uprobes: Copy_insn() shouldn't depend on mm/vma/vaddr
[linux-2.6/cjktty.git] / kernel / events / uprobes.c
blob08ef566da7638cb82534bddaeae477c09a4c0058
1 /*
2 * User-space Probes (UProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h> /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h> /* try_to_free_swap */
33 #include <linux/ptrace.h> /* user_enable_single_step */
34 #include <linux/kdebug.h> /* notifier mechanism */
36 #include <linux/uprobes.h>
38 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41 static struct rb_root uprobes_tree = RB_ROOT;
43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45 #define UPROBES_HASH_SZ 13
48 * We need separate register/unregister and mmap/munmap lock hashes because
49 * of mmap_sem nesting.
51 * uprobe_register() needs to install probes on (potentially) all processes
52 * and thus needs to acquire multiple mmap_sems (consequtively, not
53 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54 * for the particular process doing the mmap.
56 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57 * because of lock order against i_mmap_mutex. This means there's a hole in
58 * the register vma iteration where a mmap() can happen.
60 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61 * install a probe where one is already installed.
64 /* serialize (un)register */
65 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69 /* serialize uprobe->pending_list */
70 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
71 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
74 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
75 * events active at this time. Probably a fine grained per inode count is
76 * better?
78 static atomic_t uprobe_events = ATOMIC_INIT(0);
80 struct uprobe {
81 struct rb_node rb_node; /* node in the rb tree */
82 atomic_t ref;
83 struct rw_semaphore consumer_rwsem;
84 struct list_head pending_list;
85 struct uprobe_consumer *consumers;
86 struct inode *inode; /* Also hold a ref to inode */
87 loff_t offset;
88 int flags;
89 struct arch_uprobe arch;
93 * valid_vma: Verify if the specified vma is an executable vma
94 * Relax restrictions while unregistering: vm_flags might have
95 * changed after breakpoint was inserted.
96 * - is_register: indicates if we are in register context.
97 * - Return 1 if the specified virtual address is in an
98 * executable vma.
100 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102 if (!vma->vm_file)
103 return false;
105 if (!is_register)
106 return true;
108 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109 == (VM_READ|VM_EXEC))
110 return true;
112 return false;
115 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
117 loff_t vaddr;
119 vaddr = vma->vm_start + offset;
120 vaddr -= vma->vm_pgoff << PAGE_SHIFT;
122 return vaddr;
126 * __replace_page - replace page in vma by new page.
127 * based on replace_page in mm/ksm.c
129 * @vma: vma that holds the pte pointing to page
130 * @page: the cowed page we are replacing by kpage
131 * @kpage: the modified page we replace page by
133 * Returns 0 on success, -EFAULT on failure.
135 static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
137 struct mm_struct *mm = vma->vm_mm;
138 unsigned long addr;
139 spinlock_t *ptl;
140 pte_t *ptep;
142 addr = page_address_in_vma(page, vma);
143 if (addr == -EFAULT)
144 return -EFAULT;
146 ptep = page_check_address(page, mm, addr, &ptl, 0);
147 if (!ptep)
148 return -EAGAIN;
150 get_page(kpage);
151 page_add_new_anon_rmap(kpage, vma, addr);
153 if (!PageAnon(page)) {
154 dec_mm_counter(mm, MM_FILEPAGES);
155 inc_mm_counter(mm, MM_ANONPAGES);
158 flush_cache_page(vma, addr, pte_pfn(*ptep));
159 ptep_clear_flush(vma, addr, ptep);
160 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
162 page_remove_rmap(page);
163 if (!page_mapped(page))
164 try_to_free_swap(page);
165 put_page(page);
166 pte_unmap_unlock(ptep, ptl);
168 return 0;
172 * is_swbp_insn - check if instruction is breakpoint instruction.
173 * @insn: instruction to be checked.
174 * Default implementation of is_swbp_insn
175 * Returns true if @insn is a breakpoint instruction.
177 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
179 return *insn == UPROBE_SWBP_INSN;
183 * NOTE:
184 * Expect the breakpoint instruction to be the smallest size instruction for
185 * the architecture. If an arch has variable length instruction and the
186 * breakpoint instruction is not of the smallest length instruction
187 * supported by that architecture then we need to modify read_opcode /
188 * write_opcode accordingly. This would never be a problem for archs that
189 * have fixed length instructions.
193 * write_opcode - write the opcode at a given virtual address.
194 * @auprobe: arch breakpointing information.
195 * @mm: the probed process address space.
196 * @vaddr: the virtual address to store the opcode.
197 * @opcode: opcode to be written at @vaddr.
199 * Called with mm->mmap_sem held (for read and with a reference to
200 * mm).
202 * For mm @mm, write the opcode at @vaddr.
203 * Return 0 (success) or a negative errno.
