2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
34 static struct vfsmount
*shm_mnt
;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
81 struct list_head list
; /* anchored by shmem_inode_info->xattr_list */
82 char *name
; /* xattr name */
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
93 pgoff_t start
; /* start of range currently being fallocated */
94 pgoff_t next
; /* the next page offset to be fallocated */
95 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
96 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
99 /* Flag allocation requirements to shmem_getpage */
101 SGP_READ
, /* don't exceed i_size, don't allocate page */
102 SGP_CACHE
, /* don't exceed i_size, may allocate page */
103 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
104 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages
/ 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
120 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
121 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
122 struct shmem_inode_info
*info
, pgoff_t index
);
123 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
124 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
126 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
127 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
129 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
130 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
133 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
135 return sb
->s_fs_info
;
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
144 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
146 return (flags
& VM_NORESERVE
) ?
147 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
150 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
152 if (!(flags
& VM_NORESERVE
))
153 vm_unacct_memory(VM_ACCT(size
));
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
162 static inline int shmem_acct_block(unsigned long flags
)
164 return (flags
& VM_NORESERVE
) ?
165 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
168 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
170 if (flags
& VM_NORESERVE
)
171 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
174 static const struct super_operations shmem_ops
;
175 static const struct address_space_operations shmem_aops
;
176 static const struct file_operations shmem_file_operations
;
177 static const struct inode_operations shmem_inode_operations
;
178 static const struct inode_operations shmem_dir_inode_operations
;
179 static const struct inode_operations shmem_special_inode_operations
;
180 static const struct vm_operations_struct shmem_vm_ops
;
182 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
183 .ra_pages
= 0, /* No readahead */
184 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
187 static LIST_HEAD(shmem_swaplist
);
188 static DEFINE_MUTEX(shmem_swaplist_mutex
);
190 static int shmem_reserve_inode(struct super_block
*sb
)
192 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
193 if (sbinfo
->max_inodes
) {
194 spin_lock(&sbinfo
->stat_lock
);
195 if (!sbinfo
->free_inodes
) {
196 spin_unlock(&sbinfo
->stat_lock
);
199 sbinfo
->free_inodes
--;
200 spin_unlock(&sbinfo
->stat_lock
);
205 static void shmem_free_inode(struct super_block
*sb
)
207 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
208 if (sbinfo
->max_inodes
) {
209 spin_lock(&sbinfo
->stat_lock
);
210 sbinfo
->free_inodes
++;
211 spin_unlock(&sbinfo
->stat_lock
);
216 * shmem_recalc_inode - recalculate the block usage of an inode
217 * @inode: inode to recalc
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
225 * It has to be called with the spinlock held.
227 static void shmem_recalc_inode(struct inode
*inode
)
229 struct shmem_inode_info
*info
= SHMEM_I(inode
);
232 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
234 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
235 if (sbinfo
->max_blocks
)
236 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
237 info
->alloced
-= freed
;
238 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
239 shmem_unacct_blocks(info
->flags
, freed
);
244 * Replace item expected in radix tree by a new item, while holding tree lock.
246 static int shmem_radix_tree_replace(struct address_space
*mapping
,
247 pgoff_t index
, void *expected
, void *replacement
)
252 VM_BUG_ON(!expected
);
253 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
255 item
= radix_tree_deref_slot_protected(pslot
,
256 &mapping
->tree_lock
);
257 if (item
!= expected
)
260 radix_tree_replace_slot(pslot
, replacement
);
262 radix_tree_delete(&mapping
->page_tree
, index
);
267 * Like add_to_page_cache_locked, but error if expected item has gone.
269 static int shmem_add_to_page_cache(struct page
*page
,
270 struct address_space
*mapping
,
271 pgoff_t index
, gfp_t gfp
, void *expected
)
275 VM_BUG_ON(!PageLocked(page
));
276 VM_BUG_ON(!PageSwapBacked(page
));
279 error
= radix_tree_preload(gfp
& GFP_RECLAIM_MASK
);
281 page_cache_get(page
);
282 page
->mapping
= mapping
;
285 spin_lock_irq(&mapping
->tree_lock
);
287 error
= radix_tree_insert(&mapping
->page_tree
,
290 error
= shmem_radix_tree_replace(mapping
, index
,
294 __inc_zone_page_state(page
, NR_FILE_PAGES
);
295 __inc_zone_page_state(page
, NR_SHMEM
);
296 spin_unlock_irq(&mapping
->tree_lock
);
298 page
->mapping
= NULL
;
299 spin_unlock_irq(&mapping
->tree_lock
);
300 page_cache_release(page
);
303 radix_tree_preload_end();
306 mem_cgroup_uncharge_cache_page(page
);
311 * Like delete_from_page_cache, but substitutes swap for page.
313 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
315 struct address_space
*mapping
= page
->mapping
;
318 spin_lock_irq(&mapping
->tree_lock
);
319 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
320 page
->mapping
= NULL
;
322 __dec_zone_page_state(page
, NR_FILE_PAGES
);
323 __dec_zone_page_state(page
, NR_SHMEM
);
324 spin_unlock_irq(&mapping
->tree_lock
);
325 page_cache_release(page
);
330 * Like find_get_pages, but collecting swap entries as well as pages.
332 static unsigned shmem_find_get_pages_and_swap(struct address_space
*mapping
,
333 pgoff_t start
, unsigned int nr_pages
,
334 struct page
**pages
, pgoff_t
*indices
)
338 unsigned int nr_found
;
342 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
343 (void ***)pages
, indices
, start
, nr_pages
);
345 for (i
= 0; i
< nr_found
; i
++) {
348 page
= radix_tree_deref_slot((void **)pages
[i
]);
351 if (radix_tree_exception(page
)) {
352 if (radix_tree_deref_retry(page
))
355 * Otherwise, we must be storing a swap entry
356 * here as an exceptional entry: so return it
357 * without attempting to raise page count.
361 if (!page_cache_get_speculative(page
))
364 /* Has the page moved? */
365 if (unlikely(page
!= *((void **)pages
[i
]))) {
366 page_cache_release(page
);
370 indices
[ret
] = indices
[i
];
374 if (unlikely(!ret
&& nr_found
))
381 * Remove swap entry from radix tree, free the swap and its page cache.
383 static int shmem_free_swap(struct address_space
*mapping
,
384 pgoff_t index
, void *radswap
)
388 spin_lock_irq(&mapping
->tree_lock
);
389 error
= shmem_radix_tree_replace(mapping
, index
, radswap
, NULL
);
390 spin_unlock_irq(&mapping
->tree_lock
);
392 free_swap_and_cache(radix_to_swp_entry(radswap
));
397 * Pagevec may contain swap entries, so shuffle up pages before releasing.
399 static void shmem_deswap_pagevec(struct pagevec
*pvec
)
403 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
404 struct page
*page
= pvec
->pages
[i
];
405 if (!radix_tree_exceptional_entry(page
))
406 pvec
->pages
[j
++] = page
;
412 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
414 void shmem_unlock_mapping(struct address_space
*mapping
)
417 pgoff_t indices
[PAGEVEC_SIZE
];
420 pagevec_init(&pvec
, 0);
422 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
424 while (!mapping_unevictable(mapping
)) {
426 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
427 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
429 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
430 PAGEVEC_SIZE
, pvec
.pages
, indices
);
433 index
= indices
[pvec
.nr
- 1] + 1;
434 shmem_deswap_pagevec(&pvec
);
435 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
436 pagevec_release(&pvec
);
442 * Remove range of pages and swap entries from radix tree, and free them.
