1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
33 * If a non-root user executes a setuid-root binary in
34 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
35 * However if fE is also set, then the intent is for only
36 * the file capabilities to be applied, and the setuid-root
37 * bit is left on either to change the uid (plausible) or
38 * to get full privilege on a kernel without file capabilities
39 * support. So in that case we do not raise capabilities.
41 * Warn if that happens, once per boot.
43 static void warn_setuid_and_fcaps_mixed(const char *fname
)
47 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
48 " effective capabilities. Therefore not raising all"
49 " capabilities.\n", fname
);
54 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
59 int cap_netlink_recv(struct sk_buff
*skb
, int cap
)
61 if (!cap_raised(current_cap(), cap
))
65 EXPORT_SYMBOL(cap_netlink_recv
);
68 * cap_capable - Determine whether a task has a particular effective capability
69 * @tsk: The task to query
70 * @cred: The credentials to use
71 * @ns: The user namespace in which we need the capability
72 * @cap: The capability to check for
73 * @audit: Whether to write an audit message or not
75 * Determine whether the nominated task has the specified capability amongst
76 * its effective set, returning 0 if it does, -ve if it does not.
78 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
79 * and has_capability() functions. That is, it has the reverse semantics:
80 * cap_has_capability() returns 0 when a task has a capability, but the
81 * kernel's capable() and has_capability() returns 1 for this case.
83 int cap_capable(struct task_struct
*tsk
, const struct cred
*cred
,
84 struct user_namespace
*targ_ns
, int cap
, int audit
)
87 /* The creator of the user namespace has all caps. */
88 if (targ_ns
!= &init_user_ns
&& targ_ns
->creator
== cred
->user
)
91 /* Do we have the necessary capabilities? */
92 if (targ_ns
== cred
->user
->user_ns
)
93 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
95 /* Have we tried all of the parent namespaces? */
96 if (targ_ns
== &init_user_ns
)
100 *If you have a capability in a parent user ns, then you have
101 * it over all children user namespaces as well.
103 targ_ns
= targ_ns
->creator
->user_ns
;
106 /* We never get here */
110 * cap_settime - Determine whether the current process may set the system clock
111 * @ts: The time to set
112 * @tz: The timezone to set
114 * Determine whether the current process may set the system clock and timezone
115 * information, returning 0 if permission granted, -ve if denied.
117 int cap_settime(const struct timespec
*ts
, const struct timezone
*tz
)
119 if (!capable(CAP_SYS_TIME
))
125 * cap_ptrace_access_check - Determine whether the current process may access
127 * @child: The process to be accessed
128 * @mode: The mode of attachment.
130 * If we are in the same or an ancestor user_ns and have all the target
131 * task's capabilities, then ptrace access is allowed.
132 * If we have the ptrace capability to the target user_ns, then ptrace
136 * Determine whether a process may access another, returning 0 if permission
137 * granted, -ve if denied.
139 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
142 const struct cred
*cred
, *child_cred
;
145 cred
= current_cred();
146 child_cred
= __task_cred(child
);
147 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
148 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
150 if (ns_capable(child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
159 * cap_ptrace_traceme - Determine whether another process may trace the current
160 * @parent: The task proposed to be the tracer
162 * If parent is in the same or an ancestor user_ns and has all current's
163 * capabilities, then ptrace access is allowed.
164 * If parent has the ptrace capability to current's user_ns, then ptrace
168 * Determine whether the nominated task is permitted to trace the current
169 * process, returning 0 if permission is granted, -ve if denied.
171 int cap_ptrace_traceme(struct task_struct
*parent
)
174 const struct cred
*cred
, *child_cred
;
177 cred
= __task_cred(parent
);
178 child_cred
= current_cred();
179 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
180 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
182 if (has_ns_capability(parent
, child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
191 * cap_capget - Retrieve a task's capability sets
192 * @target: The task from which to retrieve the capability sets
193 * @effective: The place to record the effective set
194 * @inheritable: The place to record the inheritable set
195 * @permitted: The place to record the permitted set
197 * This function retrieves the capabilities of the nominated task and returns
198 * them to the caller.
200 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
201 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
203 const struct cred
*cred
;
205 /* Derived from kernel/capability.c:sys_capget. */
207 cred
= __task_cred(target
);
208 *effective
= cred
->cap_effective
;
209 *inheritable
= cred
->cap_inheritable
;
210 *permitted
= cred
->cap_permitted
;
216 * Determine whether the inheritable capabilities are limited to the old
217 * permitted set. Returns 1 if they are limited, 0 if they are not.
