[PKTGEN]: don't use __constant_htonl()
[linux-2.6/cjktty.git] / net / ipv4 / tcp_input.c
blobd894bbcc1d240e006a4a1f3713bb0e11760d8548
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
111 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 /* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
122 static void tcp_measure_rcv_mss(struct sock *sk,
123 const struct sk_buff *skb)
125 struct inet_connection_sock *icsk = inet_csk(sk);
126 const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 unsigned int len;
129 icsk->icsk_ack.last_seg_size = 0;
131 /* skb->len may jitter because of SACKs, even if peer
132 * sends good full-sized frames.
134 len = skb_shinfo(skb)->gso_size ?: skb->len;
135 if (len >= icsk->icsk_ack.rcv_mss) {
136 icsk->icsk_ack.rcv_mss = len;
137 } else {
138 /* Otherwise, we make more careful check taking into account,
139 * that SACKs block is variable.
141 * "len" is invariant segment length, including TCP header.
143 len += skb->data - skb->h.raw;
144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 /* If PSH is not set, packet should be
146 * full sized, provided peer TCP is not badly broken.
147 * This observation (if it is correct 8)) allows
148 * to handle super-low mtu links fairly.
150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
152 /* Subtract also invariant (if peer is RFC compliant),
153 * tcp header plus fixed timestamp option length.
154 * Resulting "len" is MSS free of SACK jitter.
156 len -= tcp_sk(sk)->tcp_header_len;
157 icsk->icsk_ack.last_seg_size = len;
158 if (len == lss) {
159 icsk->icsk_ack.rcv_mss = len;
160 return;
163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
169 static void tcp_incr_quickack(struct sock *sk)
171 struct inet_connection_sock *icsk = inet_csk(sk);
172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174 if (quickacks==0)
175 quickacks=2;
176 if (quickacks > icsk->icsk_ack.quick)
177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
180 void tcp_enter_quickack_mode(struct sock *sk)
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 tcp_incr_quickack(sk);
184 icsk->icsk_ack.pingpong = 0;
185 icsk->icsk_ack.ato = TCP_ATO_MIN;
188 /* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 const struct inet_connection_sock *icsk = inet_csk(sk);
195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
198 /* Buffer size and advertised window tuning.
200 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
203 static void tcp_fixup_sndbuf(struct sock *sk)
205 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206 sizeof(struct sk_buff);
208 if (sk->sk_sndbuf < 3 * sndmem)
209 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
212 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
214 * All tcp_full_space() is split to two parts: "network" buffer, allocated
215 * forward and advertised in receiver window (tp->rcv_wnd) and
216 * "application buffer", required to isolate scheduling/application
217 * latencies from network.
218 * window_clamp is maximal advertised window. It can be less than
219 * tcp_full_space(), in this case tcp_full_space() - window_clamp
220 * is reserved for "application" buffer. The less window_clamp is
221 * the smoother our behaviour from viewpoint of network, but the lower
222 * throughput and the higher sensitivity of the connection to losses. 8)
224 * rcv_ssthresh is more strict window_clamp used at "slow start"
225 * phase to predict further behaviour of this connection.
226 * It is used for two goals:
227 * - to enforce header prediction at sender, even when application
228 * requires some significant "application buffer". It is check #1.
229 * - to prevent pruning of receive queue because of misprediction
230 * of receiver window. Check #2.
232 * The scheme does not work when sender sends good segments opening
233 * window and then starts to feed us spaghetti. But it should work
234 * in common situations. Otherwise, we have to rely on queue collapsing.
237 /* Slow part of check#2. */
238 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
239 const struct sk_buff *skb)
241 /* Optimize this! */
242 int truesize = tcp_win_from_space(skb->truesize)/2;
243 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
245 while (tp->rcv_ssthresh <= window) {
246 if (truesize <= skb->len)
247 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
249 truesize >>= 1;
250 window >>= 1;
252 return 0;
255 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
256 struct sk_buff *skb)
258 /* Check #1 */
259 if (tp->rcv_ssthresh < tp->window_clamp &&
260 (int)tp->rcv_ssthresh < tcp_space(sk) &&
261 !tcp_memory_pressure) {
262 int incr;
264 /* Check #2. Increase window, if skb with such overhead
265 * will fit to rcvbuf in future.
267 if (tcp_win_from_space(skb->truesize) <= skb->len)
268 incr = 2*tp->advmss;
269 else
270 incr = __tcp_grow_window(sk, tp, skb);
272 if (incr) {
273 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
274 inet_csk(sk)->icsk_ack.quick |= 1;
279 /* 3. Tuning rcvbuf, when connection enters established state. */
281 static void tcp_fixup_rcvbuf(struct sock *sk)
283 struct tcp_sock *tp = tcp_sk(sk);
284 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
286 /* Try to select rcvbuf so that 4 mss-sized segments
287 * will fit to window and corresponding skbs will fit to our rcvbuf.
288 * (was 3; 4 is minimum to allow fast retransmit to work.)
290 while (tcp_win_from_space(rcvmem) < tp->advmss)
291 rcvmem += 128;
292 if (sk->sk_rcvbuf < 4 * rcvmem)
293 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
296 /* 4. Try to fixup all. It is made immediately after connection enters
297 * established state.
299 static void tcp_init_buffer_space(struct sock *sk)
301 struct tcp_sock *tp = tcp_sk(sk);
302 int maxwin;
304 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
305 tcp_fixup_rcvbuf(sk);
306 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
307 tcp_fixup_sndbuf(sk);
309 tp->rcvq_space.space = tp->rcv_wnd;
311 maxwin = tcp_full_space(sk);
313 if (tp->window_clamp >= maxwin) {
314 tp->window_clamp = maxwin;
316 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
317 tp->window_clamp = max(maxwin -
318 (maxwin >> sysctl_tcp_app_win),
319 4 * tp->advmss);
322 /* Force reservation of one segment. */
323 if (sysctl_tcp_app_win &&
324 tp->window_clamp > 2 * tp->advmss &&
325 tp->window_clamp + tp->advmss > maxwin)
326 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
328 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
329 tp->snd_cwnd_stamp = tcp_time_stamp;
332 /* 5. Recalculate window clamp after socket hit its memory bounds. */
333 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
335 struct inet_connection_sock *icsk = inet_csk(sk);
337 icsk->icsk_ack.quick = 0;
339 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
340 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
341 !tcp_memory_pressure &&
342 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
343 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
344 sysctl_tcp_rmem[2]);
346 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
347 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
351 /* Initialize RCV_MSS value.
352 * RCV_MSS is an our guess about MSS used by the peer.
353 * We haven't any direct information about the MSS.
354 * It's better to underestimate the RCV_MSS rather than overestimate.
355 * Overestimations make us ACKing less frequently than needed.
356 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
358 void tcp_initialize_rcv_mss(struct sock *sk)
360 struct tcp_sock *tp = tcp_sk(sk);
361 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
363 hint = min(hint, tp->rcv_wnd/2);
364 hint = min(hint, TCP_MIN_RCVMSS);
365 hint = max(hint, TCP_MIN_MSS);
367 inet_csk(sk)->icsk_ack.rcv_mss = hint;
370 /* Receiver "autotuning" code.
372 * The algorithm for RTT estimation w/o timestamps is based on
373 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
374 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
376 * More detail on this code can be found at
377 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
378 * though this reference is out of date. A new paper
379 * is pending.
381 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
383 u32 new_sample = tp->rcv_rtt_est.rtt;
384 long m = sample;
386 if (m == 0)
387 m = 1;
389 if (new_sample != 0) {
390 /* If we sample in larger samples in the non-timestamp
391 * case, we could grossly overestimate the RTT especially
392 * with chatty applications or bulk transfer apps which
393 * are stalled on filesystem I/O.
395 * Also, since we are only going for a minimum in the
396 * non-timestamp case, we do not smooth things out
397 * else with timestamps disabled convergence takes too
398 * long.
400 if (!win_dep) {
401 m -= (new_sample >> 3);
402 new_sample += m;
403 } else if (m < new_sample)
404 new_sample = m << 3;
405 } else {
406 /* No previous measure. */
407 new_sample = m << 3;
410 if (tp->rcv_rtt_est.rtt != new_sample)
411 tp->rcv_rtt_est.rtt = new_sample;
414 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
416 if (tp->rcv_rtt_est.time == 0)
417 goto new_measure;
418 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
419 return;
420 tcp_rcv_rtt_update(tp,
421 jiffies - tp->rcv_rtt_est.time,
424 new_measure:
425 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
426 tp->rcv_rtt_est.time = tcp_time_stamp;
429 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
431 struct tcp_sock *tp = tcp_sk(sk);
432 if (tp->rx_opt.rcv_tsecr &&
433 (TCP_SKB_CB(skb)->end_seq -
434 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
435 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
439 * This function should be called every time data is copied to user space.
440 * It calculates the appropriate TCP receive buffer space.
442 void tcp_rcv_space_adjust(struct sock *sk)
444 struct tcp_sock *tp = tcp_sk(sk);
445 int time;
446 int space;
448 if (tp->rcvq_space.time == 0)
449 goto new_measure;
451 time = tcp_time_stamp - tp->rcvq_space.time;
452 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
453 tp->rcv_rtt_est.rtt == 0)
454 return;
456 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
458 space = max(tp->rcvq_space.space, space);
460 if (tp->rcvq_space.space != space) {
461 int rcvmem;
463 tp->rcvq_space.space = space;
465 if (sysctl_tcp_moderate_rcvbuf &&
466 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
467 int new_clamp = space;
469 /* Receive space grows, normalize in order to
470 * take into account packet headers and sk_buff
471 * structure overhead.
473 space /= tp->advmss;
474 if (!space)
475 space = 1;
476 rcvmem = (tp->advmss + MAX_TCP_HEADER +
477 16 + sizeof(struct sk_buff));
478 while (tcp_win_from_space(rcvmem) < tp->advmss)
479 rcvmem += 128;
480 space *= rcvmem;
481 space = min(space, sysctl_tcp_rmem[2]);
482 if (space > sk->sk_rcvbuf) {
483 sk->sk_rcvbuf = space;
485 /* Make the window clamp follow along. */
486 tp->window_clamp = new_clamp;
491 new_measure:
492 tp->rcvq_space.seq = tp->copied_seq;
493 tp->rcvq_space.time = tcp_time_stamp;
496 /* There is something which you must keep in mind when you analyze the
497 * behavior of the tp->ato delayed ack timeout interval. When a
498 * connection starts up, we want to ack as quickly as possible. The
499 * problem is that "good" TCP's do slow start at the beginning of data
500 * transmission. The means that until we send the first few ACK's the
501 * sender will sit on his end and only queue most of his data, because
502 * he can only send snd_cwnd unacked packets at any given time. For
503 * each ACK we send, he increments snd_cwnd and transmits more of his
504 * queue. -DaveM
506 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
508 struct inet_connection_sock *icsk = inet_csk(sk);
509 u32 now;
511 inet_csk_schedule_ack(sk);
513 tcp_measure_rcv_mss(sk, skb);
515 tcp_rcv_rtt_measure(tp);
517 now = tcp_time_stamp;
519 if (!icsk->icsk_ack.ato) {
520 /* The _first_ data packet received, initialize
521 * delayed ACK engine.
523 tcp_incr_quickack(sk);
524 icsk->icsk_ack.ato = TCP_ATO_MIN;
525 } else {
526 int m = now - icsk->icsk_ack.lrcvtime;
528 if (m <= TCP_ATO_MIN/2) {
529 /* The fastest case is the first. */
530 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
531 } else if (m < icsk->icsk_ack.ato) {
532 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
533 if (icsk->icsk_ack.ato > icsk->icsk_rto)
534 icsk->icsk_ack.ato = icsk->icsk_rto;
535 } else if (m > icsk->icsk_rto) {
536 /* Too long gap. Apparently sender failed to
537 * restart window, so that we send ACKs quickly.
539 tcp_incr_quickack(sk);
540 sk_stream_mem_reclaim(sk);
543 icsk->icsk_ack.lrcvtime = now;
545 TCP_ECN_check_ce(tp, skb);
547 if (skb->len >= 128)
548 tcp_grow_window(sk, tp, skb);
551 /* Called to compute a smoothed rtt estimate. The data fed to this
552 * routine either comes from timestamps, or from segments that were
553 * known _not_ to have been retransmitted [see Karn/Partridge
554 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
555 * piece by Van Jacobson.
556 * NOTE: the next three routines used to be one big routine.
557 * To save cycles in the RFC 1323 implementation it was better to break
558 * it up into three procedures. -- erics
560 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
562 struct tcp_sock *tp = tcp_sk(sk);
563 long m = mrtt; /* RTT */
565 /* The following amusing code comes from Jacobson's
566 * article in SIGCOMM '88. Note that rtt and mdev
567 * are scaled versions of rtt and mean deviation.
568 * This is designed to be as fast as possible
569 * m stands for "measurement".
571 * On a 1990 paper the rto value is changed to:
572 * RTO = rtt + 4 * mdev
574 * Funny. This algorithm seems to be very broken.
575 * These formulae increase RTO, when it should be decreased, increase
576 * too slowly, when it should be increased quickly, decrease too quickly
577 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
578 * does not matter how to _calculate_ it. Seems, it was trap
579 * that VJ failed to avoid. 8)
581 if(m == 0)
582 m = 1;
583 if (tp->srtt != 0) {
584 m -= (tp->srtt >> 3); /* m is now error in rtt est */
585 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
586 if (m < 0) {
587 m = -m; /* m is now abs(error) */
588 m -= (tp->mdev >> 2); /* similar update on mdev */
589 /* This is similar to one of Eifel findings.
590 * Eifel blocks mdev updates when rtt decreases.
591 * This solution is a bit different: we use finer gain
592 * for mdev in this case (alpha*beta).
593 * Like Eifel it also prevents growth of rto,
594 * but also it limits too fast rto decreases,
595 * happening in pure Eifel.
597 if (m > 0)
598 m >>= 3;
599 } else {
600 m -= (tp->mdev >> 2); /* similar update on mdev */
602 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
603 if (tp->mdev > tp->mdev_max) {
604 tp->mdev_max = tp->mdev;
605 if (tp->mdev_max > tp->rttvar)
606 tp->rttvar = tp->mdev_max;
608 if (after(tp->snd_una, tp->rtt_seq)) {
609 if (tp->mdev_max < tp->rttvar)
610 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
611 tp->rtt_seq = tp->snd_nxt;
612 tp->mdev_max = TCP_RTO_MIN;
614 } else {
615 /* no previous measure. */
616 tp->srtt = m<<3; /* take the measured time to be rtt */
617 tp->mdev = m<<1; /* make sure rto = 3*rtt */
618 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
619 tp->rtt_seq = tp->snd_nxt;
623 /* Calculate rto without backoff. This is the second half of Van Jacobson's
624 * routine referred to above.
626 static inline void tcp_set_rto(struct sock *sk)
628 const struct tcp_sock *tp = tcp_sk(sk);
629 /* Old crap is replaced with new one. 8)
631 * More seriously:
632 * 1. If rtt variance happened to be less 50msec, it is hallucination.
633 * It cannot be less due to utterly erratic ACK generation made
634 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
635 * to do with delayed acks, because at cwnd>2 true delack timeout
636 * is invisible. Actually, Linux-2.4 also generates erratic
637 * ACKs in some circumstances.
639 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
641 /* 2. Fixups made earlier cannot be right.
642 * If we do not estimate RTO correctly without them,
643 * all the algo is pure shit and should be replaced
644 * with correct one. It is exactly, which we pretend to do.
648 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
649 * guarantees that rto is higher.
651 static inline void tcp_bound_rto(struct sock *sk)
653 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
654 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
657 /* Save metrics learned by this TCP session.
658 This function is called only, when TCP finishes successfully
659 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
661 void tcp_update_metrics(struct sock *sk)
663 struct tcp_sock *tp = tcp_sk(sk);
664 struct dst_entry *dst = __sk_dst_get(sk);
666 if (sysctl_tcp_nometrics_save)
667 return;
669 dst_confirm(dst);
671 if (dst && (dst->flags&DST_HOST)) {
672 const struct inet_connection_sock *icsk = inet_csk(sk);
673 int m;
675 if (icsk->icsk_backoff || !tp->srtt) {
676 /* This session failed to estimate rtt. Why?
677 * Probably, no packets returned in time.
678 * Reset our results.
680 if (!(dst_metric_locked(dst, RTAX_RTT)))
681 dst->metrics[RTAX_RTT-1] = 0;
682 return;
685 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
687 /* If newly calculated rtt larger than stored one,
688 * store new one. Otherwise, use EWMA. Remember,
689 * rtt overestimation is always better than underestimation.