205 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
206 unsigned long vaddr, uprobe_opcode_t opcode)
208 struct page *old_page, *new_page;
209 struct address_space *mapping;
210 void *vaddr_old, *vaddr_new;
211 struct vm_area_struct *vma;
212 struct uprobe *uprobe;
213 unsigned long pgoff;
214 loff_t addr;
215 int ret;
216 retry:
217 /* Read the page with vaddr into memory */
218 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
219 if (ret <= 0)
220 return ret;
222 ret = -EINVAL;
225 * We are interested in text pages only. Our pages of interest
226 * should be mapped for read and execute only. We desist from
227 * adding probes in write mapped pages since the breakpoints
228 * might end up in the file copy.
230 if (!valid_vma(vma, is_swbp_insn(&opcode)))
231 goto put_out;
233 uprobe = container_of(auprobe, struct uprobe, arch);
234 mapping = uprobe->inode->i_mapping;
235 if (mapping != vma->vm_file->f_mapping)
236 goto put_out;
238 addr = vma_address(vma, uprobe->offset);
239 if (vaddr != (unsigned long)addr)
240 goto put_out;
242 ret = -ENOMEM;
243 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
244 if (!new_page)
245 goto put_out;
247 __SetPageUptodate(new_page);
250 * lock page will serialize against do_wp_page()'s
251 * PageAnon() handling
253 lock_page(old_page);
254 /* copy the page now that we've got it stable */
255 vaddr_old = kmap_atomic(old_page);
256 vaddr_new = kmap_atomic(new_page);
258 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
260 /* poke the new insn in, ASSUMES we don't cross page boundary */
261 pgoff = (vaddr & ~PAGE_MASK);
262 BUG_ON(pgoff + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
263 memcpy(vaddr_new + pgoff, &opcode, UPROBE_SWBP_INSN_SIZE);
265 kunmap_atomic(vaddr_new);
266 kunmap_atomic(vaddr_old);
268 ret = anon_vma_prepare(vma);
269 if (ret)
270 goto unlock_out;
272 lock_page(new_page);
273 ret = __replace_page(vma, old_page, new_page);
274 unlock_page(new_page);
276 unlock_out:
277 unlock_page(old_page);
278 page_cache_release(new_page);
280 put_out:
281 put_page(old_page);
283 if (unlikely(ret == -EAGAIN))
284 goto retry;
285 return ret;
289 * read_opcode - read the opcode at a given virtual address.
290 * @mm: the probed process address space.
291 * @vaddr: the virtual address to read the opcode.
292 * @opcode: location to store the read opcode.
294 * Called with mm->mmap_sem held (for read and with a reference to
295 * mm.
297 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
298 * Return 0 (success) or a negative errno.
300 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
302 struct page *page;
303 void *vaddr_new;
304 int ret;
306 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
307 if (ret <= 0)
308 return ret;
310 lock_page(page);
311 vaddr_new = kmap_atomic(page);
312 vaddr &= ~PAGE_MASK;
313 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
314 kunmap_atomic(vaddr_new);
315 unlock_page(page);
317 put_page(page);
319 return 0;
322 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
324 uprobe_opcode_t opcode;
325 int result;
327 if (current->mm == mm) {
328 pagefault_disable();
329 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
330 sizeof(opcode));
331 pagefault_enable();
333 if (likely(result == 0))
334 goto out;
337 result = read_opcode(mm, vaddr, &opcode);
338 if (result)
339 return result;
340 out:
341 if (is_swbp_insn(&opcode))
342 return 1;
344 return 0;
348 * set_swbp - store breakpoint at a given address.
349 * @auprobe: arch specific probepoint information.
350 * @mm: the probed process address space.
351 * @vaddr: the virtual address to insert the opcode.
353 * For mm @mm, store the breakpoint instruction at @vaddr.
354 * Return 0 (success) or a negative errno.
356 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
358 int result;
360 * See the comment near uprobes_hash().
362 result = is_swbp_at_addr(mm, vaddr);
363 if (result == 1)
364 return -EEXIST;
366 if (result)
367 return result;
369 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
373 * set_orig_insn - Restore the original instruction.
374 * @mm: the probed process address space.
375 * @auprobe: arch specific probepoint information.
376 * @vaddr: the virtual address to insert the opcode.
377 * @verify: if true, verify existance of breakpoint instruction.
379 * For mm @mm, restore the original opcode (opcode) at @vaddr.
380 * Return 0 (success) or a negative errno.