219 static inline int cap_inh_is_capped(void)
222 /* they are so limited unless the current task has the CAP_SETPCAP
225 if (cap_capable(current
, current_cred(),
226 current_cred()->user
->user_ns
, CAP_SETPCAP
,
227 SECURITY_CAP_AUDIT
) == 0)
233 * cap_capset - Validate and apply proposed changes to current's capabilities
234 * @new: The proposed new credentials; alterations should be made here
235 * @old: The current task's current credentials
236 * @effective: A pointer to the proposed new effective capabilities set
237 * @inheritable: A pointer to the proposed new inheritable capabilities set
238 * @permitted: A pointer to the proposed new permitted capabilities set
240 * This function validates and applies a proposed mass change to the current
241 * process's capability sets. The changes are made to the proposed new
242 * credentials, and assuming no error, will be committed by the caller of LSM.
244 int cap_capset(struct cred
*new,
245 const struct cred
*old
,
246 const kernel_cap_t
*effective
,
247 const kernel_cap_t
*inheritable
,
248 const kernel_cap_t
*permitted
)
250 if (cap_inh_is_capped() &&
251 !cap_issubset(*inheritable
,
252 cap_combine(old
->cap_inheritable
,
253 old
->cap_permitted
)))
254 /* incapable of using this inheritable set */
257 if (!cap_issubset(*inheritable
,
258 cap_combine(old
->cap_inheritable
,
260 /* no new pI capabilities outside bounding set */
263 /* verify restrictions on target's new Permitted set */
264 if (!cap_issubset(*permitted
, old
->cap_permitted
))
267 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
268 if (!cap_issubset(*effective
, *permitted
))
271 new->cap_effective
= *effective
;
272 new->cap_inheritable
= *inheritable
;
273 new->cap_permitted
= *permitted
;
278 * Clear proposed capability sets for execve().
280 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
282 cap_clear(bprm
->cred
->cap_permitted
);
283 bprm
->cap_effective
= false;
287 * cap_inode_need_killpriv - Determine if inode change affects privileges
288 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
290 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
291 * affects the security markings on that inode, and if it is, should
292 * inode_killpriv() be invoked or the change rejected?
294 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
295 * -ve to deny the change.
297 int cap_inode_need_killpriv(struct dentry
*dentry
)
299 struct inode
*inode
= dentry
->d_inode
;
302 if (!inode
->i_op
->getxattr
)
305 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
312 * cap_inode_killpriv - Erase the security markings on an inode
313 * @dentry: The inode/dentry to alter
315 * Erase the privilege-enhancing security markings on an inode.
317 * Returns 0 if successful, -ve on error.
319 int cap_inode_killpriv(struct dentry
*dentry
)
321 struct inode
*inode
= dentry
->d_inode
;
323 if (!inode
->i_op
->removexattr
)
326 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
330 * Calculate the new process capability sets from the capability sets attached
333 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
334 struct linux_binprm
*bprm
,
338 struct cred
*new = bprm
->cred
;
342 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
345 if (caps
->magic_etc
& VFS_CAP_REVISION_MASK
)
348 CAP_FOR_EACH_U32(i
) {
349 __u32 permitted
= caps
->permitted
.cap
[i
];
350 __u32 inheritable
= caps
->inheritable
.cap
[i
];
353 * pP' = (X & fP) | (pI & fI)
355 new->cap_permitted
.cap
[i
] =
356 (new->cap_bset
.cap
[i
] & permitted
) |
357 (new->cap_inheritable
.cap
[i
] & inheritable
);
359 if (permitted
& ~new->cap_permitted
.cap
[i
])
360 /* insufficient to execute correctly */
365 * For legacy apps, with no internal support for recognizing they
366 * do not have enough capabilities, we return an error if they are
367 * missing some "forced" (aka file-permitted) capabilities.
369 return *effective
? ret
: 0;
373 * Extract the on-exec-apply capability sets for an executable file.