691 if (!(dst_metric_locked(dst, RTAX_RTT))) {
692 if (m <= 0)
693 dst->metrics[RTAX_RTT-1] = tp->srtt;
694 else
695 dst->metrics[RTAX_RTT-1] -= (m>>3);
698 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
699 if (m < 0)
700 m = -m;
702 /* Scale deviation to rttvar fixed point */
703 m >>= 1;
704 if (m < tp->mdev)
705 m = tp->mdev;
707 if (m >= dst_metric(dst, RTAX_RTTVAR))
708 dst->metrics[RTAX_RTTVAR-1] = m;
709 else
710 dst->metrics[RTAX_RTTVAR-1] -=
711 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
714 if (tp->snd_ssthresh >= 0xFFFF) {
715 /* Slow start still did not finish. */
716 if (dst_metric(dst, RTAX_SSTHRESH) &&
717 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
718 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
719 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
720 if (!dst_metric_locked(dst, RTAX_CWND) &&
721 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
722 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
723 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
724 icsk->icsk_ca_state == TCP_CA_Open) {
725 /* Cong. avoidance phase, cwnd is reliable. */
726 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
727 dst->metrics[RTAX_SSTHRESH-1] =
728 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
729 if (!dst_metric_locked(dst, RTAX_CWND))
730 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
731 } else {
732 /* Else slow start did not finish, cwnd is non-sense,
733 ssthresh may be also invalid.
735 if (!dst_metric_locked(dst, RTAX_CWND))
736 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
737 if (dst->metrics[RTAX_SSTHRESH-1] &&
738 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
739 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
740 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
743 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
744 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
745 tp->reordering != sysctl_tcp_reordering)
746 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
751 /* Numbers are taken from RFC2414. */
752 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
754 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
756 if (!cwnd) {
757 if (tp->mss_cache > 1460)
758 cwnd = 2;
759 else
760 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
762 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
765 /* Set slow start threshold and cwnd not falling to slow start */
766 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
768 struct tcp_sock *tp = tcp_sk(sk);
769 const struct inet_connection_sock *icsk = inet_csk(sk);
771 tp->prior_ssthresh = 0;
772 tp->bytes_acked = 0;
773 if (icsk->icsk_ca_state < TCP_CA_CWR) {
774 tp->undo_marker = 0;
775 if (set_ssthresh)
776 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
777 tp->snd_cwnd = min(tp->snd_cwnd,
778 tcp_packets_in_flight(tp) + 1U);
779 tp->snd_cwnd_cnt = 0;
780 tp->high_seq = tp->snd_nxt;
781 tp->snd_cwnd_stamp = tcp_time_stamp;
782 TCP_ECN_queue_cwr(tp);
784 tcp_set_ca_state(sk, TCP_CA_CWR);
788 /* Initialize metrics on socket. */
790 static void tcp_init_metrics(struct sock *sk)
792 struct tcp_sock *tp = tcp_sk(sk);
793 struct dst_entry *dst = __sk_dst_get(sk);
795 if (dst == NULL)
796 goto reset;
798 dst_confirm(dst);
800 if (dst_metric_locked(dst, RTAX_CWND))
801 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
802 if (dst_metric(dst, RTAX_SSTHRESH)) {
803 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
804 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
805 tp->snd_ssthresh = tp->snd_cwnd_clamp;
807 if (dst_metric(dst, RTAX_REORDERING) &&
808 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
809 tp->rx_opt.sack_ok &= ~2;
810 tp->reordering = dst_metric(dst, RTAX_REORDERING);
813 if (dst_metric(dst, RTAX_RTT) == 0)
814 goto reset;
816 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
817 goto reset;
819 /* Initial rtt is determined from SYN,SYN-ACK.
820 * The segment is small and rtt may appear much
821 * less than real one. Use per-dst memory
822 * to make it more realistic.
824 * A bit of theory. RTT is time passed after "normal" sized packet
825 * is sent until it is ACKed. In normal circumstances sending small
826 * packets force peer to delay ACKs and calculation is correct too.
827 * The algorithm is adaptive and, provided we follow specs, it
828 * NEVER underestimate RTT. BUT! If peer tries to make some clever
829 * tricks sort of "quick acks" for time long enough to decrease RTT
830 * to low value, and then abruptly stops to do it and starts to delay
831 * ACKs, wait for troubles.
833 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
834 tp->srtt = dst_metric(dst, RTAX_RTT);
835 tp->rtt_seq = tp->snd_nxt;
837 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
838 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
839 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
841 tcp_set_rto(sk);
842 tcp_bound_rto(sk);
843 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
844 goto reset;
845 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
846 tp->snd_cwnd_stamp = tcp_time_stamp;
847 return;
849 reset:
850 /* Play conservative. If timestamps are not
851 * supported, TCP will fail to recalculate correct
852 * rtt, if initial rto is too small. FORGET ALL AND RESET!
854 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
855 tp->srtt = 0;
856 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
857 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
861 static void tcp_update_reordering(struct sock *sk, const int metric,
862 const int ts)
864 struct tcp_sock *tp = tcp_sk(sk);
865 if (metric > tp->reordering) {
866 tp->reordering = min(TCP_MAX_REORDERING, metric);
868 /* This exciting event is worth to be remembered. 8) */
869 if (ts)
870 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
871 else if (IsReno(tp))
872 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
873 else if (IsFack(tp))
874 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
875 else
876 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
877 #if FASTRETRANS_DEBUG > 1
878 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
879 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
880 tp->reordering,
881 tp->fackets_out,
882 tp->sacked_out,
883 tp->undo_marker ? tp->undo_retrans : 0);
884 #endif
885 /* Disable FACK yet. */
886 tp->rx_opt.sack_ok &= ~2;
890 /* This procedure tags the retransmission queue when SACKs arrive.
892 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
893 * Packets in queue with these bits set are counted in variables
894 * sacked_out, retrans_out and lost_out, correspondingly.
896 * Valid combinations are:
897 * Tag InFlight Description
898 * 0 1 - orig segment is in flight.
899 * S 0 - nothing flies, orig reached receiver.
900 * L 0 - nothing flies, orig lost by net.
901 * R 2 - both orig and retransmit are in flight.
902 * L|R 1 - orig is lost, retransmit is in flight.
903 * S|R 1 - orig reached receiver, retrans is still in flight.
904 * (L|S|R is logically valid, it could occur when L|R is sacked,
905 * but it is equivalent to plain S and code short-curcuits it to S.
906 * L|S is logically invalid, it would mean -1 packet in flight 8))
908 * These 6 states form finite state machine, controlled by the following events:
909 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
910 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
911 * 3. Loss detection event of one of three flavors:
912 * A. Scoreboard estimator decided the packet is lost.
913 * A'. Reno "three dupacks" marks head of queue lost.
914 * A''. Its FACK modfication, head until snd.fack is lost.
915 * B. SACK arrives sacking data transmitted after never retransmitted
916 * hole was sent out.
917 * C. SACK arrives sacking SND.NXT at the moment, when the
918 * segment was retransmitted.
919 * 4. D-SACK added new rule: D-SACK changes any tag to S.
921 * It is pleasant to note, that state diagram turns out to be commutative,
922 * so that we are allowed not to be bothered by order of our actions,
923 * when multiple events arrive simultaneously. (see the function below).
925 * Reordering detection.
926 * --------------------
927 * Reordering metric is maximal distance, which a packet can be displaced
928 * in packet stream. With SACKs we can estimate it:
930 * 1. SACK fills old hole and the corresponding segment was not
931 * ever retransmitted -> reordering. Alas, we cannot use it
932 * when segment was retransmitted.
933 * 2. The last flaw is solved with D-SACK. D-SACK arrives
934 * for retransmitted and already SACKed segment -> reordering..
935 * Both of these heuristics are not used in Loss state, when we cannot
936 * account for retransmits accurately.
938 static int
939 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
941 const struct inet_connection_sock *icsk = inet_csk(sk);
942 struct tcp_sock *tp = tcp_sk(sk);
943 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
944 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
945 struct sk_buff *cached_skb;
946 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
947 int reord = tp->packets_out;
948 int prior_fackets;
949 u32 lost_retrans = 0;
950 int flag = 0;
951 int dup_sack = 0;
952 int cached_fack_count;
953 int i;
954 int first_sack_index;
956 if (!tp->sacked_out)
957 tp->fackets_out = 0;
958 prior_fackets = tp->fackets_out;
960 /* Check for D-SACK. */
961 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
962 dup_sack = 1;
963 tp->rx_opt.sack_ok |= 4;
964 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
965 } else if (num_sacks > 1 &&
966 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
967 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
968 dup_sack = 1;
969 tp->rx_opt.sack_ok |= 4;
970 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
973 /* D-SACK for already forgotten data...
974 * Do dumb counting. */
975 if (dup_sack &&
976 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
977 after(ntohl(sp[0].end_seq), tp->undo_marker))
978 tp->undo_retrans--;
980 /* Eliminate too old ACKs, but take into
981 * account more or less fresh ones, they can
982 * contain valid SACK info.
984 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
985 return 0;
987 /* SACK fastpath:
988 * if the only SACK change is the increase of the end_seq of
989 * the first block then only apply that SACK block
990 * and use retrans queue hinting otherwise slowpath */
991 flag = 1;
992 for (i = 0; i < num_sacks; i++) {
993 __be32 start_seq = sp[i].start_seq;
994 __be32 end_seq = sp[i].end_seq;
996 if (i == 0) {
997 if (tp->recv_sack_cache[i].start_seq != start_seq)
998 flag = 0;
999 } else {
1000 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1001 (tp->recv_sack_cache[i].end_seq != end_seq))
1002 flag = 0;
1004 tp->recv_sack_cache[i].start_seq = start_seq;
1005 tp->recv_sack_cache[i].end_seq = end_seq;
1007 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1008 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1009 tp->recv_sack_cache[i].start_seq = 0;
1010 tp->recv_sack_cache[i].end_seq = 0;
1013 first_sack_index = 0;
1014 if (flag)
1015 num_sacks = 1;
1016 else {
1017 int j;
1018 tp->fastpath_skb_hint = NULL;
1020 /* order SACK blocks to allow in order walk of the retrans queue */
1021 for (i = num_sacks-1; i > 0; i--) {
1022 for (j = 0; j < i; j++){
1023 if (after(ntohl(sp[j].start_seq),
1024 ntohl(sp[j+1].start_seq))){
1025 struct tcp_sack_block_wire tmp;
1027 tmp = sp[j];
1028 sp[j] = sp[j+1];
1029 sp[j+1] = tmp;
1031 /* Track where the first SACK block goes to */
1032 if (j == first_sack_index)
1033 first_sack_index = j+1;
1040 /* clear flag as used for different purpose in following code */
1041 flag = 0;
1043 /* Use SACK fastpath hint if valid */
1044 cached_skb = tp->fastpath_skb_hint;
1045 cached_fack_count = tp->fastpath_cnt_hint;
1046 if (!cached_skb) {
1047 cached_skb = sk->sk_write_queue.next;
1048 cached_fack_count = 0;
1051 for (i=0; i<num_sacks; i++, sp++) {
1052 struct sk_buff *skb;
1053 __u32 start_seq = ntohl(sp->start_seq);
1054 __u32 end_seq = ntohl(sp->end_seq);
1055 int fack_count;
1057 skb = cached_skb;
1058 fack_count = cached_fack_count;
1060 /* Event "B" in the comment above. */
1061 if (after(end_seq, tp->high_seq))
1062 flag |= FLAG_DATA_LOST;
1064 sk_stream_for_retrans_queue_from(skb, sk) {
1065 int in_sack, pcount;
1066 u8 sacked;
1068 cached_skb = skb;
1069 cached_fack_count = fack_count;
1070 if (i == first_sack_index) {
1071 tp->fastpath_skb_hint = skb;
1072 tp->fastpath_cnt_hint = fack_count;
1075 /* The retransmission queue is always in order, so
1076 * we can short-circuit the walk early.
1078 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1079 break;
1081 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1082 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1084 pcount = tcp_skb_pcount(skb);
1086 if (pcount > 1 && !in_sack &&
1087 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1088 unsigned int pkt_len;
1090 in_sack = !after(start_seq,
1091 TCP_SKB_CB(skb)->seq);
1093 if (!in_sack)
1094 pkt_len = (start_seq -
1095 TCP_SKB_CB(skb)->seq);
1096 else
1097 pkt_len = (end_seq -
1098 TCP_SKB_CB(skb)->seq);
1099 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1100 break;
1101 pcount = tcp_skb_pcount(skb);
1104 fack_count += pcount;
1106 sacked = TCP_SKB_CB(skb)->sacked;
1108 /* Account D-SACK for retransmitted packet. */
1109 if ((dup_sack && in_sack) &&
1110 (sacked & TCPCB_RETRANS) &&
1111 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1112 tp->undo_retrans--;
1114 /* The frame is ACKed. */
1115 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1116 if (sacked&TCPCB_RETRANS) {
1117 if ((dup_sack && in_sack) &&
1118 (sacked&TCPCB_SACKED_ACKED))
1119 reord = min(fack_count, reord);
1120 } else {
1121 /* If it was in a hole, we detected reordering. */
1122 if (fack_count < prior_fackets &&
1123 !(sacked&TCPCB_SACKED_ACKED))
1124 reord = min(fack_count, reord);
1127 /* Nothing to do; acked frame is about to be dropped. */
1128 continue;
1131 if ((sacked&TCPCB_SACKED_RETRANS) &&
1132 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1133 (!lost_retrans || after(end_seq, lost_retrans)))
1134 lost_retrans = end_seq;
1136 if (!in_sack)
1137 continue;
1139 if (!(sacked&TCPCB_SACKED_ACKED)) {
1140 if (sacked & TCPCB_SACKED_RETRANS) {
1141 /* If the segment is not tagged as lost,
1142 * we do not clear RETRANS, believing
1143 * that retransmission is still in flight.
1145 if (sacked & TCPCB_LOST) {
1146 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1147 tp->lost_out -= tcp_skb_pcount(skb);
1148 tp->retrans_out -= tcp_skb_pcount(skb);
1150 /* clear lost hint */
1151 tp->retransmit_skb_hint = NULL;
1153 } else {
1154 /* New sack for not retransmitted frame,
1155 * which was in hole. It is reordering.
1157 if (!(sacked & TCPCB_RETRANS) &&
1158 fack_count < prior_fackets)
1159 reord = min(fack_count, reord);
1161 if (sacked & TCPCB_LOST) {
1162 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1163 tp->lost_out -= tcp_skb_pcount(skb);
1165 /* clear lost hint */
1166 tp->retransmit_skb_hint = NULL;
1168 /* SACK enhanced F-RTO detection.
1169 * Set flag if and only if non-rexmitted
1170 * segments below frto_highmark are
1171 * SACKed (RFC4138; Appendix B).
1172 * Clearing correct due to in-order walk
1174 if (after(end_seq, tp->frto_highmark)) {
1175 flag &= ~FLAG_ONLY_ORIG_SACKED;
1176 } else {
1177 if (!(sacked & TCPCB_RETRANS))
1178 flag |= FLAG_ONLY_ORIG_SACKED;
1182 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1183 flag |= FLAG_DATA_SACKED;
1184 tp->sacked_out += tcp_skb_pcount(skb);
1186 if (fack_count > tp->fackets_out)
1187 tp->fackets_out = fack_count;
1188 } else {
1189 if (dup_sack && (sacked&TCPCB_RETRANS))
1190 reord = min(fack_count, reord);
1193 /* D-SACK. We can detect redundant retransmission
1194 * in S|R and plain R frames and clear it.
1195 * undo_retrans is decreased above, L|R frames
1196 * are accounted above as well.
1198 if (dup_sack &&
1199 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1200 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1201 tp->retrans_out -= tcp_skb_pcount(skb);
1202 tp->retransmit_skb_hint = NULL;
1207 /* Check for lost retransmit. This superb idea is
1208 * borrowed from "ratehalving". Event "C".
1209 * Later note: FACK people cheated me again 8),
1210 * we have to account for reordering! Ugly,
1211 * but should help.
