memcg: infrastructure to match an allocation to the right cache
[linux-2.6/cjktty.git] / mm / rmap.c
blob2c78f8cadc951c21a67cfa7390c3649572a3e473
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 struct anon_vma *anon_vma;
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma->root = anon_vma;
82 return anon_vma;
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() rwsem_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
106 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
107 anon_vma_lock_write(anon_vma);
108 anon_vma_unlock(anon_vma);
111 kmem_cache_free(anon_vma_cachep, anon_vma);
114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
124 static void anon_vma_chain_link(struct vm_area_struct *vma,
125 struct anon_vma_chain *avc,
126 struct anon_vma *anon_vma)
128 avc->vma = vma;
129 avc->anon_vma = anon_vma;
130 list_add(&avc->same_vma, &vma->anon_vma_chain);
131 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
142 * The common case will be that we already have one, but if
143 * not we either need to find an adjacent mapping that we
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
148 * Anon-vma allocations are very subtle, because we may have
149 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
157 * an anon_vma.
159 * This must be called with the mmap_sem held for reading.
161 int anon_vma_prepare(struct vm_area_struct *vma)
163 struct anon_vma *anon_vma = vma->anon_vma;
164 struct anon_vma_chain *avc;
166 might_sleep();
167 if (unlikely(!anon_vma)) {
168 struct mm_struct *mm = vma->vm_mm;
169 struct anon_vma *allocated;
171 avc = anon_vma_chain_alloc(GFP_KERNEL);
172 if (!avc)
173 goto out_enomem;
175 anon_vma = find_mergeable_anon_vma(vma);
176 allocated = NULL;
177 if (!anon_vma) {
178 anon_vma = anon_vma_alloc();
179 if (unlikely(!anon_vma))
180 goto out_enomem_free_avc;
181 allocated = anon_vma;
184 anon_vma_lock_write(anon_vma);
185 /* page_table_lock to protect against threads */
186 spin_lock(&mm->page_table_lock);
187 if (likely(!vma->anon_vma)) {
188 vma->anon_vma = anon_vma;
189 anon_vma_chain_link(vma, avc, anon_vma);
190 allocated = NULL;
191 avc = NULL;
193 spin_unlock(&mm->page_table_lock);
194 anon_vma_unlock(anon_vma);
196 if (unlikely(allocated))
197 put_anon_vma(allocated);
198 if (unlikely(avc))
199 anon_vma_chain_free(avc);
201 return 0;
203 out_enomem_free_avc:
204 anon_vma_chain_free(avc);
205 out_enomem:
206 return -ENOMEM;
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212 * have the same vma.
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219 struct anon_vma *new_root = anon_vma->root;
220 if (new_root != root) {
221 if (WARN_ON_ONCE(root))
222 up_write(&root->rwsem);
223 root = new_root;
224 down_write(&root->rwsem);
226 return root;
229 static inline void unlock_anon_vma_root(struct anon_vma *root)
231 if (root)
232 up_write(&root->rwsem);
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
241 struct anon_vma_chain *avc, *pavc;
242 struct anon_vma *root = NULL;
244 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245 struct anon_vma *anon_vma;
247 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248 if (unlikely(!avc)) {
249 unlock_anon_vma_root(root);
250 root = NULL;
251 avc = anon_vma_chain_alloc(GFP_KERNEL);
252 if (!avc)
253 goto enomem_failure;
255 anon_vma = pavc->anon_vma;
256 root = lock_anon_vma_root(root, anon_vma);
257 anon_vma_chain_link(dst, avc, anon_vma);
259 unlock_anon_vma_root(root);
260 return 0;
262 enomem_failure:
263 unlink_anon_vmas(dst);
264 return -ENOMEM;
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
274 struct anon_vma_chain *avc;
275 struct anon_vma *anon_vma;
277 /* Don't bother if the parent process has no anon_vma here. */
278 if (!pvma->anon_vma)
279 return 0;
282 * First, attach the new VMA to the parent VMA's anon_vmas,
283 * so rmap can find non-COWed pages in child processes.
285 if (anon_vma_clone(vma, pvma))
286 return -ENOMEM;
288 /* Then add our own anon_vma. */
289 anon_vma = anon_vma_alloc();
290 if (!anon_vma)
291 goto out_error;
292 avc = anon_vma_chain_alloc(GFP_KERNEL);
293 if (!avc)
294 goto out_error_free_anon_vma;
297 * The root anon_vma's spinlock is the lock actually used when we
298 * lock any of the anon_vmas in this anon_vma tree.
300 anon_vma->root = pvma->anon_vma->root;
302 * With refcounts, an anon_vma can stay around longer than the
303 * process it belongs to. The root anon_vma needs to be pinned until
304 * this anon_vma is freed, because the lock lives in the root.
306 get_anon_vma(anon_vma->root);
307 /* Mark this anon_vma as the one where our new (COWed) pages go. */
308 vma->anon_vma = anon_vma;
309 anon_vma_lock_write(anon_vma);
310 anon_vma_chain_link(vma, avc, anon_vma);
311 anon_vma_unlock(anon_vma);
313 return 0;
315 out_error_free_anon_vma:
316 put_anon_vma(anon_vma);
317 out_error:
318 unlink_anon_vmas(vma);
319 return -ENOMEM;
322 void unlink_anon_vmas(struct vm_area_struct *vma)
324 struct anon_vma_chain *avc, *next;
325 struct anon_vma *root = NULL;
328 * Unlink each anon_vma chained to the VMA. This list is ordered
329 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332 struct anon_vma *anon_vma = avc->anon_vma;
334 root = lock_anon_vma_root(root, anon_vma);
335 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
338 * Leave empty anon_vmas on the list - we'll need
339 * to free them outside the lock.
341 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342 continue;
344 list_del(&avc->same_vma);
345 anon_vma_chain_free(avc);
347 unlock_anon_vma_root(root);
350 * Iterate the list once more, it now only contains empty and unlinked
351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 * needing to write-acquire the anon_vma->root->rwsem.