443 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
445 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
448 struct address_space
*mapping
= inode
->i_mapping
;
449 struct shmem_inode_info
*info
= SHMEM_I(inode
);
450 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
451 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
452 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
453 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
455 pgoff_t indices
[PAGEVEC_SIZE
];
456 long nr_swaps_freed
= 0;
461 end
= -1; /* unsigned, so actually very big */
463 pagevec_init(&pvec
, 0);
465 while (index
< end
) {
466 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
467 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
468 pvec
.pages
, indices
);
471 mem_cgroup_uncharge_start();
472 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
473 struct page
*page
= pvec
.pages
[i
];
479 if (radix_tree_exceptional_entry(page
)) {
482 nr_swaps_freed
+= !shmem_free_swap(mapping
,
487 if (!trylock_page(page
))
489 if (!unfalloc
|| !PageUptodate(page
)) {
490 if (page
->mapping
== mapping
) {
491 VM_BUG_ON(PageWriteback(page
));
492 truncate_inode_page(mapping
, page
);
497 shmem_deswap_pagevec(&pvec
);
498 pagevec_release(&pvec
);
499 mem_cgroup_uncharge_end();
505 struct page
*page
= NULL
;
506 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
508 unsigned int top
= PAGE_CACHE_SIZE
;
513 zero_user_segment(page
, partial_start
, top
);
514 set_page_dirty(page
);
516 page_cache_release(page
);
520 struct page
*page
= NULL
;
521 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
523 zero_user_segment(page
, 0, partial_end
);
524 set_page_dirty(page
);
526 page_cache_release(page
);
535 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
536 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
537 pvec
.pages
, indices
);
539 if (index
== start
|| unfalloc
)
544 if ((index
== start
|| unfalloc
) && indices
[0] >= end
) {
545 shmem_deswap_pagevec(&pvec
);
546 pagevec_release(&pvec
);
549 mem_cgroup_uncharge_start();
550 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
551 struct page
*page
= pvec
.pages
[i
];
557 if (radix_tree_exceptional_entry(page
)) {
560 nr_swaps_freed
+= !shmem_free_swap(mapping
,
566 if (!unfalloc
|| !PageUptodate(page
)) {
567 if (page
->mapping
== mapping
) {
568 VM_BUG_ON(PageWriteback(page
));
569 truncate_inode_page(mapping
, page
);
574 shmem_deswap_pagevec(&pvec
);
575 pagevec_release(&pvec
);
576 mem_cgroup_uncharge_end();
580 spin_lock(&info
->lock
);
581 info
->swapped
-= nr_swaps_freed
;
582 shmem_recalc_inode(inode
);
583 spin_unlock(&info
->lock
);
586 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
588 shmem_undo_range(inode
, lstart
, lend
, false);
589 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
591 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
593 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
595 struct inode
*inode
= dentry
->d_inode
;
598 error
= inode_change_ok(inode
, attr
);
602 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
603 loff_t oldsize
= inode
->i_size
;
604 loff_t newsize
= attr
->ia_size
;
606 if (newsize
!= oldsize
) {
607 i_size_write(inode
, newsize
);
608 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
610 if (newsize
< oldsize
) {
611 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
612 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
613 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
614 /* unmap again to remove racily COWed private pages */
615 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
619 setattr_copy(inode
, attr
);
620 #ifdef CONFIG_TMPFS_POSIX_ACL
621 if (attr
->ia_valid
& ATTR_MODE
)
622 error
= generic_acl_chmod(inode
);
627 static void shmem_evict_inode(struct inode
*inode
)
629 struct shmem_inode_info
*info
= SHMEM_I(inode
);
630 struct shmem_xattr
*xattr
, *nxattr
;
632 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
633 shmem_unacct_size(info
->flags
, inode
->i_size
);
635 shmem_truncate_range(inode
, 0, (loff_t
)-1);
636 if (!list_empty(&info
->swaplist
)) {
637 mutex_lock(&shmem_swaplist_mutex
);
638 list_del_init(&info
->swaplist
);
639 mutex_unlock(&shmem_swaplist_mutex
);
642 kfree(info
->symlink
);
644 list_for_each_entry_safe(xattr
, nxattr
, &info
->xattr_list
, list
) {
648 BUG_ON(inode
->i_blocks
);
649 shmem_free_inode(inode
->i_sb
);
654 * If swap found in inode, free it and move page from swapcache to filecache.
656 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
657 swp_entry_t swap
, struct page
**pagep
)
659 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
665 radswap
= swp_to_radix_entry(swap
);
666 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
671 * Move _head_ to start search for next from here.
672 * But be careful: shmem_evict_inode checks list_empty without taking
673 * mutex, and there's an instant in list_move_tail when info->swaplist
674 * would appear empty, if it were the only one on shmem_swaplist.
676 if (shmem_swaplist
.next
!= &info
->swaplist
)
677 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
679 gfp
= mapping_gfp_mask(mapping
);
680 if (shmem_should_replace_page(*pagep
, gfp
)) {
681 mutex_unlock(&shmem_swaplist_mutex
);
682 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
683 mutex_lock(&shmem_swaplist_mutex
);
685 * We needed to drop mutex to make that restrictive page
686 * allocation, but the inode might have been freed while we
687 * dropped it: although a racing shmem_evict_inode() cannot
688 * complete without emptying the radix_tree, our page lock
689 * on this swapcache page is not enough to prevent that -
690 * free_swap_and_cache() of our swap entry will only
691 * trylock_page(), removing swap from radix_tree whatever.
693 * We must not proceed to shmem_add_to_page_cache() if the
694 * inode has been freed, but of course we cannot rely on
695 * inode or mapping or info to check that. However, we can
696 * safely check if our swap entry is still in use (and here
697 * it can't have got reused for another page): if it's still
698 * in use, then the inode cannot have been freed yet, and we
699 * can safely proceed (if it's no longer in use, that tells
700 * nothing about the inode, but we don't need to unuse swap).
702 if (!page_swapcount(*pagep
))
707 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
708 * but also to hold up shmem_evict_inode(): so inode cannot be freed
709 * beneath us (pagelock doesn't help until the page is in pagecache).
712 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
713 GFP_NOWAIT
, radswap
);
714 if (error
!= -ENOMEM
) {
716 * Truncation and eviction use free_swap_and_cache(), which
717 * only does trylock page: if we raced, best clean up here.
719 delete_from_swap_cache(*pagep
);
720 set_page_dirty(*pagep
);
722 spin_lock(&info
->lock
);
724 spin_unlock(&info
->lock
);
727 error
= 1; /* not an error, but entry was found */
733 * Search through swapped inodes to find and replace swap by page.
735 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
737 struct list_head
*this, *next
;
738 struct shmem_inode_info
*info
;
743 * There's a faint possibility that swap page was replaced before
744 * caller locked it: caller will come back later with the right page.
746 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
750 * Charge page using GFP_KERNEL while we can wait, before taking
751 * the shmem_swaplist_mutex which might hold up shmem_writepage().
752 * Charged back to the user (not to caller) when swap account is used.
754 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
757 /* No radix_tree_preload: swap entry keeps a place for page in tree */
759 mutex_lock(&shmem_swaplist_mutex
);
760 list_for_each_safe(this, next
, &shmem_swaplist
) {
761 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
763 found
= shmem_unuse_inode(info
, swap
, &page
);
765 list_del_init(&info
->swaplist
);
770 mutex_unlock(&shmem_swaplist_mutex
);
776 page_cache_release(page
);
781 * Move the page from the page cache to the swap cache.
783 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
785 struct shmem_inode_info
*info
;
786 struct address_space
*mapping
;
791 BUG_ON(!PageLocked(page
));
792 mapping
= page
->mapping
;
794 inode
= mapping
->host
;
795 info
= SHMEM_I(inode
);
796 if (info
->flags
& VM_LOCKED
)
798 if (!total_swap_pages
)
802 * shmem_backing_dev_info's capabilities prevent regular writeback or
803 * sync from ever calling shmem_writepage; but a stacking filesystem
804 * might use ->writepage of its underlying filesystem, in which case
805 * tmpfs should write out to swap only in response to memory pressure,
806 * and not for the writeback threads or sync.
808 if (!wbc
->for_reclaim
) {
809 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
814 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
815 * value into swapfile.c, the only way we can correctly account for a
816 * fallocated page arriving here is now to initialize it and write it.
818 * That's okay for a page already fallocated earlier, but if we have
819 * not yet completed the fallocation, then (a) we want to keep track
820 * of this page in case we have to undo it, and (b) it may not be a
821 * good idea to continue anyway, once we're pushing into swap. So
822 * reactivate the page, and let shmem_fallocate() quit when too many.