1213 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1214 struct sk_buff *skb;
1216 sk_stream_for_retrans_queue(skb, sk) {
1217 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1218 break;
1219 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1220 continue;
1221 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1222 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1223 (IsFack(tp) ||
1224 !before(lost_retrans,
1225 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1226 tp->mss_cache))) {
1227 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1228 tp->retrans_out -= tcp_skb_pcount(skb);
1230 /* clear lost hint */
1231 tp->retransmit_skb_hint = NULL;
1233 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1234 tp->lost_out += tcp_skb_pcount(skb);
1235 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1236 flag |= FLAG_DATA_SACKED;
1237 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1243 tp->left_out = tp->sacked_out + tp->lost_out;
1245 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1246 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1247 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1249 #if FASTRETRANS_DEBUG > 0
1250 BUG_TRAP((int)tp->sacked_out >= 0);
1251 BUG_TRAP((int)tp->lost_out >= 0);
1252 BUG_TRAP((int)tp->retrans_out >= 0);
1253 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1254 #endif
1255 return flag;
1258 /* F-RTO can only be used if these conditions are satisfied:
1259 * - there must be some unsent new data
1260 * - the advertised window should allow sending it
1261 * - TCP has never retransmitted anything other than head (SACK enhanced
1262 * variant from Appendix B of RFC4138 is more robust here)
1264 int tcp_use_frto(struct sock *sk)
1266 const struct tcp_sock *tp = tcp_sk(sk);
1267 struct sk_buff *skb;
1269 if (!sysctl_tcp_frto || !sk->sk_send_head ||
1270 after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
1271 tp->snd_una + tp->snd_wnd))
1272 return 0;
1274 if (IsSackFrto())
1275 return 1;
1277 /* Avoid expensive walking of rexmit queue if possible */
1278 if (tp->retrans_out > 1)
1279 return 0;
1281 skb = skb_peek(&sk->sk_write_queue)->next; /* Skips head */
1282 sk_stream_for_retrans_queue_from(skb, sk) {
1283 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1284 return 0;
1285 /* Short-circuit when first non-SACKed skb has been checked */
1286 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1287 break;
1289 return 1;
1292 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1293 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1294 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1295 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1296 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1297 * bits are handled if the Loss state is really to be entered (in
1298 * tcp_enter_frto_loss).
1300 * Do like tcp_enter_loss() would; when RTO expires the second time it
1301 * does:
1302 * "Reduce ssthresh if it has not yet been made inside this window."
1304 void tcp_enter_frto(struct sock *sk)
1306 const struct inet_connection_sock *icsk = inet_csk(sk);
1307 struct tcp_sock *tp = tcp_sk(sk);
1308 struct sk_buff *skb;
1310 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1311 tp->snd_una == tp->high_seq ||
1312 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1313 !icsk->icsk_retransmits)) {
1314 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1315 /* Our state is too optimistic in ssthresh() call because cwnd
1316 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1317 * recovery has not yet completed. Pattern would be this: RTO,
1318 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1319 * up here twice).
1320 * RFC4138 should be more specific on what to do, even though
1321 * RTO is quite unlikely to occur after the first Cumulative ACK
1322 * due to back-off and complexity of triggering events ...
1324 if (tp->frto_counter) {
1325 u32 stored_cwnd;
1326 stored_cwnd = tp->snd_cwnd;
1327 tp->snd_cwnd = 2;
1328 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1329 tp->snd_cwnd = stored_cwnd;
1330 } else {
1331 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1333 /* ... in theory, cong.control module could do "any tricks" in
1334 * ssthresh(), which means that ca_state, lost bits and lost_out
1335 * counter would have to be faked before the call occurs. We
1336 * consider that too expensive, unlikely and hacky, so modules
1337 * using these in ssthresh() must deal these incompatibility
1338 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1340 tcp_ca_event(sk, CA_EVENT_FRTO);
1343 tp->undo_marker = tp->snd_una;
1344 tp->undo_retrans = 0;
1346 skb = skb_peek(&sk->sk_write_queue);
1347 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1348 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1349 tp->retrans_out -= tcp_skb_pcount(skb);
1351 tcp_sync_left_out(tp);
1353 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1354 * The last condition is necessary at least in tp->frto_counter case.
1356 if (IsSackFrto() && (tp->frto_counter ||
1357 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1358 after(tp->high_seq, tp->snd_una)) {
1359 tp->frto_highmark = tp->high_seq;
1360 } else {
1361 tp->frto_highmark = tp->snd_nxt;
1363 tcp_set_ca_state(sk, TCP_CA_Disorder);
1364 tp->high_seq = tp->snd_nxt;
1365 tp->frto_counter = 1;
1368 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1369 * which indicates that we should follow the traditional RTO recovery,
1370 * i.e. mark everything lost and do go-back-N retransmission.
1372 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1374 struct tcp_sock *tp = tcp_sk(sk);
1375 struct sk_buff *skb;
1376 int cnt = 0;
1378 tp->sacked_out = 0;
1379 tp->lost_out = 0;
1380 tp->fackets_out = 0;
1381 tp->retrans_out = 0;
1383 sk_stream_for_retrans_queue(skb, sk) {
1384 cnt += tcp_skb_pcount(skb);
1386 * Count the retransmission made on RTO correctly (only when
1387 * waiting for the first ACK and did not get it)...
1389 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1390 tp->retrans_out += tcp_skb_pcount(skb);
1391 /* ...enter this if branch just for the first segment */
1392 flag |= FLAG_DATA_ACKED;
1393 } else {
1394 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1396 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1398 /* Do not mark those segments lost that were
1399 * forward transmitted after RTO
1401 if (!after(TCP_SKB_CB(skb)->end_seq,
1402 tp->frto_highmark)) {
1403 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1404 tp->lost_out += tcp_skb_pcount(skb);
1406 } else {
1407 tp->sacked_out += tcp_skb_pcount(skb);
1408 tp->fackets_out = cnt;
1411 tcp_sync_left_out(tp);
1413 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1414 tp->snd_cwnd_cnt = 0;
1415 tp->snd_cwnd_stamp = tcp_time_stamp;
1416 tp->undo_marker = 0;
1417 tp->frto_counter = 0;
1419 tp->reordering = min_t(unsigned int, tp->reordering,
1420 sysctl_tcp_reordering);
1421 tcp_set_ca_state(sk, TCP_CA_Loss);
1422 tp->high_seq = tp->frto_highmark;
1423 TCP_ECN_queue_cwr(tp);
1425 clear_all_retrans_hints(tp);
1428 void tcp_clear_retrans(struct tcp_sock *tp)
1430 tp->left_out = 0;
1431 tp->retrans_out = 0;
1433 tp->fackets_out = 0;
1434 tp->sacked_out = 0;
1435 tp->lost_out = 0;
1437 tp->undo_marker = 0;
1438 tp->undo_retrans = 0;
1441 /* Enter Loss state. If "how" is not zero, forget all SACK information
1442 * and reset tags completely, otherwise preserve SACKs. If receiver
1443 * dropped its ofo queue, we will know this due to reneging detection.
1445 void tcp_enter_loss(struct sock *sk, int how)
1447 const struct inet_connection_sock *icsk = inet_csk(sk);
1448 struct tcp_sock *tp = tcp_sk(sk);
1449 struct sk_buff *skb;
1450 int cnt = 0;
1452 /* Reduce ssthresh if it has not yet been made inside this window. */
1453 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1454 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1455 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1456 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1457 tcp_ca_event(sk, CA_EVENT_LOSS);
1459 tp->snd_cwnd = 1;
1460 tp->snd_cwnd_cnt = 0;
1461 tp->snd_cwnd_stamp = tcp_time_stamp;
1463 tp->bytes_acked = 0;
1464 tcp_clear_retrans(tp);
1466 /* Push undo marker, if it was plain RTO and nothing
1467 * was retransmitted. */
1468 if (!how)
1469 tp->undo_marker = tp->snd_una;
1471 sk_stream_for_retrans_queue(skb, sk) {
1472 cnt += tcp_skb_pcount(skb);
1473 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1474 tp->undo_marker = 0;
1475 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1476 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1477 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1478 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1479 tp->lost_out += tcp_skb_pcount(skb);
1480 } else {
1481 tp->sacked_out += tcp_skb_pcount(skb);
1482 tp->fackets_out = cnt;
1485 tcp_sync_left_out(tp);
1487 tp->reordering = min_t(unsigned int, tp->reordering,
1488 sysctl_tcp_reordering);
1489 tcp_set_ca_state(sk, TCP_CA_Loss);
1490 tp->high_seq = tp->snd_nxt;
1491 TCP_ECN_queue_cwr(tp);
1493 clear_all_retrans_hints(tp);
1496 static int tcp_check_sack_reneging(struct sock *sk)
1498 struct sk_buff *skb;
1500 /* If ACK arrived pointing to a remembered SACK,
1501 * it means that our remembered SACKs do not reflect
1502 * real state of receiver i.e.
1503 * receiver _host_ is heavily congested (or buggy).
1504 * Do processing similar to RTO timeout.
1506 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1507 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1508 struct inet_connection_sock *icsk = inet_csk(sk);
1509 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1511 tcp_enter_loss(sk, 1);
1512 icsk->icsk_retransmits++;
1513 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1514 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1515 icsk->icsk_rto, TCP_RTO_MAX);
1516 return 1;
1518 return 0;
1521 static inline int tcp_fackets_out(struct tcp_sock *tp)
1523 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1526 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1528 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1531 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1533 return tp->packets_out &&
1534 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1537 /* Linux NewReno/SACK/FACK/ECN state machine.
1538 * --------------------------------------
1540 * "Open" Normal state, no dubious events, fast path.
1541 * "Disorder" In all the respects it is "Open",
1542 * but requires a bit more attention. It is entered when
1543 * we see some SACKs or dupacks. It is split of "Open"
1544 * mainly to move some processing from fast path to slow one.
1545 * "CWR" CWND was reduced due to some Congestion Notification event.
1546 * It can be ECN, ICMP source quench, local device congestion.
1547 * "Recovery" CWND was reduced, we are fast-retransmitting.
1548 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1550 * tcp_fastretrans_alert() is entered:
1551 * - each incoming ACK, if state is not "Open"
1552 * - when arrived ACK is unusual, namely:
1553 * * SACK
1554 * * Duplicate ACK.
1555 * * ECN ECE.
1557 * Counting packets in flight is pretty simple.
1559 * in_flight = packets_out - left_out + retrans_out
1561 * packets_out is SND.NXT-SND.UNA counted in packets.
1563 * retrans_out is number of retransmitted segments.
1565 * left_out is number of segments left network, but not ACKed yet.
1567 * left_out = sacked_out + lost_out
1569 * sacked_out: Packets, which arrived to receiver out of order
1570 * and hence not ACKed. With SACKs this number is simply
1571 * amount of SACKed data. Even without SACKs
1572 * it is easy to give pretty reliable estimate of this number,
1573 * counting duplicate ACKs.
1575 * lost_out: Packets lost by network. TCP has no explicit
1576 * "loss notification" feedback from network (for now).
1577 * It means that this number can be only _guessed_.
1578 * Actually, it is the heuristics to predict lossage that
1579 * distinguishes different algorithms.
1581 * F.e. after RTO, when all the queue is considered as lost,
1582 * lost_out = packets_out and in_flight = retrans_out.
1584 * Essentially, we have now two algorithms counting
1585 * lost packets.
1587 * FACK: It is the simplest heuristics. As soon as we decided
1588 * that something is lost, we decide that _all_ not SACKed
1589 * packets until the most forward SACK are lost. I.e.
1590 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1591 * It is absolutely correct estimate, if network does not reorder
1592 * packets. And it loses any connection to reality when reordering
1593 * takes place. We use FACK by default until reordering
1594 * is suspected on the path to this destination.
1596 * NewReno: when Recovery is entered, we assume that one segment
1597 * is lost (classic Reno). While we are in Recovery and
1598 * a partial ACK arrives, we assume that one more packet
1599 * is lost (NewReno). This heuristics are the same in NewReno
1600 * and SACK.
1602 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1603 * deflation etc. CWND is real congestion window, never inflated, changes
1604 * only according to classic VJ rules.
1606 * Really tricky (and requiring careful tuning) part of algorithm
1607 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1608 * The first determines the moment _when_ we should reduce CWND and,
1609 * hence, slow down forward transmission. In fact, it determines the moment
1610 * when we decide that hole is caused by loss, rather than by a reorder.
1612 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1613 * holes, caused by lost packets.
1615 * And the most logically complicated part of algorithm is undo
1616 * heuristics. We detect false retransmits due to both too early
1617 * fast retransmit (reordering) and underestimated RTO, analyzing
1618 * timestamps and D-SACKs. When we detect that some segments were
1619 * retransmitted by mistake and CWND reduction was wrong, we undo
1620 * window reduction and abort recovery phase. This logic is hidden
1621 * inside several functions named tcp_try_undo_<something>.
1624 /* This function decides, when we should leave Disordered state
1625 * and enter Recovery phase, reducing congestion window.
1627 * Main question: may we further continue forward transmission
1628 * with the same cwnd?
1630 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1632 __u32 packets_out;
1634 /* Do not perform any recovery during FRTO algorithm */
1635 if (tp->frto_counter)
1636 return 0;
1638 /* Trick#1: The loss is proven. */
1639 if (tp->lost_out)
1640 return 1;
1642 /* Not-A-Trick#2 : Classic rule... */
1643 if (tcp_fackets_out(tp) > tp->reordering)
1644 return 1;
1646 /* Trick#3 : when we use RFC2988 timer restart, fast
1647 * retransmit can be triggered by timeout of queue head.
1649 if (tcp_head_timedout(sk, tp))
1650 return 1;
1652 /* Trick#4: It is still not OK... But will it be useful to delay
1653 * recovery more?
1655 packets_out = tp->packets_out;
1656 if (packets_out <= tp->reordering &&
1657 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1658 !tcp_may_send_now(sk, tp)) {
1659 /* We have nothing to send. This connection is limited
1660 * either by receiver window or by application.
1662 return 1;
1665 return 0;
1668 /* If we receive more dupacks than we expected counting segments
1669 * in assumption of absent reordering, interpret this as reordering.
1670 * The only another reason could be bug in receiver TCP.
1672 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1674 struct tcp_sock *tp = tcp_sk(sk);
1675 u32 holes;
1677 holes = max(tp->lost_out, 1U);
1678 holes = min(holes, tp->packets_out);
1680 if ((tp->sacked_out + holes) > tp->packets_out) {
1681 tp->sacked_out = tp->packets_out - holes;
1682 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1686 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1688 static void tcp_add_reno_sack(struct sock *sk)
1690 struct tcp_sock *tp = tcp_sk(sk);
1691 tp->sacked_out++;
1692 tcp_check_reno_reordering(sk, 0);
1693 tcp_sync_left_out(tp);
1696 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1698 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1700 if (acked > 0) {
1701 /* One ACK acked hole. The rest eat duplicate ACKs. */
1702 if (acked-1 >= tp->sacked_out)
1703 tp->sacked_out = 0;
1704 else
1705 tp->sacked_out -= acked-1;
1707 tcp_check_reno_reordering(sk, acked);
1708 tcp_sync_left_out(tp);
1711 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1713 tp->sacked_out = 0;
1714 tp->left_out = tp->lost_out;
1717 /* Mark head of queue up as lost. */
1718 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1719 int packets, u32 high_seq)
1721 struct sk_buff *skb;
1722 int cnt;
1724 BUG_TRAP(packets <= tp->packets_out);
1725 if (tp->lost_skb_hint) {
1726 skb = tp->lost_skb_hint;
1727 cnt = tp->lost_cnt_hint;
1728 } else {
1729 skb = sk->sk_write_queue.next;
1730 cnt = 0;
1733 sk_stream_for_retrans_queue_from(skb, sk) {
1734 /* TODO: do this better */
1735 /* this is not the most efficient way to do this... */
1736 tp->lost_skb_hint = skb;
1737 tp->lost_cnt_hint = cnt;
1738 cnt += tcp_skb_pcount(skb);
1739 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1740 break;
1741 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1742 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1743 tp->lost_out += tcp_skb_pcount(skb);
1745 /* clear xmit_retransmit_queue hints
1746 * if this is beyond hint */
1747 if(tp->retransmit_skb_hint != NULL &&
1748 before(TCP_SKB_CB(skb)->seq,
1749 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1751 tp->retransmit_skb_hint = NULL;
1755 tcp_sync_left_out(tp);
1758 /* Account newly detected lost packet(s) */
1760 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1762 if (IsFack(tp)) {
1763 int lost = tp->fackets_out - tp->reordering;
1764 if (lost <= 0)
1765 lost = 1;
1766 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1767 } else {
1768 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1771 /* New heuristics: it is possible only after we switched
1772 * to restart timer each time when something is ACKed.
1773 * Hence, we can detect timed out packets during fast
1774 * retransmit without falling to slow start.
1776 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1777 struct sk_buff *skb;
1779 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1780 : sk->sk_write_queue.next;
1782 sk_stream_for_retrans_queue_from(skb, sk) {
1783 if (!tcp_skb_timedout(sk, skb))
1784 break;
1786 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1787 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1788 tp->lost_out += tcp_skb_pcount(skb);
1790 /* clear xmit_retrans hint */
1791 if (tp->retransmit_skb_hint &&
1792 before(TCP_SKB_CB(skb)->seq,
1793 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1795 tp->retransmit_skb_hint = NULL;
1799 tp->scoreboard_skb_hint = skb;
1801 tcp_sync_left_out(tp);
1805 /* CWND moderation, preventing bursts due to too big ACKs
1806 * in dubious situations.
1808 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1810 tp->snd_cwnd = min(tp->snd_cwnd,
1811 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1812 tp->snd_cwnd_stamp = tcp_time_stamp;
1815 /* Lower bound on congestion window is slow start threshold
1816 * unless congestion avoidance choice decides to overide it.
