_group_rt_period(struct task_group
*tg
)
10368 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
10369 do_div(rt_period_us
, NSEC_PER_USEC
);
10370 return rt_period_us
;
10373 static int sched_rt_global_constraints(void)
10375 u64 runtime
, period
;
10378 if (sysctl_sched_rt_period
<= 0)
10381 runtime
= global_rt_runtime();
10382 period
= global_rt_period();
10385 * Sanity check on the sysctl variables.
10387 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
10390 mutex_lock(&rt_constraints_mutex
);
10391 read_lock(&tasklist_lock
);
10392 ret
= __rt_schedulable(NULL
, 0, 0);
10393 read_unlock(&tasklist_lock
);
10394 mutex_unlock(&rt_constraints_mutex
);
10399 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
10401 /* Don't accept realtime tasks when there is no way for them to run */
10402 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
10408 #else /* !CONFIG_RT_GROUP_SCHED */
10409 static int sched_rt_global_constraints(void)
10411 unsigned long flags
;
10414 if (sysctl_sched_rt_period
<= 0)
10418 * There's always some RT tasks in the root group
10419 * -- migration, kstopmachine etc..
10421 if (sysctl_sched_rt_runtime
== 0)
10424 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10425 for_each_possible_cpu(i
) {
10426 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
10428 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
10429 rt_rq
->rt_runtime
= global_rt_runtime();
10430 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
10432 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
10436 #endif /* CONFIG_RT_GROUP_SCHED */
10438 int sched_rt_handler(struct ctl_table
*table
, int write
,
10439 void __user
*buffer
, size_t *lenp
,
10443 int old_period
, old_runtime
;
10444 static DEFINE_MUTEX(mutex
);
10446 mutex_lock(&mutex
);
10447 old_period
= sysctl_sched_rt_period
;
10448 old_runtime
= sysctl_sched_rt_runtime
;
10450 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
10452 if (!ret
&& write
) {
10453 ret
= sched_rt_global_constraints();
10455 sysctl_sched_rt_period
= old_period
;
10456 sysctl_sched_rt_runtime
= old_runtime
;
10458 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
10459 def_rt_bandwidth
.rt_period
=
10460 ns_to_ktime(global_rt_period());
10463 mutex_unlock(&mutex
);
10468 #ifdef CONFIG_CGROUP_SCHED
10470 /* return corresponding task_group object of a cgroup */
10471 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
10473 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
10474 struct task_group
, css
);
10477 static struct cgroup_subsys_state
*
10478 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10480 struct task_group
*tg
, *parent
;
10482 if (!cgrp
->parent
) {
10483 /* This is early initialization for the top cgroup */
10484 return &init_task_group
.css
;
10487 parent
= cgroup_tg(cgrp
->parent
);
10488 tg
= sched_create_group(parent
);
10490 return ERR_PTR(-ENOMEM
);
10496 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10498 struct task_group
*tg
= cgroup_tg(cgrp
);
10500 sched_destroy_group(tg
);
10504 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
10506 #ifdef CONFIG_RT_GROUP_SCHED
10507 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
10510 /* We don't support RT-tasks being in separate groups */
10511 if (tsk
->sched_class
!= &fair_sched_class
)
10518 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10519 struct task_struct
*tsk
, bool threadgroup
)
10521 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
10525 struct task_struct
*c
;
10527 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10528 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
10540 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
10541 struct cgroup
*old_cont
, struct task_struct
*tsk
,
10544 sched_move_task(tsk
);
10546 struct task_struct
*c
;
10548 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
10549 sched_move_task(c
);
10555 #ifdef CONFIG_FAIR_GROUP_SCHED
10556 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
10559 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
10562 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
10564 struct task_group
*tg
= cgroup_tg(cgrp
);
10566 return (u64
) tg
->shares
;
10568 #endif /* CONFIG_FAIR_GROUP_SCHED */
10570 #ifdef CONFIG_RT_GROUP_SCHED
10571 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
10574 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
10577 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10579 return sched_group_rt_runtime(cgroup_tg(cgrp
));
10582 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
10585 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
10588 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
10590 return sched_group_rt_period(cgroup_tg(cgrp
));
10592 #endif /* CONFIG_RT_GROUP_SCHED */
10594 static struct cftype cpu_files
[] = {
10595 #ifdef CONFIG_FAIR_GROUP_SCHED
10598 .read_u64
= cpu_shares_read_u64
,
10599 .write_u64
= cpu_shares_write_u64
,
10602 #ifdef CONFIG_RT_GROUP_SCHED
10604 .name
= "rt_runtime_us",
10605 .read_s64
= cpu_rt_runtime_read
,
10606 .write_s64
= cpu_rt_runtime_write
,
10609 .name
= "rt_period_us",
10610 .read_u64
= cpu_rt_period_read_uint
,
10611 .write_u64
= cpu_rt_period_write_uint
,
10616 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
10618 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
10621 struct cgroup_subsys cpu_cgroup_subsys
= {
10623 .create
= cpu_cgroup_create
,
10624 .destroy
= cpu_cgroup_destroy
,
10625 .can_attach
= cpu_cgroup_can_attach
,
10626 .attach
= cpu_cgroup_attach
,
10627 .populate
= cpu_cgroup_populate
,
10628 .subsys_id
= cpu_cgroup_subsys_id
,
10632 #endif /* CONFIG_CGROUP_SCHED */
10634 #ifdef CONFIG_CGROUP_CPUACCT
10637 * CPU accounting code for task groups.