382 int __weak
383 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
385 if (verify) {
386 int result;
388 result = is_swbp_at_addr(mm, vaddr);
389 if (!result)
390 return -EINVAL;
392 if (result != 1)
393 return result;
395 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
398 static int match_uprobe(struct uprobe *l, struct uprobe *r)
400 if (l->inode < r->inode)
401 return -1;
403 if (l->inode > r->inode)
404 return 1;
406 if (l->offset < r->offset)
407 return -1;
409 if (l->offset > r->offset)
410 return 1;
412 return 0;
415 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
417 struct uprobe u = { .inode = inode, .offset = offset };
418 struct rb_node *n = uprobes_tree.rb_node;
419 struct uprobe *uprobe;
420 int match;
422 while (n) {
423 uprobe = rb_entry(n, struct uprobe, rb_node);
424 match = match_uprobe(&u, uprobe);
425 if (!match) {
426 atomic_inc(&uprobe->ref);
427 return uprobe;
430 if (match < 0)
431 n = n->rb_left;
432 else
433 n = n->rb_right;
435 return NULL;
439 * Find a uprobe corresponding to a given inode:offset
440 * Acquires uprobes_treelock
442 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
444 struct uprobe *uprobe;
445 unsigned long flags;
447 spin_lock_irqsave(&uprobes_treelock, flags);
448 uprobe = __find_uprobe(inode, offset);
449 spin_unlock_irqrestore(&uprobes_treelock, flags);
451 return uprobe;
454 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
456 struct rb_node **p = &uprobes_tree.rb_node;
457 struct rb_node *parent = NULL;
458 struct uprobe *u;
459 int match;
461 while (*p) {
462 parent = *p;
463 u = rb_entry(parent, struct uprobe, rb_node);
464 match = match_uprobe(uprobe, u);
465 if (!match) {
466 atomic_inc(&u->ref);
467 return u;
470 if (match < 0)
471 p = &parent->rb_left;
472 else
473 p = &parent->rb_right;
477 u = NULL;
478 rb_link_node(&uprobe->rb_node, parent, p);
479 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
480 /* get access + creation ref */
481 atomic_set(&uprobe->ref, 2);
483 return u;
487 * Acquire uprobes_treelock.
488 * Matching uprobe already exists in rbtree;
489 * increment (access refcount) and return the matching uprobe.
491 * No matching uprobe; insert the uprobe in rb_tree;
492 * get a double refcount (access + creation) and return NULL.
494 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
496 unsigned long flags;
497 struct uprobe *u;
499 spin_lock_irqsave(&uprobes_treelock, flags);
500 u = __insert_uprobe(uprobe);
501 spin_unlock_irqrestore(&uprobes_treelock, flags);
503 /* For now assume that the instruction need not be single-stepped */
504 uprobe->flags |= UPROBE_SKIP_SSTEP;
506 return u;
509 static void put_uprobe(struct uprobe *uprobe)
511 if (atomic_dec_and_test(&uprobe->ref))
512 kfree(uprobe);
515 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
517 struct uprobe *uprobe, *cur_uprobe;
519 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
520 if (!uprobe)
521 return NULL;
523 uprobe->inode = igrab(inode);
524 uprobe->offset = offset;
525 init_rwsem(&uprobe->consumer_rwsem);
526 INIT_LIST_HEAD(&uprobe->pending_list);
528 /* add to uprobes_tree, sorted on inode:offset */
529 cur_uprobe = insert_uprobe(uprobe);
531 /* a uprobe exists for this inode:offset combination */
532 if (cur_uprobe) {
533 kfree(uprobe);
534 uprobe = cur_uprobe;
535 iput(inode);
536 } else {
537 atomic_inc(&uprobe_events);
540 return uprobe;
543 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
545 struct uprobe_consumer *uc;
547 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
548 return;
550 down_read(&uprobe->consumer_rwsem);
551 for (uc = uprobe->consumers; uc; uc = uc->next) {
552 if (!uc->filter || uc->filter(uc, current))
553 uc->handler(uc, regs);
555 up_read(&uprobe->consumer_rwsem);
558 /* Returns the previous consumer */
559 static struct uprobe_consumer *
560 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
562 down_write(&uprobe->consumer_rwsem);
563 uc->next = uprobe->consumers;
564 uprobe->consumers = uc;
565 up_write(&uprobe->consumer_rwsem);
567 return uc->next;
571 * For uprobe @uprobe, delete the consumer @uc.
572 * Return true if the @uc is deleted successfully
573 * or return false.
575 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
577 struct uprobe_consumer **con;
578 bool ret = false;
580 down_write(&uprobe->consumer_rwsem);
581 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
582 if (*con == uc) {
583 *con = uc->next;
584 ret = true;
585 break;
588 up_write(&uprobe->consumer_rwsem);
590 return ret;
593 static int
594 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
595 unsigned long nbytes, unsigned long offset)
597 struct page *page;
598 void *vaddr;
599 unsigned long off1;
600 unsigned long idx;
602 if (!filp)
603 return -EINVAL;
605 if (!mapping->a_ops->readpage)
606 return -EIO;
608 idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
609 off1 = offset &= ~PAGE_MASK;
612 * Ensure that the page that has the original instruction is
613 * populated and in page-cache.
615 page = read_mapping_page(mapping, idx, filp);
616 if (IS_ERR(page))
617 return PTR_ERR(page);
619 vaddr = kmap_atomic(page);
620 memcpy(insn, vaddr + off1, nbytes);
621 kunmap_atomic(vaddr);
622 page_cache_release(page);
624 return 0;
627 static int copy_insn(struct uprobe *uprobe, struct file *filp)
629 struct address_space *mapping;
630 unsigned long nbytes;
631 int bytes;
633 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
634 mapping = uprobe->inode->i_mapping;
636 /* Instruction at end of binary; copy only available bytes */
637 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
638 bytes = uprobe->inode->i_size - uprobe->offset;
639 else
640 bytes = MAX_UINSN_BYTES;
642 /* Instruction at the page-boundary; copy bytes in second page */
643 if (nbytes < bytes) {
644 if (__copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
645 bytes - nbytes, uprobe->offset + nbytes))
646 return -ENOMEM;
648 bytes = nbytes;
650 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
654 * How mm->uprobes_state.count gets updated
655 * uprobe_mmap() increments the count if
656 * - it successfully adds a breakpoint.
