2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "compression.h"
54 struct btrfs_iget_args
{
56 struct btrfs_root
*root
;
59 static const struct inode_operations btrfs_dir_inode_operations
;
60 static const struct inode_operations btrfs_symlink_inode_operations
;
61 static const struct inode_operations btrfs_dir_ro_inode_operations
;
62 static const struct inode_operations btrfs_special_inode_operations
;
63 static const struct inode_operations btrfs_file_inode_operations
;
64 static const struct address_space_operations btrfs_aops
;
65 static const struct address_space_operations btrfs_symlink_aops
;
66 static const struct file_operations btrfs_dir_file_operations
;
67 static struct extent_io_ops btrfs_extent_io_ops
;
69 static struct kmem_cache
*btrfs_inode_cachep
;
70 struct kmem_cache
*btrfs_trans_handle_cachep
;
71 struct kmem_cache
*btrfs_transaction_cachep
;
72 struct kmem_cache
*btrfs_path_cachep
;
75 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
76 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
77 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
78 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
79 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
80 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
81 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
82 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
85 static void btrfs_truncate(struct inode
*inode
);
86 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
87 static noinline
int cow_file_range(struct inode
*inode
,
88 struct page
*locked_page
,
89 u64 start
, u64 end
, int *page_started
,
90 unsigned long *nr_written
, int unlock
);
92 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
93 struct inode
*inode
, struct inode
*dir
)
97 err
= btrfs_init_acl(trans
, inode
, dir
);
99 err
= btrfs_xattr_security_init(trans
, inode
, dir
);
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
108 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
109 struct btrfs_root
*root
, struct inode
*inode
,
110 u64 start
, size_t size
, size_t compressed_size
,
111 struct page
**compressed_pages
)
113 struct btrfs_key key
;
114 struct btrfs_path
*path
;
115 struct extent_buffer
*leaf
;
116 struct page
*page
= NULL
;
119 struct btrfs_file_extent_item
*ei
;
122 size_t cur_size
= size
;
124 unsigned long offset
;
125 int compress_type
= BTRFS_COMPRESS_NONE
;
127 if (compressed_size
&& compressed_pages
) {
128 compress_type
= root
->fs_info
->compress_type
;
129 cur_size
= compressed_size
;
132 path
= btrfs_alloc_path();
136 path
->leave_spinning
= 1;
137 btrfs_set_trans_block_group(trans
, inode
);
139 key
.objectid
= inode
->i_ino
;
141 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
142 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
144 inode_add_bytes(inode
, size
);
145 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
152 leaf
= path
->nodes
[0];
153 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
154 struct btrfs_file_extent_item
);
155 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
156 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
157 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
158 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
159 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
160 ptr
= btrfs_file_extent_inline_start(ei
);
162 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
165 while (compressed_size
> 0) {
166 cpage
= compressed_pages
[i
];
167 cur_size
= min_t(unsigned long, compressed_size
,
170 kaddr
= kmap_atomic(cpage
, KM_USER0
);
171 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
172 kunmap_atomic(kaddr
, KM_USER0
);
176 compressed_size
-= cur_size
;
178 btrfs_set_file_extent_compression(leaf
, ei
,
181 page
= find_get_page(inode
->i_mapping
,
182 start
>> PAGE_CACHE_SHIFT
);
183 btrfs_set_file_extent_compression(leaf
, ei
, 0);
184 kaddr
= kmap_atomic(page
, KM_USER0
);
185 offset
= start
& (PAGE_CACHE_SIZE
- 1);
186 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
187 kunmap_atomic(kaddr
, KM_USER0
);
188 page_cache_release(page
);
190 btrfs_mark_buffer_dirty(leaf
);
191 btrfs_free_path(path
);
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
202 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
203 btrfs_update_inode(trans
, root
, inode
);
207 btrfs_free_path(path
);
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
217 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
218 struct btrfs_root
*root
,
219 struct inode
*inode
, u64 start
, u64 end
,
220 size_t compressed_size
,
221 struct page
**compressed_pages
)
223 u64 isize
= i_size_read(inode
);
224 u64 actual_end
= min(end
+ 1, isize
);
225 u64 inline_len
= actual_end
- start
;
226 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
227 ~((u64
)root
->sectorsize
- 1);
229 u64 data_len
= inline_len
;
233 data_len
= compressed_size
;
236 actual_end
>= PAGE_CACHE_SIZE
||
237 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
239 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
241 data_len
> root
->fs_info
->max_inline
) {
245 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
249 if (isize
> actual_end
)
250 inline_len
= min_t(u64
, isize
, actual_end
);
251 ret
= insert_inline_extent(trans
, root
, inode
, start
,
252 inline_len
, compressed_size
,
255 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
256 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
260 struct async_extent
{
265 unsigned long nr_pages
;
267 struct list_head list
;
272 struct btrfs_root
*root
;
273 struct page
*locked_page
;
276 struct list_head extents
;
277 struct btrfs_work work
;
280 static noinline
int add_async_extent(struct async_cow
*cow
,
281 u64 start
, u64 ram_size
,
284 unsigned long nr_pages
,
287 struct async_extent
*async_extent
;
289 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
290 async_extent
->start
= start
;
291 async_extent
->ram_size
= ram_size
;
292 async_extent
->compressed_size
= compressed_size
;
293 async_extent
->pages
= pages
;
294 async_extent
->nr_pages
= nr_pages
;
295 async_extent
->compress_type
= compress_type
;
296 list_add_tail(&async_extent
->list
, &cow
->extents
);
301 * we create compressed extents in two phases. The first
302 * phase compresses a range of pages that have already been
303 * locked (both pages and state bits are locked).
305 * This is done inside an ordered work queue, and the compression
306 * is spread across many cpus. The actual IO submission is step
307 * two, and the ordered work queue takes care of making sure that
308 * happens in the same order things were put onto the queue by
309 * writepages and friends.
311 * If this code finds it can't get good compression, it puts an
312 * entry onto the work queue to write the uncompressed bytes. This
313 * makes sure that both compressed inodes and uncompressed inodes
314 * are written in the same order that pdflush sent them down.
316 static noinline
int compress_file_range(struct inode
*inode
,
317 struct page
*locked_page
,
319 struct async_cow
*async_cow
,
322 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
323 struct btrfs_trans_handle
*trans
;
325 u64 blocksize
= root
->sectorsize
;
327 u64 isize
= i_size_read(inode
);
329 struct page
**pages
= NULL
;
330 unsigned long nr_pages
;
331 unsigned long nr_pages_ret
= 0;
332 unsigned long total_compressed
= 0;
333 unsigned long total_in
= 0;
334 unsigned long max_compressed
= 128 * 1024;
335 unsigned long max_uncompressed
= 128 * 1024;
338 int compress_type
= root
->fs_info
->compress_type
;
340 actual_end
= min_t(u64
, isize
, end
+ 1);
343 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
344 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
356 if (actual_end
<= start
)
357 goto cleanup_and_bail_uncompressed
;
359 total_compressed
= actual_end
- start
;
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
371 total_compressed
= min(total_compressed
, max_uncompressed
);
372 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
373 num_bytes
= max(blocksize
, num_bytes
);
378 * we do compression for mount -o compress and when the
379 * inode has not been flagged as nocompress. This flag can
380 * change at any time if we discover bad compression ratios.
382 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
383 (btrfs_test_opt(root
, COMPRESS
) ||
384 (BTRFS_I(inode
)->force_compress
))) {
386 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
388 if (BTRFS_I(inode
)->force_compress
)
389 compress_type
= BTRFS_I(inode
)->force_compress
;
391 ret
= btrfs_compress_pages(compress_type
,
392 inode
->i_mapping
, start
,
393 total_compressed
, pages
,
394 nr_pages
, &nr_pages_ret
,
400 unsigned long offset
= total_compressed
&
401 (PAGE_CACHE_SIZE
- 1);
402 struct page
*page
= pages
[nr_pages_ret
- 1];
405 /* zero the tail end of the last page, we might be
406 * sending it down to disk
409 kaddr
= kmap_atomic(page
, KM_USER0
);
410 memset(kaddr
+ offset
, 0,
411 PAGE_CACHE_SIZE
- offset
);
412 kunmap_atomic(kaddr
, KM_USER0
);
418 trans
= btrfs_join_transaction(root
, 1);
420 btrfs_set_trans_block_group(trans
, inode
);
421 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
423 /* lets try to make an inline extent */
424 if (ret
|| total_in
< (actual_end
- start
)) {
425 /* we didn't compress the entire range, try
426 * to make an uncompressed inline extent.
428 ret
= cow_file_range_inline(trans
, root
, inode
,
429 start
, end
, 0, NULL
);
431 /* try making a compressed inline extent */
432 ret
= cow_file_range_inline(trans
, root
, inode
,
434 total_compressed
, pages
);
438 * inline extent creation worked, we don't need
439 * to create any more async work items. Unlock
440 * and free up our temp pages.
442 extent_clear_unlock_delalloc(inode
,
443 &BTRFS_I(inode
)->io_tree
,
445 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
446 EXTENT_CLEAR_DELALLOC
|
447 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
449 btrfs_end_transaction(trans
, root
);
452 btrfs_end_transaction(trans
, root
);
457 * we aren't doing an inline extent round the compressed size
458 * up to a block size boundary so the allocator does sane
461 total_compressed
= (total_compressed
+ blocksize
- 1) &
465 * one last check to make sure the compression is really a
466 * win, compare the page count read with the blocks on disk
468 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
469 ~(PAGE_CACHE_SIZE
- 1);
470 if (total_compressed
>= total_in
) {
473 num_bytes
= total_in
;
476 if (!will_compress
&& pages
) {
478 * the compression code ran but failed to make things smaller,
479 * free any pages it allocated and our page pointer array
481 for (i
= 0; i
< nr_pages_ret
; i
++) {
482 WARN_ON(pages
[i
]->mapping
);
483 page_cache_release(pages
[i
]);
487 total_compressed
= 0;
490 /* flag the file so we don't compress in the future */
491 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
492 !(BTRFS_I(inode
)->force_compress
)) {
493 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
499 /* the async work queues will take care of doing actual
500 * allocation on disk for these compressed pages,
501 * and will submit them to the elevator.
503 add_async_extent(async_cow
, start
, num_bytes
,
504 total_compressed
, pages
, nr_pages_ret
,
507 if (start
+ num_bytes
< end
) {
514 cleanup_and_bail_uncompressed
:
516 * No compression, but we still need to write the pages in
517 * the file we've been given so far. redirty the locked
518 * page if it corresponds to our extent and set things up
519 * for the async work queue to run cow_file_range to do
520 * the normal delalloc dance
522 if (page_offset(locked_page
) >= start
&&
523 page_offset(locked_page
) <= end
) {
524 __set_page_dirty_nobuffers(locked_page
);
525 /* unlocked later on in the async handlers */
527 add_async_extent(async_cow
, start
, end
- start
+ 1,
528 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
536 for (i
= 0; i
< nr_pages_ret
; i
++) {
537 WARN_ON(pages
[i
]->mapping
);
538 page_cache_release(pages
[i
]);
546 * phase two of compressed writeback. This is the ordered portion
547 * of the code, which only gets called in the order the work was
548 * queued. We walk all the async extents created by compress_file_range
549 * and send them down to the disk.
551 static noinline
int submit_compressed_extents(struct inode
*inode
,
552 struct async_cow
*async_cow
)
554 struct async_extent
*async_extent
;
556 struct btrfs_trans_handle
*trans
;
557 struct btrfs_key ins
;
558 struct extent_map
*em
;
559 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
560 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
561 struct extent_io_tree
*io_tree
;
564 if (list_empty(&async_cow
->extents
))
568 while (!list_empty(&async_cow
->extents
)) {
569 async_extent
= list_entry(async_cow
->extents
.next
,
570 struct async_extent
, list
);
571 list_del(&async_extent
->list
);
573 io_tree
= &BTRFS_I(inode
)->io_tree
;
576 /* did the compression code fall back to uncompressed IO? */
577 if (!async_extent
->pages
) {
578 int page_started
= 0;
579 unsigned long nr_written
= 0;
581 lock_extent(io_tree
, async_extent
->start
,
582 async_extent
->start
+
583 async_extent
->ram_size
- 1, GFP_NOFS
);
585 /* allocate blocks */
586 ret
= cow_file_range(inode
, async_cow
->locked_page
,
588 async_extent
->start
+
589 async_extent
->ram_size
- 1,
590 &page_started
, &nr_written
, 0);
593 * if page_started, cow_file_range inserted an
594 * inline extent and took care of all the unlocking
595 * and IO for us. Otherwise, we need to submit
596 * all those pages down to the drive.
598 if (!page_started
&& !ret
)
599 extent_write_locked_range(io_tree
,
600 inode
, async_extent
->start
,
601 async_extent
->start
+
602 async_extent
->ram_size
- 1,
610 lock_extent(io_tree
, async_extent
->start
,
611 async_extent
->start
+ async_extent
->ram_size
- 1,
614 trans
= btrfs_join_transaction(root
, 1);
615 ret
= btrfs_reserve_extent(trans
, root
,
616 async_extent
->compressed_size
,
617 async_extent
->compressed_size
,
620 btrfs_end_transaction(trans
, root
);
624 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
625 WARN_ON(async_extent
->pages
[i
]->mapping
);
626 page_cache_release(async_extent
->pages
[i
]);
628 kfree(async_extent
->pages
);
629 async_extent
->nr_pages
= 0;
630 async_extent
->pages
= NULL
;
631 unlock_extent(io_tree
, async_extent
->start
,
632 async_extent
->start
+
633 async_extent
->ram_size
- 1, GFP_NOFS
);
638 * here we're doing allocation and writeback of the
641 btrfs_drop_extent_cache(inode
, async_extent
->start
,
642 async_extent
->start
+
643 async_extent
->ram_size
- 1, 0);
645 em
= alloc_extent_map(GFP_NOFS
);
646 em
->start
= async_extent
->start
;
647 em
->len
= async_extent
->ram_size
;
648 em
->orig_start
= em
->start
;
650 em
->block_start
= ins
.objectid
;
651 em
->block_len
= ins
.offset
;
652 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
653 em
->compress_type
= async_extent
->compress_type
;
654 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
655 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
658 write_lock(&em_tree
->lock
);
659 ret
= add_extent_mapping(em_tree
, em
);
660 write_unlock(&em_tree
->lock
);
661 if (ret
!= -EEXIST
) {
665 btrfs_drop_extent_cache(inode
, async_extent
->start
,
666 async_extent
->start
+
667 async_extent
->ram_size
- 1, 0);
670 ret
= btrfs_add_ordered_extent_compress(inode
,
673 async_extent
->ram_size
,
675 BTRFS_ORDERED_COMPRESSED
,
676 async_extent
->compress_type
);
680 * clear dirty, set writeback and unlock the pages.
682 extent_clear_unlock_delalloc(inode
,
683 &BTRFS_I(inode
)->io_tree
,
685 async_extent
->start
+
686 async_extent
->ram_size
- 1,
687 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
688 EXTENT_CLEAR_UNLOCK
|
689 EXTENT_CLEAR_DELALLOC
|
690 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
692 ret
= btrfs_submit_compressed_write(inode
,
694 async_extent
->ram_size
,
696 ins
.offset
, async_extent
->pages
,
697 async_extent
->nr_pages
);
700 alloc_hint
= ins
.objectid
+ ins
.offset
;
708 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
711 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
712 struct extent_map
*em
;
715 read_lock(&em_tree
->lock
);
716 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
719 * if block start isn't an actual block number then find the
720 * first block in this inode and use that as a hint. If that
721 * block is also bogus then just don't worry about it.
723 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
725 em
= search_extent_mapping(em_tree
, 0, 0);
726 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
727 alloc_hint
= em
->block_start
;
731 alloc_hint
= em
->block_start
;
735 read_unlock(&em_tree
->lock
);
741 * when extent_io.c finds a delayed allocation range in the file,
742 * the call backs end up in this code. The basic idea is to
743 * allocate extents on disk for the range, and create ordered data structs
744 * in ram to track those extents.
746 * locked_page is the page that writepage had locked already. We use
747 * it to make sure we don't do extra locks or unlocks.