10639 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10640 * (balbir@in.ibm.com).
10643 /* track cpu usage of a group of tasks and its child groups */
10645 struct cgroup_subsys_state css
;
10646 /* cpuusage holds pointer to a u64-type object on every cpu */
10648 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
10649 struct cpuacct
*parent
;
10652 struct cgroup_subsys cpuacct_subsys
;
10654 /* return cpu accounting group corresponding to this container */
10655 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
10657 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
10658 struct cpuacct
, css
);
10661 /* return cpu accounting group to which this task belongs */
10662 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
10664 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
10665 struct cpuacct
, css
);
10668 /* create a new cpu accounting group */
10669 static struct cgroup_subsys_state
*cpuacct_create(
10670 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10672 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
10678 ca
->cpuusage
= alloc_percpu(u64
);
10682 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10683 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
10684 goto out_free_counters
;
10687 ca
->parent
= cgroup_ca(cgrp
->parent
);
10693 percpu_counter_destroy(&ca
->cpustat
[i
]);
10694 free_percpu(ca
->cpuusage
);
10698 return ERR_PTR(-ENOMEM
);
10701 /* destroy an existing cpu accounting group */
10703 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10705 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10708 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
10709 percpu_counter_destroy(&ca
->cpustat
[i
]);
10710 free_percpu(ca
->cpuusage
);
10714 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
10716 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10719 #ifndef CONFIG_64BIT
10721 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10723 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
10725 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10733 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
10735 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10737 #ifndef CONFIG_64BIT
10739 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10741 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
10743 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
10749 /* return total cpu usage (in nanoseconds) of a group */
10750 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
10752 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10753 u64 totalcpuusage
= 0;
10756 for_each_present_cpu(i
)
10757 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
10759 return totalcpuusage
;
10762 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
10765 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10774 for_each_present_cpu(i
)
10775 cpuacct_cpuusage_write(ca
, i
, 0);
10781 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
10782 struct seq_file
*m
)
10784 struct cpuacct
*ca
= cgroup_ca(cgroup
);
10788 for_each_present_cpu(i
) {
10789 percpu
= cpuacct_cpuusage_read(ca
, i
);
10790 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
10792 seq_printf(m
, "\n");
10796 static const char *cpuacct_stat_desc
[] = {
10797 [CPUACCT_STAT_USER
] = "user",
10798 [CPUACCT_STAT_SYSTEM
] = "system",
10801 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
10802 struct cgroup_map_cb
*cb
)
10804 struct cpuacct
*ca
= cgroup_ca(cgrp
);
10807 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
10808 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
10809 val
= cputime64_to_clock_t(val
);
10810 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
10815 static struct cftype files
[] = {
10818 .read_u64
= cpuusage_read
,
10819 .write_u64
= cpuusage_write
,
10822 .name
= "usage_percpu",
10823 .read_seq_string
= cpuacct_percpu_seq_read
,
10827 .read_map
= cpuacct_stats_show
,
10831 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
10833 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
10837 * charge this task's execution time to its accounting group.
10839 * called with rq->lock held.