824 if (!PageUptodate(page
)) {
825 if (inode
->i_private
) {
826 struct shmem_falloc
*shmem_falloc
;
827 spin_lock(&inode
->i_lock
);
828 shmem_falloc
= inode
->i_private
;
830 index
>= shmem_falloc
->start
&&
831 index
< shmem_falloc
->next
)
832 shmem_falloc
->nr_unswapped
++;
835 spin_unlock(&inode
->i_lock
);
839 clear_highpage(page
);
840 flush_dcache_page(page
);
841 SetPageUptodate(page
);
844 swap
= get_swap_page();
849 * Add inode to shmem_unuse()'s list of swapped-out inodes,
850 * if it's not already there. Do it now before the page is
851 * moved to swap cache, when its pagelock no longer protects
852 * the inode from eviction. But don't unlock the mutex until
853 * we've incremented swapped, because shmem_unuse_inode() will
854 * prune a !swapped inode from the swaplist under this mutex.
856 mutex_lock(&shmem_swaplist_mutex
);
857 if (list_empty(&info
->swaplist
))
858 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
860 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
861 swap_shmem_alloc(swap
);
862 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
864 spin_lock(&info
->lock
);
866 shmem_recalc_inode(inode
);
867 spin_unlock(&info
->lock
);
869 mutex_unlock(&shmem_swaplist_mutex
);
870 BUG_ON(page_mapped(page
));
871 swap_writepage(page
, wbc
);
875 mutex_unlock(&shmem_swaplist_mutex
);
876 swapcache_free(swap
, NULL
);
878 set_page_dirty(page
);
879 if (wbc
->for_reclaim
)
880 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
887 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
891 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
892 return; /* show nothing */
894 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
896 seq_printf(seq
, ",mpol=%s", buffer
);
899 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
901 struct mempolicy
*mpol
= NULL
;
903 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
906 spin_unlock(&sbinfo
->stat_lock
);
910 #endif /* CONFIG_TMPFS */
912 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
913 struct shmem_inode_info
*info
, pgoff_t index
)
915 struct mempolicy mpol
, *spol
;
916 struct vm_area_struct pvma
;
918 spol
= mpol_cond_copy(&mpol
,
919 mpol_shared_policy_lookup(&info
->policy
, index
));
921 /* Create a pseudo vma that just contains the policy */
923 pvma
.vm_pgoff
= index
;
925 pvma
.vm_policy
= spol
;
926 return swapin_readahead(swap
, gfp
, &pvma
, 0);
929 static struct page
*shmem_alloc_page(gfp_t gfp
,
930 struct shmem_inode_info
*info
, pgoff_t index
)
932 struct vm_area_struct pvma
;
934 /* Create a pseudo vma that just contains the policy */
936 pvma
.vm_pgoff
= index
;
938 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
941 * alloc_page_vma() will drop the shared policy reference
943 return alloc_page_vma(gfp
, &pvma
, 0);
945 #else /* !CONFIG_NUMA */
947 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
950 #endif /* CONFIG_TMPFS */
952 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
953 struct shmem_inode_info
*info
, pgoff_t index
)
955 return swapin_readahead(swap
, gfp
, NULL
, 0);
958 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
959 struct shmem_inode_info
*info
, pgoff_t index
)
961 return alloc_page(gfp
);
963 #endif /* CONFIG_NUMA */
965 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
973 * When a page is moved from swapcache to shmem filecache (either by the
974 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975 * shmem_unuse_inode()), it may have been read in earlier from swap, in
976 * ignorance of the mapping it belongs to. If that mapping has special
977 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978 * we may need to copy to a suitable page before moving to filecache.
980 * In a future release, this may well be extended to respect cpuset and
981 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982 * but for now it is a simple matter of zone.
984 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
986 return page_zonenum(page
) > gfp_zone(gfp
);
989 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
990 struct shmem_inode_info
*info
, pgoff_t index
)
992 struct page
*oldpage
, *newpage
;
993 struct address_space
*swap_mapping
;
998 swap_index
= page_private(oldpage
);
999 swap_mapping
= page_mapping(oldpage
);
1002 * We have arrived here because our zones are constrained, so don't
1003 * limit chance of success by further cpuset and node constraints.
1005 gfp
&= ~GFP_CONSTRAINT_MASK
;
1006 newpage
= shmem_alloc_page(gfp
, info
, index
);
1010 page_cache_get(newpage
);
1011 copy_highpage(newpage
, oldpage
);
1012 flush_dcache_page(newpage
);
1014 __set_page_locked(newpage
);
1015 SetPageUptodate(newpage
);
1016 SetPageSwapBacked(newpage
);
1017 set_page_private(newpage
, swap_index
);
1018 SetPageSwapCache(newpage
);
1021 * Our caller will very soon move newpage out of swapcache, but it's
1022 * a nice clean interface for us to replace oldpage by newpage there.
1024 spin_lock_irq(&swap_mapping
->tree_lock
);
1025 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1028 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
1029 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
1031 spin_unlock_irq(&swap_mapping
->tree_lock
);
1033 if (unlikely(error
)) {
1035 * Is this possible? I think not, now that our callers check
1036 * both PageSwapCache and page_private after getting page lock;
1037 * but be defensive. Reverse old to newpage for clear and free.
1041 mem_cgroup_replace_page_cache(oldpage
, newpage
);
1042 lru_cache_add_anon(newpage
);
1046 ClearPageSwapCache(oldpage
);
1047 set_page_private(oldpage
, 0);
1049 unlock_page(oldpage
);
1050 page_cache_release(oldpage
);
1051 page_cache_release(oldpage
);
1056 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1058 * If we allocate a new one we do not mark it dirty. That's up to the
1059 * vm. If we swap it in we mark it dirty since we also free the swap
1060 * entry since a page cannot live in both the swap and page cache
1062 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1063 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1065 struct address_space
*mapping
= inode
->i_mapping
;
1066 struct shmem_inode_info
*info
;
1067 struct shmem_sb_info
*sbinfo
;
1074 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1078 page
= find_lock_page(mapping
, index
);
1079 if (radix_tree_exceptional_entry(page
)) {
1080 swap
= radix_to_swp_entry(page
);
1084 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1085 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1090 /* fallocated page? */
1091 if (page
&& !PageUptodate(page
)) {
1092 if (sgp
!= SGP_READ
)
1095 page_cache_release(page
);
1098 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1104 * Fast cache lookup did not find it:
1105 * bring it back from swap or allocate.
1107 info
= SHMEM_I(inode
);
1108 sbinfo
= SHMEM_SB(inode
->i_sb
);
1111 /* Look it up and read it in.. */
1112 page
= lookup_swap_cache(swap
);
1114 /* here we actually do the io */
1116 *fault_type
|= VM_FAULT_MAJOR
;
1117 page
= shmem_swapin(swap
, gfp
, info
, index
);
1124 /* We have to do this with page locked to prevent races */
1126 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1128 error
= -EEXIST
; /* try again */
1131 if (!PageUptodate(page
)) {
1135 wait_on_page_writeback(page
);
1137 if (shmem_should_replace_page(page
, gfp
)) {
1138 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1143 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1144 gfp
& GFP_RECLAIM_MASK
);
1146 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1147 gfp
, swp_to_radix_entry(swap
));
1151 spin_lock(&info
->lock
);
1153 shmem_recalc_inode(inode
);
1154 spin_unlock(&info
->lock
);
1156 delete_from_swap_cache(page
);
1157 set_page_dirty(page
);
1161 if (shmem_acct_block(info
->flags
)) {
1165 if (sbinfo
->max_blocks
) {
1166 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1167 sbinfo
->max_blocks
) >= 0) {
1171 percpu_counter_inc(&sbinfo
->used_blocks
);
1174 page
= shmem_alloc_page(gfp
, info
, index
);
1180 SetPageSwapBacked(page
);
1181 __set_page_locked(page
);
1182 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1183 gfp
& GFP_RECLAIM_MASK
);
1185 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1189 lru_cache_add_anon(page
);
1191 spin_lock(&info
->lock
);
1193 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1194 shmem_recalc_inode(inode
);
1195 spin_unlock(&info
->lock
);
1199 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1201 if (sgp
== SGP_FALLOC
)
1205 * Let SGP_WRITE caller clear ends if write does not fill page;
1206 * but SGP_FALLOC on a page fallocated earlier must initialize
1207 * it now, lest undo on failure cancel our earlier guarantee.