749 * *page_started is set to one if we unlock locked_page and do everything
750 * required to start IO on it. It may be clean and already done with
753 static noinline
int cow_file_range(struct inode
*inode
,
754 struct page
*locked_page
,
755 u64 start
, u64 end
, int *page_started
,
756 unsigned long *nr_written
,
759 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
760 struct btrfs_trans_handle
*trans
;
763 unsigned long ram_size
;
766 u64 blocksize
= root
->sectorsize
;
767 struct btrfs_key ins
;
768 struct extent_map
*em
;
769 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
772 BUG_ON(root
== root
->fs_info
->tree_root
);
773 trans
= btrfs_join_transaction(root
, 1);
775 btrfs_set_trans_block_group(trans
, inode
);
776 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
778 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
779 num_bytes
= max(blocksize
, num_bytes
);
780 disk_num_bytes
= num_bytes
;
784 /* lets try to make an inline extent */
785 ret
= cow_file_range_inline(trans
, root
, inode
,
786 start
, end
, 0, NULL
);
788 extent_clear_unlock_delalloc(inode
,
789 &BTRFS_I(inode
)->io_tree
,
791 EXTENT_CLEAR_UNLOCK_PAGE
|
792 EXTENT_CLEAR_UNLOCK
|
793 EXTENT_CLEAR_DELALLOC
|
795 EXTENT_SET_WRITEBACK
|
796 EXTENT_END_WRITEBACK
);
798 *nr_written
= *nr_written
+
799 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
806 BUG_ON(disk_num_bytes
>
807 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
809 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
810 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
812 while (disk_num_bytes
> 0) {
815 cur_alloc_size
= disk_num_bytes
;
816 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
817 root
->sectorsize
, 0, alloc_hint
,
821 em
= alloc_extent_map(GFP_NOFS
);
823 em
->orig_start
= em
->start
;
824 ram_size
= ins
.offset
;
825 em
->len
= ins
.offset
;
827 em
->block_start
= ins
.objectid
;
828 em
->block_len
= ins
.offset
;
829 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
830 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
833 write_lock(&em_tree
->lock
);
834 ret
= add_extent_mapping(em_tree
, em
);
835 write_unlock(&em_tree
->lock
);
836 if (ret
!= -EEXIST
) {
840 btrfs_drop_extent_cache(inode
, start
,
841 start
+ ram_size
- 1, 0);
844 cur_alloc_size
= ins
.offset
;
845 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
846 ram_size
, cur_alloc_size
, 0);
849 if (root
->root_key
.objectid
==
850 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
851 ret
= btrfs_reloc_clone_csums(inode
, start
,
856 if (disk_num_bytes
< cur_alloc_size
)
859 /* we're not doing compressed IO, don't unlock the first
860 * page (which the caller expects to stay locked), don't
861 * clear any dirty bits and don't set any writeback bits
863 * Do set the Private2 bit so we know this page was properly
864 * setup for writepage
866 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
867 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
870 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
871 start
, start
+ ram_size
- 1,
873 disk_num_bytes
-= cur_alloc_size
;
874 num_bytes
-= cur_alloc_size
;
875 alloc_hint
= ins
.objectid
+ ins
.offset
;
876 start
+= cur_alloc_size
;
880 btrfs_end_transaction(trans
, root
);
886 * work queue call back to started compression on a file and pages
888 static noinline
void async_cow_start(struct btrfs_work
*work
)
890 struct async_cow
*async_cow
;
892 async_cow
= container_of(work
, struct async_cow
, work
);
894 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
895 async_cow
->start
, async_cow
->end
, async_cow
,
898 async_cow
->inode
= NULL
;
902 * work queue call back to submit previously compressed pages
904 static noinline
void async_cow_submit(struct btrfs_work
*work
)
906 struct async_cow
*async_cow
;
907 struct btrfs_root
*root
;
908 unsigned long nr_pages
;
910 async_cow
= container_of(work
, struct async_cow
, work
);
912 root
= async_cow
->root
;
913 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
916 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
918 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
920 waitqueue_active(&root
->fs_info
->async_submit_wait
))
921 wake_up(&root
->fs_info
->async_submit_wait
);
923 if (async_cow
->inode
)
924 submit_compressed_extents(async_cow
->inode
, async_cow
);
927 static noinline
void async_cow_free(struct btrfs_work
*work
)
929 struct async_cow
*async_cow
;
930 async_cow
= container_of(work
, struct async_cow
, work
);
934 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
935 u64 start
, u64 end
, int *page_started
,
936 unsigned long *nr_written
)
938 struct async_cow
*async_cow
;
939 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
940 unsigned long nr_pages
;
942 int limit
= 10 * 1024 * 1042;
944 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
945 1, 0, NULL
, GFP_NOFS
);
946 while (start
< end
) {
947 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
948 async_cow
->inode
= inode
;
949 async_cow
->root
= root
;
950 async_cow
->locked_page
= locked_page
;
951 async_cow
->start
= start
;
953 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
956 cur_end
= min(end
, start
+ 512 * 1024 - 1);
958 async_cow
->end
= cur_end
;
959 INIT_LIST_HEAD(&async_cow
->extents
);
961 async_cow
->work
.func
= async_cow_start
;
962 async_cow
->work
.ordered_func
= async_cow_submit
;
963 async_cow
->work
.ordered_free
= async_cow_free
;
964 async_cow
->work
.flags
= 0;
966 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
968 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
970 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
973 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
974 wait_event(root
->fs_info
->async_submit_wait
,
975 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
979 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
980 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
981 wait_event(root
->fs_info
->async_submit_wait
,
982 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
986 *nr_written
+= nr_pages
;
993 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
994 u64 bytenr
, u64 num_bytes
)
997 struct btrfs_ordered_sum
*sums
;
1000 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1001 bytenr
+ num_bytes
- 1, &list
);
1002 if (ret
== 0 && list_empty(&list
))
1005 while (!list_empty(&list
)) {
1006 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1007 list_del(&sums
->list
);
1014 * when nowcow writeback call back. This checks for snapshots or COW copies
1015 * of the extents that exist in the file, and COWs the file as required.
1017 * If no cow copies or snapshots exist, we write directly to the existing
1020 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1021 struct page
*locked_page
,
1022 u64 start
, u64 end
, int *page_started
, int force
,
1023 unsigned long *nr_written
)
1025 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1026 struct btrfs_trans_handle
*trans
;
1027 struct extent_buffer
*leaf
;
1028 struct btrfs_path
*path
;
1029 struct btrfs_file_extent_item
*fi
;
1030 struct btrfs_key found_key
;
1042 bool nolock
= false;
1044 path
= btrfs_alloc_path();
1046 if (root
== root
->fs_info
->tree_root
) {
1048 trans
= btrfs_join_transaction_nolock(root
, 1);
1050 trans
= btrfs_join_transaction(root
, 1);
1054 cow_start
= (u64
)-1;
1057 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
1060 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1061 leaf
= path
->nodes
[0];
1062 btrfs_item_key_to_cpu(leaf
, &found_key
,
1063 path
->slots
[0] - 1);
1064 if (found_key
.objectid
== inode
->i_ino
&&
1065 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1070 leaf
= path
->nodes
[0];
1071 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1072 ret
= btrfs_next_leaf(root
, path
);
1077 leaf
= path
->nodes
[0];
1083 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1085 if (found_key
.objectid
> inode
->i_ino
||
1086 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1087 found_key
.offset
> end
)
1090 if (found_key
.offset
> cur_offset
) {
1091 extent_end
= found_key
.offset
;
1096 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1097 struct btrfs_file_extent_item
);
1098 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1100 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1101 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1102 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1103 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1104 extent_end
= found_key
.offset
+
1105 btrfs_file_extent_num_bytes(leaf
, fi
);
1106 if (extent_end
<= start
) {
1110 if (disk_bytenr
== 0)
1112 if (btrfs_file_extent_compression(leaf
, fi
) ||
1113 btrfs_file_extent_encryption(leaf
, fi
) ||
1114 btrfs_file_extent_other_encoding(leaf
, fi
))
1116 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1118 if (btrfs_extent_readonly(root
, disk_bytenr
))
1120 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1122 extent_offset
, disk_bytenr
))
1124 disk_bytenr
+= extent_offset
;
1125 disk_bytenr
+= cur_offset
- found_key
.offset
;
1126 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1128 * force cow if csum exists in the range.
1129 * this ensure that csum for a given extent are
1130 * either valid or do not exist.
1132 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1135 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1136 extent_end
= found_key
.offset
+
1137 btrfs_file_extent_inline_len(leaf
, fi
);
1138 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1143 if (extent_end
<= start
) {
1148 if (cow_start
== (u64
)-1)
1149 cow_start
= cur_offset
;
1150 cur_offset
= extent_end
;
1151 if (cur_offset
> end
)
1157 btrfs_release_path(root
, path
);
1158 if (cow_start
!= (u64
)-1) {
1159 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1160 found_key
.offset
- 1, page_started
,
1163 cow_start
= (u64
)-1;
1166 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1167 struct extent_map
*em
;
1168 struct extent_map_tree
*em_tree
;
1169 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1170 em
= alloc_extent_map(GFP_NOFS
);
1171 em
->start
= cur_offset
;
1172 em
->orig_start
= em
->start
;
1173 em
->len
= num_bytes
;
1174 em
->block_len
= num_bytes
;
1175 em
->block_start
= disk_bytenr
;
1176 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1177 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1179 write_lock(&em_tree
->lock
);
1180 ret
= add_extent_mapping(em_tree
, em
);
1181 write_unlock(&em_tree
->lock
);
1182 if (ret
!= -EEXIST
) {
1183 free_extent_map(em
);
1186 btrfs_drop_extent_cache(inode
, em
->start
,
1187 em
->start
+ em
->len
- 1, 0);
1189 type
= BTRFS_ORDERED_PREALLOC
;
1191 type
= BTRFS_ORDERED_NOCOW
;
1194 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1195 num_bytes
, num_bytes
, type
);
1198 if (root
->root_key
.objectid
==
1199 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1200 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1205 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1206 cur_offset
, cur_offset
+ num_bytes
- 1,
1207 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1208 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1209 EXTENT_SET_PRIVATE2
);
1210 cur_offset
= extent_end
;
1211 if (cur_offset
> end
)
1214 btrfs_release_path(root
, path
);
1216 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1217 cow_start
= cur_offset
;
1218 if (cow_start
!= (u64
)-1) {
1219 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1220 page_started
, nr_written
, 1);
1225 ret
= btrfs_end_transaction_nolock(trans
, root
);
1228 ret
= btrfs_end_transaction(trans
, root
);
1231 btrfs_free_path(path
);
1236 * extent_io.c call back to do delayed allocation processing
1238 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1239 u64 start
, u64 end
, int *page_started
,
1240 unsigned long *nr_written
)
1243 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1245 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1246 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1247 page_started
, 1, nr_written
);
1248 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1249 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1250 page_started
, 0, nr_written
);
1251 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1252 !(BTRFS_I(inode
)->force_compress
))
1253 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1254 page_started
, nr_written
, 1);
1256 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1257 page_started
, nr_written
);
1261 static int btrfs_split_extent_hook(struct inode
*inode
,
1262 struct extent_state
*orig
, u64 split
)
1264 /* not delalloc, ignore it */
1265 if (!(orig
->state
& EXTENT_DELALLOC
))
1268 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1273 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1274 * extents so we can keep track of new extents that are just merged onto old
1275 * extents, such as when we are doing sequential writes, so we can properly
1276 * account for the metadata space we'll need.
1278 static int btrfs_merge_extent_hook(struct inode
*inode
,
1279 struct extent_state
*new,
1280 struct extent_state
*other
)
1282 /* not delalloc, ignore it */
1283 if (!(other
->state
& EXTENT_DELALLOC
))
1286 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1291 * extent_io.c set_bit_hook, used to track delayed allocation
1292 * bytes in this file, and to maintain the list of inodes that
1293 * have pending delalloc work to be done.
1295 static int btrfs_set_bit_hook(struct inode
*inode
,
1296 struct extent_state
*state
, int *bits
)
1300 * set_bit and clear bit hooks normally require _irqsave/restore
1301 * but in this case, we are only testeing for the DELALLOC
1302 * bit, which is only set or cleared with irqs on
1304 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1305 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1306 u64 len
= state
->end
+ 1 - state
->start
;
1307 int do_list
= (root
->root_key
.objectid
!=
1308 BTRFS_ROOT_TREE_OBJECTID
);
1310 if (*bits
& EXTENT_FIRST_DELALLOC
)
1311 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1313 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1315 spin_lock(&root
->fs_info
->delalloc_lock
);
1316 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1317 root
->fs_info
->delalloc_bytes
+= len
;
1318 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1319 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1320 &root
->fs_info
->delalloc_inodes
);
1322 spin_unlock(&root
->fs_info
->delalloc_lock
);
1328 * extent_io.c clear_bit_hook, see set_bit_hook for why
1330 static int btrfs_clear_bit_hook(struct inode
*inode
,
1331 struct extent_state
*state
, int *bits
)
1334 * set_bit and clear bit hooks normally require _irqsave/restore
1335 * but in this case, we are only testeing for the DELALLOC
1336 * bit, which is only set or cleared with irqs on
1338 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1339 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1340 u64 len
= state
->end
+ 1 - state
->start
;
1341 int do_list
= (root
->root_key
.objectid
!=
1342 BTRFS_ROOT_TREE_OBJECTID
);
1344 if (*bits
& EXTENT_FIRST_DELALLOC
)
1345 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1346 else if (!(*bits
& EXTENT_DO_ACCOUNTING
))
1347 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1349 if (*bits
& EXTENT_DO_ACCOUNTING
)
1350 btrfs_delalloc_release_metadata(inode
, len
);
1352 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1354 btrfs_free_reserved_data_space(inode
, len
);
1356 spin_lock(&root
->fs_info
->delalloc_lock
);
1357 root
->fs_info
->delalloc_bytes
-= len
;
1358 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1360 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1361 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1362 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1364 spin_unlock(&root
->fs_info
->delalloc_lock
);
1370 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1371 * we don't create bios that span stripes or chunks
1373 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1374 size_t size
, struct bio
*bio
,
1375 unsigned long bio_flags
)
1377 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1378 struct btrfs_mapping_tree
*map_tree
;
1379 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1384 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1387 length
= bio
->bi_size
;
1388 map_tree
= &root
->fs_info
->mapping_tree
;
1389 map_length
= length
;
1390 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1391 &map_length
, NULL
, 0);
1393 if (map_length
< length
+ size
)
1399 * in order to insert checksums into the metadata in large chunks,
1400 * we wait until bio submission time. All the pages in the bio are
1401 * checksummed and sums are attached onto the ordered extent record.
1403 * At IO completion time the cums attached on the ordered extent record
1404 * are inserted into the btree
1406 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1407 struct bio
*bio
, int mirror_num
,
1408 unsigned long bio_flags
,
1411 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1414 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1420 * in order to insert checksums into the metadata in large chunks,
1421 * we wait until bio submission time. All the pages in the bio are
1422 * checksummed and sums are attached onto the ordered extent record.
1424 * At IO completion time the cums attached on the ordered extent record
1425 * are inserted into the btree
1427 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1428 int mirror_num
, unsigned long bio_flags
,
1431 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1432 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1436 * extent_io.c submission hook. This does the right thing for csum calculation
1437 * on write, or reading the csums from the tree before a read
1439 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1440 int mirror_num
, unsigned long bio_flags
,
1443 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1447 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1449 if (root
== root
->fs_info
->tree_root
)
1450 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1452 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1455 if (!(rw
& REQ_WRITE
)) {
1456 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1457 return btrfs_submit_compressed_read(inode
, bio
,
1458 mirror_num
, bio_flags
);
1459 } else if (!skip_sum
)
1460 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1462 } else if (!skip_sum
) {
1463 /* csum items have already been cloned */
1464 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1466 /* we're doing a write, do the async checksumming */
1467 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1468 inode
, rw
, bio
, mirror_num
,
1469 bio_flags
, bio_offset
,
1470 __btrfs_submit_bio_start
,
1471 __btrfs_submit_bio_done
);
1475 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1479 * given a list of ordered sums record them in the inode. This happens
1480 * at IO completion time based on sums calculated at bio submission time.
1482 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1483 struct inode
*inode
, u64 file_offset
,
1484 struct list_head
*list
)
1486 struct btrfs_ordered_sum
*sum
;
1488 btrfs_set_trans_block_group(trans
, inode
);
1490 list_for_each_entry(sum
, list
, list
) {
1491 btrfs_csum_file_blocks(trans
,
1492 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1497 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1498 struct extent_state
**cached_state
)
1500 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1502 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1503 cached_state
, GFP_NOFS
);
1506 /* see btrfs_writepage_start_hook for details on why this is required */
1507 struct btrfs_writepage_fixup
{
1509 struct btrfs_work work
;
1512 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1514 struct btrfs_writepage_fixup
*fixup
;
1515 struct btrfs_ordered_extent
*ordered
;
1516 struct extent_state
*cached_state
= NULL
;
1518 struct inode
*inode
;
1522 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1526 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1527 ClearPageChecked(page
);
1531 inode
= page
->mapping
->host
;
1532 page_start
= page_offset(page
);
1533 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1535 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1536 &cached_state
, GFP_NOFS
);
1538 /* already ordered? We're done */
1539 if (PagePrivate2(page
))
1542 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1544 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1545 page_end
, &cached_state
, GFP_NOFS
);
1547 btrfs_start_ordered_extent(inode
, ordered
, 1);
1552 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1553 ClearPageChecked(page
);
1555 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1556 &cached_state
, GFP_NOFS
);
1559 page_cache_release(page
);
1563 * There are a few paths in the higher layers of the kernel that directly
1564 * set the page dirty bit without asking the filesystem if it is a
1565 * good idea. This causes problems because we want to make sure COW
1566 * properly happens and the data=ordered rules are followed.
1568 * In our case any range that doesn't have the ORDERED bit set
1569 * hasn't been properly setup for IO. We kick off an async process
1570 * to fix it up. The async helper will wait for ordered extents, set
1571 * the delalloc bit and make it safe to write the page.
1573 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1575 struct inode
*inode
= page
->mapping
->host
;
1576 struct btrfs_writepage_fixup
*fixup
;
1577 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1579 /* this page is properly in the ordered list */
1580 if (TestClearPagePrivate2(page
))
1583 if (PageChecked(page
))
1586 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1590 SetPageChecked(page
);
1591 page_cache_get(page
);
1592 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1594 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1598 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1599 struct inode
*inode
, u64 file_pos
,
1600 u64 disk_bytenr
, u64 disk_num_bytes
,
1601 u64 num_bytes
, u64 ram_bytes
,
1602 u8 compression
, u8 encryption
,
1603 u16 other_encoding
, int extent_type
)
1605 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1606 struct btrfs_file_extent_item
*fi
;
1607 struct btrfs_path
*path
;
1608 struct extent_buffer
*leaf
;
1609 struct btrfs_key ins
;
1613 path
= btrfs_alloc_path();
1616 path
->leave_spinning
= 1;
1619 * we may be replacing one extent in the tree with another.