354 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355 struct anon_vma *anon_vma = avc->anon_vma;
357 put_anon_vma(anon_vma);
359 list_del(&avc->same_vma);
360 anon_vma_chain_free(avc);
364 static void anon_vma_ctor(void *data)
366 struct anon_vma *anon_vma = data;
368 init_rwsem(&anon_vma->rwsem);
369 atomic_set(&anon_vma->refcount, 0);
370 anon_vma->rb_root = RB_ROOT;
373 void __init anon_vma_init(void)
375 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
403 struct anon_vma *page_get_anon_vma(struct page *page)
405 struct anon_vma *anon_vma = NULL;
406 unsigned long anon_mapping;
408 rcu_read_lock();
409 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411 goto out;
412 if (!page_mapped(page))
413 goto out;
415 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417 anon_vma = NULL;
418 goto out;
422 * If this page is still mapped, then its anon_vma cannot have been
423 * freed. But if it has been unmapped, we have no security against the
424 * anon_vma structure being freed and reused (for another anon_vma:
425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 * above cannot corrupt).
428 if (!page_mapped(page)) {
429 put_anon_vma(anon_vma);
430 anon_vma = NULL;
432 out:
433 rcu_read_unlock();
435 return anon_vma;
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
445 struct anon_vma *page_lock_anon_vma_read(struct page *page)
447 struct anon_vma *anon_vma = NULL;
448 struct anon_vma *root_anon_vma;
449 unsigned long anon_mapping;
451 rcu_read_lock();
452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 goto out;
455 if (!page_mapped(page))
456 goto out;
458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 root_anon_vma = ACCESS_ONCE(anon_vma->root);
460 if (down_read_trylock(&root_anon_vma->rwsem)) {
462 * If the page is still mapped, then this anon_vma is still
463 * its anon_vma, and holding the mutex ensures that it will
464 * not go away, see anon_vma_free().
466 if (!page_mapped(page)) {
467 up_read(&root_anon_vma->rwsem);
468 anon_vma = NULL;
470 goto out;
473 /* trylock failed, we got to sleep */
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
479 if (!page_mapped(page)) {
480 put_anon_vma(anon_vma);
481 anon_vma = NULL;
482 goto out;
485 /* we pinned the anon_vma, its safe to sleep */
486 rcu_read_unlock();
487 anon_vma_lock_read(anon_vma);
489 if (atomic_dec_and_test(&anon_vma->refcount)) {
491 * Oops, we held the last refcount, release the lock
492 * and bail -- can't simply use put_anon_vma() because
493 * we'll deadlock on the anon_vma_lock_write() recursion.
495 anon_vma_unlock_read(anon_vma);
496 __put_anon_vma(anon_vma);
497 anon_vma = NULL;
500 return anon_vma;
502 out:
503 rcu_read_unlock();
504 return anon_vma;
507 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
509 anon_vma_unlock_read(anon_vma);
513 * At what user virtual address is page expected in @vma?
515 static inline unsigned long
516 __vma_address(struct page *page, struct vm_area_struct *vma)
518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
520 if (unlikely(is_vm_hugetlb_page(vma)))
521 pgoff = page->index << huge_page_order(page_hstate(page));
523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
529 unsigned long address = __vma_address(page, vma);
531 /* page should be within @vma mapping range */
532 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
534 return address;
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
543 unsigned long address;
544 if (PageAnon(page)) {
545 struct anon_vma *page__anon_vma = page_anon_vma(page);
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
550 if (!vma->anon_vma || !page__anon_vma ||
551 vma->anon_vma->root != page__anon_vma->root)
552 return -EFAULT;
553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 if (!vma->vm_file ||
555 vma->vm_file->f_mapping != page->mapping)
556 return -EFAULT;
557 } else
558 return -EFAULT;
559 address = __vma_address(page, vma);
560 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 return -EFAULT;
562 return address;
565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
567 pgd_t *pgd;
568 pud_t *pud;
569 pmd_t *pmd = NULL;
571 pgd = pgd_offset(mm, address);
572 if (!pgd_present(*pgd))
573 goto out;
575 pud = pud_offset(pgd, address);
576 if (!pud_present(*pud))
577 goto out;
579 pmd = pmd_offset(pud, address);
580 if (!pmd_present(*pmd))
581 pmd = NULL;
582 out:
583 return pmd;
587 * Check that @page is mapped at @address into @mm.
589 * If @sync is false, page_check_address may perform a racy check to avoid
590 * the page table lock when the pte is not present (helpful when reclaiming
591 * highly shared pages).
593 * On success returns with pte mapped and locked.
595 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
596 unsigned long address, spinlock_t **ptlp, int sync)
598 pmd_t *pmd;
599 pte_t *pte;
600 spinlock_t *ptl;
602 if (unlikely(PageHuge(page))) {
603 pte = huge_pte_offset(mm, address);
604 ptl = &mm->page_table_lock;
605 goto check;
608 pmd = mm_find_pmd(mm, address);
609 if (!pmd)
610 return NULL;
612 if (pmd_trans_huge(*pmd))
613 return NULL;
615 pte = pte_offset_map(pmd, address);
616 /* Make a quick check before getting the lock */
617 if (!sync && !pte_present(*pte)) {
618 pte_unmap(pte);
619 return NULL;
622 ptl = pte_lockptr(mm, pmd);
623 check:
624 spin_lock(ptl);
625 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
626 *ptlp = ptl;
627 return pte;
629 pte_unmap_unlock(pte, ptl);
630 return NULL;
634 * page_mapped_in_vma - check whether a page is really mapped in a VMA
635 * @page: the page to test
636 * @vma: the VMA to test
638 * Returns 1 if the page is mapped into the page tables of the VMA, 0
639 * if the page is not mapped into the page tables of this VMA. Only
640 * valid for normal file or anonymous VMAs.