1818 static inline u32 tcp_cwnd_min(const struct sock *sk)
1820 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1822 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1825 /* Decrease cwnd each second ack. */
1826 static void tcp_cwnd_down(struct sock *sk)
1828 struct tcp_sock *tp = tcp_sk(sk);
1829 int decr = tp->snd_cwnd_cnt + 1;
1831 tp->snd_cwnd_cnt = decr&1;
1832 decr >>= 1;
1834 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1835 tp->snd_cwnd -= decr;
1837 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1838 tp->snd_cwnd_stamp = tcp_time_stamp;
1841 /* Nothing was retransmitted or returned timestamp is less
1842 * than timestamp of the first retransmission.
1844 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1846 return !tp->retrans_stamp ||
1847 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1848 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1851 /* Undo procedures. */
1853 #if FASTRETRANS_DEBUG > 1
1854 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1856 struct inet_sock *inet = inet_sk(sk);
1857 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1858 msg,
1859 NIPQUAD(inet->daddr), ntohs(inet->dport),
1860 tp->snd_cwnd, tp->left_out,
1861 tp->snd_ssthresh, tp->prior_ssthresh,
1862 tp->packets_out);
1864 #else
1865 #define DBGUNDO(x...) do { } while (0)
1866 #endif
1868 static void tcp_undo_cwr(struct sock *sk, const int undo)
1870 struct tcp_sock *tp = tcp_sk(sk);
1872 if (tp->prior_ssthresh) {
1873 const struct inet_connection_sock *icsk = inet_csk(sk);
1875 if (icsk->icsk_ca_ops->undo_cwnd)
1876 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1877 else
1878 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1880 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1881 tp->snd_ssthresh = tp->prior_ssthresh;
1882 TCP_ECN_withdraw_cwr(tp);
1884 } else {
1885 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1887 tcp_moderate_cwnd(tp);
1888 tp->snd_cwnd_stamp = tcp_time_stamp;
1890 /* There is something screwy going on with the retrans hints after
1891 an undo */
1892 clear_all_retrans_hints(tp);
1895 static inline int tcp_may_undo(struct tcp_sock *tp)
1897 return tp->undo_marker &&
1898 (!tp->undo_retrans || tcp_packet_delayed(tp));
1901 /* People celebrate: "We love our President!" */
1902 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1904 if (tcp_may_undo(tp)) {
1905 /* Happy end! We did not retransmit anything
1906 * or our original transmission succeeded.
1908 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1909 tcp_undo_cwr(sk, 1);
1910 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1911 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1912 else
1913 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1914 tp->undo_marker = 0;
1916 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1917 /* Hold old state until something *above* high_seq
1918 * is ACKed. For Reno it is MUST to prevent false
1919 * fast retransmits (RFC2582). SACK TCP is safe. */
1920 tcp_moderate_cwnd(tp);
1921 return 1;
1923 tcp_set_ca_state(sk, TCP_CA_Open);
1924 return 0;
1927 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1928 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1930 if (tp->undo_marker && !tp->undo_retrans) {
1931 DBGUNDO(sk, tp, "D-SACK");
1932 tcp_undo_cwr(sk, 1);
1933 tp->undo_marker = 0;
1934 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1938 /* Undo during fast recovery after partial ACK. */
1940 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1941 int acked)
1943 /* Partial ACK arrived. Force Hoe's retransmit. */
1944 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1946 if (tcp_may_undo(tp)) {
1947 /* Plain luck! Hole if filled with delayed
1948 * packet, rather than with a retransmit.
1950 if (tp->retrans_out == 0)
1951 tp->retrans_stamp = 0;
1953 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1955 DBGUNDO(sk, tp, "Hoe");
1956 tcp_undo_cwr(sk, 0);
1957 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1959 /* So... Do not make Hoe's retransmit yet.
1960 * If the first packet was delayed, the rest
1961 * ones are most probably delayed as well.
1963 failed = 0;
1965 return failed;
1968 /* Undo during loss recovery after partial ACK. */
1969 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1971 if (tcp_may_undo(tp)) {
1972 struct sk_buff *skb;
1973 sk_stream_for_retrans_queue(skb, sk) {
1974 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1977 clear_all_retrans_hints(tp);
1979 DBGUNDO(sk, tp, "partial loss");
1980 tp->lost_out = 0;
1981 tp->left_out = tp->sacked_out;
1982 tcp_undo_cwr(sk, 1);
1983 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1984 inet_csk(sk)->icsk_retransmits = 0;
1985 tp->undo_marker = 0;
1986 if (!IsReno(tp))
1987 tcp_set_ca_state(sk, TCP_CA_Open);
1988 return 1;
1990 return 0;
1993 static inline void tcp_complete_cwr(struct sock *sk)
1995 struct tcp_sock *tp = tcp_sk(sk);
1996 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1997 tp->snd_cwnd_stamp = tcp_time_stamp;
1998 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2001 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
2003 tp->left_out = tp->sacked_out;
2005 if (tp->retrans_out == 0)
2006 tp->retrans_stamp = 0;
2008 if (flag&FLAG_ECE)
2009 tcp_enter_cwr(sk, 1);
2011 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2012 int state = TCP_CA_Open;
2014 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2015 state = TCP_CA_Disorder;
2017 if (inet_csk(sk)->icsk_ca_state != state) {
2018 tcp_set_ca_state(sk, state);
2019 tp->high_seq = tp->snd_nxt;
2021 tcp_moderate_cwnd(tp);
2022 } else {
2023 tcp_cwnd_down(sk);
2027 static void tcp_mtup_probe_failed(struct sock *sk)
2029 struct inet_connection_sock *icsk = inet_csk(sk);
2031 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2032 icsk->icsk_mtup.probe_size = 0;
2035 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2037 struct tcp_sock *tp = tcp_sk(sk);
2038 struct inet_connection_sock *icsk = inet_csk(sk);
2040 /* FIXME: breaks with very large cwnd */
2041 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2042 tp->snd_cwnd = tp->snd_cwnd *
2043 tcp_mss_to_mtu(sk, tp->mss_cache) /
2044 icsk->icsk_mtup.probe_size;
2045 tp->snd_cwnd_cnt = 0;
2046 tp->snd_cwnd_stamp = tcp_time_stamp;
2047 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2049 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2050 icsk->icsk_mtup.probe_size = 0;
2051 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2055 /* Process an event, which can update packets-in-flight not trivially.
2056 * Main goal of this function is to calculate new estimate for left_out,
2057 * taking into account both packets sitting in receiver's buffer and
2058 * packets lost by network.
2060 * Besides that it does CWND reduction, when packet loss is detected
2061 * and changes state of machine.
2063 * It does _not_ decide what to send, it is made in function
2064 * tcp_xmit_retransmit_queue().
2066 static void
2067 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2068 int prior_packets, int flag)
2070 struct inet_connection_sock *icsk = inet_csk(sk);
2071 struct tcp_sock *tp = tcp_sk(sk);
2072 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2074 /* Some technical things:
2075 * 1. Reno does not count dupacks (sacked_out) automatically. */
2076 if (!tp->packets_out)
2077 tp->sacked_out = 0;
2078 /* 2. SACK counts snd_fack in packets inaccurately. */
2079 if (tp->sacked_out == 0)
2080 tp->fackets_out = 0;
2082 /* Now state machine starts.
2083 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2084 if (flag&FLAG_ECE)
2085 tp->prior_ssthresh = 0;
2087 /* B. In all the states check for reneging SACKs. */
2088 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2089 return;
2091 /* C. Process data loss notification, provided it is valid. */
2092 if ((flag&FLAG_DATA_LOST) &&
2093 before(tp->snd_una, tp->high_seq) &&
2094 icsk->icsk_ca_state != TCP_CA_Open &&
2095 tp->fackets_out > tp->reordering) {
2096 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
2097 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2100 /* D. Synchronize left_out to current state. */
2101 tcp_sync_left_out(tp);
2103 /* E. Check state exit conditions. State can be terminated
2104 * when high_seq is ACKed. */
2105 if (icsk->icsk_ca_state == TCP_CA_Open) {
2106 BUG_TRAP(tp->retrans_out == 0);
2107 tp->retrans_stamp = 0;
2108 } else if (!before(tp->snd_una, tp->high_seq)) {
2109 switch (icsk->icsk_ca_state) {
2110 case TCP_CA_Loss:
2111 icsk->icsk_retransmits = 0;
2112 if (tcp_try_undo_recovery(sk, tp))
2113 return;
2114 break;
2116 case TCP_CA_CWR:
2117 /* CWR is to be held something *above* high_seq
2118 * is ACKed for CWR bit to reach receiver. */
2119 if (tp->snd_una != tp->high_seq) {
2120 tcp_complete_cwr(sk);
2121 tcp_set_ca_state(sk, TCP_CA_Open);
2123 break;
2125 case TCP_CA_Disorder:
2126 tcp_try_undo_dsack(sk, tp);
2127 if (!tp->undo_marker ||
2128 /* For SACK case do not Open to allow to undo
2129 * catching for all duplicate ACKs. */
2130 IsReno(tp) || tp->snd_una != tp->high_seq) {
2131 tp->undo_marker = 0;
2132 tcp_set_ca_state(sk, TCP_CA_Open);
2134 break;
2136 case TCP_CA_Recovery:
2137 if (IsReno(tp))
2138 tcp_reset_reno_sack(tp);
2139 if (tcp_try_undo_recovery(sk, tp))
2140 return;
2141 tcp_complete_cwr(sk);
2142 break;
2146 /* F. Process state. */
2147 switch (icsk->icsk_ca_state) {
2148 case TCP_CA_Recovery:
2149 if (prior_snd_una == tp->snd_una) {
2150 if (IsReno(tp) && is_dupack)
2151 tcp_add_reno_sack(sk);
2152 } else {
2153 int acked = prior_packets - tp->packets_out;
2154 if (IsReno(tp))
2155 tcp_remove_reno_sacks(sk, tp, acked);
2156 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2158 break;
2159 case TCP_CA_Loss:
2160 if (flag&FLAG_DATA_ACKED)
2161 icsk->icsk_retransmits = 0;
2162 if (!tcp_try_undo_loss(sk, tp)) {
2163 tcp_moderate_cwnd(tp);
2164 tcp_xmit_retransmit_queue(sk);
2165 return;
2167 if (icsk->icsk_ca_state != TCP_CA_Open)
2168 return;
2169 /* Loss is undone; fall through to processing in Open state. */
2170 default:
2171 if (IsReno(tp)) {
2172 if (tp->snd_una != prior_snd_una)
2173 tcp_reset_reno_sack(tp);
2174 if (is_dupack)
2175 tcp_add_reno_sack(sk);
2178 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2179 tcp_try_undo_dsack(sk, tp);
2181 if (!tcp_time_to_recover(sk, tp)) {
2182 tcp_try_to_open(sk, tp, flag);
2183 return;
2186 /* MTU probe failure: don't reduce cwnd */
2187 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2188 icsk->icsk_mtup.probe_size &&
2189 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2190 tcp_mtup_probe_failed(sk);
2191 /* Restores the reduction we did in tcp_mtup_probe() */
2192 tp->snd_cwnd++;
2193 tcp_simple_retransmit(sk);
2194 return;
2197 /* Otherwise enter Recovery state */
2199 if (IsReno(tp))
2200 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2201 else
2202 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2204 tp->high_seq = tp->snd_nxt;
2205 tp->prior_ssthresh = 0;
2206 tp->undo_marker = tp->snd_una;
2207 tp->undo_retrans = tp->retrans_out;
2209 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2210 if (!(flag&FLAG_ECE))
2211 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2212 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2213 TCP_ECN_queue_cwr(tp);
2216 tp->bytes_acked = 0;
2217 tp->snd_cwnd_cnt = 0;
2218 tcp_set_ca_state(sk, TCP_CA_Recovery);
2221 if (is_dupack || tcp_head_timedout(sk, tp))
2222 tcp_update_scoreboard(sk, tp);
2223 tcp_cwnd_down(sk);
2224 tcp_xmit_retransmit_queue(sk);
2227 /* Read draft-ietf-tcplw-high-performance before mucking
2228 * with this code. (Supersedes RFC1323)
2230 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2232 /* RTTM Rule: A TSecr value received in a segment is used to
2233 * update the averaged RTT measurement only if the segment
2234 * acknowledges some new data, i.e., only if it advances the
2235 * left edge of the send window.
2237 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2238 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2240 * Changed: reset backoff as soon as we see the first valid sample.
2241 * If we do not, we get strongly overestimated rto. With timestamps
2242 * samples are accepted even from very old segments: f.e., when rtt=1
2243 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2244 * answer arrives rto becomes 120 seconds! If at least one of segments
2245 * in window is lost... Voila. --ANK (010210)
2247 struct tcp_sock *tp = tcp_sk(sk);
2248 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2249 tcp_rtt_estimator(sk, seq_rtt);
2250 tcp_set_rto(sk);
2251 inet_csk(sk)->icsk_backoff = 0;
2252 tcp_bound_rto(sk);
2255 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2257 /* We don't have a timestamp. Can only use
2258 * packets that are not retransmitted to determine
2259 * rtt estimates. Also, we must not reset the
2260 * backoff for rto until we get a non-retransmitted
2261 * packet. This allows us to deal with a situation
2262 * where the network delay has increased suddenly.
2263 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2266 if (flag & FLAG_RETRANS_DATA_ACKED)
2267 return;
2269 tcp_rtt_estimator(sk, seq_rtt);
2270 tcp_set_rto(sk);
2271 inet_csk(sk)->icsk_backoff = 0;
2272 tcp_bound_rto(sk);
2275 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2276 const s32 seq_rtt)
2278 const struct tcp_sock *tp = tcp_sk(sk);
2279 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2280 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2281 tcp_ack_saw_tstamp(sk, flag);
2282 else if (seq_rtt >= 0)
2283 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2286 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2287 u32 in_flight, int good)
2289 const struct inet_connection_sock *icsk = inet_csk(sk);
2290 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2291 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2294 /* Restart timer after forward progress on connection.
2295 * RFC2988 recommends to restart timer to now+rto.
2298 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2300 if (!tp->packets_out) {
2301 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2302 } else {
2303 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2307 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2308 __u32 now, __s32 *seq_rtt)
2310 struct tcp_sock *tp = tcp_sk(sk);
2311 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2312 __u32 seq = tp->snd_una;
2313 __u32 packets_acked;
2314 int acked = 0;
2316 /* If we get here, the whole TSO packet has not been
2317 * acked.
2319 BUG_ON(!after(scb->end_seq, seq));
2321 packets_acked = tcp_skb_pcount(skb);
2322 if (tcp_trim_head(sk, skb, seq - scb->seq))
2323 return 0;
2324 packets_acked -= tcp_skb_pcount(skb);
2326 if (packets_acked) {
2327 __u8 sacked = scb->sacked;
2329 acked |= FLAG_DATA_ACKED;
2330 if (sacked) {
2331 if (sacked & TCPCB_RETRANS) {
2332 if (sacked & TCPCB_SACKED_RETRANS)
2333 tp->retrans_out -= packets_acked;
2334 acked |= FLAG_RETRANS_DATA_ACKED;
2335 *seq_rtt = -1;
2336 } else if (*seq_rtt < 0)
2337 *seq_rtt = now - scb->when;
2338 if (sacked & TCPCB_SACKED_ACKED)
2339 tp->sacked_out -= packets_acked;
2340 if (sacked & TCPCB_LOST)
2341 tp->lost_out -= packets_acked;
2342 if (sacked & TCPCB_URG) {
2343 if (tp->urg_mode &&
2344 !before(seq, tp->snd_up))
2345 tp->urg_mode = 0;
2347 } else if (*seq_rtt < 0)
2348 *seq_rtt = now - scb->when;
2350 if (tp->fackets_out) {
2351 __u32 dval = min(tp->fackets_out, packets_acked);
2352 tp->fackets_out -= dval;
2354 tp->packets_out -= packets_acked;
2356 BUG_ON(tcp_skb_pcount(skb) == 0);
2357 BUG_ON(!before(scb->seq, scb->end_seq));
2360 return acked;
2363 static u32 tcp_usrtt(struct timeval *tv)
2365 struct timeval now;
2367 do_gettimeofday(&now);
2368 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2371 /* Remove acknowledged frames from the retransmission queue. */
2372 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2374 struct tcp_sock *tp = tcp_sk(sk);
2375 const struct inet_connection_sock *icsk = inet_csk(sk);
2376 struct sk_buff *skb;
2377 __u32 now = tcp_time_stamp;
2378 int acked = 0;
2379 __s32 seq_rtt = -1;
2380 u32 pkts_acked = 0;
2381 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2382 = icsk->icsk_ca_ops->rtt_sample;
2383 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2385 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2386 skb != sk->sk_send_head) {
2387 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2388 __u8 sacked = scb->sacked;
2390 /* If our packet is before the ack sequence we can
2391 * discard it as it's confirmed to have arrived at
2392 * the other end.