1620 * The new extent is pinned in the extent map, and we don't want
1621 * to drop it from the cache until it is completely in the btree.
1623 * So, tell btrfs_drop_extents to leave this extent in the cache.
1624 * the caller is expected to unpin it and allow it to be merged
1627 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1631 ins
.objectid
= inode
->i_ino
;
1632 ins
.offset
= file_pos
;
1633 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1634 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1636 leaf
= path
->nodes
[0];
1637 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1638 struct btrfs_file_extent_item
);
1639 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1640 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1641 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1642 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1643 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1644 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1645 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1646 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1647 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1648 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1650 btrfs_unlock_up_safe(path
, 1);
1651 btrfs_set_lock_blocking(leaf
);
1653 btrfs_mark_buffer_dirty(leaf
);
1655 inode_add_bytes(inode
, num_bytes
);
1657 ins
.objectid
= disk_bytenr
;
1658 ins
.offset
= disk_num_bytes
;
1659 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1660 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1661 root
->root_key
.objectid
,
1662 inode
->i_ino
, file_pos
, &ins
);
1664 btrfs_free_path(path
);
1670 * helper function for btrfs_finish_ordered_io, this
1671 * just reads in some of the csum leaves to prime them into ram
1672 * before we start the transaction. It limits the amount of btree
1673 * reads required while inside the transaction.
1675 /* as ordered data IO finishes, this gets called so we can finish
1676 * an ordered extent if the range of bytes in the file it covers are
1679 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1681 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1682 struct btrfs_trans_handle
*trans
= NULL
;
1683 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1684 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1685 struct extent_state
*cached_state
= NULL
;
1686 int compress_type
= 0;
1688 bool nolock
= false;
1690 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1694 BUG_ON(!ordered_extent
);
1696 nolock
= (root
== root
->fs_info
->tree_root
);
1698 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1699 BUG_ON(!list_empty(&ordered_extent
->list
));
1700 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1703 trans
= btrfs_join_transaction_nolock(root
, 1);
1705 trans
= btrfs_join_transaction(root
, 1);
1707 btrfs_set_trans_block_group(trans
, inode
);
1708 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1709 ret
= btrfs_update_inode(trans
, root
, inode
);
1715 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1716 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1717 0, &cached_state
, GFP_NOFS
);
1720 trans
= btrfs_join_transaction_nolock(root
, 1);
1722 trans
= btrfs_join_transaction(root
, 1);
1723 btrfs_set_trans_block_group(trans
, inode
);
1724 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1726 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1727 compress_type
= ordered_extent
->compress_type
;
1728 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1729 BUG_ON(compress_type
);
1730 ret
= btrfs_mark_extent_written(trans
, inode
,
1731 ordered_extent
->file_offset
,
1732 ordered_extent
->file_offset
+
1733 ordered_extent
->len
);
1736 BUG_ON(root
== root
->fs_info
->tree_root
);
1737 ret
= insert_reserved_file_extent(trans
, inode
,
1738 ordered_extent
->file_offset
,
1739 ordered_extent
->start
,
1740 ordered_extent
->disk_len
,
1741 ordered_extent
->len
,
1742 ordered_extent
->len
,
1743 compress_type
, 0, 0,
1744 BTRFS_FILE_EXTENT_REG
);
1745 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1746 ordered_extent
->file_offset
,
1747 ordered_extent
->len
);
1750 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1751 ordered_extent
->file_offset
+
1752 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1754 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1755 &ordered_extent
->list
);
1757 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1758 ret
= btrfs_update_inode(trans
, root
, inode
);
1763 btrfs_end_transaction_nolock(trans
, root
);
1765 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1767 btrfs_end_transaction(trans
, root
);
1771 btrfs_put_ordered_extent(ordered_extent
);
1772 /* once for the tree */
1773 btrfs_put_ordered_extent(ordered_extent
);
1778 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1779 struct extent_state
*state
, int uptodate
)
1781 ClearPagePrivate2(page
);
1782 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1786 * When IO fails, either with EIO or csum verification fails, we
1787 * try other mirrors that might have a good copy of the data. This
1788 * io_failure_record is used to record state as we go through all the
1789 * mirrors. If another mirror has good data, the page is set up to date
1790 * and things continue. If a good mirror can't be found, the original
1791 * bio end_io callback is called to indicate things have failed.
1793 struct io_failure_record
{
1798 unsigned long bio_flags
;
1802 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1803 struct page
*page
, u64 start
, u64 end
,
1804 struct extent_state
*state
)
1806 struct io_failure_record
*failrec
= NULL
;
1808 struct extent_map
*em
;
1809 struct inode
*inode
= page
->mapping
->host
;
1810 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1811 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1818 ret
= get_state_private(failure_tree
, start
, &private);
1820 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1823 failrec
->start
= start
;
1824 failrec
->len
= end
- start
+ 1;
1825 failrec
->last_mirror
= 0;
1826 failrec
->bio_flags
= 0;
1828 read_lock(&em_tree
->lock
);
1829 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1830 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1831 free_extent_map(em
);
1834 read_unlock(&em_tree
->lock
);
1836 if (!em
|| IS_ERR(em
)) {
1840 logical
= start
- em
->start
;
1841 logical
= em
->block_start
+ logical
;
1842 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1843 logical
= em
->block_start
;
1844 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1845 extent_set_compress_type(&failrec
->bio_flags
,
1848 failrec
->logical
= logical
;
1849 free_extent_map(em
);
1850 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1851 EXTENT_DIRTY
, GFP_NOFS
);
1852 set_state_private(failure_tree
, start
,
1853 (u64
)(unsigned long)failrec
);
1855 failrec
= (struct io_failure_record
*)(unsigned long)private;
1857 num_copies
= btrfs_num_copies(
1858 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1859 failrec
->logical
, failrec
->len
);
1860 failrec
->last_mirror
++;
1862 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1863 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1866 if (state
&& state
->start
!= failrec
->start
)
1868 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1870 if (!state
|| failrec
->last_mirror
> num_copies
) {
1871 set_state_private(failure_tree
, failrec
->start
, 0);
1872 clear_extent_bits(failure_tree
, failrec
->start
,
1873 failrec
->start
+ failrec
->len
- 1,
1874 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1878 bio
= bio_alloc(GFP_NOFS
, 1);
1879 bio
->bi_private
= state
;
1880 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1881 bio
->bi_sector
= failrec
->logical
>> 9;
1882 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1885 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1886 if (failed_bio
->bi_rw
& REQ_WRITE
)
1891 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1892 failrec
->last_mirror
,
1893 failrec
->bio_flags
, 0);
1898 * each time an IO finishes, we do a fast check in the IO failure tree
1899 * to see if we need to process or clean up an io_failure_record
1901 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1904 u64 private_failure
;
1905 struct io_failure_record
*failure
;
1909 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1910 (u64
)-1, 1, EXTENT_DIRTY
)) {
1911 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1912 start
, &private_failure
);
1914 failure
= (struct io_failure_record
*)(unsigned long)
1916 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1918 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1920 failure
->start
+ failure
->len
- 1,
1921 EXTENT_DIRTY
| EXTENT_LOCKED
,
1930 * when reads are done, we need to check csums to verify the data is correct
1931 * if there's a match, we allow the bio to finish. If not, we go through
1932 * the io_failure_record routines to find good copies
1934 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1935 struct extent_state
*state
)
1937 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1938 struct inode
*inode
= page
->mapping
->host
;
1939 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1941 u64
private = ~(u32
)0;
1943 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1946 if (PageChecked(page
)) {
1947 ClearPageChecked(page
);
1951 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1954 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1955 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1956 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1961 if (state
&& state
->start
== start
) {
1962 private = state
->private;
1965 ret
= get_state_private(io_tree
, start
, &private);
1967 kaddr
= kmap_atomic(page
, KM_USER0
);
1971 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1972 btrfs_csum_final(csum
, (char *)&csum
);
1973 if (csum
!= private)
1976 kunmap_atomic(kaddr
, KM_USER0
);
1978 /* if the io failure tree for this inode is non-empty,
1979 * check to see if we've recovered from a failed IO
1981 btrfs_clean_io_failures(inode
, start
);
1985 if (printk_ratelimit()) {
1986 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1987 "private %llu\n", page
->mapping
->host
->i_ino
,
1988 (unsigned long long)start
, csum
,
1989 (unsigned long long)private);
1991 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1992 flush_dcache_page(page
);
1993 kunmap_atomic(kaddr
, KM_USER0
);
1999 struct delayed_iput
{
2000 struct list_head list
;
2001 struct inode
*inode
;
2004 void btrfs_add_delayed_iput(struct inode
*inode
)
2006 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2007 struct delayed_iput
*delayed
;
2009 if (atomic_add_unless(&inode
->i_count
, -1, 1))
2012 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
2013 delayed
->inode
= inode
;
2015 spin_lock(&fs_info
->delayed_iput_lock
);
2016 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2017 spin_unlock(&fs_info
->delayed_iput_lock
);
2020 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2023 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2024 struct delayed_iput
*delayed
;
2027 spin_lock(&fs_info
->delayed_iput_lock
);
2028 empty
= list_empty(&fs_info
->delayed_iputs
);
2029 spin_unlock(&fs_info
->delayed_iput_lock
);
2033 down_read(&root
->fs_info
->cleanup_work_sem
);
2034 spin_lock(&fs_info
->delayed_iput_lock
);
2035 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2036 spin_unlock(&fs_info
->delayed_iput_lock
);
2038 while (!list_empty(&list
)) {
2039 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2040 list_del(&delayed
->list
);
2041 iput(delayed
->inode
);
2044 up_read(&root
->fs_info
->cleanup_work_sem
);
2048 * calculate extra metadata reservation when snapshotting a subvolume
2049 * contains orphan files.
2051 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle
*trans
,
2052 struct btrfs_pending_snapshot
*pending
,
2053 u64
*bytes_to_reserve
)
2055 struct btrfs_root
*root
;
2056 struct btrfs_block_rsv
*block_rsv
;
2060 root
= pending
->root
;
2061 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2064 block_rsv
= root
->orphan_block_rsv
;
2066 /* orphan block reservation for the snapshot */
2067 num_bytes
= block_rsv
->size
;
2070 * after the snapshot is created, COWing tree blocks may use more
2071 * space than it frees. So we should make sure there is enough
2074 index
= trans
->transid
& 0x1;
2075 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2076 num_bytes
+= block_rsv
->size
-
2077 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2080 *bytes_to_reserve
+= num_bytes
;
2083 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle
*trans
,
2084 struct btrfs_pending_snapshot
*pending
)
2086 struct btrfs_root
*root
= pending
->root
;
2087 struct btrfs_root
*snap
= pending
->snap
;
2088 struct btrfs_block_rsv
*block_rsv
;
2093 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2096 /* refill source subvolume's orphan block reservation */
2097 block_rsv
= root
->orphan_block_rsv
;
2098 index
= trans
->transid
& 0x1;
2099 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2100 num_bytes
= block_rsv
->size
-
2101 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2102 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2103 root
->orphan_block_rsv
,
2108 /* setup orphan block reservation for the snapshot */
2109 block_rsv
= btrfs_alloc_block_rsv(snap
);
2112 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2113 snap
->orphan_block_rsv
= block_rsv
;
2115 num_bytes
= root
->orphan_block_rsv
->size
;
2116 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2117 block_rsv
, num_bytes
);
2121 /* insert orphan item for the snapshot */
2122 WARN_ON(!root
->orphan_item_inserted
);
2123 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2124 snap
->root_key
.objectid
);
2126 snap
->orphan_item_inserted
= 1;
2130 enum btrfs_orphan_cleanup_state
{
2131 ORPHAN_CLEANUP_STARTED
= 1,
2132 ORPHAN_CLEANUP_DONE
= 2,
2136 * This is called in transaction commmit time. If there are no orphan
2137 * files in the subvolume, it removes orphan item and frees block_rsv
2140 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2141 struct btrfs_root
*root
)
2145 if (!list_empty(&root
->orphan_list
) ||
2146 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2149 if (root
->orphan_item_inserted
&&
2150 btrfs_root_refs(&root
->root_item
) > 0) {
2151 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2152 root
->root_key
.objectid
);
2154 root
->orphan_item_inserted
= 0;
2157 if (root
->orphan_block_rsv
) {
2158 WARN_ON(root
->orphan_block_rsv
->size
> 0);
2159 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
2160 root
->orphan_block_rsv
= NULL
;
2165 * This creates an orphan entry for the given inode in case something goes
2166 * wrong in the middle of an unlink/truncate.
2168 * NOTE: caller of this function should reserve 5 units of metadata for
2171 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2173 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2174 struct btrfs_block_rsv
*block_rsv
= NULL
;
2179 if (!root
->orphan_block_rsv
) {
2180 block_rsv
= btrfs_alloc_block_rsv(root
);
2184 spin_lock(&root
->orphan_lock
);
2185 if (!root
->orphan_block_rsv
) {
2186 root
->orphan_block_rsv
= block_rsv
;
2187 } else if (block_rsv
) {
2188 btrfs_free_block_rsv(root
, block_rsv
);
2192 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2193 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2196 * For proper ENOSPC handling, we should do orphan
2197 * cleanup when mounting. But this introduces backward
2198 * compatibility issue.
2200 if (!xchg(&root
->orphan_item_inserted
, 1))
2207 WARN_ON(!BTRFS_I(inode
)->orphan_meta_reserved
);
2210 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2211 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2214 spin_unlock(&root
->orphan_lock
);
2217 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2219 /* grab metadata reservation from transaction handle */
2221 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2225 /* insert an orphan item to track this unlinked/truncated file */
2227 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
2231 /* insert an orphan item to track subvolume contains orphan files */
2233 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2234 root
->root_key
.objectid
);
2241 * We have done the truncate/delete so we can go ahead and remove the orphan
2242 * item for this particular inode.
2244 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2246 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2247 int delete_item
= 0;
2248 int release_rsv
= 0;
2251 spin_lock(&root
->orphan_lock
);
2252 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2253 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2257 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2258 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2261 spin_unlock(&root
->orphan_lock
);
2263 if (trans
&& delete_item
) {
2264 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
2269 btrfs_orphan_release_metadata(inode
);
2275 * this cleans up any orphans that may be left on the list from the last use
2278 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
2280 struct btrfs_path
*path
;
2281 struct extent_buffer
*leaf
;
2282 struct btrfs_key key
, found_key
;
2283 struct btrfs_trans_handle
*trans
;
2284 struct inode
*inode
;
2285 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2287 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2290 path
= btrfs_alloc_path();
2294 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2295 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2296 key
.offset
= (u64
)-1;
2299 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2301 printk(KERN_ERR
"Error searching slot for orphan: %d"
2307 * if ret == 0 means we found what we were searching for, which
2308 * is weird, but possible, so only screw with path if we didnt
2309 * find the key and see if we have stuff that matches
2312 if (path
->slots
[0] == 0)
2317 /* pull out the item */
2318 leaf
= path
->nodes
[0];
2319 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2321 /* make sure the item matches what we want */
2322 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2324 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2327 /* release the path since we're done with it */
2328 btrfs_release_path(root
, path
);
2331 * this is where we are basically btrfs_lookup, without the
2332 * crossing root thing. we store the inode number in the
2333 * offset of the orphan item.
2335 found_key
.objectid
= found_key
.offset
;
2336 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2337 found_key
.offset
= 0;
2338 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2339 BUG_ON(IS_ERR(inode
));
2342 * add this inode to the orphan list so btrfs_orphan_del does
2343 * the proper thing when we hit it
2345 spin_lock(&root
->orphan_lock
);
2346 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2347 spin_unlock(&root
->orphan_lock
);
2350 * if this is a bad inode, means we actually succeeded in
2351 * removing the inode, but not the orphan record, which means
2352 * we need to manually delete the orphan since iput will just
2353 * do a destroy_inode
2355 if (is_bad_inode(inode
)) {
2356 trans
= btrfs_start_transaction(root
, 0);
2357 btrfs_orphan_del(trans
, inode
);
2358 btrfs_end_transaction(trans
, root
);
2363 /* if we have links, this was a truncate, lets do that */
2364 if (inode
->i_nlink
) {
2366 btrfs_truncate(inode
);
2371 /* this will do delete_inode and everything for us */
2374 btrfs_free_path(path
);
2376 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2378 if (root
->orphan_block_rsv
)
2379 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2382 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2383 trans
= btrfs_join_transaction(root
, 1);
2384 btrfs_end_transaction(trans
, root
);
2388 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2390 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2394 * very simple check to peek ahead in the leaf looking for xattrs. If we
2395 * don't find any xattrs, we know there can't be any acls.