642 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
644 unsigned long address;
645 pte_t *pte;
646 spinlock_t *ptl;
648 address = __vma_address(page, vma);
649 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
650 return 0;
651 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
652 if (!pte) /* the page is not in this mm */
653 return 0;
654 pte_unmap_unlock(pte, ptl);
656 return 1;
660 * Subfunctions of page_referenced: page_referenced_one called
661 * repeatedly from either page_referenced_anon or page_referenced_file.
663 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
664 unsigned long address, unsigned int *mapcount,
665 unsigned long *vm_flags)
667 struct mm_struct *mm = vma->vm_mm;
668 int referenced = 0;
670 if (unlikely(PageTransHuge(page))) {
671 pmd_t *pmd;
673 spin_lock(&mm->page_table_lock);
675 * rmap might return false positives; we must filter
676 * these out using page_check_address_pmd().
678 pmd = page_check_address_pmd(page, mm, address,
679 PAGE_CHECK_ADDRESS_PMD_FLAG);
680 if (!pmd) {
681 spin_unlock(&mm->page_table_lock);
682 goto out;
685 if (vma->vm_flags & VM_LOCKED) {
686 spin_unlock(&mm->page_table_lock);
687 *mapcount = 0; /* break early from loop */
688 *vm_flags |= VM_LOCKED;
689 goto out;
692 /* go ahead even if the pmd is pmd_trans_splitting() */
693 if (pmdp_clear_flush_young_notify(vma, address, pmd))
694 referenced++;
695 spin_unlock(&mm->page_table_lock);
696 } else {
697 pte_t *pte;
698 spinlock_t *ptl;
701 * rmap might return false positives; we must filter
702 * these out using page_check_address().
704 pte = page_check_address(page, mm, address, &ptl, 0);
705 if (!pte)
706 goto out;
708 if (vma->vm_flags & VM_LOCKED) {
709 pte_unmap_unlock(pte, ptl);
710 *mapcount = 0; /* break early from loop */
711 *vm_flags |= VM_LOCKED;
712 goto out;
715 if (ptep_clear_flush_young_notify(vma, address, pte)) {
717 * Don't treat a reference through a sequentially read
718 * mapping as such. If the page has been used in
719 * another mapping, we will catch it; if this other
720 * mapping is already gone, the unmap path will have
721 * set PG_referenced or activated the page.
723 if (likely(!VM_SequentialReadHint(vma)))
724 referenced++;
726 pte_unmap_unlock(pte, ptl);
729 (*mapcount)--;
731 if (referenced)
732 *vm_flags |= vma->vm_flags;
733 out:
734 return referenced;
737 static int page_referenced_anon(struct page *page,
738 struct mem_cgroup *memcg,
739 unsigned long *vm_flags)
741 unsigned int mapcount;
742 struct anon_vma *anon_vma;
743 pgoff_t pgoff;
744 struct anon_vma_chain *avc;
745 int referenced = 0;
747 anon_vma = page_lock_anon_vma_read(page);
748 if (!anon_vma)
749 return referenced;
751 mapcount = page_mapcount(page);
752 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
753 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
754 struct vm_area_struct *vma = avc->vma;
755 unsigned long address = vma_address(page, vma);
757 * If we are reclaiming on behalf of a cgroup, skip
758 * counting on behalf of references from different
759 * cgroups
761 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
762 continue;
763 referenced += page_referenced_one(page, vma, address,
764 &mapcount, vm_flags);
765 if (!mapcount)
766 break;
769 page_unlock_anon_vma_read(anon_vma);
770 return referenced;
774 * page_referenced_file - referenced check for object-based rmap
775 * @page: the page we're checking references on.
776 * @memcg: target memory control group
777 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
779 * For an object-based mapped page, find all the places it is mapped and
780 * check/clear the referenced flag. This is done by following the page->mapping
781 * pointer, then walking the chain of vmas it holds. It returns the number
782 * of references it found.
784 * This function is only called from page_referenced for object-based pages.
786 static int page_referenced_file(struct page *page,
787 struct mem_cgroup *memcg,
788 unsigned long *vm_flags)
790 unsigned int mapcount;
791 struct address_space *mapping = page->mapping;
792 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
793 struct vm_area_struct *vma;
794 int referenced = 0;
797 * The caller's checks on page->mapping and !PageAnon have made
798 * sure that this is a file page: the check for page->mapping
799 * excludes the case just before it gets set on an anon page.
801 BUG_ON(PageAnon(page));
804 * The page lock not only makes sure that page->mapping cannot
805 * suddenly be NULLified by truncation, it makes sure that the
806 * structure at mapping cannot be freed and reused yet,
807 * so we can safely take mapping->i_mmap_mutex.
809 BUG_ON(!PageLocked(page));
811 mutex_lock(&mapping->i_mmap_mutex);
814 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
815 * is more likely to be accurate if we note it after spinning.
817 mapcount = page_mapcount(page);
819 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
820 unsigned long address = vma_address(page, vma);
822 * If we are reclaiming on behalf of a cgroup, skip
823 * counting on behalf of references from different
824 * cgroups
826 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
827 continue;
828 referenced += page_referenced_one(page, vma, address,
829 &mapcount, vm_flags);
830 if (!mapcount)
831 break;
834 mutex_unlock(&mapping->i_mmap_mutex);
835 return referenced;
839 * page_referenced - test if the page was referenced
840 * @page: the page to test
841 * @is_locked: caller holds lock on the page
842 * @memcg: target memory cgroup
843 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
845 * Quick test_and_clear_referenced for all mappings to a page,
846 * returns the number of ptes which referenced the page.