657 * - it cannot add a breakpoint, but sees that there is a underlying
658 * breakpoint (via a is_swbp_at_addr()).
660 * uprobe_munmap() decrements the count if
661 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
662 * (Subsequent uprobe_unregister wouldnt find the breakpoint
663 * unless a uprobe_mmap kicks in, since the old vma would be
664 * dropped just after uprobe_munmap.)
666 * uprobe_register increments the count if:
667 * - it successfully adds a breakpoint.
669 * uprobe_unregister decrements the count if:
670 * - it sees a underlying breakpoint and removes successfully.
671 * (via is_swbp_at_addr)
672 * (Subsequent uprobe_munmap wouldnt find the breakpoint
673 * since there is no underlying breakpoint after the
674 * breakpoint removal.)
676 static int
677 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
678 struct vm_area_struct *vma, loff_t vaddr)
680 unsigned long addr;
681 int ret;
684 * If probe is being deleted, unregister thread could be done with
685 * the vma-rmap-walk through. Adding a probe now can be fatal since
686 * nobody will be able to cleanup. Also we could be from fork or
687 * mremap path, where the probe might have already been inserted.
688 * Hence behave as if probe already existed.
690 if (!uprobe->consumers)
691 return -EEXIST;
693 addr = (unsigned long)vaddr;
695 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
696 ret = copy_insn(uprobe, vma->vm_file);
697 if (ret)
698 return ret;
700 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
701 return -ENOTSUPP;
703 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, addr);
704 if (ret)
705 return ret;
707 uprobe->flags |= UPROBE_COPY_INSN;
711 * Ideally, should be updating the probe count after the breakpoint
712 * has been successfully inserted. However a thread could hit the
713 * breakpoint we just inserted even before the probe count is
714 * incremented. If this is the first breakpoint placed, breakpoint
715 * notifier might ignore uprobes and pass the trap to the thread.
716 * Hence increment before and decrement on failure.
718 atomic_inc(&mm->uprobes_state.count);
719 ret = set_swbp(&uprobe->arch, mm, addr);
720 if (ret)
721 atomic_dec(&mm->uprobes_state.count);
723 return ret;
726 static void
727 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
729 if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
730 atomic_dec(&mm->uprobes_state.count);
734 * There could be threads that have already hit the breakpoint. They
735 * will recheck the current insn and restart if find_uprobe() fails.
736 * See find_active_uprobe().
738 static void delete_uprobe(struct uprobe *uprobe)
740 unsigned long flags;
742 spin_lock_irqsave(&uprobes_treelock, flags);
743 rb_erase(&uprobe->rb_node, &uprobes_tree);
744 spin_unlock_irqrestore(&uprobes_treelock, flags);
745 iput(uprobe->inode);
746 put_uprobe(uprobe);
747 atomic_dec(&uprobe_events);
750 struct map_info {
751 struct map_info *next;
752 struct mm_struct *mm;
753 loff_t vaddr;
756 static inline struct map_info *free_map_info(struct map_info *info)
758 struct map_info *next = info->next;
759 kfree(info);
760 return next;
763 static struct map_info *
764 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
766 unsigned long pgoff = offset >> PAGE_SHIFT;
767 struct prio_tree_iter iter;
768 struct vm_area_struct *vma;
769 struct map_info *curr = NULL;
770 struct map_info *prev = NULL;
771 struct map_info *info;
772 int more = 0;
774 again:
775 mutex_lock(&mapping->i_mmap_mutex);
776 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
777 if (!valid_vma(vma, is_register))
778 continue;
780 if (!prev && !more) {
782 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
783 * reclaim. This is optimistic, no harm done if it fails.
785 prev = kmalloc(sizeof(struct map_info),
786 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
787 if (prev)
788 prev->next = NULL;
790 if (!prev) {
791 more++;
792 continue;
795 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
796 continue;
798 info = prev;
799 prev = prev->next;
800 info->next = curr;
801 curr = info;
803 info->mm = vma->vm_mm;
804 info->vaddr = vma_address(vma, offset);
806 mutex_unlock(&mapping->i_mmap_mutex);
808 if (!more)
809 goto out;
811 prev = curr;
812 while (curr) {
813 mmput(curr->mm);
814 curr = curr->next;
817 do {
818 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
819 if (!info) {
820 curr = ERR_PTR(-ENOMEM);
821 goto out;
823 info->next = prev;
824 prev = info;
825 } while (--more);
827 goto again;
828 out:
829 while (prev)
830 prev = free_map_info(prev);
831 return curr;
834 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
836 struct map_info *info;
837 int err = 0;
839 info = build_map_info(uprobe->inode->i_mapping,
840 uprobe->offset, is_register);
841 if (IS_ERR(info))
842 return PTR_ERR(info);
844 while (info) {
845 struct mm_struct *mm = info->mm;
846 struct vm_area_struct *vma;
847 loff_t vaddr;
849 if (err)
850 goto free;
852 down_write(&mm->mmap_sem);
853 vma = find_vma(mm, (unsigned long)info->vaddr);
854 if (!vma || !valid_vma(vma, is_register))
855 goto unlock;
857 vaddr = vma_address(vma, uprobe->offset);
858 if (vma->vm_file->f_mapping->host != uprobe->inode ||
859 vaddr != info->vaddr)
860 goto unlock;
862 if (is_register) {
863 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
865 * We can race against uprobe_mmap(), see the
866 * comment near uprobe_hash().