2397 * slot is the slot the inode is in, objectid is the objectid of the inode
2399 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2400 int slot
, u64 objectid
)
2402 u32 nritems
= btrfs_header_nritems(leaf
);
2403 struct btrfs_key found_key
;
2407 while (slot
< nritems
) {
2408 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2410 /* we found a different objectid, there must not be acls */
2411 if (found_key
.objectid
!= objectid
)
2414 /* we found an xattr, assume we've got an acl */
2415 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2419 * we found a key greater than an xattr key, there can't
2420 * be any acls later on
2422 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2429 * it goes inode, inode backrefs, xattrs, extents,
2430 * so if there are a ton of hard links to an inode there can
2431 * be a lot of backrefs. Don't waste time searching too hard,
2432 * this is just an optimization
2437 /* we hit the end of the leaf before we found an xattr or
2438 * something larger than an xattr. We have to assume the inode
2445 * read an inode from the btree into the in-memory inode
2447 static void btrfs_read_locked_inode(struct inode
*inode
)
2449 struct btrfs_path
*path
;
2450 struct extent_buffer
*leaf
;
2451 struct btrfs_inode_item
*inode_item
;
2452 struct btrfs_timespec
*tspec
;
2453 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2454 struct btrfs_key location
;
2456 u64 alloc_group_block
;
2460 path
= btrfs_alloc_path();
2462 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2464 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2468 leaf
= path
->nodes
[0];
2469 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2470 struct btrfs_inode_item
);
2472 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2473 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2474 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2475 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2476 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2478 tspec
= btrfs_inode_atime(inode_item
);
2479 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2480 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2482 tspec
= btrfs_inode_mtime(inode_item
);
2483 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2484 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2486 tspec
= btrfs_inode_ctime(inode_item
);
2487 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2488 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2490 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2491 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2492 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2493 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2495 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2497 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2498 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2500 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2503 * try to precache a NULL acl entry for files that don't have
2504 * any xattrs or acls
2506 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2508 cache_no_acl(inode
);
2510 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2511 alloc_group_block
, 0);
2512 btrfs_free_path(path
);
2515 switch (inode
->i_mode
& S_IFMT
) {
2517 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2518 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2519 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2520 inode
->i_fop
= &btrfs_file_operations
;
2521 inode
->i_op
= &btrfs_file_inode_operations
;
2524 inode
->i_fop
= &btrfs_dir_file_operations
;
2525 if (root
== root
->fs_info
->tree_root
)
2526 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2528 inode
->i_op
= &btrfs_dir_inode_operations
;
2531 inode
->i_op
= &btrfs_symlink_inode_operations
;
2532 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2533 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2536 inode
->i_op
= &btrfs_special_inode_operations
;
2537 init_special_inode(inode
, inode
->i_mode
, rdev
);
2541 btrfs_update_iflags(inode
);
2545 btrfs_free_path(path
);
2546 make_bad_inode(inode
);
2550 * given a leaf and an inode, copy the inode fields into the leaf
2552 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2553 struct extent_buffer
*leaf
,
2554 struct btrfs_inode_item
*item
,
2555 struct inode
*inode
)
2557 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2558 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2559 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2560 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2561 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2563 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2564 inode
->i_atime
.tv_sec
);
2565 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2566 inode
->i_atime
.tv_nsec
);
2568 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2569 inode
->i_mtime
.tv_sec
);
2570 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2571 inode
->i_mtime
.tv_nsec
);
2573 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2574 inode
->i_ctime
.tv_sec
);
2575 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2576 inode
->i_ctime
.tv_nsec
);
2578 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2579 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2580 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2581 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2582 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2583 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2584 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2588 * copy everything in the in-memory inode into the btree.
2590 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2591 struct btrfs_root
*root
, struct inode
*inode
)
2593 struct btrfs_inode_item
*inode_item
;
2594 struct btrfs_path
*path
;
2595 struct extent_buffer
*leaf
;
2598 path
= btrfs_alloc_path();
2600 path
->leave_spinning
= 1;
2601 ret
= btrfs_lookup_inode(trans
, root
, path
,
2602 &BTRFS_I(inode
)->location
, 1);
2609 btrfs_unlock_up_safe(path
, 1);
2610 leaf
= path
->nodes
[0];
2611 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2612 struct btrfs_inode_item
);
2614 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2615 btrfs_mark_buffer_dirty(leaf
);
2616 btrfs_set_inode_last_trans(trans
, inode
);
2619 btrfs_free_path(path
);
2625 * unlink helper that gets used here in inode.c and in the tree logging
2626 * recovery code. It remove a link in a directory with a given name, and
2627 * also drops the back refs in the inode to the directory
2629 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2630 struct btrfs_root
*root
,
2631 struct inode
*dir
, struct inode
*inode
,
2632 const char *name
, int name_len
)
2634 struct btrfs_path
*path
;
2636 struct extent_buffer
*leaf
;
2637 struct btrfs_dir_item
*di
;
2638 struct btrfs_key key
;
2641 path
= btrfs_alloc_path();
2647 path
->leave_spinning
= 1;
2648 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2649 name
, name_len
, -1);
2658 leaf
= path
->nodes
[0];
2659 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2660 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2663 btrfs_release_path(root
, path
);
2665 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2667 dir
->i_ino
, &index
);
2669 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2670 "inode %lu parent %lu\n", name_len
, name
,
2671 inode
->i_ino
, dir
->i_ino
);
2675 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2676 index
, name
, name_len
, -1);
2685 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2686 btrfs_release_path(root
, path
);
2688 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2690 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2692 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2697 btrfs_free_path(path
);
2701 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2702 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2703 btrfs_update_inode(trans
, root
, dir
);
2704 btrfs_drop_nlink(inode
);
2705 ret
= btrfs_update_inode(trans
, root
, inode
);
2710 /* helper to check if there is any shared block in the path */
2711 static int check_path_shared(struct btrfs_root
*root
,
2712 struct btrfs_path
*path
)
2714 struct extent_buffer
*eb
;
2717 int uninitialized_var(ret
);
2719 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2720 if (!path
->nodes
[level
])
2722 eb
= path
->nodes
[level
];
2723 if (!btrfs_block_can_be_shared(root
, eb
))
2725 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2730 return ret
; /* XXX callers? */
2734 * helper to start transaction for unlink and rmdir.
2736 * unlink and rmdir are special in btrfs, they do not always free space.
2737 * so in enospc case, we should make sure they will free space before
2738 * allowing them to use the global metadata reservation.
2740 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2741 struct dentry
*dentry
)
2743 struct btrfs_trans_handle
*trans
;
2744 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2745 struct btrfs_path
*path
;
2746 struct btrfs_inode_ref
*ref
;
2747 struct btrfs_dir_item
*di
;
2748 struct inode
*inode
= dentry
->d_inode
;
2754 trans
= btrfs_start_transaction(root
, 10);
2755 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2758 if (inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2759 return ERR_PTR(-ENOSPC
);
2761 /* check if there is someone else holds reference */
2762 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2763 return ERR_PTR(-ENOSPC
);
2765 if (atomic_read(&inode
->i_count
) > 2)
2766 return ERR_PTR(-ENOSPC
);
2768 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2769 return ERR_PTR(-ENOSPC
);
2771 path
= btrfs_alloc_path();
2773 root
->fs_info
->enospc_unlink
= 0;
2774 return ERR_PTR(-ENOMEM
);
2777 trans
= btrfs_start_transaction(root
, 0);
2778 if (IS_ERR(trans
)) {
2779 btrfs_free_path(path
);
2780 root
->fs_info
->enospc_unlink
= 0;
2784 path
->skip_locking
= 1;
2785 path
->search_commit_root
= 1;
2787 ret
= btrfs_lookup_inode(trans
, root
, path
,
2788 &BTRFS_I(dir
)->location
, 0);
2794 if (check_path_shared(root
, path
))
2799 btrfs_release_path(root
, path
);
2801 ret
= btrfs_lookup_inode(trans
, root
, path
,
2802 &BTRFS_I(inode
)->location
, 0);
2808 if (check_path_shared(root
, path
))
2813 btrfs_release_path(root
, path
);
2815 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2816 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2817 inode
->i_ino
, (u64
)-1, 0);
2823 if (check_path_shared(root
, path
))
2825 btrfs_release_path(root
, path
);
2833 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2834 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2840 if (check_path_shared(root
, path
))
2846 btrfs_release_path(root
, path
);
2848 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2849 dentry
->d_name
.name
, dentry
->d_name
.len
,
2850 inode
->i_ino
, dir
->i_ino
, 0);
2856 if (check_path_shared(root
, path
))
2858 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2859 btrfs_release_path(root
, path
);
2861 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
, index
,
2862 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2867 BUG_ON(ret
== -ENOENT
);
2868 if (check_path_shared(root
, path
))
2873 btrfs_free_path(path
);
2875 btrfs_end_transaction(trans
, root
);
2876 root
->fs_info
->enospc_unlink
= 0;
2877 return ERR_PTR(err
);
2880 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2884 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2885 struct btrfs_root
*root
)
2887 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2888 BUG_ON(!root
->fs_info
->enospc_unlink
);
2889 root
->fs_info
->enospc_unlink
= 0;
2891 btrfs_end_transaction_throttle(trans
, root
);
2894 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2896 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2897 struct btrfs_trans_handle
*trans
;
2898 struct inode
*inode
= dentry
->d_inode
;
2900 unsigned long nr
= 0;
2902 trans
= __unlink_start_trans(dir
, dentry
);
2904 return PTR_ERR(trans
);
2906 btrfs_set_trans_block_group(trans
, dir
);
2908 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2910 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2911 dentry
->d_name
.name
, dentry
->d_name
.len
);
2914 if (inode
->i_nlink
== 0) {
2915 ret
= btrfs_orphan_add(trans
, inode
);
2919 nr
= trans
->blocks_used
;
2920 __unlink_end_trans(trans
, root
);
2921 btrfs_btree_balance_dirty(root
, nr
);
2925 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2926 struct btrfs_root
*root
,
2927 struct inode
*dir
, u64 objectid
,
2928 const char *name
, int name_len
)
2930 struct btrfs_path
*path
;
2931 struct extent_buffer
*leaf
;
2932 struct btrfs_dir_item
*di
;
2933 struct btrfs_key key
;
2937 path
= btrfs_alloc_path();
2941 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2942 name
, name_len
, -1);
2943 BUG_ON(!di
|| IS_ERR(di
));
2945 leaf
= path
->nodes
[0];
2946 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2947 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2948 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2950 btrfs_release_path(root
, path
);
2952 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
2953 objectid
, root
->root_key
.objectid
,
2954 dir
->i_ino
, &index
, name
, name_len
);
2956 BUG_ON(ret
!= -ENOENT
);
2957 di
= btrfs_search_dir_index_item(root
, path
, dir
->i_ino
,
2959 BUG_ON(!di
|| IS_ERR(di
));
2961 leaf
= path
->nodes
[0];
2962 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2963 btrfs_release_path(root
, path
);
2967 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2968 index
, name
, name_len
, -1);
2969 BUG_ON(!di
|| IS_ERR(di
));
2971 leaf
= path
->nodes
[0];
2972 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2973 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2974 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2976 btrfs_release_path(root
, path
);
2978 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2979 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2980 ret
= btrfs_update_inode(trans
, root
, dir
);
2983 btrfs_free_path(path
);
2987 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2989 struct inode
*inode
= dentry
->d_inode
;
2991 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2992 struct btrfs_trans_handle
*trans
;
2993 unsigned long nr
= 0;
2995 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2996 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
2999 trans
= __unlink_start_trans(dir
, dentry
);
3001 return PTR_ERR(trans
);
3003 btrfs_set_trans_block_group(trans
, dir
);
3005 if (unlikely(inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
3006 err
= btrfs_unlink_subvol(trans
, root
, dir
,
3007 BTRFS_I(inode
)->location
.objectid
,
3008 dentry
->d_name
.name
,
3009 dentry
->d_name
.len
);
3013 err
= btrfs_orphan_add(trans
, inode
);
3017 /* now the directory is empty */
3018 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3019 dentry
->d_name
.name
, dentry
->d_name
.len
);
3021 btrfs_i_size_write(inode
, 0);
3023 nr
= trans
->blocks_used
;
3024 __unlink_end_trans(trans
, root
);
3025 btrfs_btree_balance_dirty(root
, nr
);
3032 * when truncating bytes in a file, it is possible to avoid reading
3033 * the leaves that contain only checksum items. This can be the
3034 * majority of the IO required to delete a large file, but it must
3035 * be done carefully.
3037 * The keys in the level just above the leaves are checked to make sure
3038 * the lowest key in a given leaf is a csum key, and starts at an offset
3039 * after the new size.
3041 * Then the key for the next leaf is checked to make sure it also has
3042 * a checksum item for the same file. If it does, we know our target leaf
3043 * contains only checksum items, and it can be safely freed without reading
3046 * This is just an optimization targeted at large files. It may do
3047 * nothing. It will return 0 unless things went badly.
3049 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
3050 struct btrfs_root
*root
,
3051 struct btrfs_path
*path
,
3052 struct inode
*inode
, u64 new_size
)
3054 struct btrfs_key key
;
3057 struct btrfs_key found_key
;
3058 struct btrfs_key other_key
;
3059 struct btrfs_leaf_ref
*ref
;
3063 path
->lowest_level
= 1;
3064 key
.objectid
= inode
->i_ino
;
3065 key
.type
= BTRFS_CSUM_ITEM_KEY
;
3066 key
.offset
= new_size
;
3068 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3072 if (path
->nodes
[1] == NULL
) {
3077 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
3078 nritems
= btrfs_header_nritems(path
->nodes
[1]);
3083 if (path
->slots
[1] >= nritems
)
3086 /* did we find a key greater than anything we want to delete? */
3087 if (found_key
.objectid
> inode
->i_ino
||
3088 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
3091 /* we check the next key in the node to make sure the leave contains
3092 * only checksum items. This comparison doesn't work if our
3093 * leaf is the last one in the node
3095 if (path
->slots
[1] + 1 >= nritems
) {
3097 /* search forward from the last key in the node, this
3098 * will bring us into the next node in the tree
3100 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
3102 /* unlikely, but we inc below, so check to be safe */
3103 if (found_key
.offset
== (u64
)-1)
3106 /* search_forward needs a path with locks held, do the
3107 * search again for the original key. It is possible
3108 * this will race with a balance and return a path that
3109 * we could modify, but this drop is just an optimization
3110 * and is allowed to miss some leaves.
3112 btrfs_release_path(root
, path
);
3115 /* setup a max key for search_forward */
3116 other_key
.offset
= (u64
)-1;
3117 other_key
.type
= key
.type
;
3118 other_key
.objectid
= key
.objectid
;
3120 path
->keep_locks
= 1;
3121 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
3123 path
->keep_locks
= 0;
3124 if (ret
|| found_key
.objectid
!= key
.objectid
||
3125 found_key
.type
!= key
.type
) {
3130 key
.offset
= found_key
.offset
;
3131 btrfs_release_path(root
, path
);
3136 /* we know there's one more slot after us in the tree,
3137 * read that key so we can verify it is also a checksum item
3139 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
3141 if (found_key
.objectid
< inode
->i_ino
)
3144 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
3148 * if the key for the next leaf isn't a csum key from this objectid,
3149 * we can't be sure there aren't good items inside this leaf.
3152 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
3155 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
3156 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
3158 * it is safe to delete this leaf, it contains only
3159 * csum items from this inode at an offset >= new_size
3161 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
3164 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
3165 ref
= btrfs_alloc_leaf_ref(root
, 0);
3167 ref
->root_gen
= root
->root_key
.offset
;
3168 ref
->bytenr
= leaf_start
;
3170 ref
->generation
= leaf_gen
;
3173 btrfs_sort_leaf_ref(ref
);
3175 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
3177 btrfs_free_leaf_ref(root
, ref
);
3183 btrfs_release_path(root
, path
);
3185 if (other_key
.objectid
== inode
->i_ino
&&
3186 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
3187 key
.offset
= other_key
.offset
;
3193 /* fixup any changes we've made to the path */
3194 path
->lowest_level
= 0;
3195 path
->keep_locks
= 0;
3196 btrfs_release_path(root
, path
);
3203 * this can truncate away extent items, csum items and directory items.