1209 if (sgp
!= SGP_WRITE
) {
1210 clear_highpage(page
);
1211 flush_dcache_page(page
);
1212 SetPageUptodate(page
);
1214 if (sgp
== SGP_DIRTY
)
1215 set_page_dirty(page
);
1218 /* Perhaps the file has been truncated since we checked */
1219 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1220 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1234 info
= SHMEM_I(inode
);
1235 ClearPageDirty(page
);
1236 delete_from_page_cache(page
);
1237 spin_lock(&info
->lock
);
1239 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1240 spin_unlock(&info
->lock
);
1242 sbinfo
= SHMEM_SB(inode
->i_sb
);
1243 if (sbinfo
->max_blocks
)
1244 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1246 shmem_unacct_blocks(info
->flags
, 1);
1248 if (swap
.val
&& error
!= -EINVAL
) {
1249 struct page
*test
= find_get_page(mapping
, index
);
1250 if (test
&& !radix_tree_exceptional_entry(test
))
1251 page_cache_release(test
);
1252 /* Have another try if the entry has changed */
1253 if (test
!= swp_to_radix_entry(swap
))
1258 page_cache_release(page
);
1260 if (error
== -ENOSPC
&& !once
++) {
1261 info
= SHMEM_I(inode
);
1262 spin_lock(&info
->lock
);
1263 shmem_recalc_inode(inode
);
1264 spin_unlock(&info
->lock
);
1267 if (error
== -EEXIST
)
1272 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1274 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1276 int ret
= VM_FAULT_LOCKED
;
1278 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1280 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1282 if (ret
& VM_FAULT_MAJOR
) {
1283 count_vm_event(PGMAJFAULT
);
1284 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1290 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1292 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1293 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1296 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1299 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1302 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1303 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1307 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1309 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1310 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1311 int retval
= -ENOMEM
;
1313 spin_lock(&info
->lock
);
1314 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1315 if (!user_shm_lock(inode
->i_size
, user
))
1317 info
->flags
|= VM_LOCKED
;
1318 mapping_set_unevictable(file
->f_mapping
);
1320 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1321 user_shm_unlock(inode
->i_size
, user
);
1322 info
->flags
&= ~VM_LOCKED
;
1323 mapping_clear_unevictable(file
->f_mapping
);
1328 spin_unlock(&info
->lock
);
1332 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1334 file_accessed(file
);
1335 vma
->vm_ops
= &shmem_vm_ops
;
1336 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1340 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1341 umode_t mode
, dev_t dev
, unsigned long flags
)
1343 struct inode
*inode
;
1344 struct shmem_inode_info
*info
;
1345 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1347 if (shmem_reserve_inode(sb
))
1350 inode
= new_inode(sb
);
1352 inode
->i_ino
= get_next_ino();
1353 inode_init_owner(inode
, dir
, mode
);
1354 inode
->i_blocks
= 0;
1355 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1356 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1357 inode
->i_generation
= get_seconds();
1358 info
= SHMEM_I(inode
);
1359 memset(info
, 0, (char *)inode
- (char *)info
);
1360 spin_lock_init(&info
->lock
);
1361 info
->flags
= flags
& VM_NORESERVE
;
1362 INIT_LIST_HEAD(&info
->swaplist
);
1363 INIT_LIST_HEAD(&info
->xattr_list
);
1364 cache_no_acl(inode
);
1366 switch (mode
& S_IFMT
) {
1368 inode
->i_op
= &shmem_special_inode_operations
;
1369 init_special_inode(inode
, mode
, dev
);
1372 inode
->i_mapping
->a_ops
= &shmem_aops
;
1373 inode
->i_op
= &shmem_inode_operations
;
1374 inode
->i_fop
= &shmem_file_operations
;
1375 mpol_shared_policy_init(&info
->policy
,
1376 shmem_get_sbmpol(sbinfo
));
1380 /* Some things misbehave if size == 0 on a directory */
1381 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1382 inode
->i_op
= &shmem_dir_inode_operations
;
1383 inode
->i_fop
= &simple_dir_operations
;
1387 * Must not load anything in the rbtree,
1388 * mpol_free_shared_policy will not be called.
1390 mpol_shared_policy_init(&info
->policy
, NULL
);
1394 shmem_free_inode(sb
);
1399 static const struct inode_operations shmem_symlink_inode_operations
;
1400 static const struct inode_operations shmem_short_symlink_operations
;
1402 #ifdef CONFIG_TMPFS_XATTR
1403 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1405 #define shmem_initxattrs NULL
1409 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1410 loff_t pos
, unsigned len
, unsigned flags
,
1411 struct page
**pagep
, void **fsdata
)
1413 struct inode
*inode
= mapping
->host
;
1414 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1415 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1419 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1420 loff_t pos
, unsigned len
, unsigned copied
,
1421 struct page
*page
, void *fsdata
)
1423 struct inode
*inode
= mapping
->host
;
1425 if (pos
+ copied
> inode
->i_size
)
1426 i_size_write(inode
, pos
+ copied
);
1428 if (!PageUptodate(page
)) {
1429 if (copied
< PAGE_CACHE_SIZE
) {
1430 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1431 zero_user_segments(page
, 0, from
,
1432 from
+ copied
, PAGE_CACHE_SIZE
);
1434 SetPageUptodate(page
);
1436 set_page_dirty(page
);
1438 page_cache_release(page
);
1443 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1445 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1446 struct address_space
*mapping
= inode
->i_mapping
;
1448 unsigned long offset
;
1449 enum sgp_type sgp
= SGP_READ
;
1452 * Might this read be for a stacking filesystem? Then when reading
1453 * holes of a sparse file, we actually need to allocate those pages,
1454 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1456 if (segment_eq(get_fs(), KERNEL_DS
))
1459 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1460 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1463 struct page
*page
= NULL
;
1465 unsigned long nr
, ret
;
1466 loff_t i_size
= i_size_read(inode
);
1468 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1469 if (index
> end_index
)
1471 if (index
== end_index
) {
1472 nr
= i_size
& ~PAGE_CACHE_MASK
;
1477 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1479 if (desc
->error
== -EINVAL
)
1487 * We must evaluate after, since reads (unlike writes)
1488 * are called without i_mutex protection against truncate
1490 nr
= PAGE_CACHE_SIZE
;
1491 i_size
= i_size_read(inode
);
1492 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1493 if (index
== end_index
) {
1494 nr
= i_size
& ~PAGE_CACHE_MASK
;
1497 page_cache_release(page
);
1505 * If users can be writing to this page using arbitrary
1506 * virtual addresses, take care about potential aliasing
1507 * before reading the page on the kernel side.
1509 if (mapping_writably_mapped(mapping
))
1510 flush_dcache_page(page
);
1512 * Mark the page accessed if we read the beginning.
1515 mark_page_accessed(page
);
1517 page
= ZERO_PAGE(0);
1518 page_cache_get(page
);
1522 * Ok, we have the page, and it's up-to-date, so
1523 * now we can copy it to user space...
1525 * The actor routine returns how many bytes were actually used..
1526 * NOTE! This may not be the same as how much of a user buffer
1527 * we filled up (we may be padding etc), so we can only update
1528 * "pos" here (the actor routine has to update the user buffer
1529 * pointers and the remaining count).