868 if (err == -EEXIST)
869 err = 0;
870 } else {
871 remove_breakpoint(uprobe, mm, info->vaddr);
873 unlock:
874 up_write(&mm->mmap_sem);
875 free:
876 mmput(mm);
877 info = free_map_info(info);
880 return err;
883 static int __uprobe_register(struct uprobe *uprobe)
885 return register_for_each_vma(uprobe, true);
888 static void __uprobe_unregister(struct uprobe *uprobe)
890 if (!register_for_each_vma(uprobe, false))
891 delete_uprobe(uprobe);
893 /* TODO : cant unregister? schedule a worker thread */
897 * uprobe_register - register a probe
898 * @inode: the file in which the probe has to be placed.
899 * @offset: offset from the start of the file.
900 * @uc: information on howto handle the probe..
902 * Apart from the access refcount, uprobe_register() takes a creation
903 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
904 * inserted into the rbtree (i.e first consumer for a @inode:@offset
905 * tuple). Creation refcount stops uprobe_unregister from freeing the
906 * @uprobe even before the register operation is complete. Creation
907 * refcount is released when the last @uc for the @uprobe
908 * unregisters.
910 * Return errno if it cannot successully install probes
911 * else return 0 (success)
913 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
915 struct uprobe *uprobe;
916 int ret;
918 if (!inode || !uc || uc->next)
919 return -EINVAL;
921 if (offset > i_size_read(inode))
922 return -EINVAL;
924 ret = 0;
925 mutex_lock(uprobes_hash(inode));
926 uprobe = alloc_uprobe(inode, offset);
928 if (uprobe && !consumer_add(uprobe, uc)) {
929 ret = __uprobe_register(uprobe);
930 if (ret) {
931 uprobe->consumers = NULL;
932 __uprobe_unregister(uprobe);
933 } else {
934 uprobe->flags |= UPROBE_RUN_HANDLER;
938 mutex_unlock(uprobes_hash(inode));
939 put_uprobe(uprobe);
941 return ret;
945 * uprobe_unregister - unregister a already registered probe.
946 * @inode: the file in which the probe has to be removed.
947 * @offset: offset from the start of the file.
948 * @uc: identify which probe if multiple probes are colocated.
950 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
952 struct uprobe *uprobe;
954 if (!inode || !uc)
955 return;
957 uprobe = find_uprobe(inode, offset);
958 if (!uprobe)
959 return;
961 mutex_lock(uprobes_hash(inode));
963 if (consumer_del(uprobe, uc)) {
964 if (!uprobe->consumers) {
965 __uprobe_unregister(uprobe);
966 uprobe->flags &= ~UPROBE_RUN_HANDLER;
970 mutex_unlock(uprobes_hash(inode));
971 if (uprobe)
972 put_uprobe(uprobe);
976 * Of all the nodes that correspond to the given inode, return the node
977 * with the least offset.
979 static struct rb_node *find_least_offset_node(struct inode *inode)
981 struct uprobe u = { .inode = inode, .offset = 0};
982 struct rb_node *n = uprobes_tree.rb_node;
983 struct rb_node *close_node = NULL;
984 struct uprobe *uprobe;
985 int match;
987 while (n) {
988 uprobe = rb_entry(n, struct uprobe, rb_node);
989 match = match_uprobe(&u, uprobe);
991 if (uprobe->inode == inode)
992 close_node = n;
994 if (!match)
995 return close_node;
997 if (match < 0)
998 n = n->rb_left;
999 else
1000 n = n->rb_right;
1003 return close_node;
1007 * For a given inode, build a list of probes that need to be inserted.
1009 static void build_probe_list(struct inode *inode, struct list_head *head)
1011 struct uprobe *uprobe;
1012 unsigned long flags;
1013 struct rb_node *n;
1015 spin_lock_irqsave(&uprobes_treelock, flags);
1017 n = find_least_offset_node(inode);
1019 for (; n; n = rb_next(n)) {
1020 uprobe = rb_entry(n, struct uprobe, rb_node);
1021 if (uprobe->inode != inode)
1022 break;
1024 list_add(&uprobe->pending_list, head);
1025 atomic_inc(&uprobe->ref);
1028 spin_unlock_irqrestore(&uprobes_treelock, flags);
1032 * Called from mmap_region.
1033 * called with mm->mmap_sem acquired.
1035 * Return -ve no if we fail to insert probes and we cannot
1036 * bail-out.
1037 * Return 0 otherwise. i.e:
1039 * - successful insertion of probes
1040 * - (or) no possible probes to be inserted.