10841 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
10843 struct cpuacct
*ca
;
10846 if (unlikely(!cpuacct_subsys
.active
))
10849 cpu
= task_cpu(tsk
);
10855 for (; ca
; ca
= ca
->parent
) {
10856 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
10857 *cpuusage
+= cputime
;
10864 * Charge the system/user time to the task's accounting group.
10866 static void cpuacct_update_stats(struct task_struct
*tsk
,
10867 enum cpuacct_stat_index idx
, cputime_t val
)
10869 struct cpuacct
*ca
;
10871 if (unlikely(!cpuacct_subsys
.active
))
10878 percpu_counter_add(&ca
->cpustat
[idx
], val
);
10884 struct cgroup_subsys cpuacct_subsys
= {
10886 .create
= cpuacct_create
,
10887 .destroy
= cpuacct_destroy
,
10888 .populate
= cpuacct_populate
,
10889 .subsys_id
= cpuacct_subsys_id
,
10891 #endif /* CONFIG_CGROUP_CPUACCT */
10895 int rcu_expedited_torture_stats(char *page
)
10899 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10901 void synchronize_sched_expedited(void)
10904 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
10906 #else /* #ifndef CONFIG_SMP */
10908 static DEFINE_PER_CPU(struct migration_req
, rcu_migration_req
);
10909 static DEFINE_MUTEX(rcu_sched_expedited_mutex
);
10911 #define RCU_EXPEDITED_STATE_POST -2
10912 #define RCU_EXPEDITED_STATE_IDLE -1
10914 static int rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
10916 int rcu_expedited_torture_stats(char *page
)
10921 cnt
+= sprintf(&page
[cnt
], "state: %d /", rcu_expedited_state
);
10922 for_each_online_cpu(cpu
) {
10923 cnt
+= sprintf(&page
[cnt
], " %d:%d",
10924 cpu
, per_cpu(rcu_migration_req
, cpu
).dest_cpu
);
10926 cnt
+= sprintf(&page
[cnt
], "\n");
10929 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
10931 static long synchronize_sched_expedited_count
;
10934 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10935 * approach to force grace period to end quickly. This consumes
10936 * significant time on all CPUs, and is thus not recommended for
10937 * any sort of common-case code.
10939 * Note that it is illegal to call this function while holding any
10940 * lock that is acquired by a CPU-hotplug notifier. Failing to
10941 * observe this restriction will result in deadlock.
10943 void synchronize_sched_expedited(void)
10946 unsigned long flags
;
10947 bool need_full_sync
= 0;
10949 struct migration_req
*req
;
10953 smp_mb(); /* ensure prior mod happens before capturing snap. */
10954 snap
= ACCESS_ONCE(synchronize_sched_expedited_count
) + 1;
10956 while (!mutex_trylock(&rcu_sched_expedited_mutex
)) {
10958 if (trycount
++ < 10)
10959 udelay(trycount
* num_online_cpus());
10961 synchronize_sched();
10964 if (ACCESS_ONCE(synchronize_sched_expedited_count
) - snap
> 0) {
10965 smp_mb(); /* ensure test happens before caller kfree */
10970 rcu_expedited_state
= RCU_EXPEDITED_STATE_POST
;
10971 for_each_online_cpu(cpu
) {
10973 req
= &per_cpu(rcu_migration_req
, cpu
);
10974 init_completion(&req
->done
);
10976 req
->dest_cpu
= RCU_MIGRATION_NEED_QS
;
10977 raw_spin_lock_irqsave(&rq
->lock
, flags
);
10978 list_add(&req
->list
, &rq
->migration_queue
);
10979 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
10980 wake_up_process(rq
->migration_thread
);
10982 for_each_online_cpu(cpu
) {
10983 rcu_expedited_state
= cpu
;
10984 req
= &per_cpu(rcu_migration_req
, cpu
);
10986 wait_for_completion(&req
->done
);
10987 raw_spin_lock_irqsave(&rq
->lock
, flags
);
10988 if (unlikely(req
->dest_cpu
== RCU_MIGRATION_MUST_SYNC
))
10989 need_full_sync
= 1;
10990 req
->dest_cpu
= RCU_MIGRATION_IDLE
;
10991 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
10993 rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
10994 synchronize_sched_expedited_count
++;
10995 mutex_unlock(&rcu_sched_expedited_mutex
);
10997 if (need_full_sync
)
10998 synchronize_sched();
11000 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
11002 #endif /* #else #ifndef CONFIG_SMP */