2394 if (after(scb->end_seq, tp->snd_una)) {
2395 if (tcp_skb_pcount(skb) > 1 &&
2396 after(tp->snd_una, scb->seq))
2397 acked |= tcp_tso_acked(sk, skb,
2398 now, &seq_rtt);
2399 break;
2402 /* Initial outgoing SYN's get put onto the write_queue
2403 * just like anything else we transmit. It is not
2404 * true data, and if we misinform our callers that
2405 * this ACK acks real data, we will erroneously exit
2406 * connection startup slow start one packet too
2407 * quickly. This is severely frowned upon behavior.
2409 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2410 acked |= FLAG_DATA_ACKED;
2411 ++pkts_acked;
2412 } else {
2413 acked |= FLAG_SYN_ACKED;
2414 tp->retrans_stamp = 0;
2417 /* MTU probing checks */
2418 if (icsk->icsk_mtup.probe_size) {
2419 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2420 tcp_mtup_probe_success(sk, skb);
2424 if (sacked) {
2425 if (sacked & TCPCB_RETRANS) {
2426 if(sacked & TCPCB_SACKED_RETRANS)
2427 tp->retrans_out -= tcp_skb_pcount(skb);
2428 acked |= FLAG_RETRANS_DATA_ACKED;
2429 seq_rtt = -1;
2430 } else if (seq_rtt < 0) {
2431 seq_rtt = now - scb->when;
2432 skb_get_timestamp(skb, &tv);
2434 if (sacked & TCPCB_SACKED_ACKED)
2435 tp->sacked_out -= tcp_skb_pcount(skb);
2436 if (sacked & TCPCB_LOST)
2437 tp->lost_out -= tcp_skb_pcount(skb);
2438 if (sacked & TCPCB_URG) {
2439 if (tp->urg_mode &&
2440 !before(scb->end_seq, tp->snd_up))
2441 tp->urg_mode = 0;
2443 } else if (seq_rtt < 0) {
2444 seq_rtt = now - scb->when;
2445 skb_get_timestamp(skb, &tv);
2447 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2448 tcp_packets_out_dec(tp, skb);
2449 __skb_unlink(skb, &sk->sk_write_queue);
2450 sk_stream_free_skb(sk, skb);
2451 clear_all_retrans_hints(tp);
2454 if (acked&FLAG_ACKED) {
2455 tcp_ack_update_rtt(sk, acked, seq_rtt);
2456 tcp_ack_packets_out(sk, tp);
2457 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2458 (*rtt_sample)(sk, tcp_usrtt(&tv));
2460 if (icsk->icsk_ca_ops->pkts_acked)
2461 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2464 #if FASTRETRANS_DEBUG > 0
2465 BUG_TRAP((int)tp->sacked_out >= 0);
2466 BUG_TRAP((int)tp->lost_out >= 0);
2467 BUG_TRAP((int)tp->retrans_out >= 0);
2468 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2469 const struct inet_connection_sock *icsk = inet_csk(sk);
2470 if (tp->lost_out) {
2471 printk(KERN_DEBUG "Leak l=%u %d\n",
2472 tp->lost_out, icsk->icsk_ca_state);
2473 tp->lost_out = 0;
2475 if (tp->sacked_out) {
2476 printk(KERN_DEBUG "Leak s=%u %d\n",
2477 tp->sacked_out, icsk->icsk_ca_state);
2478 tp->sacked_out = 0;
2480 if (tp->retrans_out) {
2481 printk(KERN_DEBUG "Leak r=%u %d\n",
2482 tp->retrans_out, icsk->icsk_ca_state);
2483 tp->retrans_out = 0;
2486 #endif
2487 *seq_rtt_p = seq_rtt;
2488 return acked;
2491 static void tcp_ack_probe(struct sock *sk)
2493 const struct tcp_sock *tp = tcp_sk(sk);
2494 struct inet_connection_sock *icsk = inet_csk(sk);
2496 /* Was it a usable window open? */
2498 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2499 tp->snd_una + tp->snd_wnd)) {
2500 icsk->icsk_backoff = 0;
2501 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2502 /* Socket must be waked up by subsequent tcp_data_snd_check().
2503 * This function is not for random using!
2505 } else {
2506 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2507 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2508 TCP_RTO_MAX);
2512 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2514 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2515 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2518 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2520 const struct tcp_sock *tp = tcp_sk(sk);
2521 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2522 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2525 /* Check that window update is acceptable.
2526 * The function assumes that snd_una<=ack<=snd_next.
2528 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2529 const u32 ack_seq, const u32 nwin)
2531 return (after(ack, tp->snd_una) ||
2532 after(ack_seq, tp->snd_wl1) ||
2533 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2536 /* Update our send window.
2538 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2539 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2541 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2542 struct sk_buff *skb, u32 ack, u32 ack_seq)
2544 int flag = 0;
2545 u32 nwin = ntohs(skb->h.th->window);
2547 if (likely(!skb->h.th->syn))
2548 nwin <<= tp->rx_opt.snd_wscale;
2550 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2551 flag |= FLAG_WIN_UPDATE;
2552 tcp_update_wl(tp, ack, ack_seq);
2554 if (tp->snd_wnd != nwin) {
2555 tp->snd_wnd = nwin;
2557 /* Note, it is the only place, where
2558 * fast path is recovered for sending TCP.
2560 tp->pred_flags = 0;
2561 tcp_fast_path_check(sk, tp);
2563 if (nwin > tp->max_window) {
2564 tp->max_window = nwin;
2565 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2570 tp->snd_una = ack;
2572 return flag;
2575 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2576 * continue in congestion avoidance.
2578 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2580 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2581 tp->snd_cwnd_cnt = 0;
2582 tcp_moderate_cwnd(tp);
2585 /* A conservative spurious RTO response algorithm: reduce cwnd using
2586 * rate halving and continue in congestion avoidance.
2588 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2590 tcp_enter_cwr(sk, 0);
2593 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2595 if (flag&FLAG_ECE)
2596 tcp_ratehalving_spur_to_response(sk);
2597 else
2598 tcp_undo_cwr(sk, 1);
2601 /* F-RTO spurious RTO detection algorithm (RFC4138)
2603 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2604 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2605 * window (but not to or beyond highest sequence sent before RTO):
2606 * On First ACK, send two new segments out.
2607 * On Second ACK, RTO was likely spurious. Do spurious response (response
2608 * algorithm is not part of the F-RTO detection algorithm
2609 * given in RFC4138 but can be selected separately).
2610 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2611 * and TCP falls back to conventional RTO recovery.
2613 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2614 * original window even after we transmit two new data segments.
2616 * SACK version:
2617 * on first step, wait until first cumulative ACK arrives, then move to
2618 * the second step. In second step, the next ACK decides.
2620 * F-RTO is implemented (mainly) in four functions:
2621 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2622 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2623 * called when tcp_use_frto() showed green light
2624 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2625 * - tcp_enter_frto_loss() is called if there is not enough evidence
2626 * to prove that the RTO is indeed spurious. It transfers the control
2627 * from F-RTO to the conventional RTO recovery
2629 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2631 struct tcp_sock *tp = tcp_sk(sk);
2633 tcp_sync_left_out(tp);
2635 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2636 if (flag&FLAG_DATA_ACKED)
2637 inet_csk(sk)->icsk_retransmits = 0;
2639 if (!before(tp->snd_una, tp->frto_highmark)) {
2640 tcp_enter_frto_loss(sk, tp->frto_counter + 1, flag);
2641 return 1;
2644 if (!IsSackFrto() || IsReno(tp)) {
2645 /* RFC4138 shortcoming in step 2; should also have case c):
2646 * ACK isn't duplicate nor advances window, e.g., opposite dir
2647 * data, winupdate
2649 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2650 !(flag&FLAG_FORWARD_PROGRESS))
2651 return 1;
2653 if (!(flag&FLAG_DATA_ACKED)) {
2654 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2655 flag);
2656 return 1;
2658 } else {
2659 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2660 /* Prevent sending of new data. */
2661 tp->snd_cwnd = min(tp->snd_cwnd,
2662 tcp_packets_in_flight(tp));
2663 return 1;
2666 if ((tp->frto_counter == 2) &&
2667 (!(flag&FLAG_FORWARD_PROGRESS) ||
2668 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2669 /* RFC4138 shortcoming (see comment above) */
2670 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2671 return 1;
2673 tcp_enter_frto_loss(sk, 3, flag);
2674 return 1;
2678 if (tp->frto_counter == 1) {
2679 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2680 tp->frto_counter = 2;
2681 return 1;
2682 } else /* frto_counter == 2 */ {
2683 switch (sysctl_tcp_frto_response) {
2684 case 2:
2685 tcp_undo_spur_to_response(sk, flag);
2686 break;
2687 case 1:
2688 tcp_conservative_spur_to_response(tp);
2689 break;
2690 default:
2691 tcp_ratehalving_spur_to_response(sk);
2692 break;
2694 tp->frto_counter = 0;
2696 return 0;
2699 /* This routine deals with incoming acks, but not outgoing ones. */
2700 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2702 struct inet_connection_sock *icsk = inet_csk(sk);
2703 struct tcp_sock *tp = tcp_sk(sk);
2704 u32 prior_snd_una = tp->snd_una;
2705 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2706 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2707 u32 prior_in_flight;
2708 s32 seq_rtt;
2709 int prior_packets;
2710 int frto_cwnd = 0;
2712 /* If the ack is newer than sent or older than previous acks
2713 * then we can probably ignore it.
2715 if (after(ack, tp->snd_nxt))
2716 goto uninteresting_ack;
2718 if (before(ack, prior_snd_una))
2719 goto old_ack;
2721 if (sysctl_tcp_abc) {
2722 if (icsk->icsk_ca_state < TCP_CA_CWR)
2723 tp->bytes_acked += ack - prior_snd_una;
2724 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2725 /* we assume just one segment left network */
2726 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2729 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2730 /* Window is constant, pure forward advance.
2731 * No more checks are required.
2732 * Note, we use the fact that SND.UNA>=SND.WL2.
2734 tcp_update_wl(tp, ack, ack_seq);
2735 tp->snd_una = ack;
2736 flag |= FLAG_WIN_UPDATE;
2738 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2740 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2741 } else {
2742 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2743 flag |= FLAG_DATA;
2744 else
2745 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2747 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2749 if (TCP_SKB_CB(skb)->sacked)
2750 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2752 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2753 flag |= FLAG_ECE;
2755 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2758 /* We passed data and got it acked, remove any soft error
2759 * log. Something worked...
2761 sk->sk_err_soft = 0;
2762 tp->rcv_tstamp = tcp_time_stamp;
2763 prior_packets = tp->packets_out;
2764 if (!prior_packets)
2765 goto no_queue;
2767 prior_in_flight = tcp_packets_in_flight(tp);
2769 /* See if we can take anything off of the retransmit queue. */
2770 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2772 if (tp->frto_counter)
2773 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2775 if (tcp_ack_is_dubious(sk, flag)) {
2776 /* Advance CWND, if state allows this. */
2777 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2778 tcp_may_raise_cwnd(sk, flag))
2779 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2780 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2781 } else {
2782 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2783 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2786 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2787 dst_confirm(sk->sk_dst_cache);
2789 return 1;
2791 no_queue:
2792 icsk->icsk_probes_out = 0;
2794 /* If this ack opens up a zero window, clear backoff. It was
2795 * being used to time the probes, and is probably far higher than
2796 * it needs to be for normal retransmission.
2798 if (sk->sk_send_head)
2799 tcp_ack_probe(sk);
2800 return 1;
2802 old_ack:
2803 if (TCP_SKB_CB(skb)->sacked)
2804 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2806 uninteresting_ack:
2807 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2808 return 0;
2812 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2813 * But, this can also be called on packets in the established flow when
2814 * the fast version below fails.
2816 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2818 unsigned char *ptr;
2819 struct tcphdr *th = skb->h.th;
2820 int length=(th->doff*4)-sizeof(struct tcphdr);
2822 ptr = (unsigned char *)(th + 1);
2823 opt_rx->saw_tstamp = 0;
2825 while(length>0) {
2826 int opcode=*ptr++;
2827 int opsize;
2829 switch (opcode) {
2830 case TCPOPT_EOL:
2831 return;
2832 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2833 length--;
2834 continue;
2835 default:
2836 opsize=*ptr++;
2837 if (opsize < 2) /* "silly options" */
2838 return;
2839 if (opsize > length)
2840 return; /* don't parse partial options */
2841 switch(opcode) {
2842 case TCPOPT_MSS:
2843 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2844 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2845 if (in_mss) {
2846 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2847 in_mss = opt_rx->user_mss;
2848 opt_rx->mss_clamp = in_mss;
2851 break;
2852 case TCPOPT_WINDOW:
2853 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2854 if (sysctl_tcp_window_scaling) {
2855 __u8 snd_wscale = *(__u8 *) ptr;
2856 opt_rx->wscale_ok = 1;
2857 if (snd_wscale > 14) {
2858 if(net_ratelimit())
2859 printk(KERN_INFO "tcp_parse_options: Illegal window "
2860 "scaling value %d >14 received.\n",
2861 snd_wscale);
2862 snd_wscale = 14;
2864 opt_rx->snd_wscale = snd_wscale;
2866 break;
2867 case TCPOPT_TIMESTAMP:
2868 if(opsize==TCPOLEN_TIMESTAMP) {
2869 if ((estab && opt_rx->tstamp_ok) ||
2870 (!estab && sysctl_tcp_timestamps)) {
2871 opt_rx->saw_tstamp = 1;
2872 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2873 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2876 break;
2877 case TCPOPT_SACK_PERM:
2878 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2879 if (sysctl_tcp_sack) {
2880 opt_rx->sack_ok = 1;
2881 tcp_sack_reset(opt_rx);
2884 break;
2886 case TCPOPT_SACK:
2887 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2888 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2889 opt_rx->sack_ok) {
2890 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2892 #ifdef CONFIG_TCP_MD5SIG
2893 case TCPOPT_MD5SIG:
2895 * The MD5 Hash has already been
2896 * checked (see tcp_v{4,6}_do_rcv()).
2898 break;
2899 #endif
2901 ptr+=opsize-2;
2902 length-=opsize;
2907 /* Fast parse options. This hopes to only see timestamps.
2908 * If it is wrong it falls back on tcp_parse_options().
2910 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2911 struct tcp_sock *tp)
2913 if (th->doff == sizeof(struct tcphdr)>>2) {
2914 tp->rx_opt.saw_tstamp = 0;
2915 return 0;
2916 } else if (tp->rx_opt.tstamp_ok &&
2917 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2918 __be32 *ptr = (__be32 *)(th + 1);
2919 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2920 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2921 tp->rx_opt.saw_tstamp = 1;
2922 ++ptr;
2923 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2924 ++ptr;
2925 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2926 return 1;
2929 tcp_parse_options(skb, &tp->rx_opt, 1);
2930 return 1;
2933 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2935 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2936 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2939 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2941 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2942 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2943 * extra check below makes sure this can only happen
2944 * for pure ACK frames. -DaveM
2946 * Not only, also it occurs for expired timestamps.
2949 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2950 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2951 tcp_store_ts_recent(tp);
2955 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2957 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2958 * it can pass through stack. So, the following predicate verifies that
2959 * this segment is not used for anything but congestion avoidance or
2960 * fast retransmit. Moreover, we even are able to eliminate most of such
2961 * second order effects, if we apply some small "replay" window (~RTO)
2962 * to timestamp space.
2964 * All these measures still do not guarantee that we reject wrapped ACKs
2965 * on networks with high bandwidth, when sequence space is recycled fastly,
2966 * but it guarantees that such events will be very rare and do not affect
2967 * connection seriously. This doesn't look nice, but alas, PAWS is really
2968 * buggy extension.
2970 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2971 * states that events when retransmit arrives after original data are rare.
2972 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2973 * the biggest problem on large power networks even with minor reordering.
2974 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2975 * up to bandwidth of 18Gigabit/sec. 8) ]
2978 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2980 struct tcp_sock *tp = tcp_sk(sk);
2981 struct tcphdr *th = skb->h.th;
2982 u32 seq = TCP_SKB_CB(skb)->seq;
2983 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2985 return (/* 1. Pure ACK with correct sequence number. */
2986 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2988 /* 2. ... and duplicate ACK. */
2989 ack == tp->snd_una &&
2991 /* 3. ... and does not update window. */
2992 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2994 /* 4. ... and sits in replay window. */
2995 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2998 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3000 const struct tcp_sock *tp = tcp_sk(sk);
3001 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3002 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3003 !tcp_disordered_ack(sk, skb));
3006 /* Check segment sequence number for validity.