1041 * - (or) insertion of probes failed but we can bail-out.
1043 int uprobe_mmap(struct vm_area_struct *vma)
1045 struct list_head tmp_list;
1046 struct uprobe *uprobe, *u;
1047 struct inode *inode;
1048 int ret, count;
1050 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1051 return 0;
1053 inode = vma->vm_file->f_mapping->host;
1054 if (!inode)
1055 return 0;
1057 INIT_LIST_HEAD(&tmp_list);
1058 mutex_lock(uprobes_mmap_hash(inode));
1059 build_probe_list(inode, &tmp_list);
1061 ret = 0;
1062 count = 0;
1064 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1065 loff_t vaddr;
1067 list_del(&uprobe->pending_list);
1068 if (!ret) {
1069 vaddr = vma_address(vma, uprobe->offset);
1071 if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1072 put_uprobe(uprobe);
1073 continue;
1076 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1078 * We can race against uprobe_register(), see the
1079 * comment near uprobe_hash().
1081 if (ret == -EEXIST) {
1082 ret = 0;
1084 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1085 continue;
1088 * Unable to insert a breakpoint, but
1089 * breakpoint lies underneath. Increment the
1090 * probe count.
1092 atomic_inc(&vma->vm_mm->uprobes_state.count);
1095 if (!ret)
1096 count++;
1098 put_uprobe(uprobe);
1101 mutex_unlock(uprobes_mmap_hash(inode));
1103 if (ret)
1104 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1106 return ret;
1110 * Called in context of a munmap of a vma.
1112 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1114 struct list_head tmp_list;
1115 struct uprobe *uprobe, *u;
1116 struct inode *inode;
1118 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1119 return;
1121 if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1122 return;
1124 inode = vma->vm_file->f_mapping->host;
1125 if (!inode)
1126 return;
1128 INIT_LIST_HEAD(&tmp_list);
1129 mutex_lock(uprobes_mmap_hash(inode));
1130 build_probe_list(inode, &tmp_list);
1132 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1133 loff_t vaddr;
1135 list_del(&uprobe->pending_list);
1136 vaddr = vma_address(vma, uprobe->offset);
1138 if (vaddr >= start && vaddr < end) {
1140 * An unregister could have removed the probe before
1141 * unmap. So check before we decrement the count.
1143 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1144 atomic_dec(&vma->vm_mm->uprobes_state.count);
1146 put_uprobe(uprobe);
1148 mutex_unlock(uprobes_mmap_hash(inode));
1151 /* Slot allocation for XOL */
1152 static int xol_add_vma(struct xol_area *area)
1154 struct mm_struct *mm;
1155 int ret;
1157 area->page = alloc_page(GFP_HIGHUSER);
1158 if (!area->page)
1159 return -ENOMEM;
1161 ret = -EALREADY;
1162 mm = current->mm;
1164 down_write(&mm->mmap_sem);
1165 if (mm->uprobes_state.xol_area)
1166 goto fail;
1168 ret = -ENOMEM;
1170 /* Try to map as high as possible, this is only a hint. */
1171 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1172 if (area->vaddr & ~PAGE_MASK) {
1173 ret = area->vaddr;
1174 goto fail;
1177 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1178 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1179 if (ret)
1180 goto fail;
1182 smp_wmb(); /* pairs with get_xol_area() */
1183 mm->uprobes_state.xol_area = area;
1184 ret = 0;
1186 fail:
1187 up_write(&mm->mmap_sem);
1188 if (ret)
1189 __free_page(area->page);
1191 return ret;
1194 static struct xol_area *get_xol_area(struct mm_struct *mm)
1196 struct xol_area *area;
1198 area = mm->uprobes_state.xol_area;
1199 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1201 return area;
1205 * xol_alloc_area - Allocate process's xol_area.
1206 * This area will be used for storing instructions for execution out of
1207 * line.
1209 * Returns the allocated area or NULL.
1211 static struct xol_area *xol_alloc_area(void)
1213 struct xol_area *area;
1215 area = kzalloc(sizeof(*area), GFP_KERNEL);
1216 if (unlikely(!area))
1217 return NULL;
1219 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1221 if (!area->bitmap)
1222 goto fail;
1224 init_waitqueue_head(&area->wq);
1225 if (!xol_add_vma(area))
1226 return area;
1228 fail:
1229 kfree(area->bitmap);
1230 kfree(area);
1232 return get_xol_area(current->mm);
1236 * uprobe_clear_state - Free the area allocated for slots.
1238 void uprobe_clear_state(struct mm_struct *mm)
1240 struct xol_area *area = mm->uprobes_state.xol_area;
1242 if (!area)
1243 return;
1245 put_page(area->page);
1246 kfree(area->bitmap);
1247 kfree(area);
1251 * uprobe_reset_state - Free the area allocated for slots.
1253 void uprobe_reset_state(struct mm_struct *mm)
1255 mm->uprobes_state.xol_area = NULL;
1256 atomic_set(&mm->uprobes_state.count, 0);
1260 * - search for a free slot.