3204 * It starts at a high offset and removes keys until it can't find
3205 * any higher than new_size
3207 * csum items that cross the new i_size are truncated to the new size
3210 * min_type is the minimum key type to truncate down to. If set to 0, this
3211 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3213 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3214 struct btrfs_root
*root
,
3215 struct inode
*inode
,
3216 u64 new_size
, u32 min_type
)
3218 struct btrfs_path
*path
;
3219 struct extent_buffer
*leaf
;
3220 struct btrfs_file_extent_item
*fi
;
3221 struct btrfs_key key
;
3222 struct btrfs_key found_key
;
3223 u64 extent_start
= 0;
3224 u64 extent_num_bytes
= 0;
3225 u64 extent_offset
= 0;
3227 u64 mask
= root
->sectorsize
- 1;
3228 u32 found_type
= (u8
)-1;
3231 int pending_del_nr
= 0;
3232 int pending_del_slot
= 0;
3233 int extent_type
= -1;
3238 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3240 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3241 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
3243 path
= btrfs_alloc_path();
3247 key
.objectid
= inode
->i_ino
;
3248 key
.offset
= (u64
)-1;
3252 path
->leave_spinning
= 1;
3253 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3260 /* there are no items in the tree for us to truncate, we're
3263 if (path
->slots
[0] == 0)
3270 leaf
= path
->nodes
[0];
3271 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3272 found_type
= btrfs_key_type(&found_key
);
3275 if (found_key
.objectid
!= inode
->i_ino
)
3278 if (found_type
< min_type
)
3281 item_end
= found_key
.offset
;
3282 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3283 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3284 struct btrfs_file_extent_item
);
3285 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3286 encoding
= btrfs_file_extent_compression(leaf
, fi
);
3287 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
3288 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
3290 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3292 btrfs_file_extent_num_bytes(leaf
, fi
);
3293 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3294 item_end
+= btrfs_file_extent_inline_len(leaf
,
3299 if (found_type
> min_type
) {
3302 if (item_end
< new_size
)
3304 if (found_key
.offset
>= new_size
)
3310 /* FIXME, shrink the extent if the ref count is only 1 */
3311 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3314 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3316 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3317 if (!del_item
&& !encoding
) {
3318 u64 orig_num_bytes
=
3319 btrfs_file_extent_num_bytes(leaf
, fi
);
3320 extent_num_bytes
= new_size
-
3321 found_key
.offset
+ root
->sectorsize
- 1;
3322 extent_num_bytes
= extent_num_bytes
&
3323 ~((u64
)root
->sectorsize
- 1);
3324 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3326 num_dec
= (orig_num_bytes
-
3328 if (root
->ref_cows
&& extent_start
!= 0)
3329 inode_sub_bytes(inode
, num_dec
);
3330 btrfs_mark_buffer_dirty(leaf
);
3333 btrfs_file_extent_disk_num_bytes(leaf
,
3335 extent_offset
= found_key
.offset
-
3336 btrfs_file_extent_offset(leaf
, fi
);
3338 /* FIXME blocksize != 4096 */
3339 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3340 if (extent_start
!= 0) {
3343 inode_sub_bytes(inode
, num_dec
);
3346 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3348 * we can't truncate inline items that have had
3352 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3353 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3354 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3355 u32 size
= new_size
- found_key
.offset
;
3357 if (root
->ref_cows
) {
3358 inode_sub_bytes(inode
, item_end
+ 1 -
3362 btrfs_file_extent_calc_inline_size(size
);
3363 ret
= btrfs_truncate_item(trans
, root
, path
,
3366 } else if (root
->ref_cows
) {
3367 inode_sub_bytes(inode
, item_end
+ 1 -
3373 if (!pending_del_nr
) {
3374 /* no pending yet, add ourselves */
3375 pending_del_slot
= path
->slots
[0];
3377 } else if (pending_del_nr
&&
3378 path
->slots
[0] + 1 == pending_del_slot
) {
3379 /* hop on the pending chunk */
3381 pending_del_slot
= path
->slots
[0];
3388 if (found_extent
&& (root
->ref_cows
||
3389 root
== root
->fs_info
->tree_root
)) {
3390 btrfs_set_path_blocking(path
);
3391 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3392 extent_num_bytes
, 0,
3393 btrfs_header_owner(leaf
),
3394 inode
->i_ino
, extent_offset
);
3398 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3401 if (path
->slots
[0] == 0 ||
3402 path
->slots
[0] != pending_del_slot
) {
3403 if (root
->ref_cows
) {
3407 if (pending_del_nr
) {
3408 ret
= btrfs_del_items(trans
, root
, path
,
3414 btrfs_release_path(root
, path
);
3421 if (pending_del_nr
) {
3422 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3426 btrfs_free_path(path
);
3431 * taken from block_truncate_page, but does cow as it zeros out
3432 * any bytes left in the last page in the file.
3434 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3436 struct inode
*inode
= mapping
->host
;
3437 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3438 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3439 struct btrfs_ordered_extent
*ordered
;
3440 struct extent_state
*cached_state
= NULL
;
3442 u32 blocksize
= root
->sectorsize
;
3443 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3444 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3450 if ((offset
& (blocksize
- 1)) == 0)
3452 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3458 page
= grab_cache_page(mapping
, index
);
3460 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3464 page_start
= page_offset(page
);
3465 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3467 if (!PageUptodate(page
)) {
3468 ret
= btrfs_readpage(NULL
, page
);
3470 if (page
->mapping
!= mapping
) {
3472 page_cache_release(page
);
3475 if (!PageUptodate(page
)) {
3480 wait_on_page_writeback(page
);
3482 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3484 set_page_extent_mapped(page
);
3486 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3488 unlock_extent_cached(io_tree
, page_start
, page_end
,
3489 &cached_state
, GFP_NOFS
);
3491 page_cache_release(page
);
3492 btrfs_start_ordered_extent(inode
, ordered
, 1);
3493 btrfs_put_ordered_extent(ordered
);
3497 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3498 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3499 0, 0, &cached_state
, GFP_NOFS
);
3501 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3504 unlock_extent_cached(io_tree
, page_start
, page_end
,
3505 &cached_state
, GFP_NOFS
);
3510 if (offset
!= PAGE_CACHE_SIZE
) {
3512 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3513 flush_dcache_page(page
);
3516 ClearPageChecked(page
);
3517 set_page_dirty(page
);
3518 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3523 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3525 page_cache_release(page
);
3530 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
3532 struct btrfs_trans_handle
*trans
;
3533 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3534 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3535 struct extent_map
*em
= NULL
;
3536 struct extent_state
*cached_state
= NULL
;
3537 u64 mask
= root
->sectorsize
- 1;
3538 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
3539 u64 block_end
= (size
+ mask
) & ~mask
;
3545 if (size
<= hole_start
)
3549 struct btrfs_ordered_extent
*ordered
;
3550 btrfs_wait_ordered_range(inode
, hole_start
,
3551 block_end
- hole_start
);
3552 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3553 &cached_state
, GFP_NOFS
);
3554 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3557 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3558 &cached_state
, GFP_NOFS
);
3559 btrfs_put_ordered_extent(ordered
);
3562 cur_offset
= hole_start
;
3564 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3565 block_end
- cur_offset
, 0);
3566 BUG_ON(IS_ERR(em
) || !em
);
3567 last_byte
= min(extent_map_end(em
), block_end
);
3568 last_byte
= (last_byte
+ mask
) & ~mask
;
3569 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3571 hole_size
= last_byte
- cur_offset
;
3573 trans
= btrfs_start_transaction(root
, 2);
3574 if (IS_ERR(trans
)) {
3575 err
= PTR_ERR(trans
);
3578 btrfs_set_trans_block_group(trans
, inode
);
3580 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3581 cur_offset
+ hole_size
,
3585 err
= btrfs_insert_file_extent(trans
, root
,
3586 inode
->i_ino
, cur_offset
, 0,
3587 0, hole_size
, 0, hole_size
,
3591 btrfs_drop_extent_cache(inode
, hole_start
,
3594 btrfs_end_transaction(trans
, root
);
3596 free_extent_map(em
);
3598 cur_offset
= last_byte
;
3599 if (cur_offset
>= block_end
)
3603 free_extent_map(em
);
3604 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3609 static int btrfs_setattr_size(struct inode
*inode
, struct iattr
*attr
)
3611 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3612 struct btrfs_trans_handle
*trans
;
3616 if (attr
->ia_size
== inode
->i_size
)
3619 if (attr
->ia_size
> inode
->i_size
) {
3620 unsigned long limit
;
3621 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
3622 if (attr
->ia_size
> inode
->i_sb
->s_maxbytes
)
3624 if (limit
!= RLIM_INFINITY
&& attr
->ia_size
> limit
) {
3625 send_sig(SIGXFSZ
, current
, 0);
3630 trans
= btrfs_start_transaction(root
, 5);
3632 return PTR_ERR(trans
);
3634 btrfs_set_trans_block_group(trans
, inode
);
3636 ret
= btrfs_orphan_add(trans
, inode
);
3639 nr
= trans
->blocks_used
;
3640 btrfs_end_transaction(trans
, root
);
3641 btrfs_btree_balance_dirty(root
, nr
);
3643 if (attr
->ia_size
> inode
->i_size
) {
3644 ret
= btrfs_cont_expand(inode
, attr
->ia_size
);
3646 btrfs_truncate(inode
);
3650 i_size_write(inode
, attr
->ia_size
);
3651 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
3653 trans
= btrfs_start_transaction(root
, 0);
3654 BUG_ON(IS_ERR(trans
));
3655 btrfs_set_trans_block_group(trans
, inode
);
3656 trans
->block_rsv
= root
->orphan_block_rsv
;
3657 BUG_ON(!trans
->block_rsv
);
3659 ret
= btrfs_update_inode(trans
, root
, inode
);
3661 if (inode
->i_nlink
> 0) {
3662 ret
= btrfs_orphan_del(trans
, inode
);
3665 nr
= trans
->blocks_used
;
3666 btrfs_end_transaction(trans
, root
);
3667 btrfs_btree_balance_dirty(root
, nr
);
3672 * We're truncating a file that used to have good data down to
3673 * zero. Make sure it gets into the ordered flush list so that
3674 * any new writes get down to disk quickly.
3676 if (attr
->ia_size
== 0)
3677 BTRFS_I(inode
)->ordered_data_close
= 1;
3679 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3680 ret
= vmtruncate(inode
, attr
->ia_size
);
3686 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3688 struct inode
*inode
= dentry
->d_inode
;
3689 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3692 if (btrfs_root_readonly(root
))
3695 err
= inode_change_ok(inode
, attr
);
3699 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3700 err
= btrfs_setattr_size(inode
, attr
);
3705 if (attr
->ia_valid
) {
3706 setattr_copy(inode
, attr
);
3707 mark_inode_dirty(inode
);
3709 if (attr
->ia_valid
& ATTR_MODE
)
3710 err
= btrfs_acl_chmod(inode
);
3716 void btrfs_evict_inode(struct inode
*inode
)
3718 struct btrfs_trans_handle
*trans
;
3719 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3723 truncate_inode_pages(&inode
->i_data
, 0);
3724 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3725 root
== root
->fs_info
->tree_root
))
3728 if (is_bad_inode(inode
)) {
3729 btrfs_orphan_del(NULL
, inode
);
3732 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3733 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3735 if (root
->fs_info
->log_root_recovering
) {
3736 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3740 if (inode
->i_nlink
> 0) {
3741 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3745 btrfs_i_size_write(inode
, 0);
3748 trans
= btrfs_start_transaction(root
, 0);
3749 BUG_ON(IS_ERR(trans
));
3750 btrfs_set_trans_block_group(trans
, inode
);
3751 trans
->block_rsv
= root
->orphan_block_rsv
;
3753 ret
= btrfs_block_rsv_check(trans
, root
,
3754 root
->orphan_block_rsv
, 0, 5);
3756 BUG_ON(ret
!= -EAGAIN
);
3757 ret
= btrfs_commit_transaction(trans
, root
);
3762 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3766 nr
= trans
->blocks_used
;
3767 btrfs_end_transaction(trans
, root
);
3769 btrfs_btree_balance_dirty(root
, nr
);
3774 ret
= btrfs_orphan_del(trans
, inode
);
3778 nr
= trans
->blocks_used
;
3779 btrfs_end_transaction(trans
, root
);
3780 btrfs_btree_balance_dirty(root
, nr
);
3782 end_writeback(inode
);
3787 * this returns the key found in the dir entry in the location pointer.
3788 * If no dir entries were found, location->objectid is 0.
3790 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3791 struct btrfs_key
*location
)
3793 const char *name
= dentry
->d_name
.name
;
3794 int namelen
= dentry
->d_name
.len
;
3795 struct btrfs_dir_item
*di
;
3796 struct btrfs_path
*path
;
3797 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3800 path
= btrfs_alloc_path();
3803 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3808 if (!di
|| IS_ERR(di
))
3811 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3813 btrfs_free_path(path
);
3816 location
->objectid
= 0;
3821 * when we hit a tree root in a directory, the btrfs part of the inode
3822 * needs to be changed to reflect the root directory of the tree root. This
3823 * is kind of like crossing a mount point.
3825 static int fixup_tree_root_location(struct btrfs_root
*root
,
3827 struct dentry
*dentry
,
3828 struct btrfs_key
*location
,
3829 struct btrfs_root
**sub_root
)
3831 struct btrfs_path
*path
;
3832 struct btrfs_root
*new_root
;
3833 struct btrfs_root_ref
*ref
;
3834 struct extent_buffer
*leaf
;
3838 path
= btrfs_alloc_path();
3845 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3846 BTRFS_I(dir
)->root
->root_key
.objectid
,
3847 location
->objectid
);
3854 leaf
= path
->nodes
[0];
3855 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3856 if (btrfs_root_ref_dirid(leaf
, ref
) != dir
->i_ino
||
3857 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3860 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3861 (unsigned long)(ref
+ 1),
3862 dentry
->d_name
.len
);
3866 btrfs_release_path(root
->fs_info
->tree_root
, path
);
3868 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3869 if (IS_ERR(new_root
)) {
3870 err
= PTR_ERR(new_root
);
3874 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3879 *sub_root
= new_root
;
3880 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3881 location
->type
= BTRFS_INODE_ITEM_KEY
;
3882 location
->offset
= 0;
3885 btrfs_free_path(path
);
3889 static void inode_tree_add(struct inode
*inode
)
3891 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3892 struct btrfs_inode
*entry
;
3894 struct rb_node
*parent
;
3896 p
= &root
->inode_tree
.rb_node
;
3899 if (inode_unhashed(inode
))
3902 spin_lock(&root
->inode_lock
);
3905 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3907 if (inode
->i_ino
< entry
->vfs_inode
.i_ino
)
3908 p
= &parent
->rb_left
;
3909 else if (inode
->i_ino
> entry
->vfs_inode
.i_ino
)
3910 p
= &parent
->rb_right
;
3912 WARN_ON(!(entry
->vfs_inode
.i_state
&
3913 (I_WILL_FREE
| I_FREEING
)));
3914 rb_erase(parent
, &root
->inode_tree
);
3915 RB_CLEAR_NODE(parent
);
3916 spin_unlock(&root
->inode_lock
);
3920 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3921 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3922 spin_unlock(&root
->inode_lock
);
3925 static void inode_tree_del(struct inode
*inode
)
3927 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3930 spin_lock(&root
->inode_lock
);
3931 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3932 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3933 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3934 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3936 spin_unlock(&root
->inode_lock
);
3939 * Free space cache has inodes in the tree root, but the tree root has a
3940 * root_refs of 0, so this could end up dropping the tree root as a
3941 * snapshot, so we need the extra !root->fs_info->tree_root check to
3942 * make sure we don't drop it.
3944 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3945 root
!= root
->fs_info
->tree_root
) {
3946 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3947 spin_lock(&root
->inode_lock
);
3948 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3949 spin_unlock(&root
->inode_lock
);
3951 btrfs_add_dead_root(root
);
3955 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3957 struct rb_node
*node
;
3958 struct rb_node
*prev
;
3959 struct btrfs_inode
*entry
;
3960 struct inode
*inode
;
3963 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3965 spin_lock(&root
->inode_lock
);
3967 node
= root
->inode_tree
.rb_node
;
3971 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3973 if (objectid
< entry
->vfs_inode
.i_ino
)
3974 node
= node
->rb_left
;
3975 else if (objectid
> entry
->vfs_inode
.i_ino
)
3976 node
= node
->rb_right
;
3982 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3983 if (objectid
<= entry
->vfs_inode
.i_ino
) {
3987 prev
= rb_next(prev
);
3991 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3992 objectid
= entry
->vfs_inode
.i_ino
+ 1;
3993 inode
= igrab(&entry
->vfs_inode
);
3995 spin_unlock(&root
->inode_lock
);
3996 if (atomic_read(&inode
->i_count
) > 1)
3997 d_prune_aliases(inode
);
3999 * btrfs_drop_inode will have it removed from
4000 * the inode cache when its usage count
4005 spin_lock(&root
->inode_lock
);
4009 if (cond_resched_lock(&root
->inode_lock
))
4012 node
= rb_next(node
);
4014 spin_unlock(&root
->inode_lock
);
4018 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
4020 struct btrfs_iget_args
*args
= p
;
4021 inode
->i_ino
= args
->ino
;
4022 BTRFS_I(inode
)->root
= args
->root
;
4023 btrfs_set_inode_space_info(args
->root
, inode
);
4027 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
4029 struct btrfs_iget_args
*args
= opaque
;
4030 return args
->ino
== inode
->i_ino
&&
4031 args
->root
== BTRFS_I(inode
)->root
;
4034 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
4036 struct btrfs_root
*root
)
4038 struct inode
*inode
;
4039 struct btrfs_iget_args args
;
4040 args
.ino
= objectid
;
4043 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
4044 btrfs_init_locked_inode
,
4049 /* Get an inode object given its location and corresponding root.