3008 * Segment controls are considered valid, if the segment
3009 * fits to the window after truncation to the window. Acceptability
3010 * of data (and SYN, FIN, of course) is checked separately.
3011 * See tcp_data_queue(), for example.
3013 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3014 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3015 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3016 * (borrowed from freebsd)
3019 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3021 return !before(end_seq, tp->rcv_wup) &&
3022 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3025 /* When we get a reset we do this. */
3026 static void tcp_reset(struct sock *sk)
3028 /* We want the right error as BSD sees it (and indeed as we do). */
3029 switch (sk->sk_state) {
3030 case TCP_SYN_SENT:
3031 sk->sk_err = ECONNREFUSED;
3032 break;
3033 case TCP_CLOSE_WAIT:
3034 sk->sk_err = EPIPE;
3035 break;
3036 case TCP_CLOSE:
3037 return;
3038 default:
3039 sk->sk_err = ECONNRESET;
3042 if (!sock_flag(sk, SOCK_DEAD))
3043 sk->sk_error_report(sk);
3045 tcp_done(sk);
3049 * Process the FIN bit. This now behaves as it is supposed to work
3050 * and the FIN takes effect when it is validly part of sequence
3051 * space. Not before when we get holes.
3053 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3054 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3055 * TIME-WAIT)
3057 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3058 * close and we go into CLOSING (and later onto TIME-WAIT)
3060 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3062 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3064 struct tcp_sock *tp = tcp_sk(sk);
3066 inet_csk_schedule_ack(sk);
3068 sk->sk_shutdown |= RCV_SHUTDOWN;
3069 sock_set_flag(sk, SOCK_DONE);
3071 switch (sk->sk_state) {
3072 case TCP_SYN_RECV:
3073 case TCP_ESTABLISHED:
3074 /* Move to CLOSE_WAIT */
3075 tcp_set_state(sk, TCP_CLOSE_WAIT);
3076 inet_csk(sk)->icsk_ack.pingpong = 1;
3077 break;
3079 case TCP_CLOSE_WAIT:
3080 case TCP_CLOSING:
3081 /* Received a retransmission of the FIN, do
3082 * nothing.
3084 break;
3085 case TCP_LAST_ACK:
3086 /* RFC793: Remain in the LAST-ACK state. */
3087 break;
3089 case TCP_FIN_WAIT1:
3090 /* This case occurs when a simultaneous close
3091 * happens, we must ack the received FIN and
3092 * enter the CLOSING state.
3094 tcp_send_ack(sk);
3095 tcp_set_state(sk, TCP_CLOSING);
3096 break;
3097 case TCP_FIN_WAIT2:
3098 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3099 tcp_send_ack(sk);
3100 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3101 break;
3102 default:
3103 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3104 * cases we should never reach this piece of code.
3106 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3107 __FUNCTION__, sk->sk_state);
3108 break;
3111 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3112 * Probably, we should reset in this case. For now drop them.
3114 __skb_queue_purge(&tp->out_of_order_queue);
3115 if (tp->rx_opt.sack_ok)
3116 tcp_sack_reset(&tp->rx_opt);
3117 sk_stream_mem_reclaim(sk);
3119 if (!sock_flag(sk, SOCK_DEAD)) {
3120 sk->sk_state_change(sk);
3122 /* Do not send POLL_HUP for half duplex close. */
3123 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3124 sk->sk_state == TCP_CLOSE)
3125 sk_wake_async(sk, 1, POLL_HUP);
3126 else
3127 sk_wake_async(sk, 1, POLL_IN);
3131 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3133 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3134 if (before(seq, sp->start_seq))
3135 sp->start_seq = seq;
3136 if (after(end_seq, sp->end_seq))
3137 sp->end_seq = end_seq;
3138 return 1;
3140 return 0;
3143 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3145 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3146 if (before(seq, tp->rcv_nxt))
3147 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3148 else
3149 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3151 tp->rx_opt.dsack = 1;
3152 tp->duplicate_sack[0].start_seq = seq;
3153 tp->duplicate_sack[0].end_seq = end_seq;
3154 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3158 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3160 if (!tp->rx_opt.dsack)
3161 tcp_dsack_set(tp, seq, end_seq);
3162 else
3163 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3166 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3168 struct tcp_sock *tp = tcp_sk(sk);
3170 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3171 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3172 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3173 tcp_enter_quickack_mode(sk);
3175 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3176 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3178 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3179 end_seq = tp->rcv_nxt;
3180 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3184 tcp_send_ack(sk);
3187 /* These routines update the SACK block as out-of-order packets arrive or
3188 * in-order packets close up the sequence space.
3190 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3192 int this_sack;
3193 struct tcp_sack_block *sp = &tp->selective_acks[0];
3194 struct tcp_sack_block *swalk = sp+1;
3196 /* See if the recent change to the first SACK eats into
3197 * or hits the sequence space of other SACK blocks, if so coalesce.
3199 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3200 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3201 int i;
3203 /* Zap SWALK, by moving every further SACK up by one slot.
3204 * Decrease num_sacks.
3206 tp->rx_opt.num_sacks--;
3207 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3208 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3209 sp[i] = sp[i+1];
3210 continue;
3212 this_sack++, swalk++;
3216 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3218 __u32 tmp;
3220 tmp = sack1->start_seq;
3221 sack1->start_seq = sack2->start_seq;
3222 sack2->start_seq = tmp;
3224 tmp = sack1->end_seq;
3225 sack1->end_seq = sack2->end_seq;
3226 sack2->end_seq = tmp;
3229 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3231 struct tcp_sock *tp = tcp_sk(sk);
3232 struct tcp_sack_block *sp = &tp->selective_acks[0];
3233 int cur_sacks = tp->rx_opt.num_sacks;
3234 int this_sack;
3236 if (!cur_sacks)
3237 goto new_sack;
3239 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3240 if (tcp_sack_extend(sp, seq, end_seq)) {
3241 /* Rotate this_sack to the first one. */
3242 for (; this_sack>0; this_sack--, sp--)
3243 tcp_sack_swap(sp, sp-1);
3244 if (cur_sacks > 1)
3245 tcp_sack_maybe_coalesce(tp);
3246 return;
3250 /* Could not find an adjacent existing SACK, build a new one,
3251 * put it at the front, and shift everyone else down. We
3252 * always know there is at least one SACK present already here.
3254 * If the sack array is full, forget about the last one.
3256 if (this_sack >= 4) {
3257 this_sack--;
3258 tp->rx_opt.num_sacks--;
3259 sp--;
3261 for(; this_sack > 0; this_sack--, sp--)
3262 *sp = *(sp-1);
3264 new_sack:
3265 /* Build the new head SACK, and we're done. */
3266 sp->start_seq = seq;
3267 sp->end_seq = end_seq;
3268 tp->rx_opt.num_sacks++;
3269 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3272 /* RCV.NXT advances, some SACKs should be eaten. */
3274 static void tcp_sack_remove(struct tcp_sock *tp)
3276 struct tcp_sack_block *sp = &tp->selective_acks[0];
3277 int num_sacks = tp->rx_opt.num_sacks;
3278 int this_sack;
3280 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3281 if (skb_queue_empty(&tp->out_of_order_queue)) {
3282 tp->rx_opt.num_sacks = 0;
3283 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3284 return;
3287 for(this_sack = 0; this_sack < num_sacks; ) {
3288 /* Check if the start of the sack is covered by RCV.NXT. */
3289 if (!before(tp->rcv_nxt, sp->start_seq)) {
3290 int i;
3292 /* RCV.NXT must cover all the block! */
3293 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3295 /* Zap this SACK, by moving forward any other SACKS. */
3296 for (i=this_sack+1; i < num_sacks; i++)
3297 tp->selective_acks[i-1] = tp->selective_acks[i];
3298 num_sacks--;
3299 continue;
3301 this_sack++;
3302 sp++;
3304 if (num_sacks != tp->rx_opt.num_sacks) {
3305 tp->rx_opt.num_sacks = num_sacks;
3306 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3310 /* This one checks to see if we can put data from the
3311 * out_of_order queue into the receive_queue.
3313 static void tcp_ofo_queue(struct sock *sk)
3315 struct tcp_sock *tp = tcp_sk(sk);
3316 __u32 dsack_high = tp->rcv_nxt;
3317 struct sk_buff *skb;
3319 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3320 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3321 break;
3323 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3324 __u32 dsack = dsack_high;
3325 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3326 dsack_high = TCP_SKB_CB(skb)->end_seq;
3327 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3330 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3331 SOCK_DEBUG(sk, "ofo packet was already received \n");
3332 __skb_unlink(skb, &tp->out_of_order_queue);
3333 __kfree_skb(skb);
3334 continue;
3336 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3337 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3338 TCP_SKB_CB(skb)->end_seq);
3340 __skb_unlink(skb, &tp->out_of_order_queue);
3341 __skb_queue_tail(&sk->sk_receive_queue, skb);
3342 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3343 if(skb->h.th->fin)
3344 tcp_fin(skb, sk, skb->h.th);
3348 static int tcp_prune_queue(struct sock *sk);
3350 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3352 struct tcphdr *th = skb->h.th;
3353 struct tcp_sock *tp = tcp_sk(sk);
3354 int eaten = -1;
3356 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3357 goto drop;
3359 __skb_pull(skb, th->doff*4);
3361 TCP_ECN_accept_cwr(tp, skb);
3363 if (tp->rx_opt.dsack) {
3364 tp->rx_opt.dsack = 0;
3365 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3366 4 - tp->rx_opt.tstamp_ok);
3369 /* Queue data for delivery to the user.
3370 * Packets in sequence go to the receive queue.
3371 * Out of sequence packets to the out_of_order_queue.
3373 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3374 if (tcp_receive_window(tp) == 0)
3375 goto out_of_window;
3377 /* Ok. In sequence. In window. */
3378 if (tp->ucopy.task == current &&
3379 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3380 sock_owned_by_user(sk) && !tp->urg_data) {
3381 int chunk = min_t(unsigned int, skb->len,
3382 tp->ucopy.len);
3384 __set_current_state(TASK_RUNNING);
3386 local_bh_enable();
3387 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3388 tp->ucopy.len -= chunk;
3389 tp->copied_seq += chunk;
3390 eaten = (chunk == skb->len && !th->fin);
3391 tcp_rcv_space_adjust(sk);
3393 local_bh_disable();
3396 if (eaten <= 0) {
3397 queue_and_out:
3398 if (eaten < 0 &&
3399 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3400 !sk_stream_rmem_schedule(sk, skb))) {
3401 if (tcp_prune_queue(sk) < 0 ||
3402 !sk_stream_rmem_schedule(sk, skb))
3403 goto drop;
3405 sk_stream_set_owner_r(skb, sk);
3406 __skb_queue_tail(&sk->sk_receive_queue, skb);
3408 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3409 if(skb->len)
3410 tcp_event_data_recv(sk, tp, skb);
3411 if(th->fin)
3412 tcp_fin(skb, sk, th);
3414 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3415 tcp_ofo_queue(sk);
3417 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3418 * gap in queue is filled.
3420 if (skb_queue_empty(&tp->out_of_order_queue))
3421 inet_csk(sk)->icsk_ack.pingpong = 0;
3424 if (tp->rx_opt.num_sacks)
3425 tcp_sack_remove(tp);
3427 tcp_fast_path_check(sk, tp);
3429 if (eaten > 0)
3430 __kfree_skb(skb);
3431 else if (!sock_flag(sk, SOCK_DEAD))
3432 sk->sk_data_ready(sk, 0);
3433 return;
3436 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3437 /* A retransmit, 2nd most common case. Force an immediate ack. */
3438 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3439 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3441 out_of_window:
3442 tcp_enter_quickack_mode(sk);
3443 inet_csk_schedule_ack(sk);
3444 drop:
3445 __kfree_skb(skb);
3446 return;
3449 /* Out of window. F.e. zero window probe. */
3450 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3451 goto out_of_window;
3453 tcp_enter_quickack_mode(sk);
3455 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3456 /* Partial packet, seq < rcv_next < end_seq */
3457 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3458 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3459 TCP_SKB_CB(skb)->end_seq);
3461 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3463 /* If window is closed, drop tail of packet. But after
3464 * remembering D-SACK for its head made in previous line.
3466 if (!tcp_receive_window(tp))
3467 goto out_of_window;
3468 goto queue_and_out;
3471 TCP_ECN_check_ce(tp, skb);
3473 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3474 !sk_stream_rmem_schedule(sk, skb)) {
3475 if (tcp_prune_queue(sk) < 0 ||
3476 !sk_stream_rmem_schedule(sk, skb))
3477 goto drop;
3480 /* Disable header prediction. */
3481 tp->pred_flags = 0;
3482 inet_csk_schedule_ack(sk);
3484 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3485 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3487 sk_stream_set_owner_r(skb, sk);
3489 if (!skb_peek(&tp->out_of_order_queue)) {
3490 /* Initial out of order segment, build 1 SACK. */
3491 if (tp->rx_opt.sack_ok) {
3492 tp->rx_opt.num_sacks = 1;
3493 tp->rx_opt.dsack = 0;
3494 tp->rx_opt.eff_sacks = 1;
3495 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3496 tp->selective_acks[0].end_seq =
3497 TCP_SKB_CB(skb)->end_seq;
3499 __skb_queue_head(&tp->out_of_order_queue,skb);
3500 } else {
3501 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3502 u32 seq = TCP_SKB_CB(skb)->seq;
3503 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3505 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3506 __skb_append(skb1, skb, &tp->out_of_order_queue);
3508 if (!tp->rx_opt.num_sacks ||
3509 tp->selective_acks[0].end_seq != seq)
3510 goto add_sack;
3512 /* Common case: data arrive in order after hole. */
3513 tp->selective_acks[0].end_seq = end_seq;
3514 return;
3517 /* Find place to insert this segment. */
3518 do {
3519 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3520 break;
3521 } while ((skb1 = skb1->prev) !=
3522 (struct sk_buff*)&tp->out_of_order_queue);
3524 /* Do skb overlap to previous one? */
3525 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3526 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3527 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3528 /* All the bits are present. Drop. */
3529 __kfree_skb(skb);
3530 tcp_dsack_set(tp, seq, end_seq);
3531 goto add_sack;
3533 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3534 /* Partial overlap. */
3535 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3536 } else {
3537 skb1 = skb1->prev;
3540 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3542 /* And clean segments covered by new one as whole. */
3543 while ((skb1 = skb->next) !=
3544 (struct sk_buff*)&tp->out_of_order_queue &&
3545 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3546 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3547 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3548 break;
3550 __skb_unlink(skb1, &tp->out_of_order_queue);
3551 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3552 __kfree_skb(skb1);
3555 add_sack:
3556 if (tp->rx_opt.sack_ok)
3557 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3561 /* Collapse contiguous sequence of skbs head..tail with
3562 * sequence numbers start..end.
3563 * Segments with FIN/SYN are not collapsed (only because this
3564 * simplifies code)
3566 static void
3567 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3568 struct sk_buff *head, struct sk_buff *tail,
3569 u32 start, u32 end)
3571 struct sk_buff *skb;
3573 /* First, check that queue is collapsible and find
3574 * the point where collapsing can be useful. */
3575 for (skb = head; skb != tail; ) {
3576 /* No new bits? It is possible on ofo queue. */
3577 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3578 struct sk_buff *next = skb->next;
3579 __skb_unlink(skb, list);
3580 __kfree_skb(skb);
3581 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3582 skb = next;
3583 continue;
3586 /* The first skb to collapse is:
3587 * - not SYN/FIN and
3588 * - bloated or contains data before "start" or
3589 * overlaps to the next one.
3591 if (!skb->h.th->syn && !skb->h.th->fin &&
3592 (tcp_win_from_space(skb->truesize) > skb->len ||
3593 before(TCP_SKB_CB(skb)->seq, start) ||
3594 (skb->next != tail &&
3595 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3596 break;
3598 /* Decided to skip this, advance start seq. */
3599 start = TCP_SKB_CB(skb)->end_seq;
3600 skb = skb->next;
3602 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3603 return;
3605 while (before(start, end)) {
3606 struct sk_buff *nskb;
3607 int header = skb_headroom(skb);
3608 int copy = SKB_MAX_ORDER(header, 0);
3610 /* Too big header? This can happen with IPv6. */
3611 if (copy < 0)
3612 return;
3613 if (end-start < copy)
3614 copy = end-start;
3615 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3616 if (!nskb)
3617 return;
3618 skb_reserve(nskb, header);
3619 memcpy(nskb->head, skb->head, header);
3620 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3621 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3622 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3623 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3624 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3625 __skb_insert(nskb, skb->prev, skb, list);
3626 sk_stream_set_owner_r(nskb, sk);
3628 /* Copy data, releasing collapsed skbs. */
3629 while (copy > 0) {
3630 int offset = start - TCP_SKB_CB(skb)->seq;
3631 int size = TCP_SKB_CB(skb)->end_seq - start;
3633 BUG_ON(offset < 0);
3634 if (size > 0) {
3635 size = min(copy, size);
3636 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3637 BUG();
3638 TCP_SKB_CB(nskb)->end_seq += size;
3639 copy -= size;
3640 start += size;
3642 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3643 struct sk_buff *next = skb->next;
3644 __skb_unlink(skb, list);
3645 __kfree_skb(skb);
3646 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3647 skb = next;
3648 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3649 return;
3655 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3656 * and tcp_collapse() them until all the queue is collapsed.