848 int page_referenced(struct page *page,
849 int is_locked,
850 struct mem_cgroup *memcg,
851 unsigned long *vm_flags)
853 int referenced = 0;
854 int we_locked = 0;
856 *vm_flags = 0;
857 if (page_mapped(page) && page_rmapping(page)) {
858 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
859 we_locked = trylock_page(page);
860 if (!we_locked) {
861 referenced++;
862 goto out;
865 if (unlikely(PageKsm(page)))
866 referenced += page_referenced_ksm(page, memcg,
867 vm_flags);
868 else if (PageAnon(page))
869 referenced += page_referenced_anon(page, memcg,
870 vm_flags);
871 else if (page->mapping)
872 referenced += page_referenced_file(page, memcg,
873 vm_flags);
874 if (we_locked)
875 unlock_page(page);
877 if (page_test_and_clear_young(page_to_pfn(page)))
878 referenced++;
880 out:
881 return referenced;
884 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
885 unsigned long address)
887 struct mm_struct *mm = vma->vm_mm;
888 pte_t *pte;
889 spinlock_t *ptl;
890 int ret = 0;
892 pte = page_check_address(page, mm, address, &ptl, 1);
893 if (!pte)
894 goto out;
896 if (pte_dirty(*pte) || pte_write(*pte)) {
897 pte_t entry;
899 flush_cache_page(vma, address, pte_pfn(*pte));
900 entry = ptep_clear_flush(vma, address, pte);
901 entry = pte_wrprotect(entry);
902 entry = pte_mkclean(entry);
903 set_pte_at(mm, address, pte, entry);
904 ret = 1;
907 pte_unmap_unlock(pte, ptl);
909 if (ret)
910 mmu_notifier_invalidate_page(mm, address);
911 out:
912 return ret;
915 static int page_mkclean_file(struct address_space *mapping, struct page *page)
917 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
918 struct vm_area_struct *vma;
919 int ret = 0;
921 BUG_ON(PageAnon(page));
923 mutex_lock(&mapping->i_mmap_mutex);
924 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
925 if (vma->vm_flags & VM_SHARED) {
926 unsigned long address = vma_address(page, vma);
927 ret += page_mkclean_one(page, vma, address);
930 mutex_unlock(&mapping->i_mmap_mutex);
931 return ret;
934 int page_mkclean(struct page *page)
936 int ret = 0;
938 BUG_ON(!PageLocked(page));
940 if (page_mapped(page)) {
941 struct address_space *mapping = page_mapping(page);
942 if (mapping)
943 ret = page_mkclean_file(mapping, page);
946 return ret;
948 EXPORT_SYMBOL_GPL(page_mkclean);
951 * page_move_anon_rmap - move a page to our anon_vma
952 * @page: the page to move to our anon_vma
953 * @vma: the vma the page belongs to
954 * @address: the user virtual address mapped
956 * When a page belongs exclusively to one process after a COW event,
957 * that page can be moved into the anon_vma that belongs to just that
958 * process, so the rmap code will not search the parent or sibling
959 * processes.
961 void page_move_anon_rmap(struct page *page,
962 struct vm_area_struct *vma, unsigned long address)
964 struct anon_vma *anon_vma = vma->anon_vma;
966 VM_BUG_ON(!PageLocked(page));
967 VM_BUG_ON(!anon_vma);
968 VM_BUG_ON(page->index != linear_page_index(vma, address));
970 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
971 page->mapping = (struct address_space *) anon_vma;
975 * __page_set_anon_rmap - set up new anonymous rmap
976 * @page: Page to add to rmap
977 * @vma: VM area to add page to.
978 * @address: User virtual address of the mapping
979 * @exclusive: the page is exclusively owned by the current process
981 static void __page_set_anon_rmap(struct page *page,
982 struct vm_area_struct *vma, unsigned long address, int exclusive)
984 struct anon_vma *anon_vma = vma->anon_vma;
986 BUG_ON(!anon_vma);
988 if (PageAnon(page))
989 return;
992 * If the page isn't exclusively mapped into this vma,
993 * we must use the _oldest_ possible anon_vma for the
994 * page mapping!
996 if (!exclusive)
997 anon_vma = anon_vma->root;
999 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1000 page->mapping = (struct address_space *) anon_vma;
1001 page->index = linear_page_index(vma, address);
1005 * __page_check_anon_rmap - sanity check anonymous rmap addition
1006 * @page: the page to add the mapping to
1007 * @vma: the vm area in which the mapping is added
1008 * @address: the user virtual address mapped
1010 static void __page_check_anon_rmap(struct page *page,
1011 struct vm_area_struct *vma, unsigned long address)
1013 #ifdef CONFIG_DEBUG_VM
1015 * The page's anon-rmap details (mapping and index) are guaranteed to
1016 * be set up correctly at this point.
1018 * We have exclusion against page_add_anon_rmap because the caller
1019 * always holds the page locked, except if called from page_dup_rmap,
1020 * in which case the page is already known to be setup.
1022 * We have exclusion against page_add_new_anon_rmap because those pages
1023 * are initially only visible via the pagetables, and the pte is locked
1024 * over the call to page_add_new_anon_rmap.
1026 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1027 BUG_ON(page->index != linear_page_index(vma, address));
1028 #endif
1032 * page_add_anon_rmap - add pte mapping to an anonymous page
1033 * @page: the page to add the mapping to
1034 * @vma: the vm area in which the mapping is added
1035 * @address: the user virtual address mapped
1037 * The caller needs to hold the pte lock, and the page must be locked in
1038 * the anon_vma case: to serialize mapping,index checking after setting,
1039 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1040 * (but PageKsm is never downgraded to PageAnon).
1042 void page_add_anon_rmap(struct page *page,
1043 struct vm_area_struct *vma, unsigned long address)
1045 do_page_add_anon_rmap(page, vma, address, 0);
1049 * Special version of the above for do_swap_page, which often runs
1050 * into pages that are exclusively owned by the current process.
1051 * Everybody else should continue to use page_add_anon_rmap above.