1531 ret
= actor(desc
, page
, offset
, nr
);
1533 index
+= offset
>> PAGE_CACHE_SHIFT
;
1534 offset
&= ~PAGE_CACHE_MASK
;
1536 page_cache_release(page
);
1537 if (ret
!= nr
|| !desc
->count
)
1543 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1544 file_accessed(filp
);
1547 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1548 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1550 struct file
*filp
= iocb
->ki_filp
;
1554 loff_t
*ppos
= &iocb
->ki_pos
;
1556 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1560 for (seg
= 0; seg
< nr_segs
; seg
++) {
1561 read_descriptor_t desc
;
1564 desc
.arg
.buf
= iov
[seg
].iov_base
;
1565 desc
.count
= iov
[seg
].iov_len
;
1566 if (desc
.count
== 0)
1569 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1570 retval
+= desc
.written
;
1572 retval
= retval
?: desc
.error
;
1581 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1582 struct pipe_inode_info
*pipe
, size_t len
,
1585 struct address_space
*mapping
= in
->f_mapping
;
1586 struct inode
*inode
= mapping
->host
;
1587 unsigned int loff
, nr_pages
, req_pages
;
1588 struct page
*pages
[PIPE_DEF_BUFFERS
];
1589 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1591 pgoff_t index
, end_index
;
1594 struct splice_pipe_desc spd
= {
1598 .ops
= &page_cache_pipe_buf_ops
,
1599 .spd_release
= spd_release_page
,
1602 isize
= i_size_read(inode
);
1603 if (unlikely(*ppos
>= isize
))
1606 left
= isize
- *ppos
;
1607 if (unlikely(left
< len
))
1610 if (splice_grow_spd(pipe
, &spd
))
1613 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1614 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1615 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1616 nr_pages
= min(req_pages
, pipe
->buffers
);
1618 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1619 nr_pages
, spd
.pages
);
1620 index
+= spd
.nr_pages
;
1623 while (spd
.nr_pages
< nr_pages
) {
1624 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1628 spd
.pages
[spd
.nr_pages
++] = page
;
1632 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1633 nr_pages
= spd
.nr_pages
;
1636 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1637 unsigned int this_len
;
1642 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1643 page
= spd
.pages
[page_nr
];
1645 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1646 error
= shmem_getpage(inode
, index
, &page
,
1651 page_cache_release(spd
.pages
[page_nr
]);
1652 spd
.pages
[page_nr
] = page
;
1655 isize
= i_size_read(inode
);
1656 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1657 if (unlikely(!isize
|| index
> end_index
))
1660 if (end_index
== index
) {
1663 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1667 this_len
= min(this_len
, plen
- loff
);
1671 spd
.partial
[page_nr
].offset
= loff
;
1672 spd
.partial
[page_nr
].len
= this_len
;
1679 while (page_nr
< nr_pages
)
1680 page_cache_release(spd
.pages
[page_nr
++]);
1683 error
= splice_to_pipe(pipe
, &spd
);
1685 splice_shrink_spd(pipe
, &spd
);
1695 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1697 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
1698 pgoff_t index
, pgoff_t end
, int origin
)
1701 struct pagevec pvec
;
1702 pgoff_t indices
[PAGEVEC_SIZE
];
1706 pagevec_init(&pvec
, 0);
1707 pvec
.nr
= 1; /* start small: we may be there already */
1709 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
1710 pvec
.nr
, pvec
.pages
, indices
);
1712 if (origin
== SEEK_DATA
)
1716 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
1717 if (index
< indices
[i
]) {
1718 if (origin
== SEEK_HOLE
) {
1724 page
= pvec
.pages
[i
];
1725 if (page
&& !radix_tree_exceptional_entry(page
)) {
1726 if (!PageUptodate(page
))
1730 (page
&& origin
== SEEK_DATA
) ||
1731 (!page
&& origin
== SEEK_HOLE
)) {
1736 shmem_deswap_pagevec(&pvec
);
1737 pagevec_release(&pvec
);
1738 pvec
.nr
= PAGEVEC_SIZE
;
1744 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int origin
)
1746 struct address_space
*mapping
;
1747 struct inode
*inode
;
1751 if (origin
!= SEEK_DATA
&& origin
!= SEEK_HOLE
)
1752 return generic_file_llseek_size(file
, offset
, origin
,
1754 mapping
= file
->f_mapping
;
1755 inode
= mapping
->host
;
1756 mutex_lock(&inode
->i_mutex
);
1757 /* We're holding i_mutex so we can access i_size directly */
1761 else if (offset
>= inode
->i_size
)
1764 start
= offset
>> PAGE_CACHE_SHIFT
;
1765 end
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1766 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, origin
);
1767 new_offset
<<= PAGE_CACHE_SHIFT
;
1768 if (new_offset
> offset
) {
1769 if (new_offset
< inode
->i_size
)
1770 offset
= new_offset
;
1771 else if (origin
== SEEK_DATA
)
1774 offset
= inode
->i_size
;
1778 if (offset
>= 0 && offset
!= file
->f_pos
) {
1779 file
->f_pos
= offset
;
1780 file
->f_version
= 0;
1782 mutex_unlock(&inode
->i_mutex
);
1786 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
1789 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1790 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1791 struct shmem_falloc shmem_falloc
;
1792 pgoff_t start
, index
, end
;
1795 mutex_lock(&inode
->i_mutex
);
1797 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1798 struct address_space
*mapping
= file
->f_mapping
;
1799 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
1800 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
1802 if ((u64
)unmap_end
> (u64
)unmap_start
)
1803 unmap_mapping_range(mapping
, unmap_start
,
1804 1 + unmap_end
- unmap_start
, 0);
1805 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
1806 /* No need to unmap again: hole-punching leaves COWed pages */
1811 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1812 error
= inode_newsize_ok(inode
, offset
+ len
);
1816 start
= offset
>> PAGE_CACHE_SHIFT
;
1817 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1818 /* Try to avoid a swapstorm if len is impossible to satisfy */
1819 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
1824 shmem_falloc
.start
= start
;
1825 shmem_falloc
.next
= start
;
1826 shmem_falloc
.nr_falloced
= 0;
1827 shmem_falloc
.nr_unswapped
= 0;
1828 spin_lock(&inode
->i_lock
);
1829 inode
->i_private
= &shmem_falloc
;
1830 spin_unlock(&inode
->i_lock
);
1832 for (index
= start
; index
< end
; index
++) {
1836 * Good, the fallocate(2) manpage permits EINTR: we may have
1837 * been interrupted because we are using up too much memory.
1839 if (signal_pending(current
))
1841 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
1844 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
1847 /* Remove the !PageUptodate pages we added */
1848 shmem_undo_range(inode
,
1849 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
1850 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
1855 * Inform shmem_writepage() how far we have reached.
1856 * No need for lock or barrier: we have the page lock.
1858 shmem_falloc
.next
++;
1859 if (!PageUptodate(page
))
1860 shmem_falloc
.nr_falloced
++;
1863 * If !PageUptodate, leave it that way so that freeable pages
1864 * can be recognized if we need to rollback on error later.
1865 * But set_page_dirty so that memory pressure will swap rather
1866 * than free the pages we are allocating (and SGP_CACHE pages
1867 * might still be clean: we now need to mark those dirty too).
1869 set_page_dirty(page
);
1871 page_cache_release(page
);
1875 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
1876 i_size_write(inode
, offset
+ len
);
1877 inode
->i_ctime
= CURRENT_TIME
;
1879 spin_lock(&inode
->i_lock
);
1880 inode
->i_private
= NULL
;
1881 spin_unlock(&inode
->i_lock
);
1883 mutex_unlock(&inode
->i_mutex
);
1887 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1889 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1891 buf
->f_type
= TMPFS_MAGIC
;
1892 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1893 buf
->f_namelen
= NAME_MAX
;
1894 if (sbinfo
->max_blocks
) {
1895 buf
->f_blocks
= sbinfo
->max_blocks
;
1897 buf
->f_bfree
= sbinfo
->max_blocks
-
1898 percpu_counter_sum(&sbinfo
->used_blocks
);
1900 if (sbinfo
->max_inodes
) {
1901 buf
->f_files
= sbinfo
->max_inodes
;
1902 buf
->f_ffree
= sbinfo
->free_inodes
;
1904 /* else leave those fields 0 like simple_statfs */
1909 * File creation. Allocate an inode, and we're done..
1912 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
1914 struct inode
*inode
;
1915 int error
= -ENOSPC
;
1917 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1919 error
= security_inode_init_security(inode
, dir
,
1921 shmem_initxattrs
, NULL
);
1923 if (error
!= -EOPNOTSUPP
) {
1928 #ifdef CONFIG_TMPFS_POSIX_ACL
1929 error
= generic_acl_init(inode
, dir
);
1937 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1938 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1939 d_instantiate(dentry
, inode
);
1940 dget(dentry
); /* Extra count - pin the dentry in core */
1945 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1949 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1955 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
1956 struct nameidata
*nd
)
1958 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1964 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1966 struct inode
*inode
= old_dentry
->d_inode
;
1970 * No ordinary (disk based) filesystem counts links as inodes;
1971 * but each new link needs a new dentry, pinning lowmem, and
1972 * tmpfs dentries cannot be pruned until they are unlinked.