375 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
377 struct inode
*inode
= dentry
->d_inode
;
381 struct vfs_cap_data caps
;
383 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
385 if (!inode
|| !inode
->i_op
->getxattr
)
388 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, XATTR_NAME_CAPS
, &caps
,
390 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
391 /* no data, that's ok */
396 if (size
< sizeof(magic_etc
))
399 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
401 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
402 case VFS_CAP_REVISION_1
:
403 if (size
!= XATTR_CAPS_SZ_1
)
405 tocopy
= VFS_CAP_U32_1
;
407 case VFS_CAP_REVISION_2
:
408 if (size
!= XATTR_CAPS_SZ_2
)
410 tocopy
= VFS_CAP_U32_2
;
416 CAP_FOR_EACH_U32(i
) {
419 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
420 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
427 * Attempt to get the on-exec apply capability sets for an executable file from
428 * its xattrs and, if present, apply them to the proposed credentials being
429 * constructed by execve().
431 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
, bool *has_cap
)
433 struct dentry
*dentry
;
435 struct cpu_vfs_cap_data vcaps
;
437 bprm_clear_caps(bprm
);
439 if (!file_caps_enabled
)
442 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)
445 dentry
= dget(bprm
->file
->f_dentry
);
447 rc
= get_vfs_caps_from_disk(dentry
, &vcaps
);
450 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
451 __func__
, rc
, bprm
->filename
);
452 else if (rc
== -ENODATA
)
457 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
, has_cap
);
459 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
460 __func__
, rc
, bprm
->filename
);
465 bprm_clear_caps(bprm
);
471 * cap_bprm_set_creds - Set up the proposed credentials for execve().
472 * @bprm: The execution parameters, including the proposed creds
474 * Set up the proposed credentials for a new execution context being
475 * constructed by execve(). The proposed creds in @bprm->cred is altered,
476 * which won't take effect immediately. Returns 0 if successful, -ve on error.
478 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
480 const struct cred
*old
= current_cred();
481 struct cred
*new = bprm
->cred
;
482 bool effective
, has_cap
= false;
486 ret
= get_file_caps(bprm
, &effective
, &has_cap
);
490 if (!issecure(SECURE_NOROOT
)) {
492 * If the legacy file capability is set, then don't set privs
493 * for a setuid root binary run by a non-root user. Do set it
494 * for a root user just to cause least surprise to an admin.
496 if (has_cap
&& new->uid
!= 0 && new->euid
== 0) {
497 warn_setuid_and_fcaps_mixed(bprm
->filename
);
501 * To support inheritance of root-permissions and suid-root
502 * executables under compatibility mode, we override the
503 * capability sets for the file.
505 * If only the real uid is 0, we do not set the effective bit.
507 if (new->euid
== 0 || new->uid
== 0) {
508 /* pP' = (cap_bset & ~0) | (pI & ~0) */
509 new->cap_permitted
= cap_combine(old
->cap_bset
,
510 old
->cap_inheritable
);
517 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
518 * credentials unless they have the appropriate permit
520 if ((new->euid
!= old
->uid
||
521 new->egid
!= old
->gid
||
522 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
523 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
524 /* downgrade; they get no more than they had, and maybe less */
525 if (!capable(CAP_SETUID
)) {
526 new->euid
= new->uid
;
527 new->egid
= new->gid
;
529 new->cap_permitted
= cap_intersect(new->cap_permitted
,
533 new->suid
= new->fsuid
= new->euid
;
534 new->sgid
= new->fsgid
= new->egid
;
537 new->cap_effective
= new->cap_permitted
;
539 cap_clear(new->cap_effective
);
540 bprm
->cap_effective
= effective
;
543 * Audit candidate if current->cap_effective is set
545 * We do not bother to audit if 3 things are true:
546 * 1) cap_effective has all caps
548 * 3) root is supposed to have all caps (SECURE_NOROOT)
549 * Since this is just a normal root execing a process.
551 * Number 1 above might fail if you don't have a full bset, but I think
552 * that is interesting information to audit.
554 if (!cap_isclear(new->cap_effective
)) {
555 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
556 new->euid
!= 0 || new->uid
!= 0 ||
557 issecure(SECURE_NOROOT
)) {
558 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
564 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
569 * cap_bprm_secureexec - Determine whether a secure execution is required
570 * @bprm: The execution parameters
572 * Determine whether a secure execution is required, return 1 if it is, and 0
575 * The credentials have been committed by this point, and so are no longer
576 * available through @bprm->cred.