1053 void do_page_add_anon_rmap(struct page *page,
1054 struct vm_area_struct *vma, unsigned long address, int exclusive)
1056 int first = atomic_inc_and_test(&page->_mapcount);
1057 if (first) {
1058 if (!PageTransHuge(page))
1059 __inc_zone_page_state(page, NR_ANON_PAGES);
1060 else
1061 __inc_zone_page_state(page,
1062 NR_ANON_TRANSPARENT_HUGEPAGES);
1064 if (unlikely(PageKsm(page)))
1065 return;
1067 VM_BUG_ON(!PageLocked(page));
1068 /* address might be in next vma when migration races vma_adjust */
1069 if (first)
1070 __page_set_anon_rmap(page, vma, address, exclusive);
1071 else
1072 __page_check_anon_rmap(page, vma, address);
1076 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1077 * @page: the page to add the mapping to
1078 * @vma: the vm area in which the mapping is added
1079 * @address: the user virtual address mapped
1081 * Same as page_add_anon_rmap but must only be called on *new* pages.
1082 * This means the inc-and-test can be bypassed.
1083 * Page does not have to be locked.
1085 void page_add_new_anon_rmap(struct page *page,
1086 struct vm_area_struct *vma, unsigned long address)
1088 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1089 SetPageSwapBacked(page);
1090 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1091 if (!PageTransHuge(page))
1092 __inc_zone_page_state(page, NR_ANON_PAGES);
1093 else
1094 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1095 __page_set_anon_rmap(page, vma, address, 1);
1096 if (!mlocked_vma_newpage(vma, page))
1097 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1098 else
1099 add_page_to_unevictable_list(page);
1103 * page_add_file_rmap - add pte mapping to a file page
1104 * @page: the page to add the mapping to
1106 * The caller needs to hold the pte lock.
1108 void page_add_file_rmap(struct page *page)
1110 bool locked;
1111 unsigned long flags;
1113 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1114 if (atomic_inc_and_test(&page->_mapcount)) {
1115 __inc_zone_page_state(page, NR_FILE_MAPPED);
1116 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1118 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1122 * page_remove_rmap - take down pte mapping from a page
1123 * @page: page to remove mapping from
1125 * The caller needs to hold the pte lock.
1127 void page_remove_rmap(struct page *page)
1129 struct address_space *mapping = page_mapping(page);
1130 bool anon = PageAnon(page);
1131 bool locked;
1132 unsigned long flags;
1135 * The anon case has no mem_cgroup page_stat to update; but may
1136 * uncharge_page() below, where the lock ordering can deadlock if
1137 * we hold the lock against page_stat move: so avoid it on anon.
1139 if (!anon)
1140 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1142 /* page still mapped by someone else? */
1143 if (!atomic_add_negative(-1, &page->_mapcount))
1144 goto out;
1147 * Now that the last pte has gone, s390 must transfer dirty
1148 * flag from storage key to struct page. We can usually skip
1149 * this if the page is anon, so about to be freed; but perhaps
1150 * not if it's in swapcache - there might be another pte slot
1151 * containing the swap entry, but page not yet written to swap.
1153 * And we can skip it on file pages, so long as the filesystem
1154 * participates in dirty tracking (note that this is not only an
1155 * optimization but also solves problems caused by dirty flag in
1156 * storage key getting set by a write from inside kernel); but need to
1157 * catch shm and tmpfs and ramfs pages which have been modified since
1158 * creation by read fault.
1160 * Note that mapping must be decided above, before decrementing
1161 * mapcount (which luckily provides a barrier): once page is unmapped,
1162 * it could be truncated and page->mapping reset to NULL at any moment.
1163 * Note also that we are relying on page_mapping(page) to set mapping
1164 * to &swapper_space when PageSwapCache(page).
1166 if (mapping && !mapping_cap_account_dirty(mapping) &&
1167 page_test_and_clear_dirty(page_to_pfn(page), 1))
1168 set_page_dirty(page);
1170 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1171 * and not charged by memcg for now.
1173 if (unlikely(PageHuge(page)))
1174 goto out;
1175 if (anon) {
1176 mem_cgroup_uncharge_page(page);
1177 if (!PageTransHuge(page))
1178 __dec_zone_page_state(page, NR_ANON_PAGES);
1179 else
1180 __dec_zone_page_state(page,
1181 NR_ANON_TRANSPARENT_HUGEPAGES);
1182 } else {
1183 __dec_zone_page_state(page, NR_FILE_MAPPED);
1184 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1185 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1187 if (unlikely(PageMlocked(page)))
1188 clear_page_mlock(page);
1190 * It would be tidy to reset the PageAnon mapping here,
1191 * but that might overwrite a racing page_add_anon_rmap
1192 * which increments mapcount after us but sets mapping
1193 * before us: so leave the reset to free_hot_cold_page,
1194 * and remember that it's only reliable while mapped.
1195 * Leaving it set also helps swapoff to reinstate ptes
1196 * faster for those pages still in swapcache.
1198 return;
1199 out:
1200 if (!anon)
1201 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1205 * Subfunctions of try_to_unmap: try_to_unmap_one called
1206 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1208 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1209 unsigned long address, enum ttu_flags flags)
1211 struct mm_struct *mm = vma->vm_mm;
1212 pte_t *pte;
1213 pte_t pteval;
1214 spinlock_t *ptl;
1215 int ret = SWAP_AGAIN;
1217 pte = page_check_address(page, mm, address, &ptl, 0);
1218 if (!pte)
1219 goto out;
1222 * If the page is mlock()d, we cannot swap it out.
1223 * If it's recently referenced (perhaps page_referenced
1224 * skipped over this mm) then we should reactivate it.