3658 static void tcp_collapse_ofo_queue(struct sock *sk)
3660 struct tcp_sock *tp = tcp_sk(sk);
3661 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3662 struct sk_buff *head;
3663 u32 start, end;
3665 if (skb == NULL)
3666 return;
3668 start = TCP_SKB_CB(skb)->seq;
3669 end = TCP_SKB_CB(skb)->end_seq;
3670 head = skb;
3672 for (;;) {
3673 skb = skb->next;
3675 /* Segment is terminated when we see gap or when
3676 * we are at the end of all the queue. */
3677 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3678 after(TCP_SKB_CB(skb)->seq, end) ||
3679 before(TCP_SKB_CB(skb)->end_seq, start)) {
3680 tcp_collapse(sk, &tp->out_of_order_queue,
3681 head, skb, start, end);
3682 head = skb;
3683 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3684 break;
3685 /* Start new segment */
3686 start = TCP_SKB_CB(skb)->seq;
3687 end = TCP_SKB_CB(skb)->end_seq;
3688 } else {
3689 if (before(TCP_SKB_CB(skb)->seq, start))
3690 start = TCP_SKB_CB(skb)->seq;
3691 if (after(TCP_SKB_CB(skb)->end_seq, end))
3692 end = TCP_SKB_CB(skb)->end_seq;
3697 /* Reduce allocated memory if we can, trying to get
3698 * the socket within its memory limits again.
3700 * Return less than zero if we should start dropping frames
3701 * until the socket owning process reads some of the data
3702 * to stabilize the situation.
3704 static int tcp_prune_queue(struct sock *sk)
3706 struct tcp_sock *tp = tcp_sk(sk);
3708 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3710 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3712 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3713 tcp_clamp_window(sk, tp);
3714 else if (tcp_memory_pressure)
3715 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3717 tcp_collapse_ofo_queue(sk);
3718 tcp_collapse(sk, &sk->sk_receive_queue,
3719 sk->sk_receive_queue.next,
3720 (struct sk_buff*)&sk->sk_receive_queue,
3721 tp->copied_seq, tp->rcv_nxt);
3722 sk_stream_mem_reclaim(sk);
3724 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3725 return 0;
3727 /* Collapsing did not help, destructive actions follow.
3728 * This must not ever occur. */
3730 /* First, purge the out_of_order queue. */
3731 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3732 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3733 __skb_queue_purge(&tp->out_of_order_queue);
3735 /* Reset SACK state. A conforming SACK implementation will
3736 * do the same at a timeout based retransmit. When a connection
3737 * is in a sad state like this, we care only about integrity
3738 * of the connection not performance.
3740 if (tp->rx_opt.sack_ok)
3741 tcp_sack_reset(&tp->rx_opt);
3742 sk_stream_mem_reclaim(sk);
3745 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3746 return 0;
3748 /* If we are really being abused, tell the caller to silently
3749 * drop receive data on the floor. It will get retransmitted
3750 * and hopefully then we'll have sufficient space.
3752 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3754 /* Massive buffer overcommit. */
3755 tp->pred_flags = 0;
3756 return -1;
3760 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3761 * As additional protections, we do not touch cwnd in retransmission phases,
3762 * and if application hit its sndbuf limit recently.
3764 void tcp_cwnd_application_limited(struct sock *sk)
3766 struct tcp_sock *tp = tcp_sk(sk);
3768 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3769 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3770 /* Limited by application or receiver window. */
3771 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3772 u32 win_used = max(tp->snd_cwnd_used, init_win);
3773 if (win_used < tp->snd_cwnd) {
3774 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3775 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3777 tp->snd_cwnd_used = 0;
3779 tp->snd_cwnd_stamp = tcp_time_stamp;
3782 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3784 /* If the user specified a specific send buffer setting, do
3785 * not modify it.
3787 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3788 return 0;
3790 /* If we are under global TCP memory pressure, do not expand. */
3791 if (tcp_memory_pressure)
3792 return 0;
3794 /* If we are under soft global TCP memory pressure, do not expand. */
3795 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3796 return 0;
3798 /* If we filled the congestion window, do not expand. */
3799 if (tp->packets_out >= tp->snd_cwnd)
3800 return 0;
3802 return 1;
3805 /* When incoming ACK allowed to free some skb from write_queue,
3806 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3807 * on the exit from tcp input handler.
3809 * PROBLEM: sndbuf expansion does not work well with largesend.
3811 static void tcp_new_space(struct sock *sk)
3813 struct tcp_sock *tp = tcp_sk(sk);
3815 if (tcp_should_expand_sndbuf(sk, tp)) {
3816 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3817 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3818 demanded = max_t(unsigned int, tp->snd_cwnd,
3819 tp->reordering + 1);
3820 sndmem *= 2*demanded;
3821 if (sndmem > sk->sk_sndbuf)
3822 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3823 tp->snd_cwnd_stamp = tcp_time_stamp;
3826 sk->sk_write_space(sk);
3829 static void tcp_check_space(struct sock *sk)
3831 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3832 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3833 if (sk->sk_socket &&
3834 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3835 tcp_new_space(sk);
3839 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3841 tcp_push_pending_frames(sk, tp);
3842 tcp_check_space(sk);
3846 * Check if sending an ack is needed.
3848 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3850 struct tcp_sock *tp = tcp_sk(sk);
3852 /* More than one full frame received... */
3853 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3854 /* ... and right edge of window advances far enough.
3855 * (tcp_recvmsg() will send ACK otherwise). Or...
3857 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3858 /* We ACK each frame or... */
3859 tcp_in_quickack_mode(sk) ||
3860 /* We have out of order data. */
3861 (ofo_possible &&
3862 skb_peek(&tp->out_of_order_queue))) {
3863 /* Then ack it now */
3864 tcp_send_ack(sk);
3865 } else {
3866 /* Else, send delayed ack. */
3867 tcp_send_delayed_ack(sk);
3871 static inline void tcp_ack_snd_check(struct sock *sk)
3873 if (!inet_csk_ack_scheduled(sk)) {
3874 /* We sent a data segment already. */
3875 return;
3877 __tcp_ack_snd_check(sk, 1);
3881 * This routine is only called when we have urgent data
3882 * signaled. Its the 'slow' part of tcp_urg. It could be
3883 * moved inline now as tcp_urg is only called from one
3884 * place. We handle URGent data wrong. We have to - as
3885 * BSD still doesn't use the correction from RFC961.
3886 * For 1003.1g we should support a new option TCP_STDURG to permit
3887 * either form (or just set the sysctl tcp_stdurg).
3890 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3892 struct tcp_sock *tp = tcp_sk(sk);
3893 u32 ptr = ntohs(th->urg_ptr);
3895 if (ptr && !sysctl_tcp_stdurg)
3896 ptr--;
3897 ptr += ntohl(th->seq);
3899 /* Ignore urgent data that we've already seen and read. */
3900 if (after(tp->copied_seq, ptr))
3901 return;
3903 /* Do not replay urg ptr.
3905 * NOTE: interesting situation not covered by specs.
3906 * Misbehaving sender may send urg ptr, pointing to segment,
3907 * which we already have in ofo queue. We are not able to fetch
3908 * such data and will stay in TCP_URG_NOTYET until will be eaten
3909 * by recvmsg(). Seems, we are not obliged to handle such wicked
3910 * situations. But it is worth to think about possibility of some
3911 * DoSes using some hypothetical application level deadlock.
3913 if (before(ptr, tp->rcv_nxt))
3914 return;
3916 /* Do we already have a newer (or duplicate) urgent pointer? */
3917 if (tp->urg_data && !after(ptr, tp->urg_seq))
3918 return;
3920 /* Tell the world about our new urgent pointer. */
3921 sk_send_sigurg(sk);
3923 /* We may be adding urgent data when the last byte read was
3924 * urgent. To do this requires some care. We cannot just ignore
3925 * tp->copied_seq since we would read the last urgent byte again
3926 * as data, nor can we alter copied_seq until this data arrives
3927 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3929 * NOTE. Double Dutch. Rendering to plain English: author of comment
3930 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3931 * and expect that both A and B disappear from stream. This is _wrong_.
3932 * Though this happens in BSD with high probability, this is occasional.
3933 * Any application relying on this is buggy. Note also, that fix "works"
3934 * only in this artificial test. Insert some normal data between A and B and we will
3935 * decline of BSD again. Verdict: it is better to remove to trap
3936 * buggy users.
3938 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3939 !sock_flag(sk, SOCK_URGINLINE) &&
3940 tp->copied_seq != tp->rcv_nxt) {
3941 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3942 tp->copied_seq++;
3943 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3944 __skb_unlink(skb, &sk->sk_receive_queue);
3945 __kfree_skb(skb);
3949 tp->urg_data = TCP_URG_NOTYET;
3950 tp->urg_seq = ptr;
3952 /* Disable header prediction. */
3953 tp->pred_flags = 0;
3956 /* This is the 'fast' part of urgent handling. */
3957 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3959 struct tcp_sock *tp = tcp_sk(sk);
3961 /* Check if we get a new urgent pointer - normally not. */
3962 if (th->urg)
3963 tcp_check_urg(sk,th);
3965 /* Do we wait for any urgent data? - normally not... */
3966 if (tp->urg_data == TCP_URG_NOTYET) {
3967 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3968 th->syn;
3970 /* Is the urgent pointer pointing into this packet? */
3971 if (ptr < skb->len) {
3972 u8 tmp;
3973 if (skb_copy_bits(skb, ptr, &tmp, 1))
3974 BUG();
3975 tp->urg_data = TCP_URG_VALID | tmp;
3976 if (!sock_flag(sk, SOCK_DEAD))
3977 sk->sk_data_ready(sk, 0);
3982 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3984 struct tcp_sock *tp = tcp_sk(sk);
3985 int chunk = skb->len - hlen;
3986 int err;
3988 local_bh_enable();
3989 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3990 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3991 else
3992 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3993 tp->ucopy.iov);
3995 if (!err) {
3996 tp->ucopy.len -= chunk;
3997 tp->copied_seq += chunk;
3998 tcp_rcv_space_adjust(sk);
4001 local_bh_disable();
4002 return err;
4005 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4007 __sum16 result;
4009 if (sock_owned_by_user(sk)) {
4010 local_bh_enable();
4011 result = __tcp_checksum_complete(skb);
4012 local_bh_disable();
4013 } else {
4014 result = __tcp_checksum_complete(skb);
4016 return result;
4019 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4021 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
4022 __tcp_checksum_complete_user(sk, skb);
4025 #ifdef CONFIG_NET_DMA
4026 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4028 struct tcp_sock *tp = tcp_sk(sk);
4029 int chunk = skb->len - hlen;
4030 int dma_cookie;
4031 int copied_early = 0;
4033 if (tp->ucopy.wakeup)
4034 return 0;
4036 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4037 tp->ucopy.dma_chan = get_softnet_dma();
4039 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
4041 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4042 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4044 if (dma_cookie < 0)
4045 goto out;
4047 tp->ucopy.dma_cookie = dma_cookie;
4048 copied_early = 1;
4050 tp->ucopy.len -= chunk;
4051 tp->copied_seq += chunk;
4052 tcp_rcv_space_adjust(sk);
4054 if ((tp->ucopy.len == 0) ||
4055 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
4056 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4057 tp->ucopy.wakeup = 1;
4058 sk->sk_data_ready(sk, 0);
4060 } else if (chunk > 0) {
4061 tp->ucopy.wakeup = 1;
4062 sk->sk_data_ready(sk, 0);
4064 out:
4065 return copied_early;
4067 #endif /* CONFIG_NET_DMA */
4070 * TCP receive function for the ESTABLISHED state.
4072 * It is split into a fast path and a slow path. The fast path is
4073 * disabled when:
4074 * - A zero window was announced from us - zero window probing
4075 * is only handled properly in the slow path.
4076 * - Out of order segments arrived.
4077 * - Urgent data is expected.
4078 * - There is no buffer space left
4079 * - Unexpected TCP flags/window values/header lengths are received
4080 * (detected by checking the TCP header against pred_flags)
4081 * - Data is sent in both directions. Fast path only supports pure senders
4082 * or pure receivers (this means either the sequence number or the ack
4083 * value must stay constant)
4084 * - Unexpected TCP option.
4086 * When these conditions are not satisfied it drops into a standard
4087 * receive procedure patterned after RFC793 to handle all cases.
4088 * The first three cases are guaranteed by proper pred_flags setting,
4089 * the rest is checked inline. Fast processing is turned on in
4090 * tcp_data_queue when everything is OK.
4092 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4093 struct tcphdr *th, unsigned len)
4095 struct tcp_sock *tp = tcp_sk(sk);
4098 * Header prediction.
4099 * The code loosely follows the one in the famous
4100 * "30 instruction TCP receive" Van Jacobson mail.
4102 * Van's trick is to deposit buffers into socket queue
4103 * on a device interrupt, to call tcp_recv function
4104 * on the receive process context and checksum and copy
4105 * the buffer to user space. smart...
4107 * Our current scheme is not silly either but we take the
4108 * extra cost of the net_bh soft interrupt processing...
4109 * We do checksum and copy also but from device to kernel.
4112 tp->rx_opt.saw_tstamp = 0;
4114 /* pred_flags is 0xS?10 << 16 + snd_wnd
4115 * if header_prediction is to be made
4116 * 'S' will always be tp->tcp_header_len >> 2
4117 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4118 * turn it off (when there are holes in the receive
4119 * space for instance)
4120 * PSH flag is ignored.
4123 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4124 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4125 int tcp_header_len = tp->tcp_header_len;
4127 /* Timestamp header prediction: tcp_header_len
4128 * is automatically equal to th->doff*4 due to pred_flags
4129 * match.
4132 /* Check timestamp */
4133 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4134 __be32 *ptr = (__be32 *)(th + 1);
4136 /* No? Slow path! */
4137 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4138 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4139 goto slow_path;
4141 tp->rx_opt.saw_tstamp = 1;
4142 ++ptr;
4143 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4144 ++ptr;
4145 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4147 /* If PAWS failed, check it more carefully in slow path */
4148 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4149 goto slow_path;
4151 /* DO NOT update ts_recent here, if checksum fails
4152 * and timestamp was corrupted part, it will result
4153 * in a hung connection since we will drop all
4154 * future packets due to the PAWS test.
4158 if (len <= tcp_header_len) {
4159 /* Bulk data transfer: sender */
4160 if (len == tcp_header_len) {
4161 /* Predicted packet is in window by definition.
4162 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4163 * Hence, check seq<=rcv_wup reduces to:
4165 if (tcp_header_len ==
4166 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4167 tp->rcv_nxt == tp->rcv_wup)
4168 tcp_store_ts_recent(tp);
4170 /* We know that such packets are checksummed
4171 * on entry.
4173 tcp_ack(sk, skb, 0);
4174 __kfree_skb(skb);
4175 tcp_data_snd_check(sk, tp);
4176 return 0;
4177 } else { /* Header too small */
4178 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4179 goto discard;
4181 } else {
4182 int eaten = 0;
4183 int copied_early = 0;
4185 if (tp->copied_seq == tp->rcv_nxt &&
4186 len - tcp_header_len <= tp->ucopy.len) {
4187 #ifdef CONFIG_NET_DMA
4188 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4189 copied_early = 1;
4190 eaten = 1;
4192 #endif
4193 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4194 __set_current_state(TASK_RUNNING);
4196 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4197 eaten = 1;
4199 if (eaten) {
4200 /* Predicted packet is in window by definition.
4201 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4202 * Hence, check seq<=rcv_wup reduces to:
4204 if (tcp_header_len ==
4205 (sizeof(struct tcphdr) +
4206 TCPOLEN_TSTAMP_ALIGNED) &&
4207 tp->rcv_nxt == tp->rcv_wup)
4208 tcp_store_ts_recent(tp);
4210 tcp_rcv_rtt_measure_ts(sk, skb);
4212 __skb_pull(skb, tcp_header_len);
4213 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4214 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4216 if (copied_early)
4217 tcp_cleanup_rbuf(sk, skb->len);
4219 if (!eaten) {
4220 if (tcp_checksum_complete_user(sk, skb))
4221 goto csum_error;
4223 /* Predicted packet is in window by definition.