1262 static unsigned long xol_take_insn_slot(struct xol_area *area)
1264 unsigned long slot_addr;
1265 int slot_nr;
1267 do {
1268 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1269 if (slot_nr < UINSNS_PER_PAGE) {
1270 if (!test_and_set_bit(slot_nr, area->bitmap))
1271 break;
1273 slot_nr = UINSNS_PER_PAGE;
1274 continue;
1276 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1277 } while (slot_nr >= UINSNS_PER_PAGE);
1279 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1280 atomic_inc(&area->slot_count);
1282 return slot_addr;
1286 * xol_get_insn_slot - If was not allocated a slot, then
1287 * allocate a slot.
1288 * Returns the allocated slot address or 0.
1290 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1292 struct xol_area *area;
1293 unsigned long offset;
1294 void *vaddr;
1296 area = get_xol_area(current->mm);
1297 if (!area) {
1298 area = xol_alloc_area();
1299 if (!area)
1300 return 0;
1302 current->utask->xol_vaddr = xol_take_insn_slot(area);
1305 * Initialize the slot if xol_vaddr points to valid
1306 * instruction slot.
1308 if (unlikely(!current->utask->xol_vaddr))
1309 return 0;
1311 current->utask->vaddr = slot_addr;
1312 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1313 vaddr = kmap_atomic(area->page);
1314 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1315 kunmap_atomic(vaddr);
1317 return current->utask->xol_vaddr;
1321 * xol_free_insn_slot - If slot was earlier allocated by
1322 * @xol_get_insn_slot(), make the slot available for
1323 * subsequent requests.
1325 static void xol_free_insn_slot(struct task_struct *tsk)
1327 struct xol_area *area;
1328 unsigned long vma_end;
1329 unsigned long slot_addr;
1331 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1332 return;
1334 slot_addr = tsk->utask->xol_vaddr;
1336 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1337 return;
1339 area = tsk->mm->uprobes_state.xol_area;
1340 vma_end = area->vaddr + PAGE_SIZE;
1341 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1342 unsigned long offset;
1343 int slot_nr;
1345 offset = slot_addr - area->vaddr;
1346 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1347 if (slot_nr >= UINSNS_PER_PAGE)
1348 return;
1350 clear_bit(slot_nr, area->bitmap);
1351 atomic_dec(&area->slot_count);
1352 if (waitqueue_active(&area->wq))
1353 wake_up(&area->wq);
1355 tsk->utask->xol_vaddr = 0;
1360 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1361 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1362 * instruction.
1363 * Return the address of the breakpoint instruction.
1365 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1367 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1371 * Called with no locks held.
1372 * Called in context of a exiting or a exec-ing thread.
1374 void uprobe_free_utask(struct task_struct *t)
1376 struct uprobe_task *utask = t->utask;
1378 if (!utask)
1379 return;
1381 if (utask->active_uprobe)
1382 put_uprobe(utask->active_uprobe);
1384 xol_free_insn_slot(t);
1385 kfree(utask);
1386 t->utask = NULL;
1390 * Called in context of a new clone/fork from copy_process.
1392 void uprobe_copy_process(struct task_struct *t)
1394 t->utask = NULL;
1398 * Allocate a uprobe_task object for the task.
1399 * Called when the thread hits a breakpoint for the first time.
1401 * Returns:
1402 * - pointer to new uprobe_task on success
1403 * - NULL otherwise
1405 static struct uprobe_task *add_utask(void)
1407 struct uprobe_task *utask;
1409 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1410 if (unlikely(!utask))
1411 return NULL;
1413 utask->active_uprobe = NULL;
1414 current->utask = utask;
1415 return utask;
1418 /* Prepare to single-step probed instruction out of line. */
1419 static int
1420 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1422 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1423 return 0;
1425 return -EFAULT;
1429 * If we are singlestepping, then ensure this thread is not connected to
1430 * non-fatal signals until completion of singlestep. When xol insn itself
1431 * triggers the signal, restart the original insn even if the task is
1432 * already SIGKILL'ed (since coredump should report the correct ip). This
1433 * is even more important if the task has a handler for SIGSEGV/etc, The
1434 * _same_ instruction should be repeated again after return from the signal
1435 * handler, and SSTEP can never finish in this case.
1437 bool uprobe_deny_signal(void)
1439 struct task_struct *t = current;
1440 struct uprobe_task *utask = t->utask;
1442 if (likely(!utask || !utask->active_uprobe))
1443 return false;
1445 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1447 if (signal_pending(t)) {
1448 spin_lock_irq(&t->sighand->siglock);
1449 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1450 spin_unlock_irq(&t->sighand->siglock);
1452 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1453 utask->state = UTASK_SSTEP_TRAPPED;
1454 set_tsk_thread_flag(t, TIF_UPROBE);
1455 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1459 return true;
1463 * Avoid singlestepping the original instruction if the original instruction
1464 * is a NOP or can be emulated.