1974 ret
= shmem_reserve_inode(inode
->i_sb
);
1978 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1979 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1981 ihold(inode
); /* New dentry reference */
1982 dget(dentry
); /* Extra pinning count for the created dentry */
1983 d_instantiate(dentry
, inode
);
1988 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1990 struct inode
*inode
= dentry
->d_inode
;
1992 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1993 shmem_free_inode(inode
->i_sb
);
1995 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1996 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1998 dput(dentry
); /* Undo the count from "create" - this does all the work */
2002 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2004 if (!simple_empty(dentry
))
2007 drop_nlink(dentry
->d_inode
);
2009 return shmem_unlink(dir
, dentry
);
2013 * The VFS layer already does all the dentry stuff for rename,
2014 * we just have to decrement the usage count for the target if
2015 * it exists so that the VFS layer correctly free's it when it
2018 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2020 struct inode
*inode
= old_dentry
->d_inode
;
2021 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2023 if (!simple_empty(new_dentry
))
2026 if (new_dentry
->d_inode
) {
2027 (void) shmem_unlink(new_dir
, new_dentry
);
2029 drop_nlink(old_dir
);
2030 } else if (they_are_dirs
) {
2031 drop_nlink(old_dir
);
2035 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2036 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2037 old_dir
->i_ctime
= old_dir
->i_mtime
=
2038 new_dir
->i_ctime
= new_dir
->i_mtime
=
2039 inode
->i_ctime
= CURRENT_TIME
;
2043 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2047 struct inode
*inode
;
2050 struct shmem_inode_info
*info
;
2052 len
= strlen(symname
) + 1;
2053 if (len
> PAGE_CACHE_SIZE
)
2054 return -ENAMETOOLONG
;
2056 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2060 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2061 shmem_initxattrs
, NULL
);
2063 if (error
!= -EOPNOTSUPP
) {
2070 info
= SHMEM_I(inode
);
2071 inode
->i_size
= len
-1;
2072 if (len
<= SHORT_SYMLINK_LEN
) {
2073 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
2074 if (!info
->symlink
) {
2078 inode
->i_op
= &shmem_short_symlink_operations
;
2080 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2085 inode
->i_mapping
->a_ops
= &shmem_aops
;
2086 inode
->i_op
= &shmem_symlink_inode_operations
;
2087 kaddr
= kmap_atomic(page
);
2088 memcpy(kaddr
, symname
, len
);
2089 kunmap_atomic(kaddr
);
2090 SetPageUptodate(page
);
2091 set_page_dirty(page
);
2093 page_cache_release(page
);
2095 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2096 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2097 d_instantiate(dentry
, inode
);
2102 static void *shmem_follow_short_symlink(struct dentry
*dentry
, struct nameidata
*nd
)
2104 nd_set_link(nd
, SHMEM_I(dentry
->d_inode
)->symlink
);
2108 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2110 struct page
*page
= NULL
;
2111 int error
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2112 nd_set_link(nd
, error
? ERR_PTR(error
) : kmap(page
));
2118 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2120 if (!IS_ERR(nd_get_link(nd
))) {
2121 struct page
*page
= cookie
;
2123 mark_page_accessed(page
);
2124 page_cache_release(page
);
2128 #ifdef CONFIG_TMPFS_XATTR
2130 * Superblocks without xattr inode operations may get some security.* xattr
2131 * support from the LSM "for free". As soon as we have any other xattrs
2132 * like ACLs, we also need to implement the security.* handlers at
2133 * filesystem level, though.
2137 * Allocate new xattr and copy in the value; but leave the name to callers.
2139 static struct shmem_xattr
*shmem_xattr_alloc(const void *value
, size_t size
)
2141 struct shmem_xattr
*new_xattr
;
2145 len
= sizeof(*new_xattr
) + size
;
2146 if (len
<= sizeof(*new_xattr
))
2149 new_xattr
= kmalloc(len
, GFP_KERNEL
);
2153 new_xattr
->size
= size
;
2154 memcpy(new_xattr
->value
, value
, size
);
2159 * Callback for security_inode_init_security() for acquiring xattrs.
2161 static int shmem_initxattrs(struct inode
*inode
,
2162 const struct xattr
*xattr_array
,
2165 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2166 const struct xattr
*xattr
;
2167 struct shmem_xattr
*new_xattr
;
2170 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2171 new_xattr
= shmem_xattr_alloc(xattr
->value
, xattr
->value_len
);
2175 len
= strlen(xattr
->name
) + 1;
2176 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2178 if (!new_xattr
->name
) {
2183 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2184 XATTR_SECURITY_PREFIX_LEN
);
2185 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2188 spin_lock(&info
->lock
);
2189 list_add(&new_xattr
->list
, &info
->xattr_list
);
2190 spin_unlock(&info
->lock
);
2196 static int shmem_xattr_get(struct dentry
*dentry
, const char *name
,
2197 void *buffer
, size_t size
)
2199 struct shmem_inode_info
*info
;
2200 struct shmem_xattr
*xattr
;
2203 info
= SHMEM_I(dentry
->d_inode
);
2205 spin_lock(&info
->lock
);
2206 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2207 if (strcmp(name
, xattr
->name
))
2212 if (size
< xattr
->size
)
2215 memcpy(buffer
, xattr
->value
, xattr
->size
);
2219 spin_unlock(&info
->lock
);
2223 static int shmem_xattr_set(struct inode
*inode
, const char *name
,
2224 const void *value
, size_t size
, int flags
)
2226 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2227 struct shmem_xattr
*xattr
;
2228 struct shmem_xattr
*new_xattr
= NULL
;
2231 /* value == NULL means remove */
2233 new_xattr
= shmem_xattr_alloc(value
, size
);
2237 new_xattr
->name
= kstrdup(name
, GFP_KERNEL
);
2238 if (!new_xattr
->name
) {
2244 spin_lock(&info
->lock
);
2245 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2246 if (!strcmp(name
, xattr
->name
)) {
2247 if (flags
& XATTR_CREATE
) {
2250 } else if (new_xattr
) {
2251 list_replace(&xattr
->list
, &new_xattr
->list
);
2253 list_del(&xattr
->list
);
2258 if (flags
& XATTR_REPLACE
) {
2262 list_add(&new_xattr
->list
, &info
->xattr_list
);
2266 spin_unlock(&info
->lock
);
2273 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2274 #ifdef CONFIG_TMPFS_POSIX_ACL
2275 &generic_acl_access_handler
,
2276 &generic_acl_default_handler
,
2281 static int shmem_xattr_validate(const char *name
)
2283 struct { const char *prefix
; size_t len
; } arr
[] = {
2284 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2285 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2289 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2290 size_t preflen
= arr
[i
].len
;
2291 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2300 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2301 void *buffer
, size_t size
)
2306 * If this is a request for a synthetic attribute in the system.*
2307 * namespace use the generic infrastructure to resolve a handler
2308 * for it via sb->s_xattr.
2310 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2311 return generic_getxattr(dentry
, name
, buffer
, size
);
2313 err
= shmem_xattr_validate(name
);
2317 return shmem_xattr_get(dentry
, name
, buffer
, size
);
2320 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2321 const void *value
, size_t size
, int flags
)
2326 * If this is a request for a synthetic attribute in the system.*
2327 * namespace use the generic infrastructure to resolve a handler
2328 * for it via sb->s_xattr.
2330 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2331 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2333 err
= shmem_xattr_validate(name
);
2338 value
= ""; /* empty EA, do not remove */
2340 return shmem_xattr_set(dentry
->d_inode
, name
, value
, size
, flags
);
2344 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2349 * If this is a request for a synthetic attribute in the system.*
2350 * namespace use the generic infrastructure to resolve a handler
2351 * for it via sb->s_xattr.