1226 if (!(flags & TTU_IGNORE_MLOCK)) {
1227 if (vma->vm_flags & VM_LOCKED)
1228 goto out_mlock;
1230 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1231 goto out_unmap;
1233 if (!(flags & TTU_IGNORE_ACCESS)) {
1234 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1235 ret = SWAP_FAIL;
1236 goto out_unmap;
1240 /* Nuke the page table entry. */
1241 flush_cache_page(vma, address, page_to_pfn(page));
1242 pteval = ptep_clear_flush(vma, address, pte);
1244 /* Move the dirty bit to the physical page now the pte is gone. */
1245 if (pte_dirty(pteval))
1246 set_page_dirty(page);
1248 /* Update high watermark before we lower rss */
1249 update_hiwater_rss(mm);
1251 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1252 if (!PageHuge(page)) {
1253 if (PageAnon(page))
1254 dec_mm_counter(mm, MM_ANONPAGES);
1255 else
1256 dec_mm_counter(mm, MM_FILEPAGES);
1258 set_pte_at(mm, address, pte,
1259 swp_entry_to_pte(make_hwpoison_entry(page)));
1260 } else if (PageAnon(page)) {
1261 swp_entry_t entry = { .val = page_private(page) };
1263 if (PageSwapCache(page)) {
1265 * Store the swap location in the pte.
1266 * See handle_pte_fault() ...
1268 if (swap_duplicate(entry) < 0) {
1269 set_pte_at(mm, address, pte, pteval);
1270 ret = SWAP_FAIL;
1271 goto out_unmap;
1273 if (list_empty(&mm->mmlist)) {
1274 spin_lock(&mmlist_lock);
1275 if (list_empty(&mm->mmlist))
1276 list_add(&mm->mmlist, &init_mm.mmlist);
1277 spin_unlock(&mmlist_lock);
1279 dec_mm_counter(mm, MM_ANONPAGES);
1280 inc_mm_counter(mm, MM_SWAPENTS);
1281 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1283 * Store the pfn of the page in a special migration
1284 * pte. do_swap_page() will wait until the migration
1285 * pte is removed and then restart fault handling.
1287 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1288 entry = make_migration_entry(page, pte_write(pteval));
1290 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1291 BUG_ON(pte_file(*pte));
1292 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1293 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1294 /* Establish migration entry for a file page */
1295 swp_entry_t entry;
1296 entry = make_migration_entry(page, pte_write(pteval));
1297 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1298 } else
1299 dec_mm_counter(mm, MM_FILEPAGES);
1301 page_remove_rmap(page);
1302 page_cache_release(page);
1304 out_unmap:
1305 pte_unmap_unlock(pte, ptl);
1306 if (ret != SWAP_FAIL)
1307 mmu_notifier_invalidate_page(mm, address);
1308 out:
1309 return ret;
1311 out_mlock:
1312 pte_unmap_unlock(pte, ptl);
1316 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1317 * unstable result and race. Plus, We can't wait here because
1318 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1319 * if trylock failed, the page remain in evictable lru and later
1320 * vmscan could retry to move the page to unevictable lru if the
1321 * page is actually mlocked.
1323 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1324 if (vma->vm_flags & VM_LOCKED) {
1325 mlock_vma_page(page);
1326 ret = SWAP_MLOCK;
1328 up_read(&vma->vm_mm->mmap_sem);
1330 return ret;
1334 * objrmap doesn't work for nonlinear VMAs because the assumption that
1335 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1336 * Consequently, given a particular page and its ->index, we cannot locate the
1337 * ptes which are mapping that page without an exhaustive linear search.
1339 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1340 * maps the file to which the target page belongs. The ->vm_private_data field
1341 * holds the current cursor into that scan. Successive searches will circulate
1342 * around the vma's virtual address space.
1344 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1345 * more scanning pressure is placed against them as well. Eventually pages
1346 * will become fully unmapped and are eligible for eviction.
1348 * For very sparsely populated VMAs this is a little inefficient - chances are
1349 * there there won't be many ptes located within the scan cluster. In this case
1350 * maybe we could scan further - to the end of the pte page, perhaps.
1352 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1353 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1354 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1355 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1357 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1358 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1360 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1361 struct vm_area_struct *vma, struct page *check_page)
1363 struct mm_struct *mm = vma->vm_mm;
1364 pmd_t *pmd;
1365 pte_t *pte;
1366 pte_t pteval;
1367 spinlock_t *ptl;
1368 struct page *page;
1369 unsigned long address;
1370 unsigned long mmun_start; /* For mmu_notifiers */
1371 unsigned long mmun_end; /* For mmu_notifiers */
1372 unsigned long end;
1373 int ret = SWAP_AGAIN;
1374 int locked_vma = 0;
1376 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1377 end = address + CLUSTER_SIZE;
1378 if (address < vma->vm_start)
1379 address = vma->vm_start;
1380 if (end > vma->vm_end)
1381 end = vma->vm_end;
1383 pmd = mm_find_pmd(mm, address);
1384 if (!pmd)
1385 return ret;
1387 mmun_start = address;
1388 mmun_end = end;
1389 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1392 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1393 * keep the sem while scanning the cluster for mlocking pages.