578 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
580 const struct cred
*cred
= current_cred();
582 if (cred
->uid
!= 0) {
583 if (bprm
->cap_effective
)
585 if (!cap_isclear(cred
->cap_permitted
))
589 return (cred
->euid
!= cred
->uid
||
590 cred
->egid
!= cred
->gid
);
594 * cap_inode_setxattr - Determine whether an xattr may be altered
595 * @dentry: The inode/dentry being altered
596 * @name: The name of the xattr to be changed
597 * @value: The value that the xattr will be changed to
598 * @size: The size of value
599 * @flags: The replacement flag
601 * Determine whether an xattr may be altered or set on an inode, returning 0 if
602 * permission is granted, -ve if denied.
604 * This is used to make sure security xattrs don't get updated or set by those
605 * who aren't privileged to do so.
607 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
608 const void *value
, size_t size
, int flags
)
610 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
611 if (!capable(CAP_SETFCAP
))
616 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
617 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
618 !capable(CAP_SYS_ADMIN
))
624 * cap_inode_removexattr - Determine whether an xattr may be removed
625 * @dentry: The inode/dentry being altered
626 * @name: The name of the xattr to be changed
628 * Determine whether an xattr may be removed from an inode, returning 0 if
629 * permission is granted, -ve if denied.
631 * This is used to make sure security xattrs don't get removed by those who
632 * aren't privileged to remove them.
634 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
636 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
637 if (!capable(CAP_SETFCAP
))
642 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
643 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
644 !capable(CAP_SYS_ADMIN
))
650 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
651 * a process after a call to setuid, setreuid, or setresuid.
653 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
654 * {r,e,s}uid != 0, the permitted and effective capabilities are
657 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
658 * capabilities of the process are cleared.
660 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
661 * capabilities are set to the permitted capabilities.
663 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
668 * cevans - New behaviour, Oct '99
669 * A process may, via prctl(), elect to keep its capabilities when it
670 * calls setuid() and switches away from uid==0. Both permitted and
671 * effective sets will be retained.
672 * Without this change, it was impossible for a daemon to drop only some
673 * of its privilege. The call to setuid(!=0) would drop all privileges!
674 * Keeping uid 0 is not an option because uid 0 owns too many vital
676 * Thanks to Olaf Kirch and Peter Benie for spotting this.
678 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
680 if ((old
->uid
== 0 || old
->euid
== 0 || old
->suid
== 0) &&
681 (new->uid
!= 0 && new->euid
!= 0 && new->suid
!= 0) &&
682 !issecure(SECURE_KEEP_CAPS
)) {
683 cap_clear(new->cap_permitted
);
684 cap_clear(new->cap_effective
);
686 if (old
->euid
== 0 && new->euid
!= 0)
687 cap_clear(new->cap_effective
);
688 if (old
->euid
!= 0 && new->euid
== 0)
689 new->cap_effective
= new->cap_permitted
;
693 * cap_task_fix_setuid - Fix up the results of setuid() call
694 * @new: The proposed credentials
695 * @old: The current task's current credentials
696 * @flags: Indications of what has changed
698 * Fix up the results of setuid() call before the credential changes are
699 * actually applied, returning 0 to grant the changes, -ve to deny them.
701 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
707 /* juggle the capabilities to follow [RES]UID changes unless
708 * otherwise suppressed */
709 if (!issecure(SECURE_NO_SETUID_FIXUP
))
710 cap_emulate_setxuid(new, old
);
714 /* juggle the capabilties to follow FSUID changes, unless
715 * otherwise suppressed
717 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
718 * if not, we might be a bit too harsh here.
720 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
721 if (old
->fsuid
== 0 && new->fsuid
!= 0)
723 cap_drop_fs_set(new->cap_effective
);
725 if (old
->fsuid
!= 0 && new->fsuid
== 0)
727 cap_raise_fs_set(new->cap_effective
,
740 * Rationale: code calling task_setscheduler, task_setioprio, and
741 * task_setnice, assumes that
742 * . if capable(cap_sys_nice), then those actions should be allowed
743 * . if not capable(cap_sys_nice), but acting on your own processes,
744 * then those actions should be allowed
745 * This is insufficient now since you can call code without suid, but
746 * yet with increased caps.
747 * So we check for increased caps on the target process.
749 static int cap_safe_nice(struct task_struct
*p
)
754 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
755 current_cred()->cap_permitted
);
758 if (!is_subset
&& !capable(CAP_SYS_NICE
))
764 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
765 * @p: The task to affect
767 * Detemine if the requested scheduler policy change is permitted for the
768 * specified task, returning 0 if permission is granted, -ve if denied.