4050 * Returns in *is_new if the inode was read from disk
4052 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
4053 struct btrfs_root
*root
, int *new)
4055 struct inode
*inode
;
4057 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
4059 return ERR_PTR(-ENOMEM
);
4061 if (inode
->i_state
& I_NEW
) {
4062 BTRFS_I(inode
)->root
= root
;
4063 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
4064 btrfs_read_locked_inode(inode
);
4066 inode_tree_add(inode
);
4067 unlock_new_inode(inode
);
4075 static struct inode
*new_simple_dir(struct super_block
*s
,
4076 struct btrfs_key
*key
,
4077 struct btrfs_root
*root
)
4079 struct inode
*inode
= new_inode(s
);
4082 return ERR_PTR(-ENOMEM
);
4084 BTRFS_I(inode
)->root
= root
;
4085 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
4086 BTRFS_I(inode
)->dummy_inode
= 1;
4088 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
4089 inode
->i_op
= &simple_dir_inode_operations
;
4090 inode
->i_fop
= &simple_dir_operations
;
4091 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
4092 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4097 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4099 struct inode
*inode
;
4100 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4101 struct btrfs_root
*sub_root
= root
;
4102 struct btrfs_key location
;
4106 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4107 return ERR_PTR(-ENAMETOOLONG
);
4109 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4112 return ERR_PTR(ret
);
4114 if (location
.objectid
== 0)
4117 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4118 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4122 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4124 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4125 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4126 &location
, &sub_root
);
4129 inode
= ERR_PTR(ret
);
4131 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4133 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4135 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4137 if (root
!= sub_root
) {
4138 down_read(&root
->fs_info
->cleanup_work_sem
);
4139 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4140 btrfs_orphan_cleanup(sub_root
);
4141 up_read(&root
->fs_info
->cleanup_work_sem
);
4147 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4149 struct btrfs_root
*root
;
4151 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
4152 dentry
= dentry
->d_parent
;
4154 if (dentry
->d_inode
) {
4155 root
= BTRFS_I(dentry
->d_inode
)->root
;
4156 if (btrfs_root_refs(&root
->root_item
) == 0)
4162 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4163 struct nameidata
*nd
)
4165 struct inode
*inode
;
4167 inode
= btrfs_lookup_dentry(dir
, dentry
);
4169 return ERR_CAST(inode
);
4171 return d_splice_alias(inode
, dentry
);
4174 static unsigned char btrfs_filetype_table
[] = {
4175 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4178 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4181 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4182 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4183 struct btrfs_item
*item
;
4184 struct btrfs_dir_item
*di
;
4185 struct btrfs_key key
;
4186 struct btrfs_key found_key
;
4187 struct btrfs_path
*path
;
4190 struct extent_buffer
*leaf
;
4193 unsigned char d_type
;
4198 int key_type
= BTRFS_DIR_INDEX_KEY
;
4203 /* FIXME, use a real flag for deciding about the key type */
4204 if (root
->fs_info
->tree_root
== root
)
4205 key_type
= BTRFS_DIR_ITEM_KEY
;
4207 /* special case for "." */
4208 if (filp
->f_pos
== 0) {
4209 over
= filldir(dirent
, ".", 1,
4216 /* special case for .., just use the back ref */
4217 if (filp
->f_pos
== 1) {
4218 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4219 over
= filldir(dirent
, "..", 2,
4225 path
= btrfs_alloc_path();
4228 btrfs_set_key_type(&key
, key_type
);
4229 key
.offset
= filp
->f_pos
;
4230 key
.objectid
= inode
->i_ino
;
4232 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4238 leaf
= path
->nodes
[0];
4239 nritems
= btrfs_header_nritems(leaf
);
4240 slot
= path
->slots
[0];
4241 if (advance
|| slot
>= nritems
) {
4242 if (slot
>= nritems
- 1) {
4243 ret
= btrfs_next_leaf(root
, path
);
4246 leaf
= path
->nodes
[0];
4247 nritems
= btrfs_header_nritems(leaf
);
4248 slot
= path
->slots
[0];
4256 item
= btrfs_item_nr(leaf
, slot
);
4257 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4259 if (found_key
.objectid
!= key
.objectid
)
4261 if (btrfs_key_type(&found_key
) != key_type
)
4263 if (found_key
.offset
< filp
->f_pos
)
4266 filp
->f_pos
= found_key
.offset
;
4268 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4270 di_total
= btrfs_item_size(leaf
, item
);
4272 while (di_cur
< di_total
) {
4273 struct btrfs_key location
;
4275 name_len
= btrfs_dir_name_len(leaf
, di
);
4276 if (name_len
<= sizeof(tmp_name
)) {
4277 name_ptr
= tmp_name
;
4279 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4285 read_extent_buffer(leaf
, name_ptr
,
4286 (unsigned long)(di
+ 1), name_len
);
4288 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4289 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4291 /* is this a reference to our own snapshot? If so
4294 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4295 location
.objectid
== root
->root_key
.objectid
) {
4299 over
= filldir(dirent
, name_ptr
, name_len
,
4300 found_key
.offset
, location
.objectid
,
4304 if (name_ptr
!= tmp_name
)
4309 di_len
= btrfs_dir_name_len(leaf
, di
) +
4310 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4312 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4316 /* Reached end of directory/root. Bump pos past the last item. */
4317 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4319 * 32-bit glibc will use getdents64, but then strtol -
4320 * so the last number we can serve is this.
4322 filp
->f_pos
= 0x7fffffff;
4328 btrfs_free_path(path
);
4332 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4334 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4335 struct btrfs_trans_handle
*trans
;
4337 bool nolock
= false;
4339 if (BTRFS_I(inode
)->dummy_inode
)
4343 nolock
= (root
->fs_info
->closing
&& root
== root
->fs_info
->tree_root
);
4345 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4347 trans
= btrfs_join_transaction_nolock(root
, 1);
4349 trans
= btrfs_join_transaction(root
, 1);
4350 btrfs_set_trans_block_group(trans
, inode
);
4352 ret
= btrfs_end_transaction_nolock(trans
, root
);
4354 ret
= btrfs_commit_transaction(trans
, root
);
4360 * This is somewhat expensive, updating the tree every time the
4361 * inode changes. But, it is most likely to find the inode in cache.
4362 * FIXME, needs more benchmarking...there are no reasons other than performance
4363 * to keep or drop this code.
4365 void btrfs_dirty_inode(struct inode
*inode
)
4367 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4368 struct btrfs_trans_handle
*trans
;
4371 if (BTRFS_I(inode
)->dummy_inode
)
4374 trans
= btrfs_join_transaction(root
, 1);
4375 btrfs_set_trans_block_group(trans
, inode
);
4377 ret
= btrfs_update_inode(trans
, root
, inode
);
4378 if (ret
&& ret
== -ENOSPC
) {
4379 /* whoops, lets try again with the full transaction */
4380 btrfs_end_transaction(trans
, root
);
4381 trans
= btrfs_start_transaction(root
, 1);
4382 if (IS_ERR(trans
)) {
4383 if (printk_ratelimit()) {
4384 printk(KERN_ERR
"btrfs: fail to "
4385 "dirty inode %lu error %ld\n",
4386 inode
->i_ino
, PTR_ERR(trans
));
4390 btrfs_set_trans_block_group(trans
, inode
);
4392 ret
= btrfs_update_inode(trans
, root
, inode
);
4394 if (printk_ratelimit()) {
4395 printk(KERN_ERR
"btrfs: fail to "
4396 "dirty inode %lu error %d\n",
4401 btrfs_end_transaction(trans
, root
);
4405 * find the highest existing sequence number in a directory
4406 * and then set the in-memory index_cnt variable to reflect
4407 * free sequence numbers
4409 static int btrfs_set_inode_index_count(struct inode
*inode
)
4411 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4412 struct btrfs_key key
, found_key
;
4413 struct btrfs_path
*path
;
4414 struct extent_buffer
*leaf
;
4417 key
.objectid
= inode
->i_ino
;
4418 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4419 key
.offset
= (u64
)-1;
4421 path
= btrfs_alloc_path();
4425 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4428 /* FIXME: we should be able to handle this */
4434 * MAGIC NUMBER EXPLANATION:
4435 * since we search a directory based on f_pos we have to start at 2
4436 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4437 * else has to start at 2
4439 if (path
->slots
[0] == 0) {
4440 BTRFS_I(inode
)->index_cnt
= 2;
4446 leaf
= path
->nodes
[0];
4447 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4449 if (found_key
.objectid
!= inode
->i_ino
||
4450 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4451 BTRFS_I(inode
)->index_cnt
= 2;
4455 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4457 btrfs_free_path(path
);
4462 * helper to find a free sequence number in a given directory. This current
4463 * code is very simple, later versions will do smarter things in the btree
4465 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4469 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4470 ret
= btrfs_set_inode_index_count(dir
);
4475 *index
= BTRFS_I(dir
)->index_cnt
;
4476 BTRFS_I(dir
)->index_cnt
++;
4481 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4482 struct btrfs_root
*root
,
4484 const char *name
, int name_len
,
4485 u64 ref_objectid
, u64 objectid
,
4486 u64 alloc_hint
, int mode
, u64
*index
)
4488 struct inode
*inode
;
4489 struct btrfs_inode_item
*inode_item
;
4490 struct btrfs_key
*location
;
4491 struct btrfs_path
*path
;
4492 struct btrfs_inode_ref
*ref
;
4493 struct btrfs_key key
[2];
4499 path
= btrfs_alloc_path();
4502 inode
= new_inode(root
->fs_info
->sb
);
4504 return ERR_PTR(-ENOMEM
);
4507 ret
= btrfs_set_inode_index(dir
, index
);
4510 return ERR_PTR(ret
);
4514 * index_cnt is ignored for everything but a dir,
4515 * btrfs_get_inode_index_count has an explanation for the magic
4518 BTRFS_I(inode
)->index_cnt
= 2;
4519 BTRFS_I(inode
)->root
= root
;
4520 BTRFS_I(inode
)->generation
= trans
->transid
;
4521 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4522 btrfs_set_inode_space_info(root
, inode
);
4528 BTRFS_I(inode
)->block_group
=
4529 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
4531 key
[0].objectid
= objectid
;
4532 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4535 key
[1].objectid
= objectid
;
4536 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4537 key
[1].offset
= ref_objectid
;
4539 sizes
[0] = sizeof(struct btrfs_inode_item
);
4540 sizes
[1] = name_len
+ sizeof(*ref
);
4542 path
->leave_spinning
= 1;
4543 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4547 inode_init_owner(inode
, dir
, mode
);
4548 inode
->i_ino
= objectid
;
4549 inode_set_bytes(inode
, 0);
4550 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4551 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4552 struct btrfs_inode_item
);
4553 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4555 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4556 struct btrfs_inode_ref
);
4557 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4558 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4559 ptr
= (unsigned long)(ref
+ 1);
4560 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4562 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4563 btrfs_free_path(path
);
4565 location
= &BTRFS_I(inode
)->location
;
4566 location
->objectid
= objectid
;
4567 location
->offset
= 0;
4568 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4570 btrfs_inherit_iflags(inode
, dir
);
4572 if ((mode
& S_IFREG
)) {
4573 if (btrfs_test_opt(root
, NODATASUM
))
4574 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4575 if (btrfs_test_opt(root
, NODATACOW
))
4576 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4579 insert_inode_hash(inode
);
4580 inode_tree_add(inode
);
4584 BTRFS_I(dir
)->index_cnt
--;
4585 btrfs_free_path(path
);
4587 return ERR_PTR(ret
);
4590 static inline u8
btrfs_inode_type(struct inode
*inode
)
4592 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4596 * utility function to add 'inode' into 'parent_inode' with
4597 * a give name and a given sequence number.
4598 * if 'add_backref' is true, also insert a backref from the
4599 * inode to the parent directory.
4601 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4602 struct inode
*parent_inode
, struct inode
*inode
,
4603 const char *name
, int name_len
, int add_backref
, u64 index
)
4606 struct btrfs_key key
;
4607 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4609 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4610 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4612 key
.objectid
= inode
->i_ino
;
4613 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4617 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4618 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4619 key
.objectid
, root
->root_key
.objectid
,
4620 parent_inode
->i_ino
,
4621 index
, name
, name_len
);
4622 } else if (add_backref
) {
4623 ret
= btrfs_insert_inode_ref(trans
, root
,
4624 name
, name_len
, inode
->i_ino
,
4625 parent_inode
->i_ino
, index
);
4629 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4630 parent_inode
->i_ino
, &key
,
4631 btrfs_inode_type(inode
), index
);
4634 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4636 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4637 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4642 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4643 struct inode
*dir
, struct dentry
*dentry
,
4644 struct inode
*inode
, int backref
, u64 index
)
4646 int err
= btrfs_add_link(trans
, dir
, inode
,
4647 dentry
->d_name
.name
, dentry
->d_name
.len
,
4650 d_instantiate(dentry
, inode
);
4658 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4659 int mode
, dev_t rdev
)
4661 struct btrfs_trans_handle
*trans
;
4662 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4663 struct inode
*inode
= NULL
;
4667 unsigned long nr
= 0;
4670 if (!new_valid_dev(rdev
))
4673 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4678 * 2 for inode item and ref
4680 * 1 for xattr if selinux is on
4682 trans
= btrfs_start_transaction(root
, 5);
4684 return PTR_ERR(trans
);
4686 btrfs_set_trans_block_group(trans
, dir
);
4688 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4689 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4690 BTRFS_I(dir
)->block_group
, mode
, &index
);
4691 err
= PTR_ERR(inode
);
4695 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4701 btrfs_set_trans_block_group(trans
, inode
);
4702 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4706 inode
->i_op
= &btrfs_special_inode_operations
;
4707 init_special_inode(inode
, inode
->i_mode
, rdev
);
4708 btrfs_update_inode(trans
, root
, inode
);
4710 btrfs_update_inode_block_group(trans
, inode
);
4711 btrfs_update_inode_block_group(trans
, dir
);
4713 nr
= trans
->blocks_used
;
4714 btrfs_end_transaction_throttle(trans
, root
);
4715 btrfs_btree_balance_dirty(root
, nr
);
4717 inode_dec_link_count(inode
);
4723 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4724 int mode
, struct nameidata
*nd
)
4726 struct btrfs_trans_handle
*trans
;
4727 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4728 struct inode
*inode
= NULL
;
4731 unsigned long nr
= 0;
4735 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4739 * 2 for inode item and ref
4741 * 1 for xattr if selinux is on
4743 trans
= btrfs_start_transaction(root
, 5);
4745 return PTR_ERR(trans
);
4747 btrfs_set_trans_block_group(trans
, dir
);
4749 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4750 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4751 BTRFS_I(dir
)->block_group
, mode
, &index
);
4752 err
= PTR_ERR(inode
);
4756 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4762 btrfs_set_trans_block_group(trans
, inode
);
4763 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4767 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4768 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4769 inode
->i_fop
= &btrfs_file_operations
;
4770 inode
->i_op
= &btrfs_file_inode_operations
;
4771 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4773 btrfs_update_inode_block_group(trans
, inode
);
4774 btrfs_update_inode_block_group(trans
, dir
);
4776 nr
= trans
->blocks_used
;
4777 btrfs_end_transaction_throttle(trans
, root
);
4779 inode_dec_link_count(inode
);
4782 btrfs_btree_balance_dirty(root
, nr
);
4786 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4787 struct dentry
*dentry
)
4789 struct btrfs_trans_handle
*trans
;
4790 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4791 struct inode
*inode
= old_dentry
->d_inode
;
4793 unsigned long nr
= 0;
4797 if (inode
->i_nlink
== 0)
4800 /* do not allow sys_link's with other subvols of the same device */
4801 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4804 btrfs_inc_nlink(inode
);
4805 inode
->i_ctime
= CURRENT_TIME
;
4807 err
= btrfs_set_inode_index(dir
, &index
);
4812 * 1 item for inode ref
4813 * 2 items for dir items
4815 trans
= btrfs_start_transaction(root
, 3);
4816 if (IS_ERR(trans
)) {
4817 err
= PTR_ERR(trans
);
4821 btrfs_set_trans_block_group(trans
, dir
);
4824 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4829 struct dentry
*parent
= dget_parent(dentry
);
4830 btrfs_update_inode_block_group(trans
, dir
);
4831 err
= btrfs_update_inode(trans
, root
, inode
);
4833 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4837 nr
= trans
->blocks_used
;
4838 btrfs_end_transaction_throttle(trans
, root
);
4841 inode_dec_link_count(inode
);
4844 btrfs_btree_balance_dirty(root
, nr
);
4848 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4850 struct inode
*inode
= NULL
;
4851 struct btrfs_trans_handle
*trans
;
4852 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4854 int drop_on_err
= 0;
4857 unsigned long nr
= 1;
4859 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4864 * 2 items for inode and ref
4865 * 2 items for dir items
4866 * 1 for xattr if selinux is on
4868 trans
= btrfs_start_transaction(root
, 5);
4870 return PTR_ERR(trans
);
4871 btrfs_set_trans_block_group(trans
, dir
);
4873 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4874 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4875 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
4877 if (IS_ERR(inode
)) {
4878 err
= PTR_ERR(inode
);
4884 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4888 inode
->i_op
= &btrfs_dir_inode_operations
;
4889 inode
->i_fop
= &btrfs_dir_file_operations
;
4890 btrfs_set_trans_block_group(trans
, inode
);
4892 btrfs_i_size_write(inode
, 0);
4893 err
= btrfs_update_inode(trans
, root
, inode
);
4897 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4898 dentry
->d_name
.len
, 0, index
);
4902 d_instantiate(dentry
, inode
);
4904 btrfs_update_inode_block_group(trans
, inode
);
4905 btrfs_update_inode_block_group(trans
, dir
);
4908 nr
= trans
->blocks_used
;
4909 btrfs_end_transaction_throttle(trans
, root
);
4912 btrfs_btree_balance_dirty(root
, nr
);
4916 /* helper for btfs_get_extent. Given an existing extent in the tree,
4917 * and an extent that you want to insert, deal with overlap and insert
4918 * the new extent into the tree.
4920 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4921 struct extent_map
*existing
,
4922 struct extent_map
*em
,
4923 u64 map_start
, u64 map_len
)
4927 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4928 start_diff
= map_start
- em
->start
;
4929 em
->start
= map_start
;
4931 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4932 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4933 em
->block_start
+= start_diff
;
4934 em
->block_len
-= start_diff
;
4936 return add_extent_mapping(em_tree
, em
);
4939 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4940 struct inode
*inode
, struct page
*page
,
4941 size_t pg_offset
, u64 extent_offset
,
4942 struct btrfs_file_extent_item
*item
)
4945 struct extent_buffer
*leaf
= path
->nodes
[0];
4948 unsigned long inline_size
;
4952 WARN_ON(pg_offset
!= 0);
4953 compress_type
= btrfs_file_extent_compression(leaf
, item
);
4954 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4955 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4956 btrfs_item_nr(leaf
, path
->slots
[0]));
4957 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4958 ptr
= btrfs_file_extent_inline_start(item
);
4960 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4962 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4963 ret
= btrfs_decompress(compress_type
, tmp
, page
,
4964 extent_offset
, inline_size
, max_size
);
4966 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4967 unsigned long copy_size
= min_t(u64
,
4968 PAGE_CACHE_SIZE
- pg_offset
,
4969 max_size
- extent_offset
);
4970 memset(kaddr
+ pg_offset
, 0, copy_size
);
4971 kunmap_atomic(kaddr
, KM_USER0
);
4978 * a bit scary, this does extent mapping from logical file offset to the disk.