1395 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1396 locked_vma = (vma->vm_flags & VM_LOCKED);
1397 if (!locked_vma)
1398 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1401 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1403 /* Update high watermark before we lower rss */
1404 update_hiwater_rss(mm);
1406 for (; address < end; pte++, address += PAGE_SIZE) {
1407 if (!pte_present(*pte))
1408 continue;
1409 page = vm_normal_page(vma, address, *pte);
1410 BUG_ON(!page || PageAnon(page));
1412 if (locked_vma) {
1413 mlock_vma_page(page); /* no-op if already mlocked */
1414 if (page == check_page)
1415 ret = SWAP_MLOCK;
1416 continue; /* don't unmap */
1419 if (ptep_clear_flush_young_notify(vma, address, pte))
1420 continue;
1422 /* Nuke the page table entry. */
1423 flush_cache_page(vma, address, pte_pfn(*pte));
1424 pteval = ptep_clear_flush(vma, address, pte);
1426 /* If nonlinear, store the file page offset in the pte. */
1427 if (page->index != linear_page_index(vma, address))
1428 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1430 /* Move the dirty bit to the physical page now the pte is gone. */
1431 if (pte_dirty(pteval))
1432 set_page_dirty(page);
1434 page_remove_rmap(page);
1435 page_cache_release(page);
1436 dec_mm_counter(mm, MM_FILEPAGES);
1437 (*mapcount)--;
1439 pte_unmap_unlock(pte - 1, ptl);
1440 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1441 if (locked_vma)
1442 up_read(&vma->vm_mm->mmap_sem);
1443 return ret;
1446 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1448 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1450 if (!maybe_stack)
1451 return false;
1453 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1454 VM_STACK_INCOMPLETE_SETUP)
1455 return true;
1457 return false;
1461 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1462 * rmap method
1463 * @page: the page to unmap/unlock
1464 * @flags: action and flags
1466 * Find all the mappings of a page using the mapping pointer and the vma chains
1467 * contained in the anon_vma struct it points to.
1469 * This function is only called from try_to_unmap/try_to_munlock for
1470 * anonymous pages.
1471 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1472 * where the page was found will be held for write. So, we won't recheck
1473 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1474 * 'LOCKED.
1476 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1478 struct anon_vma *anon_vma;
1479 pgoff_t pgoff;
1480 struct anon_vma_chain *avc;
1481 int ret = SWAP_AGAIN;
1483 anon_vma = page_lock_anon_vma_read(page);
1484 if (!anon_vma)
1485 return ret;
1487 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1488 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1489 struct vm_area_struct *vma = avc->vma;
1490 unsigned long address;
1493 * During exec, a temporary VMA is setup and later moved.
1494 * The VMA is moved under the anon_vma lock but not the
1495 * page tables leading to a race where migration cannot
1496 * find the migration ptes. Rather than increasing the
1497 * locking requirements of exec(), migration skips
1498 * temporary VMAs until after exec() completes.
1500 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1501 is_vma_temporary_stack(vma))
1502 continue;
1504 address = vma_address(page, vma);
1505 ret = try_to_unmap_one(page, vma, address, flags);
1506 if (ret != SWAP_AGAIN || !page_mapped(page))
1507 break;
1510 page_unlock_anon_vma_read(anon_vma);
1511 return ret;
1515 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1516 * @page: the page to unmap/unlock
1517 * @flags: action and flags
1519 * Find all the mappings of a page using the mapping pointer and the vma chains
1520 * contained in the address_space struct it points to.
1522 * This function is only called from try_to_unmap/try_to_munlock for
1523 * object-based pages.
1524 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1525 * where the page was found will be held for write. So, we won't recheck
1526 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1527 * 'LOCKED.
1529 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1531 struct address_space *mapping = page->mapping;
1532 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1533 struct vm_area_struct *vma;
1534 int ret = SWAP_AGAIN;
1535 unsigned long cursor;
1536 unsigned long max_nl_cursor = 0;
1537 unsigned long max_nl_size = 0;
1538 unsigned int mapcount;
1540 mutex_lock(&mapping->i_mmap_mutex);
1541 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1542 unsigned long address = vma_address(page, vma);
1543 ret = try_to_unmap_one(page, vma, address, flags);
1544 if (ret != SWAP_AGAIN || !page_mapped(page))
1545 goto out;
1548 if (list_empty(&mapping->i_mmap_nonlinear))
1549 goto out;
1552 * We don't bother to try to find the munlocked page in nonlinears.
1553 * It's costly. Instead, later, page reclaim logic may call
1554 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1556 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1557 goto out;
1559 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1560 shared.nonlinear) {
1561 cursor = (unsigned long) vma->vm_private_data;
1562 if (cursor > max_nl_cursor)
1563 max_nl_cursor = cursor;
1564 cursor = vma->vm_end - vma->vm_start;
1565 if (cursor > max_nl_size)
1566 max_nl_size = cursor;
1569 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1570 ret = SWAP_FAIL;
1571 goto out;
1575 * We don't try to search for this page in the nonlinear vmas,
1576 * and page_referenced wouldn't have found it anyway. Instead
1577 * just walk the nonlinear vmas trying to age and unmap some.
1578 * The mapcount of the page we came in with is irrelevant,
1579 * but even so use it as a guide to how hard we should try?
1581 mapcount = page_mapcount(page);
1582 if (!mapcount)
1583 goto out;
1584 cond_resched();
1586 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1587 if (max_nl_cursor == 0)
1588 max_nl_cursor = CLUSTER_SIZE;
1590 do {
1591 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1592 shared.nonlinear) {
1593 cursor = (unsigned long) vma->vm_private_data;
1594 while ( cursor < max_nl_cursor &&
1595 cursor < vma->vm_end - vma->vm_start) {
1596 if (try_to_unmap_cluster(cursor, &mapcount,
1597 vma, page) == SWAP_MLOCK)
1598 ret = SWAP_MLOCK;
1599 cursor += CLUSTER_SIZE;
1600 vma->vm_private_data = (void *) cursor;
1601 if ((int)mapcount <= 0)
1602 goto out;
1604 vma->vm_private_data = (void *) max_nl_cursor;
1606 cond_resched();
1607 max_nl_cursor += CLUSTER_SIZE;
1608 } while (max_nl_cursor <= max_nl_size);
1611 * Don't loop forever (perhaps all the remaining pages are
1612 * in locked vmas). Reset cursor on all unreserved nonlinear
1613 * vmas, now forgetting on which ones it had fallen behind.
1615 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1616 vma->vm_private_data = NULL;
1617 out:
1618 mutex_unlock(&mapping->i_mmap_mutex);
1619 return ret;
1623 * try_to_unmap - try to remove all page table mappings to a page
1624 * @page: the page to get unmapped
1625 * @flags: action and flags
1627 * Tries to remove all the page table entries which are mapping this
1628 * page, used in the pageout path. Caller must hold the page lock.