770 int cap_task_setscheduler(struct task_struct
*p
)
772 return cap_safe_nice(p
);
776 * cap_task_ioprio - Detemine if I/O priority change is permitted
777 * @p: The task to affect
778 * @ioprio: The I/O priority to set
780 * Detemine if the requested I/O priority change is permitted for the specified
781 * task, returning 0 if permission is granted, -ve if denied.
783 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
785 return cap_safe_nice(p
);
789 * cap_task_ioprio - Detemine if task priority change is permitted
790 * @p: The task to affect
791 * @nice: The nice value to set
793 * Detemine if the requested task priority change is permitted for the
794 * specified task, returning 0 if permission is granted, -ve if denied.
796 int cap_task_setnice(struct task_struct
*p
, int nice
)
798 return cap_safe_nice(p
);
802 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
803 * the current task's bounding set. Returns 0 on success, -ve on error.
805 static long cap_prctl_drop(struct cred
*new, unsigned long cap
)
807 if (!capable(CAP_SETPCAP
))
812 cap_lower(new->cap_bset
, cap
);
817 * cap_task_prctl - Implement process control functions for this security module
818 * @option: The process control function requested
819 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
821 * Allow process control functions (sys_prctl()) to alter capabilities; may
822 * also deny access to other functions not otherwise implemented here.
824 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
825 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
826 * modules will consider performing the function.
828 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
829 unsigned long arg4
, unsigned long arg5
)
834 new = prepare_creds();
839 case PR_CAPBSET_READ
:
841 if (!cap_valid(arg2
))
843 error
= !!cap_raised(new->cap_bset
, arg2
);
846 case PR_CAPBSET_DROP
:
847 error
= cap_prctl_drop(new, arg2
);
853 * The next four prctl's remain to assist with transitioning a
854 * system from legacy UID=0 based privilege (when filesystem
855 * capabilities are not in use) to a system using filesystem
856 * capabilities only - as the POSIX.1e draft intended.
860 * PR_SET_SECUREBITS =
861 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
862 * | issecure_mask(SECURE_NOROOT)
863 * | issecure_mask(SECURE_NOROOT_LOCKED)
864 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
865 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
867 * will ensure that the current process and all of its
868 * children will be locked into a pure
869 * capability-based-privilege environment.
871 case PR_SET_SECUREBITS
:
873 if ((((new->securebits
& SECURE_ALL_LOCKS
) >> 1)
874 & (new->securebits
^ arg2
)) /*[1]*/
875 || ((new->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
876 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
877 || (cap_capable(current
, current_cred(),
878 current_cred()->user
->user_ns
, CAP_SETPCAP
,
879 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
881 * [1] no changing of bits that are locked
882 * [2] no unlocking of locks
883 * [3] no setting of unsupported bits
884 * [4] doing anything requires privilege (go read about
885 * the "sendmail capabilities bug")
888 /* cannot change a locked bit */
890 new->securebits
= arg2
;
893 case PR_GET_SECUREBITS
:
894 error
= new->securebits
;
897 case PR_GET_KEEPCAPS
:
898 if (issecure(SECURE_KEEP_CAPS
))
902 case PR_SET_KEEPCAPS
:
904 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
907 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
910 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
912 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
916 /* No functionality available - continue with default */
921 /* Functionality provided */
923 return commit_creds(new);
932 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
933 * @mm: The VM space in which the new mapping is to be made
934 * @pages: The size of the mapping
936 * Determine whether the allocation of a new virtual mapping by the current
937 * task is permitted, returning 0 if permission is granted, -ve if not.
939 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
941 int cap_sys_admin
= 0;
943 if (cap_capable(current
, current_cred(), &init_user_ns
, CAP_SYS_ADMIN
,
944 SECURITY_CAP_NOAUDIT
) == 0)
946 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);
950 * cap_file_mmap - check if able to map given addr
955 * @addr: address attempting to be mapped
958 * If the process is attempting to map memory below dac_mmap_min_addr they need
959 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
960 * capability security module. Returns 0 if this mapping should be allowed
963 int cap_file_mmap(struct file
*file
, unsigned long reqprot
,
964 unsigned long prot
, unsigned long flags
,
965 unsigned long addr
, unsigned long addr_only
)
969 if (addr
< dac_mmap_min_addr
) {
970 ret
= cap_capable(current
, current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
972 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
974 current
->flags
|= PF_SUPERPRIV
;