4979 * the ugly parts come from merging extents from the disk with the in-ram
4980 * representation. This gets more complex because of the data=ordered code,
4981 * where the in-ram extents might be locked pending data=ordered completion.
4983 * This also copies inline extents directly into the page.
4986 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4987 size_t pg_offset
, u64 start
, u64 len
,
4993 u64 extent_start
= 0;
4995 u64 objectid
= inode
->i_ino
;
4997 struct btrfs_path
*path
= NULL
;
4998 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4999 struct btrfs_file_extent_item
*item
;
5000 struct extent_buffer
*leaf
;
5001 struct btrfs_key found_key
;
5002 struct extent_map
*em
= NULL
;
5003 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5004 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5005 struct btrfs_trans_handle
*trans
= NULL
;
5009 read_lock(&em_tree
->lock
);
5010 em
= lookup_extent_mapping(em_tree
, start
, len
);
5012 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5013 read_unlock(&em_tree
->lock
);
5016 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
5017 free_extent_map(em
);
5018 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
5019 free_extent_map(em
);
5023 em
= alloc_extent_map(GFP_NOFS
);
5028 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5029 em
->start
= EXTENT_MAP_HOLE
;
5030 em
->orig_start
= EXTENT_MAP_HOLE
;
5032 em
->block_len
= (u64
)-1;
5035 path
= btrfs_alloc_path();
5039 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5040 objectid
, start
, trans
!= NULL
);
5047 if (path
->slots
[0] == 0)
5052 leaf
= path
->nodes
[0];
5053 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5054 struct btrfs_file_extent_item
);
5055 /* are we inside the extent that was found? */
5056 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5057 found_type
= btrfs_key_type(&found_key
);
5058 if (found_key
.objectid
!= objectid
||
5059 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5063 found_type
= btrfs_file_extent_type(leaf
, item
);
5064 extent_start
= found_key
.offset
;
5065 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5066 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5067 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5068 extent_end
= extent_start
+
5069 btrfs_file_extent_num_bytes(leaf
, item
);
5070 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5072 size
= btrfs_file_extent_inline_len(leaf
, item
);
5073 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5074 ~((u64
)root
->sectorsize
- 1);
5077 if (start
>= extent_end
) {
5079 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5080 ret
= btrfs_next_leaf(root
, path
);
5087 leaf
= path
->nodes
[0];
5089 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5090 if (found_key
.objectid
!= objectid
||
5091 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5093 if (start
+ len
<= found_key
.offset
)
5096 em
->len
= found_key
.offset
- start
;
5100 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5101 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5102 em
->start
= extent_start
;
5103 em
->len
= extent_end
- extent_start
;
5104 em
->orig_start
= extent_start
-
5105 btrfs_file_extent_offset(leaf
, item
);
5106 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5108 em
->block_start
= EXTENT_MAP_HOLE
;
5111 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5112 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5113 em
->compress_type
= compress_type
;
5114 em
->block_start
= bytenr
;
5115 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5118 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5119 em
->block_start
= bytenr
;
5120 em
->block_len
= em
->len
;
5121 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5122 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5125 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5129 size_t extent_offset
;
5132 em
->block_start
= EXTENT_MAP_INLINE
;
5133 if (!page
|| create
) {
5134 em
->start
= extent_start
;
5135 em
->len
= extent_end
- extent_start
;
5139 size
= btrfs_file_extent_inline_len(leaf
, item
);
5140 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5141 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5142 size
- extent_offset
);
5143 em
->start
= extent_start
+ extent_offset
;
5144 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5145 ~((u64
)root
->sectorsize
- 1);
5146 em
->orig_start
= EXTENT_MAP_INLINE
;
5147 if (compress_type
) {
5148 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5149 em
->compress_type
= compress_type
;
5151 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5152 if (create
== 0 && !PageUptodate(page
)) {
5153 if (btrfs_file_extent_compression(leaf
, item
) !=
5154 BTRFS_COMPRESS_NONE
) {
5155 ret
= uncompress_inline(path
, inode
, page
,
5157 extent_offset
, item
);
5161 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5163 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5164 memset(map
+ pg_offset
+ copy_size
, 0,
5165 PAGE_CACHE_SIZE
- pg_offset
-
5170 flush_dcache_page(page
);
5171 } else if (create
&& PageUptodate(page
)) {
5175 free_extent_map(em
);
5177 btrfs_release_path(root
, path
);
5178 trans
= btrfs_join_transaction(root
, 1);
5182 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5185 btrfs_mark_buffer_dirty(leaf
);
5187 set_extent_uptodate(io_tree
, em
->start
,
5188 extent_map_end(em
) - 1, GFP_NOFS
);
5191 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5198 em
->block_start
= EXTENT_MAP_HOLE
;
5199 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5201 btrfs_release_path(root
, path
);
5202 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5203 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5204 "[%llu %llu]\n", (unsigned long long)em
->start
,
5205 (unsigned long long)em
->len
,
5206 (unsigned long long)start
,
5207 (unsigned long long)len
);
5213 write_lock(&em_tree
->lock
);
5214 ret
= add_extent_mapping(em_tree
, em
);
5215 /* it is possible that someone inserted the extent into the tree
5216 * while we had the lock dropped. It is also possible that
5217 * an overlapping map exists in the tree
5219 if (ret
== -EEXIST
) {
5220 struct extent_map
*existing
;
5224 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5225 if (existing
&& (existing
->start
> start
||
5226 existing
->start
+ existing
->len
<= start
)) {
5227 free_extent_map(existing
);
5231 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5234 err
= merge_extent_mapping(em_tree
, existing
,
5237 free_extent_map(existing
);
5239 free_extent_map(em
);
5244 free_extent_map(em
);
5248 free_extent_map(em
);
5253 write_unlock(&em_tree
->lock
);
5256 btrfs_free_path(path
);
5258 ret
= btrfs_end_transaction(trans
, root
);
5263 free_extent_map(em
);
5264 return ERR_PTR(err
);
5269 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5272 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5273 struct btrfs_trans_handle
*trans
;
5274 struct extent_map
*em
;
5275 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5276 struct btrfs_key ins
;
5280 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5282 trans
= btrfs_join_transaction(root
, 0);
5284 return ERR_PTR(-ENOMEM
);
5286 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5288 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5289 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5290 alloc_hint
, (u64
)-1, &ins
, 1);
5296 em
= alloc_extent_map(GFP_NOFS
);
5298 em
= ERR_PTR(-ENOMEM
);
5303 em
->orig_start
= em
->start
;
5304 em
->len
= ins
.offset
;
5306 em
->block_start
= ins
.objectid
;
5307 em
->block_len
= ins
.offset
;
5308 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5309 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5312 write_lock(&em_tree
->lock
);
5313 ret
= add_extent_mapping(em_tree
, em
);
5314 write_unlock(&em_tree
->lock
);
5317 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5320 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5321 ins
.offset
, ins
.offset
, 0);
5323 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5327 btrfs_end_transaction(trans
, root
);
5332 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5333 * block must be cow'd
5335 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5336 struct inode
*inode
, u64 offset
, u64 len
)
5338 struct btrfs_path
*path
;
5340 struct extent_buffer
*leaf
;
5341 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5342 struct btrfs_file_extent_item
*fi
;
5343 struct btrfs_key key
;
5351 path
= btrfs_alloc_path();
5355 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
5360 slot
= path
->slots
[0];
5363 /* can't find the item, must cow */
5370 leaf
= path
->nodes
[0];
5371 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5372 if (key
.objectid
!= inode
->i_ino
||
5373 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5374 /* not our file or wrong item type, must cow */
5378 if (key
.offset
> offset
) {
5379 /* Wrong offset, must cow */
5383 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5384 found_type
= btrfs_file_extent_type(leaf
, fi
);
5385 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5386 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5387 /* not a regular extent, must cow */
5390 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5391 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5393 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5394 if (extent_end
< offset
+ len
) {
5395 /* extent doesn't include our full range, must cow */
5399 if (btrfs_extent_readonly(root
, disk_bytenr
))
5403 * look for other files referencing this extent, if we
5404 * find any we must cow
5406 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
5407 key
.offset
- backref_offset
, disk_bytenr
))
5411 * adjust disk_bytenr and num_bytes to cover just the bytes
5412 * in this extent we are about to write. If there
5413 * are any csums in that range we have to cow in order
5414 * to keep the csums correct
5416 disk_bytenr
+= backref_offset
;
5417 disk_bytenr
+= offset
- key
.offset
;
5418 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5419 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5422 * all of the above have passed, it is safe to overwrite this extent
5427 btrfs_free_path(path
);
5431 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5432 struct buffer_head
*bh_result
, int create
)
5434 struct extent_map
*em
;
5435 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5436 u64 start
= iblock
<< inode
->i_blkbits
;
5437 u64 len
= bh_result
->b_size
;
5438 struct btrfs_trans_handle
*trans
;
5440 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5445 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5446 * io. INLINE is special, and we could probably kludge it in here, but
5447 * it's still buffered so for safety lets just fall back to the generic
5450 * For COMPRESSED we _have_ to read the entire extent in so we can
5451 * decompress it, so there will be buffering required no matter what we
5452 * do, so go ahead and fallback to buffered.
5454 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5455 * to buffered IO. Don't blame me, this is the price we pay for using
5458 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5459 em
->block_start
== EXTENT_MAP_INLINE
) {
5460 free_extent_map(em
);
5464 /* Just a good old fashioned hole, return */
5465 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5466 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5467 free_extent_map(em
);
5468 /* DIO will do one hole at a time, so just unlock a sector */
5469 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5470 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5475 * We don't allocate a new extent in the following cases
5477 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5479 * 2) The extent is marked as PREALLOC. We're good to go here and can
5480 * just use the extent.
5484 len
= em
->len
- (start
- em
->start
);
5488 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5489 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5490 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5495 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5496 type
= BTRFS_ORDERED_PREALLOC
;
5498 type
= BTRFS_ORDERED_NOCOW
;
5499 len
= min(len
, em
->len
- (start
- em
->start
));
5500 block_start
= em
->block_start
+ (start
- em
->start
);
5503 * we're not going to log anything, but we do need
5504 * to make sure the current transaction stays open
5505 * while we look for nocow cross refs
5507 trans
= btrfs_join_transaction(root
, 0);
5511 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5512 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5513 block_start
, len
, len
, type
);
5514 btrfs_end_transaction(trans
, root
);
5516 free_extent_map(em
);
5521 btrfs_end_transaction(trans
, root
);
5525 * this will cow the extent, reset the len in case we changed
5528 len
= bh_result
->b_size
;
5529 free_extent_map(em
);
5530 em
= btrfs_new_extent_direct(inode
, start
, len
);
5533 len
= min(len
, em
->len
- (start
- em
->start
));
5535 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5536 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5539 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5541 bh_result
->b_size
= len
;
5542 bh_result
->b_bdev
= em
->bdev
;
5543 set_buffer_mapped(bh_result
);
5544 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5545 set_buffer_new(bh_result
);
5547 free_extent_map(em
);
5552 struct btrfs_dio_private
{
5553 struct inode
*inode
;
5560 /* number of bios pending for this dio */
5561 atomic_t pending_bios
;
5566 struct bio
*orig_bio
;
5569 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5571 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5572 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5573 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5574 struct inode
*inode
= dip
->inode
;
5575 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5577 u32
*private = dip
->csums
;
5579 start
= dip
->logical_offset
;
5581 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5582 struct page
*page
= bvec
->bv_page
;
5585 unsigned long flags
;
5587 local_irq_save(flags
);
5588 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5589 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5590 csum
, bvec
->bv_len
);
5591 btrfs_csum_final(csum
, (char *)&csum
);
5592 kunmap_atomic(kaddr
, KM_IRQ0
);
5593 local_irq_restore(flags
);
5595 flush_dcache_page(bvec
->bv_page
);
5596 if (csum
!= *private) {
5597 printk(KERN_ERR
"btrfs csum failed ino %lu off"
5598 " %llu csum %u private %u\n",
5599 inode
->i_ino
, (unsigned long long)start
,
5605 start
+= bvec
->bv_len
;
5608 } while (bvec
<= bvec_end
);
5610 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5611 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5612 bio
->bi_private
= dip
->private;
5616 dio_end_io(bio
, err
);
5619 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5621 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5622 struct inode
*inode
= dip
->inode
;
5623 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5624 struct btrfs_trans_handle
*trans
;
5625 struct btrfs_ordered_extent
*ordered
= NULL
;
5626 struct extent_state
*cached_state
= NULL
;
5627 u64 ordered_offset
= dip
->logical_offset
;
5628 u64 ordered_bytes
= dip
->bytes
;
5634 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5642 trans
= btrfs_join_transaction(root
, 1);
5647 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5649 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5650 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5652 ret
= btrfs_update_inode(trans
, root
, inode
);
5657 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5658 ordered
->file_offset
+ ordered
->len
- 1, 0,
5659 &cached_state
, GFP_NOFS
);
5661 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5662 ret
= btrfs_mark_extent_written(trans
, inode
,
5663 ordered
->file_offset
,
5664 ordered
->file_offset
+
5671 ret
= insert_reserved_file_extent(trans
, inode
,
5672 ordered
->file_offset
,
5678 BTRFS_FILE_EXTENT_REG
);
5679 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5680 ordered
->file_offset
, ordered
->len
);
5688 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5689 btrfs_ordered_update_i_size(inode
, 0, ordered
);
5690 btrfs_update_inode(trans
, root
, inode
);
5692 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5693 ordered
->file_offset
+ ordered
->len
- 1,
5694 &cached_state
, GFP_NOFS
);
5696 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5697 btrfs_end_transaction(trans
, root
);
5698 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5699 btrfs_put_ordered_extent(ordered
);
5700 btrfs_put_ordered_extent(ordered
);
5704 * our bio might span multiple ordered extents. If we haven't
5705 * completed the accounting for the whole dio, go back and try again
5707 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5708 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5713 bio
->bi_private
= dip
->private;
5717 dio_end_io(bio
, err
);
5720 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5721 struct bio
*bio
, int mirror_num
,
5722 unsigned long bio_flags
, u64 offset
)
5725 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5726 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5731 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5733 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5736 printk(KERN_ERR
"btrfs direct IO failed ino %lu rw %lu "
5737 "sector %#Lx len %u err no %d\n",
5738 dip
->inode
->i_ino
, bio
->bi_rw
,
5739 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5743 * before atomic variable goto zero, we must make sure
5744 * dip->errors is perceived to be set.
5746 smp_mb__before_atomic_dec();
5749 /* if there are more bios still pending for this dio, just exit */
5750 if (!atomic_dec_and_test(&dip
->pending_bios
))
5754 bio_io_error(dip
->orig_bio
);
5756 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5757 bio_endio(dip
->orig_bio
, 0);
5763 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5764 u64 first_sector
, gfp_t gfp_flags
)
5766 int nr_vecs
= bio_get_nr_vecs(bdev
);
5767 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5770 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5771 int rw
, u64 file_offset
, int skip_sum
,
5774 int write
= rw
& REQ_WRITE
;
5775 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5779 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5783 if (write
&& !skip_sum
) {
5784 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5785 inode
, rw
, bio
, 0, 0,
5787 __btrfs_submit_bio_start_direct_io
,
5788 __btrfs_submit_bio_done
);
5790 } else if (!skip_sum
)
5791 btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
5792 file_offset
, csums
);
5794 ret
= btrfs_map_bio(root
, rw
, bio
, 0, 1);
5800 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
5803 struct inode
*inode
= dip
->inode
;
5804 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5805 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5807 struct bio
*orig_bio
= dip
->orig_bio
;
5808 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
5809 u64 start_sector
= orig_bio
->bi_sector
;
5810 u64 file_offset
= dip
->logical_offset
;
5814 u32
*csums
= dip
->csums
;
5817 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
5820 bio
->bi_private
= dip
;
5821 bio
->bi_end_io
= btrfs_end_dio_bio
;
5822 atomic_inc(&dip
->pending_bios
);
5824 map_length
= orig_bio
->bi_size
;
5825 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5826 &map_length
, NULL
, 0);
5832 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
5833 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
5834 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5835 bvec
->bv_offset
) < bvec
->bv_len
)) {
5837 * inc the count before we submit the bio so
5838 * we know the end IO handler won't happen before
5839 * we inc the count. Otherwise, the dip might get freed
5840 * before we're done setting it up
5842 atomic_inc(&dip
->pending_bios
);
5843 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
5844 file_offset
, skip_sum
,
5848 atomic_dec(&dip
->pending_bios
);
5853 csums
= csums
+ nr_pages
;
5854 start_sector
+= submit_len
>> 9;
5855 file_offset
+= submit_len
;
5860 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
5861 start_sector
, GFP_NOFS
);
5864 bio
->bi_private
= dip
;
5865 bio
->bi_end_io
= btrfs_end_dio_bio
;
5867 map_length
= orig_bio
->bi_size
;
5868 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5869 &map_length
, NULL
, 0);
5875 submit_len
+= bvec
->bv_len
;
5881 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
5890 * before atomic variable goto zero, we must
5891 * make sure dip->errors is perceived to be set.