1466 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1468 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1469 return true;
1471 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1472 return false;
1475 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1477 struct mm_struct *mm = current->mm;
1478 struct uprobe *uprobe = NULL;
1479 struct vm_area_struct *vma;
1481 down_read(&mm->mmap_sem);
1482 vma = find_vma(mm, bp_vaddr);
1483 if (vma && vma->vm_start <= bp_vaddr) {
1484 if (valid_vma(vma, false)) {
1485 struct inode *inode;
1486 loff_t offset;
1488 inode = vma->vm_file->f_mapping->host;
1489 offset = bp_vaddr - vma->vm_start;
1490 offset += (vma->vm_pgoff << PAGE_SHIFT);
1491 uprobe = find_uprobe(inode, offset);
1494 if (!uprobe)
1495 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1496 } else {
1497 *is_swbp = -EFAULT;
1499 up_read(&mm->mmap_sem);
1501 return uprobe;
1505 * Run handler and ask thread to singlestep.
1506 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1508 static void handle_swbp(struct pt_regs *regs)
1510 struct uprobe_task *utask;
1511 struct uprobe *uprobe;
1512 unsigned long bp_vaddr;
1513 int uninitialized_var(is_swbp);
1515 bp_vaddr = uprobe_get_swbp_addr(regs);
1516 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1518 if (!uprobe) {
1519 if (is_swbp > 0) {
1520 /* No matching uprobe; signal SIGTRAP. */
1521 send_sig(SIGTRAP, current, 0);
1522 } else {
1524 * Either we raced with uprobe_unregister() or we can't
1525 * access this memory. The latter is only possible if
1526 * another thread plays with our ->mm. In both cases
1527 * we can simply restart. If this vma was unmapped we
1528 * can pretend this insn was not executed yet and get
1529 * the (correct) SIGSEGV after restart.
1531 instruction_pointer_set(regs, bp_vaddr);
1533 return;
1536 utask = current->utask;
1537 if (!utask) {
1538 utask = add_utask();
1539 /* Cannot allocate; re-execute the instruction. */
1540 if (!utask)
1541 goto cleanup_ret;
1543 utask->active_uprobe = uprobe;
1544 handler_chain(uprobe, regs);
1545 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1546 goto cleanup_ret;
1548 utask->state = UTASK_SSTEP;
1549 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1550 user_enable_single_step(current);
1551 return;
1554 cleanup_ret:
1555 if (utask) {
1556 utask->active_uprobe = NULL;
1557 utask->state = UTASK_RUNNING;
1559 if (uprobe) {
1560 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1563 * cannot singlestep; cannot skip instruction;
1564 * re-execute the instruction.
1566 instruction_pointer_set(regs, bp_vaddr);
1568 put_uprobe(uprobe);
1573 * Perform required fix-ups and disable singlestep.
1574 * Allow pending signals to take effect.
1576 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1578 struct uprobe *uprobe;
1580 uprobe = utask->active_uprobe;
1581 if (utask->state == UTASK_SSTEP_ACK)
1582 arch_uprobe_post_xol(&uprobe->arch, regs);
1583 else if (utask->state == UTASK_SSTEP_TRAPPED)
1584 arch_uprobe_abort_xol(&uprobe->arch, regs);
1585 else
1586 WARN_ON_ONCE(1);
1588 put_uprobe(uprobe);
1589 utask->active_uprobe = NULL;
1590 utask->state = UTASK_RUNNING;
1591 user_disable_single_step(current);
1592 xol_free_insn_slot(current);
1594 spin_lock_irq(&current->sighand->siglock);
1595 recalc_sigpending(); /* see uprobe_deny_signal() */
1596 spin_unlock_irq(&current->sighand->siglock);
1600 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1601 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1602 * allows the thread to return from interrupt.
1604 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1605 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1606 * interrupt.
1608 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1609 * uprobe_notify_resume().
1611 void uprobe_notify_resume(struct pt_regs *regs)
1613 struct uprobe_task *utask;
1615 utask = current->utask;
1616 if (!utask || utask->state == UTASK_BP_HIT)
1617 handle_swbp(regs);
1618 else
1619 handle_singlestep(utask, regs);
1623 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1624 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1626 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1628 struct uprobe_task *utask;
1630 if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1631 /* task is currently not uprobed */
1632 return 0;
1634 utask = current->utask;
1635 if (utask)
1636 utask->state = UTASK_BP_HIT;
1638 set_thread_flag(TIF_UPROBE);
1640 return 1;
1644 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1645 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1647 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1649 struct uprobe_task *utask = current->utask;
1651 if (!current->mm || !utask || !utask->active_uprobe)
1652 /* task is currently not uprobed */
1653 return 0;
1655 utask->state = UTASK_SSTEP_ACK;
1656 set_thread_flag(TIF_UPROBE);
1657 return 1;
1660 static struct notifier_block uprobe_exception_nb = {
1661 .notifier_call = arch_uprobe_exception_notify,
1662 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1665 static int __init init_uprobes(void)
1667 int i;
1669 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1670 mutex_init(&uprobes_mutex[i]);
1671 mutex_init(&uprobes_mmap_mutex[i]);
1674 return register_die_notifier(&uprobe_exception_nb);
1676 module_init(init_uprobes);
1678 static void __exit exit_uprobes(void)
1681 module_exit(exit_uprobes);