1629 * Return values are:
1631 * SWAP_SUCCESS - we succeeded in removing all mappings
1632 * SWAP_AGAIN - we missed a mapping, try again later
1633 * SWAP_FAIL - the page is unswappable
1634 * SWAP_MLOCK - page is mlocked.
1636 int try_to_unmap(struct page *page, enum ttu_flags flags)
1638 int ret;
1640 BUG_ON(!PageLocked(page));
1641 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1643 if (unlikely(PageKsm(page)))
1644 ret = try_to_unmap_ksm(page, flags);
1645 else if (PageAnon(page))
1646 ret = try_to_unmap_anon(page, flags);
1647 else
1648 ret = try_to_unmap_file(page, flags);
1649 if (ret != SWAP_MLOCK && !page_mapped(page))
1650 ret = SWAP_SUCCESS;
1651 return ret;
1655 * try_to_munlock - try to munlock a page
1656 * @page: the page to be munlocked
1658 * Called from munlock code. Checks all of the VMAs mapping the page
1659 * to make sure nobody else has this page mlocked. The page will be
1660 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1662 * Return values are:
1664 * SWAP_AGAIN - no vma is holding page mlocked, or,
1665 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1666 * SWAP_FAIL - page cannot be located at present
1667 * SWAP_MLOCK - page is now mlocked.
1669 int try_to_munlock(struct page *page)
1671 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1673 if (unlikely(PageKsm(page)))
1674 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1675 else if (PageAnon(page))
1676 return try_to_unmap_anon(page, TTU_MUNLOCK);
1677 else
1678 return try_to_unmap_file(page, TTU_MUNLOCK);
1681 void __put_anon_vma(struct anon_vma *anon_vma)
1683 struct anon_vma *root = anon_vma->root;
1685 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1686 anon_vma_free(root);
1688 anon_vma_free(anon_vma);
1691 #ifdef CONFIG_MIGRATION
1693 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1694 * Called by migrate.c to remove migration ptes, but might be used more later.
1696 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1697 struct vm_area_struct *, unsigned long, void *), void *arg)
1699 struct anon_vma *anon_vma;
1700 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1701 struct anon_vma_chain *avc;
1702 int ret = SWAP_AGAIN;
1705 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1706 * because that depends on page_mapped(); but not all its usages
1707 * are holding mmap_sem. Users without mmap_sem are required to
1708 * take a reference count to prevent the anon_vma disappearing
1710 anon_vma = page_anon_vma(page);
1711 if (!anon_vma)
1712 return ret;
1713 anon_vma_lock_read(anon_vma);
1714 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1715 struct vm_area_struct *vma = avc->vma;
1716 unsigned long address = vma_address(page, vma);
1717 ret = rmap_one(page, vma, address, arg);
1718 if (ret != SWAP_AGAIN)
1719 break;
1721 anon_vma_unlock_read(anon_vma);
1722 return ret;
1725 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1726 struct vm_area_struct *, unsigned long, void *), void *arg)
1728 struct address_space *mapping = page->mapping;
1729 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1730 struct vm_area_struct *vma;
1731 int ret = SWAP_AGAIN;
1733 if (!mapping)
1734 return ret;
1735 mutex_lock(&mapping->i_mmap_mutex);
1736 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1737 unsigned long address = vma_address(page, vma);
1738 ret = rmap_one(page, vma, address, arg);
1739 if (ret != SWAP_AGAIN)
1740 break;
1743 * No nonlinear handling: being always shared, nonlinear vmas
1744 * never contain migration ptes. Decide what to do about this
1745 * limitation to linear when we need rmap_walk() on nonlinear.
1747 mutex_unlock(&mapping->i_mmap_mutex);
1748 return ret;
1751 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1752 struct vm_area_struct *, unsigned long, void *), void *arg)
1754 VM_BUG_ON(!PageLocked(page));
1756 if (unlikely(PageKsm(page)))
1757 return rmap_walk_ksm(page, rmap_one, arg);
1758 else if (PageAnon(page))
1759 return rmap_walk_anon(page, rmap_one, arg);
1760 else
1761 return rmap_walk_file(page, rmap_one, arg);
1763 #endif /* CONFIG_MIGRATION */
1765 #ifdef CONFIG_HUGETLB_PAGE
1767 * The following three functions are for anonymous (private mapped) hugepages.
1768 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1769 * and no lru code, because we handle hugepages differently from common pages.
1771 static void __hugepage_set_anon_rmap(struct page *page,
1772 struct vm_area_struct *vma, unsigned long address, int exclusive)
1774 struct anon_vma *anon_vma = vma->anon_vma;
1776 BUG_ON(!anon_vma);
1778 if (PageAnon(page))
1779 return;
1780 if (!exclusive)
1781 anon_vma = anon_vma->root;
1783 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1784 page->mapping = (struct address_space *) anon_vma;
1785 page->index = linear_page_index(vma, address);
1788 void hugepage_add_anon_rmap(struct page *page,
1789 struct vm_area_struct *vma, unsigned long address)
1791 struct anon_vma *anon_vma = vma->anon_vma;
1792 int first;
1794 BUG_ON(!PageLocked(page));
1795 BUG_ON(!anon_vma);
1796 /* address might be in next vma when migration races vma_adjust */
1797 first = atomic_inc_and_test(&page->_mapcount);
1798 if (first)
1799 __hugepage_set_anon_rmap(page, vma, address, 0);
1802 void hugepage_add_new_anon_rmap(struct page *page,
1803 struct vm_area_struct *vma, unsigned long address)
1805 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1806 atomic_set(&page->_mapcount, 0);
1807 __hugepage_set_anon_rmap(page, vma, address, 1);
1809 #endif /* CONFIG_HUGETLB_PAGE */