4224 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4225 * Hence, check seq<=rcv_wup reduces to:
4227 if (tcp_header_len ==
4228 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4229 tp->rcv_nxt == tp->rcv_wup)
4230 tcp_store_ts_recent(tp);
4232 tcp_rcv_rtt_measure_ts(sk, skb);
4234 if ((int)skb->truesize > sk->sk_forward_alloc)
4235 goto step5;
4237 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4239 /* Bulk data transfer: receiver */
4240 __skb_pull(skb,tcp_header_len);
4241 __skb_queue_tail(&sk->sk_receive_queue, skb);
4242 sk_stream_set_owner_r(skb, sk);
4243 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4246 tcp_event_data_recv(sk, tp, skb);
4248 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4249 /* Well, only one small jumplet in fast path... */
4250 tcp_ack(sk, skb, FLAG_DATA);
4251 tcp_data_snd_check(sk, tp);
4252 if (!inet_csk_ack_scheduled(sk))
4253 goto no_ack;
4256 __tcp_ack_snd_check(sk, 0);
4257 no_ack:
4258 #ifdef CONFIG_NET_DMA
4259 if (copied_early)
4260 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4261 else
4262 #endif
4263 if (eaten)
4264 __kfree_skb(skb);
4265 else
4266 sk->sk_data_ready(sk, 0);
4267 return 0;
4271 slow_path:
4272 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4273 goto csum_error;
4276 * RFC1323: H1. Apply PAWS check first.
4278 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4279 tcp_paws_discard(sk, skb)) {
4280 if (!th->rst) {
4281 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4282 tcp_send_dupack(sk, skb);
4283 goto discard;
4285 /* Resets are accepted even if PAWS failed.
4287 ts_recent update must be made after we are sure
4288 that the packet is in window.
4293 * Standard slow path.
4296 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4297 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4298 * (RST) segments are validated by checking their SEQ-fields."
4299 * And page 69: "If an incoming segment is not acceptable,
4300 * an acknowledgment should be sent in reply (unless the RST bit
4301 * is set, if so drop the segment and return)".
4303 if (!th->rst)
4304 tcp_send_dupack(sk, skb);
4305 goto discard;
4308 if(th->rst) {
4309 tcp_reset(sk);
4310 goto discard;
4313 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4315 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4316 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4317 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4318 tcp_reset(sk);
4319 return 1;
4322 step5:
4323 if(th->ack)
4324 tcp_ack(sk, skb, FLAG_SLOWPATH);
4326 tcp_rcv_rtt_measure_ts(sk, skb);
4328 /* Process urgent data. */
4329 tcp_urg(sk, skb, th);
4331 /* step 7: process the segment text */
4332 tcp_data_queue(sk, skb);
4334 tcp_data_snd_check(sk, tp);
4335 tcp_ack_snd_check(sk);
4336 return 0;
4338 csum_error:
4339 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4341 discard:
4342 __kfree_skb(skb);
4343 return 0;
4346 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4347 struct tcphdr *th, unsigned len)
4349 struct tcp_sock *tp = tcp_sk(sk);
4350 struct inet_connection_sock *icsk = inet_csk(sk);
4351 int saved_clamp = tp->rx_opt.mss_clamp;
4353 tcp_parse_options(skb, &tp->rx_opt, 0);
4355 if (th->ack) {
4356 /* rfc793:
4357 * "If the state is SYN-SENT then
4358 * first check the ACK bit
4359 * If the ACK bit is set
4360 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4361 * a reset (unless the RST bit is set, if so drop
4362 * the segment and return)"
4364 * We do not send data with SYN, so that RFC-correct
4365 * test reduces to:
4367 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4368 goto reset_and_undo;
4370 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4371 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4372 tcp_time_stamp)) {
4373 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4374 goto reset_and_undo;
4377 /* Now ACK is acceptable.
4379 * "If the RST bit is set
4380 * If the ACK was acceptable then signal the user "error:
4381 * connection reset", drop the segment, enter CLOSED state,
4382 * delete TCB, and return."
4385 if (th->rst) {
4386 tcp_reset(sk);
4387 goto discard;
4390 /* rfc793:
4391 * "fifth, if neither of the SYN or RST bits is set then
4392 * drop the segment and return."
4394 * See note below!
4395 * --ANK(990513)
4397 if (!th->syn)
4398 goto discard_and_undo;
4400 /* rfc793:
4401 * "If the SYN bit is on ...
4402 * are acceptable then ...
4403 * (our SYN has been ACKed), change the connection
4404 * state to ESTABLISHED..."
4407 TCP_ECN_rcv_synack(tp, th);
4409 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4410 tcp_ack(sk, skb, FLAG_SLOWPATH);
4412 /* Ok.. it's good. Set up sequence numbers and
4413 * move to established.
4415 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4416 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4418 /* RFC1323: The window in SYN & SYN/ACK segments is
4419 * never scaled.
4421 tp->snd_wnd = ntohs(th->window);
4422 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4424 if (!tp->rx_opt.wscale_ok) {
4425 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4426 tp->window_clamp = min(tp->window_clamp, 65535U);
4429 if (tp->rx_opt.saw_tstamp) {
4430 tp->rx_opt.tstamp_ok = 1;
4431 tp->tcp_header_len =
4432 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4433 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4434 tcp_store_ts_recent(tp);
4435 } else {
4436 tp->tcp_header_len = sizeof(struct tcphdr);
4439 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4440 tp->rx_opt.sack_ok |= 2;
4442 tcp_mtup_init(sk);
4443 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4444 tcp_initialize_rcv_mss(sk);
4446 /* Remember, tcp_poll() does not lock socket!
4447 * Change state from SYN-SENT only after copied_seq
4448 * is initialized. */
4449 tp->copied_seq = tp->rcv_nxt;
4450 smp_mb();
4451 tcp_set_state(sk, TCP_ESTABLISHED);
4453 security_inet_conn_established(sk, skb);
4455 /* Make sure socket is routed, for correct metrics. */
4456 icsk->icsk_af_ops->rebuild_header(sk);
4458 tcp_init_metrics(sk);
4460 tcp_init_congestion_control(sk);
4462 /* Prevent spurious tcp_cwnd_restart() on first data
4463 * packet.
4465 tp->lsndtime = tcp_time_stamp;
4467 tcp_init_buffer_space(sk);
4469 if (sock_flag(sk, SOCK_KEEPOPEN))
4470 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4472 if (!tp->rx_opt.snd_wscale)
4473 __tcp_fast_path_on(tp, tp->snd_wnd);
4474 else
4475 tp->pred_flags = 0;
4477 if (!sock_flag(sk, SOCK_DEAD)) {
4478 sk->sk_state_change(sk);
4479 sk_wake_async(sk, 0, POLL_OUT);
4482 if (sk->sk_write_pending ||
4483 icsk->icsk_accept_queue.rskq_defer_accept ||
4484 icsk->icsk_ack.pingpong) {
4485 /* Save one ACK. Data will be ready after
4486 * several ticks, if write_pending is set.
4488 * It may be deleted, but with this feature tcpdumps
4489 * look so _wonderfully_ clever, that I was not able
4490 * to stand against the temptation 8) --ANK
4492 inet_csk_schedule_ack(sk);
4493 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4494 icsk->icsk_ack.ato = TCP_ATO_MIN;
4495 tcp_incr_quickack(sk);
4496 tcp_enter_quickack_mode(sk);
4497 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4498 TCP_DELACK_MAX, TCP_RTO_MAX);
4500 discard:
4501 __kfree_skb(skb);
4502 return 0;
4503 } else {
4504 tcp_send_ack(sk);
4506 return -1;
4509 /* No ACK in the segment */
4511 if (th->rst) {
4512 /* rfc793:
4513 * "If the RST bit is set
4515 * Otherwise (no ACK) drop the segment and return."
4518 goto discard_and_undo;
4521 /* PAWS check. */
4522 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4523 goto discard_and_undo;
4525 if (th->syn) {
4526 /* We see SYN without ACK. It is attempt of
4527 * simultaneous connect with crossed SYNs.
4528 * Particularly, it can be connect to self.
4530 tcp_set_state(sk, TCP_SYN_RECV);
4532 if (tp->rx_opt.saw_tstamp) {
4533 tp->rx_opt.tstamp_ok = 1;
4534 tcp_store_ts_recent(tp);
4535 tp->tcp_header_len =
4536 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4537 } else {
4538 tp->tcp_header_len = sizeof(struct tcphdr);
4541 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4542 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4544 /* RFC1323: The window in SYN & SYN/ACK segments is
4545 * never scaled.
4547 tp->snd_wnd = ntohs(th->window);
4548 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4549 tp->max_window = tp->snd_wnd;
4551 TCP_ECN_rcv_syn(tp, th);
4553 tcp_mtup_init(sk);
4554 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4555 tcp_initialize_rcv_mss(sk);
4558 tcp_send_synack(sk);
4559 #if 0
4560 /* Note, we could accept data and URG from this segment.
4561 * There are no obstacles to make this.
4563 * However, if we ignore data in ACKless segments sometimes,
4564 * we have no reasons to accept it sometimes.
4565 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4566 * is not flawless. So, discard packet for sanity.
4567 * Uncomment this return to process the data.
4569 return -1;
4570 #else
4571 goto discard;
4572 #endif
4574 /* "fifth, if neither of the SYN or RST bits is set then
4575 * drop the segment and return."
4578 discard_and_undo:
4579 tcp_clear_options(&tp->rx_opt);
4580 tp->rx_opt.mss_clamp = saved_clamp;
4581 goto discard;
4583 reset_and_undo:
4584 tcp_clear_options(&tp->rx_opt);
4585 tp->rx_opt.mss_clamp = saved_clamp;
4586 return 1;
4591 * This function implements the receiving procedure of RFC 793 for
4592 * all states except ESTABLISHED and TIME_WAIT.
4593 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4594 * address independent.
4597 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4598 struct tcphdr *th, unsigned len)
4600 struct tcp_sock *tp = tcp_sk(sk);
4601 struct inet_connection_sock *icsk = inet_csk(sk);
4602 int queued = 0;
4604 tp->rx_opt.saw_tstamp = 0;
4606 switch (sk->sk_state) {
4607 case TCP_CLOSE:
4608 goto discard;
4610 case TCP_LISTEN:
4611 if(th->ack)
4612 return 1;
4614 if(th->rst)
4615 goto discard;
4617 if(th->syn) {
4618 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4619 return 1;
4621 /* Now we have several options: In theory there is
4622 * nothing else in the frame. KA9Q has an option to
4623 * send data with the syn, BSD accepts data with the
4624 * syn up to the [to be] advertised window and
4625 * Solaris 2.1 gives you a protocol error. For now
4626 * we just ignore it, that fits the spec precisely
4627 * and avoids incompatibilities. It would be nice in
4628 * future to drop through and process the data.
4630 * Now that TTCP is starting to be used we ought to
4631 * queue this data.
4632 * But, this leaves one open to an easy denial of
4633 * service attack, and SYN cookies can't defend
4634 * against this problem. So, we drop the data
4635 * in the interest of security over speed unless
4636 * it's still in use.
4638 kfree_skb(skb);
4639 return 0;
4641 goto discard;
4643 case TCP_SYN_SENT:
4644 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4645 if (queued >= 0)
4646 return queued;
4648 /* Do step6 onward by hand. */
4649 tcp_urg(sk, skb, th);
4650 __kfree_skb(skb);
4651 tcp_data_snd_check(sk, tp);
4652 return 0;
4655 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4656 tcp_paws_discard(sk, skb)) {
4657 if (!th->rst) {
4658 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4659 tcp_send_dupack(sk, skb);
4660 goto discard;
4662 /* Reset is accepted even if it did not pass PAWS. */
4665 /* step 1: check sequence number */
4666 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4667 if (!th->rst)
4668 tcp_send_dupack(sk, skb);
4669 goto discard;
4672 /* step 2: check RST bit */
4673 if(th->rst) {
4674 tcp_reset(sk);
4675 goto discard;
4678 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4680 /* step 3: check security and precedence [ignored] */
4682 /* step 4:
4684 * Check for a SYN in window.
4686 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4687 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4688 tcp_reset(sk);
4689 return 1;
4692 /* step 5: check the ACK field */
4693 if (th->ack) {
4694 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4696 switch(sk->sk_state) {
4697 case TCP_SYN_RECV:
4698 if (acceptable) {
4699 tp->copied_seq = tp->rcv_nxt;
4700 smp_mb();
4701 tcp_set_state(sk, TCP_ESTABLISHED);
4702 sk->sk_state_change(sk);
4704 /* Note, that this wakeup is only for marginal
4705 * crossed SYN case. Passively open sockets
4706 * are not waked up, because sk->sk_sleep ==
4707 * NULL and sk->sk_socket == NULL.
4709 if (sk->sk_socket) {
4710 sk_wake_async(sk,0,POLL_OUT);
4713 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4714 tp->snd_wnd = ntohs(th->window) <<
4715 tp->rx_opt.snd_wscale;
4716 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4717 TCP_SKB_CB(skb)->seq);
4719 /* tcp_ack considers this ACK as duplicate
4720 * and does not calculate rtt.
4721 * Fix it at least with timestamps.
4723 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4724 !tp->srtt)
4725 tcp_ack_saw_tstamp(sk, 0);
4727 if (tp->rx_opt.tstamp_ok)
4728 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4730 /* Make sure socket is routed, for
4731 * correct metrics.
4733 icsk->icsk_af_ops->rebuild_header(sk);
4735 tcp_init_metrics(sk);
4737 tcp_init_congestion_control(sk);
4739 /* Prevent spurious tcp_cwnd_restart() on
4740 * first data packet.
4742 tp->lsndtime = tcp_time_stamp;
4744 tcp_mtup_init(sk);
4745 tcp_initialize_rcv_mss(sk);
4746 tcp_init_buffer_space(sk);
4747 tcp_fast_path_on(tp);
4748 } else {
4749 return 1;
4751 break;
4753 case TCP_FIN_WAIT1:
4754 if (tp->snd_una == tp->write_seq) {
4755 tcp_set_state(sk, TCP_FIN_WAIT2);
4756 sk->sk_shutdown |= SEND_SHUTDOWN;
4757 dst_confirm(sk->sk_dst_cache);
4759 if (!sock_flag(sk, SOCK_DEAD))
4760 /* Wake up lingering close() */
4761 sk->sk_state_change(sk);
4762 else {
4763 int tmo;
4765 if (tp->linger2 < 0 ||
4766 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4767 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4768 tcp_done(sk);
4769 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4770 return 1;
4773 tmo = tcp_fin_time(sk);
4774 if (tmo > TCP_TIMEWAIT_LEN) {
4775 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4776 } else if (th->fin || sock_owned_by_user(sk)) {
4777 /* Bad case. We could lose such FIN otherwise.
4778 * It is not a big problem, but it looks confusing
4779 * and not so rare event. We still can lose it now,
4780 * if it spins in bh_lock_sock(), but it is really
4781 * marginal case.
4783 inet_csk_reset_keepalive_timer(sk, tmo);
4784 } else {
4785 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4786 goto discard;
4790 break;
4792 case TCP_CLOSING:
4793 if (tp->snd_una == tp->write_seq) {
4794 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4795 goto discard;
4797 break;
4799 case TCP_LAST_ACK:
4800 if (tp->snd_una == tp->write_seq) {
4801 tcp_update_metrics(sk);
4802 tcp_done(sk);
4803 goto discard;
4805 break;
4807 } else
4808 goto discard;
4810 /* step 6: check the URG bit */
4811 tcp_urg(sk, skb, th);
4813 /* step 7: process the segment text */
4814 switch (sk->sk_state) {
4815 case TCP_CLOSE_WAIT:
4816 case TCP_CLOSING:
4817 case TCP_LAST_ACK:
4818 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4819 break;
4820 case TCP_FIN_WAIT1:
4821 case TCP_FIN_WAIT2:
4822 /* RFC 793 says to queue data in these states,
4823 * RFC 1122 says we MUST send a reset.
4824 * BSD 4.4 also does reset.
4826 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4827 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4828 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4829 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4830 tcp_reset(sk);
4831 return 1;
4834 /* Fall through */
4835 case TCP_ESTABLISHED:
4836 tcp_data_queue(sk, skb);
4837 queued = 1;
4838 break;
4841 /* tcp_data could move socket to TIME-WAIT */
4842 if (sk->sk_state != TCP_CLOSE) {
4843 tcp_data_snd_check(sk, tp);
4844 tcp_ack_snd_check(sk);
4847 if (!queued) {
4848 discard:
4849 __kfree_skb(skb);
4851 return 0;
4854 EXPORT_SYMBOL(sysctl_tcp_ecn);
4855 EXPORT_SYMBOL(sysctl_tcp_reordering);
4856 EXPORT_SYMBOL(tcp_parse_options);
4857 EXPORT_SYMBOL(tcp_rcv_established);
4858 EXPORT_SYMBOL(tcp_rcv_state_process);
4859 EXPORT_SYMBOL(tcp_initialize_rcv_mss);