2353 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2354 return generic_removexattr(dentry
, name
);
2356 err
= shmem_xattr_validate(name
);
2360 return shmem_xattr_set(dentry
->d_inode
, name
, NULL
, 0, XATTR_REPLACE
);
2363 static bool xattr_is_trusted(const char *name
)
2365 return !strncmp(name
, XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
);
2368 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2370 bool trusted
= capable(CAP_SYS_ADMIN
);
2371 struct shmem_xattr
*xattr
;
2372 struct shmem_inode_info
*info
;
2375 info
= SHMEM_I(dentry
->d_inode
);
2377 spin_lock(&info
->lock
);
2378 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2381 /* skip "trusted." attributes for unprivileged callers */
2382 if (!trusted
&& xattr_is_trusted(xattr
->name
))
2385 len
= strlen(xattr
->name
) + 1;
2392 memcpy(buffer
, xattr
->name
, len
);
2396 spin_unlock(&info
->lock
);
2400 #endif /* CONFIG_TMPFS_XATTR */
2402 static const struct inode_operations shmem_short_symlink_operations
= {
2403 .readlink
= generic_readlink
,
2404 .follow_link
= shmem_follow_short_symlink
,
2405 #ifdef CONFIG_TMPFS_XATTR
2406 .setxattr
= shmem_setxattr
,
2407 .getxattr
= shmem_getxattr
,
2408 .listxattr
= shmem_listxattr
,
2409 .removexattr
= shmem_removexattr
,
2413 static const struct inode_operations shmem_symlink_inode_operations
= {
2414 .readlink
= generic_readlink
,
2415 .follow_link
= shmem_follow_link
,
2416 .put_link
= shmem_put_link
,
2417 #ifdef CONFIG_TMPFS_XATTR
2418 .setxattr
= shmem_setxattr
,
2419 .getxattr
= shmem_getxattr
,
2420 .listxattr
= shmem_listxattr
,
2421 .removexattr
= shmem_removexattr
,
2425 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2427 return ERR_PTR(-ESTALE
);
2430 static int shmem_match(struct inode
*ino
, void *vfh
)
2434 inum
= (inum
<< 32) | fh
[1];
2435 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2438 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2439 struct fid
*fid
, int fh_len
, int fh_type
)
2441 struct inode
*inode
;
2442 struct dentry
*dentry
= NULL
;
2443 u64 inum
= fid
->raw
[2];
2444 inum
= (inum
<< 32) | fid
->raw
[1];
2449 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2450 shmem_match
, fid
->raw
);
2452 dentry
= d_find_alias(inode
);
2459 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2460 struct inode
*parent
)
2467 if (inode_unhashed(inode
)) {
2468 /* Unfortunately insert_inode_hash is not idempotent,
2469 * so as we hash inodes here rather than at creation
2470 * time, we need a lock to ensure we only try
2473 static DEFINE_SPINLOCK(lock
);
2475 if (inode_unhashed(inode
))
2476 __insert_inode_hash(inode
,
2477 inode
->i_ino
+ inode
->i_generation
);
2481 fh
[0] = inode
->i_generation
;
2482 fh
[1] = inode
->i_ino
;
2483 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2489 static const struct export_operations shmem_export_ops
= {
2490 .get_parent
= shmem_get_parent
,
2491 .encode_fh
= shmem_encode_fh
,
2492 .fh_to_dentry
= shmem_fh_to_dentry
,
2495 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2498 char *this_char
, *value
, *rest
;
2502 while (options
!= NULL
) {
2503 this_char
= options
;
2506 * NUL-terminate this option: unfortunately,
2507 * mount options form a comma-separated list,
2508 * but mpol's nodelist may also contain commas.
2510 options
= strchr(options
, ',');
2511 if (options
== NULL
)
2514 if (!isdigit(*options
)) {
2521 if ((value
= strchr(this_char
,'=')) != NULL
) {
2525 "tmpfs: No value for mount option '%s'\n",
2530 if (!strcmp(this_char
,"size")) {
2531 unsigned long long size
;
2532 size
= memparse(value
,&rest
);
2534 size
<<= PAGE_SHIFT
;
2535 size
*= totalram_pages
;
2541 sbinfo
->max_blocks
=
2542 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2543 } else if (!strcmp(this_char
,"nr_blocks")) {
2544 sbinfo
->max_blocks
= memparse(value
, &rest
);
2547 } else if (!strcmp(this_char
,"nr_inodes")) {
2548 sbinfo
->max_inodes
= memparse(value
, &rest
);
2551 } else if (!strcmp(this_char
,"mode")) {
2554 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2557 } else if (!strcmp(this_char
,"uid")) {
2560 uid
= simple_strtoul(value
, &rest
, 0);
2563 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2564 if (!uid_valid(sbinfo
->uid
))
2566 } else if (!strcmp(this_char
,"gid")) {
2569 gid
= simple_strtoul(value
, &rest
, 0);
2572 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2573 if (!gid_valid(sbinfo
->gid
))
2575 } else if (!strcmp(this_char
,"mpol")) {
2576 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2579 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2587 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2593 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2595 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2596 struct shmem_sb_info config
= *sbinfo
;
2597 unsigned long inodes
;
2598 int error
= -EINVAL
;
2600 if (shmem_parse_options(data
, &config
, true))
2603 spin_lock(&sbinfo
->stat_lock
);
2604 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2605 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2607 if (config
.max_inodes
< inodes
)
2610 * Those tests disallow limited->unlimited while any are in use;
2611 * but we must separately disallow unlimited->limited, because
2612 * in that case we have no record of how much is already in use.
2614 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2616 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2620 sbinfo
->max_blocks
= config
.max_blocks
;
2621 sbinfo
->max_inodes
= config
.max_inodes
;
2622 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2624 mpol_put(sbinfo
->mpol
);
2625 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2627 spin_unlock(&sbinfo
->stat_lock
);
2631 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2633 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2635 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2636 seq_printf(seq
, ",size=%luk",
2637 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2638 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2639 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2640 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2641 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2642 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2643 seq_printf(seq
, ",uid=%u",
2644 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2645 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2646 seq_printf(seq
, ",gid=%u",
2647 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2648 shmem_show_mpol(seq
, sbinfo
->mpol
);
2651 #endif /* CONFIG_TMPFS */
2653 static void shmem_put_super(struct super_block
*sb
)
2655 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2657 percpu_counter_destroy(&sbinfo
->used_blocks
);
2659 sb
->s_fs_info
= NULL
;
2662 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2664 struct inode
*inode
;
2665 struct shmem_sb_info
*sbinfo
;
2668 /* Round up to L1_CACHE_BYTES to resist false sharing */
2669 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2670 L1_CACHE_BYTES
), GFP_KERNEL
);
2674 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2675 sbinfo
->uid
= current_fsuid();
2676 sbinfo
->gid
= current_fsgid();
2677 sb
->s_fs_info
= sbinfo
;
2681 * Per default we only allow half of the physical ram per
2682 * tmpfs instance, limiting inodes to one per page of lowmem;
2683 * but the internal instance is left unlimited.
2685 if (!(sb
->s_flags
& MS_NOUSER
)) {
2686 sbinfo
->max_blocks
= shmem_default_max_blocks();
2687 sbinfo
->max_inodes
= shmem_default_max_inodes();
2688 if (shmem_parse_options(data
, sbinfo
, false)) {
2693 sb
->s_export_op
= &shmem_export_ops
;
2694 sb
->s_flags
|= MS_NOSEC
;
2696 sb
->s_flags
|= MS_NOUSER
;
2699 spin_lock_init(&sbinfo
->stat_lock
);
2700 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2702 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2704 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2705 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2706 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2707 sb
->s_magic
= TMPFS_MAGIC
;
2708 sb
->s_op
= &shmem_ops
;
2709 sb
->s_time_gran
= 1;
2710 #ifdef CONFIG_TMPFS_XATTR
2711 sb
->s_xattr
= shmem_xattr_handlers
;
2713 #ifdef CONFIG_TMPFS_POSIX_ACL
2714 sb
->s_flags
|= MS_POSIXACL
;
2717 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2720 inode
->i_uid
= sbinfo
->uid
;
2721 inode
->i_gid
= sbinfo
->gid
;
2722 sb
->s_root
= d_make_root(inode
);
2728 shmem_put_super(sb
);
2732 static struct kmem_cache
*shmem_inode_cachep
;
2734 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2736 struct shmem_inode_info
*info
;
2737 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2740 return &info
->vfs_inode
;
2743 static void shmem_destroy_callback(struct rcu_head
*head
)
2745 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2746 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2749 static void shmem_destroy_inode(struct inode
*inode
)
2751 if (S_ISREG(inode
->i_mode
))
2752 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2753 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
2756 static void shmem_init_inode(void *foo
)
2758 struct shmem_inode_info
*info
= foo
;
2759 inode_init_once(&info
->vfs_inode
);
2762 static int shmem_init_inodecache(void)
2764 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2765 sizeof(struct shmem_inode_info
),
2766 0, SLAB_PANIC
, shmem_init_inode
);
2770 static void shmem_destroy_inodecache(void)
2772 kmem_cache_destroy(shmem_inode_cachep
);
2775 static const struct address_space_operations shmem_aops
= {
2776 .writepage
= shmem_writepage
,
2777 .set_page_dirty
= __set_page_dirty_no_writeback
,
2779 .write_begin
= shmem_write_begin
,
2780 .write_end
= shmem_write_end
,
2782 .migratepage
= migrate_page
,
2783 .error_remove_page
= generic_error_remove_page
,
2786 static const struct file_operations shmem_file_operations
= {
2789 .llseek
= shmem_file_llseek
,
2790 .read
= do_sync_read
,
2791 .write
= do_sync_write
,
2792 .aio_read
= shmem_file_aio_read
,
2793 .aio_write
= generic_file_aio_write
,
2794 .fsync
= noop_fsync
,
2795 .splice_read
= shmem_file_splice_read
,
2796 .splice_write
= generic_file_splice_write
,
2797 .fallocate
= shmem_fallocate
,
2801 static const struct inode_operations shmem_inode_operations
= {
2802 .setattr
= shmem_setattr
,
2803 #ifdef CONFIG_TMPFS_XATTR
2804 .setxattr
= shmem_setxattr
,
2805 .getxattr
= shmem_getxattr
,
2806 .listxattr
= shmem_listxattr
,
2807 .removexattr
= shmem_removexattr
,
2811 static const struct inode_operations shmem_dir_inode_operations
= {
2813 .create
= shmem_create
,
2814 .lookup
= simple_lookup
,
2816 .unlink
= shmem_unlink
,
2817 .symlink
= shmem_symlink
,
2818 .mkdir
= shmem_mkdir
,
2819 .rmdir
= shmem_rmdir
,
2820 .mknod
= shmem_mknod
,
2821 .rename
= shmem_rename
,
2823 #ifdef CONFIG_TMPFS_XATTR
2824 .setxattr
= shmem_setxattr
,
2825 .getxattr
= shmem_getxattr
,
2826 .listxattr
= shmem_listxattr
,
2827 .removexattr
= shmem_removexattr
,
2829 #ifdef CONFIG_TMPFS_POSIX_ACL
2830 .setattr
= shmem_setattr
,
2834 static const struct inode_operations shmem_special_inode_operations
= {
2835 #ifdef CONFIG_TMPFS_XATTR
2836 .setxattr
= shmem_setxattr
,
2837 .getxattr
= shmem_getxattr
,
2838 .listxattr
= shmem_listxattr
,
2839 .removexattr
= shmem_removexattr
,
2841 #ifdef CONFIG_TMPFS_POSIX_ACL
2842 .setattr
= shmem_setattr
,
2846 static const struct super_operations shmem_ops
= {
2847 .alloc_inode
= shmem_alloc_inode
,
2848 .destroy_inode
= shmem_destroy_inode
,
2850 .statfs
= shmem_statfs
,
2851 .remount_fs
= shmem_remount_fs
,
2852 .show_options
= shmem_show_options
,
2854 .evict_inode
= shmem_evict_inode
,
2855 .drop_inode
= generic_delete_inode
,
2856 .put_super
= shmem_put_super
,
2859 static const struct vm_operations_struct shmem_vm_ops
= {
2860 .fault
= shmem_fault
,
2862 .set_policy
= shmem_set_policy
,
2863 .get_policy
= shmem_get_policy
,
2867 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2868 int flags
, const char *dev_name
, void *data
)
2870 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2873 static struct file_system_type shmem_fs_type
= {
2874 .owner
= THIS_MODULE
,
2876 .mount
= shmem_mount
,
2877 .kill_sb
= kill_litter_super
,
2880 int __init
shmem_init(void)
2884 error
= bdi_init(&shmem_backing_dev_info
);
2888 error
= shmem_init_inodecache();
2892 error
= register_filesystem(&shmem_fs_type
);
2894 printk(KERN_ERR
"Could not register tmpfs\n");
2898 shm_mnt
= vfs_kern_mount(&shmem_fs_type
, MS_NOUSER
,
2899 shmem_fs_type
.name
, NULL
);
2900 if (IS_ERR(shm_mnt
)) {
2901 error
= PTR_ERR(shm_mnt
);
2902 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2908 unregister_filesystem(&shmem_fs_type
);
2910 shmem_destroy_inodecache();
2912 bdi_destroy(&shmem_backing_dev_info
);
2914 shm_mnt
= ERR_PTR(error
);
2918 #else /* !CONFIG_SHMEM */
2921 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2923 * This is intended for small system where the benefits of the full
2924 * shmem code (swap-backed and resource-limited) are outweighed by
2925 * their complexity. On systems without swap this code should be
2926 * effectively equivalent, but much lighter weight.
2929 #include <linux/ramfs.h>
2931 static struct file_system_type shmem_fs_type
= {
2933 .mount
= ramfs_mount
,
2934 .kill_sb
= kill_litter_super
,
2937 int __init
shmem_init(void)
2939 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
2941 shm_mnt
= kern_mount(&shmem_fs_type
);
2942 BUG_ON(IS_ERR(shm_mnt
));
2947 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
2952 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2957 void shmem_unlock_mapping(struct address_space
*mapping
)
2961 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
2963 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
2965 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
2967 #define shmem_vm_ops generic_file_vm_ops
2968 #define shmem_file_operations ramfs_file_operations
2969 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2970 #define shmem_acct_size(flags, size) 0
2971 #define shmem_unacct_size(flags, size) do {} while (0)
2973 #endif /* CONFIG_SHMEM */
2978 * shmem_file_setup - get an unlinked file living in tmpfs
2979 * @name: name for dentry (to be seen in /proc/<pid>/maps
2980 * @size: size to be set for the file
2981 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2983 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2987 struct inode
*inode
;
2989 struct dentry
*root
;
2992 if (IS_ERR(shm_mnt
))
2993 return (void *)shm_mnt
;
2995 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
2996 return ERR_PTR(-EINVAL
);
2998 if (shmem_acct_size(flags
, size
))
2999 return ERR_PTR(-ENOMEM
);
3003 this.len
= strlen(name
);
3004 this.hash
= 0; /* will go */
3005 root
= shm_mnt
->mnt_root
;
3006 path
.dentry
= d_alloc(root
, &this);
3009 path
.mnt
= mntget(shm_mnt
);
3012 inode
= shmem_get_inode(root
->d_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
3016 d_instantiate(path
.dentry
, inode
);
3017 inode
->i_size
= size
;
3018 clear_nlink(inode
); /* It is unlinked */
3020 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
3026 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
3027 &shmem_file_operations
);
3036 shmem_unacct_size(flags
, size
);
3037 return ERR_PTR(error
);
3039 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3042 * shmem_zero_setup - setup a shared anonymous mapping
3043 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3045 int shmem_zero_setup(struct vm_area_struct
*vma
)
3048 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3050 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
3052 return PTR_ERR(file
);
3056 vma
->vm_file
= file
;
3057 vma
->vm_ops
= &shmem_vm_ops
;
3058 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
3063 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3064 * @mapping: the page's address_space
3065 * @index: the page index
3066 * @gfp: the page allocator flags to use if allocating
3068 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3069 * with any new page allocations done using the specified allocation flags.
3070 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3071 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3072 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3074 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3075 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3077 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
3078 pgoff_t index
, gfp_t gfp
)
3081 struct inode
*inode
= mapping
->host
;
3085 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
3086 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
3088 page
= ERR_PTR(error
);
3094 * The tiny !SHMEM case uses ramfs without swap
3096 return read_cache_page_gfp(mapping
, index
, gfp
);
3099 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);