5893 smp_mb__before_atomic_dec();
5894 if (atomic_dec_and_test(&dip
->pending_bios
))
5895 bio_io_error(dip
->orig_bio
);
5897 /* bio_end_io() will handle error, so we needn't return it */
5901 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
5904 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5905 struct btrfs_dio_private
*dip
;
5906 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5908 int write
= rw
& REQ_WRITE
;
5911 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
5913 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
5921 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
5928 dip
->private = bio
->bi_private
;
5930 dip
->logical_offset
= file_offset
;
5934 dip
->bytes
+= bvec
->bv_len
;
5936 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
5938 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
5939 bio
->bi_private
= dip
;
5941 dip
->orig_bio
= bio
;
5942 atomic_set(&dip
->pending_bios
, 0);
5945 bio
->bi_end_io
= btrfs_endio_direct_write
;
5947 bio
->bi_end_io
= btrfs_endio_direct_read
;
5949 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
5954 * If this is a write, we need to clean up the reserved space and kill
5955 * the ordered extent.
5958 struct btrfs_ordered_extent
*ordered
;
5959 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
5960 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
5961 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
5962 btrfs_free_reserved_extent(root
, ordered
->start
,
5964 btrfs_put_ordered_extent(ordered
);
5965 btrfs_put_ordered_extent(ordered
);
5967 bio_endio(bio
, ret
);
5970 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
5971 const struct iovec
*iov
, loff_t offset
,
5972 unsigned long nr_segs
)
5977 unsigned blocksize_mask
= root
->sectorsize
- 1;
5978 ssize_t retval
= -EINVAL
;
5979 loff_t end
= offset
;
5981 if (offset
& blocksize_mask
)
5984 /* Check the memory alignment. Blocks cannot straddle pages */
5985 for (seg
= 0; seg
< nr_segs
; seg
++) {
5986 addr
= (unsigned long)iov
[seg
].iov_base
;
5987 size
= iov
[seg
].iov_len
;
5989 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
5996 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
5997 const struct iovec
*iov
, loff_t offset
,
5998 unsigned long nr_segs
)
6000 struct file
*file
= iocb
->ki_filp
;
6001 struct inode
*inode
= file
->f_mapping
->host
;
6002 struct btrfs_ordered_extent
*ordered
;
6003 struct extent_state
*cached_state
= NULL
;
6004 u64 lockstart
, lockend
;
6006 int writing
= rw
& WRITE
;
6008 size_t count
= iov_length(iov
, nr_segs
);
6010 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6016 lockend
= offset
+ count
- 1;
6019 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6025 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6026 0, &cached_state
, GFP_NOFS
);
6028 * We're concerned with the entire range that we're going to be
6029 * doing DIO to, so we need to make sure theres no ordered
6030 * extents in this range.
6032 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6033 lockend
- lockstart
+ 1);
6036 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6037 &cached_state
, GFP_NOFS
);
6038 btrfs_start_ordered_extent(inode
, ordered
, 1);
6039 btrfs_put_ordered_extent(ordered
);
6044 * we don't use btrfs_set_extent_delalloc because we don't want
6045 * the dirty or uptodate bits
6048 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6049 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6050 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6053 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6054 lockend
, EXTENT_LOCKED
| write_bits
,
6055 1, 0, &cached_state
, GFP_NOFS
);
6060 free_extent_state(cached_state
);
6061 cached_state
= NULL
;
6063 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6064 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6065 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6066 btrfs_submit_direct
, 0);
6068 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6069 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6070 offset
+ iov_length(iov
, nr_segs
) - 1,
6071 EXTENT_LOCKED
| write_bits
, 1, 0,
6072 &cached_state
, GFP_NOFS
);
6073 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6075 * We're falling back to buffered, unlock the section we didn't
6078 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6079 offset
+ iov_length(iov
, nr_segs
) - 1,
6080 EXTENT_LOCKED
| write_bits
, 1, 0,
6081 &cached_state
, GFP_NOFS
);
6084 free_extent_state(cached_state
);
6088 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6089 __u64 start
, __u64 len
)
6091 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent
);
6094 int btrfs_readpage(struct file
*file
, struct page
*page
)
6096 struct extent_io_tree
*tree
;
6097 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6098 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
6101 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6103 struct extent_io_tree
*tree
;
6106 if (current
->flags
& PF_MEMALLOC
) {
6107 redirty_page_for_writepage(wbc
, page
);
6111 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6112 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6115 int btrfs_writepages(struct address_space
*mapping
,
6116 struct writeback_control
*wbc
)
6118 struct extent_io_tree
*tree
;
6120 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6121 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6125 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6126 struct list_head
*pages
, unsigned nr_pages
)
6128 struct extent_io_tree
*tree
;
6129 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6130 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6133 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6135 struct extent_io_tree
*tree
;
6136 struct extent_map_tree
*map
;
6139 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6140 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6141 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6143 ClearPagePrivate(page
);
6144 set_page_private(page
, 0);
6145 page_cache_release(page
);
6150 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6152 if (PageWriteback(page
) || PageDirty(page
))
6154 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6157 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6159 struct extent_io_tree
*tree
;
6160 struct btrfs_ordered_extent
*ordered
;
6161 struct extent_state
*cached_state
= NULL
;
6162 u64 page_start
= page_offset(page
);
6163 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6167 * we have the page locked, so new writeback can't start,
6168 * and the dirty bit won't be cleared while we are here.
6170 * Wait for IO on this page so that we can safely clear
6171 * the PagePrivate2 bit and do ordered accounting
6173 wait_on_page_writeback(page
);
6175 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6177 btrfs_releasepage(page
, GFP_NOFS
);
6180 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6182 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6186 * IO on this page will never be started, so we need
6187 * to account for any ordered extents now
6189 clear_extent_bit(tree
, page_start
, page_end
,
6190 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6191 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6192 &cached_state
, GFP_NOFS
);
6194 * whoever cleared the private bit is responsible
6195 * for the finish_ordered_io
6197 if (TestClearPagePrivate2(page
)) {
6198 btrfs_finish_ordered_io(page
->mapping
->host
,
6199 page_start
, page_end
);
6201 btrfs_put_ordered_extent(ordered
);
6202 cached_state
= NULL
;
6203 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6206 clear_extent_bit(tree
, page_start
, page_end
,
6207 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6208 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6209 __btrfs_releasepage(page
, GFP_NOFS
);
6211 ClearPageChecked(page
);
6212 if (PagePrivate(page
)) {
6213 ClearPagePrivate(page
);
6214 set_page_private(page
, 0);
6215 page_cache_release(page
);
6220 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6221 * called from a page fault handler when a page is first dirtied. Hence we must
6222 * be careful to check for EOF conditions here. We set the page up correctly
6223 * for a written page which means we get ENOSPC checking when writing into
6224 * holes and correct delalloc and unwritten extent mapping on filesystems that
6225 * support these features.
6227 * We are not allowed to take the i_mutex here so we have to play games to
6228 * protect against truncate races as the page could now be beyond EOF. Because
6229 * vmtruncate() writes the inode size before removing pages, once we have the
6230 * page lock we can determine safely if the page is beyond EOF. If it is not
6231 * beyond EOF, then the page is guaranteed safe against truncation until we
6234 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6236 struct page
*page
= vmf
->page
;
6237 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6238 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6239 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6240 struct btrfs_ordered_extent
*ordered
;
6241 struct extent_state
*cached_state
= NULL
;
6243 unsigned long zero_start
;
6249 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6253 else /* -ENOSPC, -EIO, etc */
6254 ret
= VM_FAULT_SIGBUS
;
6258 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6261 size
= i_size_read(inode
);
6262 page_start
= page_offset(page
);
6263 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6265 if ((page
->mapping
!= inode
->i_mapping
) ||
6266 (page_start
>= size
)) {
6267 /* page got truncated out from underneath us */
6270 wait_on_page_writeback(page
);
6272 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6274 set_page_extent_mapped(page
);
6277 * we can't set the delalloc bits if there are pending ordered
6278 * extents. Drop our locks and wait for them to finish
6280 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6282 unlock_extent_cached(io_tree
, page_start
, page_end
,
6283 &cached_state
, GFP_NOFS
);
6285 btrfs_start_ordered_extent(inode
, ordered
, 1);
6286 btrfs_put_ordered_extent(ordered
);
6291 * XXX - page_mkwrite gets called every time the page is dirtied, even
6292 * if it was already dirty, so for space accounting reasons we need to
6293 * clear any delalloc bits for the range we are fixing to save. There
6294 * is probably a better way to do this, but for now keep consistent with
6295 * prepare_pages in the normal write path.
6297 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6298 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6299 0, 0, &cached_state
, GFP_NOFS
);
6301 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6304 unlock_extent_cached(io_tree
, page_start
, page_end
,
6305 &cached_state
, GFP_NOFS
);
6306 ret
= VM_FAULT_SIGBUS
;
6311 /* page is wholly or partially inside EOF */
6312 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6313 zero_start
= size
& ~PAGE_CACHE_MASK
;
6315 zero_start
= PAGE_CACHE_SIZE
;
6317 if (zero_start
!= PAGE_CACHE_SIZE
) {
6319 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6320 flush_dcache_page(page
);
6323 ClearPageChecked(page
);
6324 set_page_dirty(page
);
6325 SetPageUptodate(page
);
6327 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6328 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6330 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6334 return VM_FAULT_LOCKED
;
6336 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6341 static void btrfs_truncate(struct inode
*inode
)
6343 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6345 struct btrfs_trans_handle
*trans
;
6347 u64 mask
= root
->sectorsize
- 1;
6349 if (!S_ISREG(inode
->i_mode
)) {
6354 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6358 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6359 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6361 trans
= btrfs_start_transaction(root
, 0);
6362 BUG_ON(IS_ERR(trans
));
6363 btrfs_set_trans_block_group(trans
, inode
);
6364 trans
->block_rsv
= root
->orphan_block_rsv
;
6367 * setattr is responsible for setting the ordered_data_close flag,
6368 * but that is only tested during the last file release. That
6369 * could happen well after the next commit, leaving a great big
6370 * window where new writes may get lost if someone chooses to write
6371 * to this file after truncating to zero
6373 * The inode doesn't have any dirty data here, and so if we commit
6374 * this is a noop. If someone immediately starts writing to the inode
6375 * it is very likely we'll catch some of their writes in this
6376 * transaction, and the commit will find this file on the ordered
6377 * data list with good things to send down.
6379 * This is a best effort solution, there is still a window where
6380 * using truncate to replace the contents of the file will
6381 * end up with a zero length file after a crash.
6383 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6384 btrfs_add_ordered_operation(trans
, root
, inode
);
6388 trans
= btrfs_start_transaction(root
, 0);
6389 BUG_ON(IS_ERR(trans
));
6390 btrfs_set_trans_block_group(trans
, inode
);
6391 trans
->block_rsv
= root
->orphan_block_rsv
;
6394 ret
= btrfs_block_rsv_check(trans
, root
,
6395 root
->orphan_block_rsv
, 0, 5);
6397 BUG_ON(ret
!= -EAGAIN
);
6398 ret
= btrfs_commit_transaction(trans
, root
);
6404 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6406 BTRFS_EXTENT_DATA_KEY
);
6410 ret
= btrfs_update_inode(trans
, root
, inode
);
6413 nr
= trans
->blocks_used
;
6414 btrfs_end_transaction(trans
, root
);
6416 btrfs_btree_balance_dirty(root
, nr
);
6419 if (ret
== 0 && inode
->i_nlink
> 0) {
6420 ret
= btrfs_orphan_del(trans
, inode
);
6424 ret
= btrfs_update_inode(trans
, root
, inode
);
6427 nr
= trans
->blocks_used
;
6428 ret
= btrfs_end_transaction_throttle(trans
, root
);
6430 btrfs_btree_balance_dirty(root
, nr
);
6434 * create a new subvolume directory/inode (helper for the ioctl).
6436 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6437 struct btrfs_root
*new_root
,
6438 u64 new_dirid
, u64 alloc_hint
)
6440 struct inode
*inode
;
6444 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
6445 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
6447 return PTR_ERR(inode
);
6448 inode
->i_op
= &btrfs_dir_inode_operations
;
6449 inode
->i_fop
= &btrfs_dir_file_operations
;
6452 btrfs_i_size_write(inode
, 0);
6454 err
= btrfs_update_inode(trans
, new_root
, inode
);
6461 /* helper function for file defrag and space balancing. This
6462 * forces readahead on a given range of bytes in an inode
6464 unsigned long btrfs_force_ra(struct address_space
*mapping
,
6465 struct file_ra_state
*ra
, struct file
*file
,
6466 pgoff_t offset
, pgoff_t last_index
)
6468 pgoff_t req_size
= last_index
- offset
+ 1;
6470 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
6471 return offset
+ req_size
;
6474 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6476 struct btrfs_inode
*ei
;
6477 struct inode
*inode
;
6479 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6484 ei
->space_info
= NULL
;
6488 ei
->last_sub_trans
= 0;
6489 ei
->logged_trans
= 0;
6490 ei
->delalloc_bytes
= 0;
6491 ei
->reserved_bytes
= 0;
6492 ei
->disk_i_size
= 0;
6494 ei
->index_cnt
= (u64
)-1;
6495 ei
->last_unlink_trans
= 0;
6497 spin_lock_init(&ei
->accounting_lock
);
6498 atomic_set(&ei
->outstanding_extents
, 0);
6499 ei
->reserved_extents
= 0;
6501 ei
->ordered_data_close
= 0;
6502 ei
->orphan_meta_reserved
= 0;
6503 ei
->dummy_inode
= 0;
6504 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
6506 inode
= &ei
->vfs_inode
;
6507 extent_map_tree_init(&ei
->extent_tree
, GFP_NOFS
);
6508 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
, GFP_NOFS
);
6509 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
, GFP_NOFS
);
6510 mutex_init(&ei
->log_mutex
);
6511 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6512 INIT_LIST_HEAD(&ei
->i_orphan
);
6513 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6514 INIT_LIST_HEAD(&ei
->ordered_operations
);
6515 RB_CLEAR_NODE(&ei
->rb_node
);
6520 static void btrfs_i_callback(struct rcu_head
*head
)
6522 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6523 INIT_LIST_HEAD(&inode
->i_dentry
);
6524 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6527 void btrfs_destroy_inode(struct inode
*inode
)
6529 struct btrfs_ordered_extent
*ordered
;
6530 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6532 WARN_ON(!list_empty(&inode
->i_dentry
));
6533 WARN_ON(inode
->i_data
.nrpages
);
6534 WARN_ON(atomic_read(&BTRFS_I(inode
)->outstanding_extents
));
6535 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
6538 * This can happen where we create an inode, but somebody else also
6539 * created the same inode and we need to destroy the one we already
6546 * Make sure we're properly removed from the ordered operation
6550 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6551 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6552 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6553 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6556 if (root
== root
->fs_info
->tree_root
) {
6557 struct btrfs_block_group_cache
*block_group
;
6559 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6560 BTRFS_I(inode
)->block_group
);
6561 if (block_group
&& block_group
->inode
== inode
) {
6562 spin_lock(&block_group
->lock
);
6563 block_group
->inode
= NULL
;
6564 spin_unlock(&block_group
->lock
);
6565 btrfs_put_block_group(block_group
);
6566 } else if (block_group
) {
6567 btrfs_put_block_group(block_group
);
6571 spin_lock(&root
->orphan_lock
);
6572 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6573 printk(KERN_INFO
"BTRFS: inode %lu still on the orphan list\n",
6575 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6577 spin_unlock(&root
->orphan_lock
);
6580 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6584 printk(KERN_ERR
"btrfs found ordered "
6585 "extent %llu %llu on inode cleanup\n",
6586 (unsigned long long)ordered
->file_offset
,
6587 (unsigned long long)ordered
->len
);
6588 btrfs_remove_ordered_extent(inode
, ordered
);
6589 btrfs_put_ordered_extent(ordered
);
6590 btrfs_put_ordered_extent(ordered
);
6593 inode_tree_del(inode
);
6594 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6596 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6599 int btrfs_drop_inode(struct inode
*inode
)
6601 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6603 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6604 root
!= root
->fs_info
->tree_root
)
6607 return generic_drop_inode(inode
);
6610 static void init_once(void *foo
)
6612 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6614 inode_init_once(&ei
->vfs_inode
);
6617 void btrfs_destroy_cachep(void)
6619 if (btrfs_inode_cachep
)
6620 kmem_cache_destroy(btrfs_inode_cachep
);
6621 if (btrfs_trans_handle_cachep
)
6622 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6623 if (btrfs_transaction_cachep
)
6624 kmem_cache_destroy(btrfs_transaction_cachep
);
6625 if (btrfs_path_cachep
)
6626 kmem_cache_destroy(btrfs_path_cachep
);
6629 int btrfs_init_cachep(void)
6631 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6632 sizeof(struct btrfs_inode
), 0,
6633 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6634 if (!btrfs_inode_cachep
)
6637 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6638 sizeof(struct btrfs_trans_handle
), 0,
6639 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6640 if (!btrfs_trans_handle_cachep
)
6643 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6644 sizeof(struct btrfs_transaction
), 0,
6645 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6646 if (!btrfs_transaction_cachep
)
6649 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6650 sizeof(struct btrfs_path
), 0,
6651 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6652 if (!btrfs_path_cachep
)
6657 btrfs_destroy_cachep();
6661 static int btrfs_getattr(struct vfsmount
*mnt
,
6662 struct dentry
*dentry
, struct kstat
*stat
)
6664 struct inode
*inode
= dentry
->d_inode
;
6665 generic_fillattr(inode
, stat
);
6666 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
6667 stat
->blksize
= PAGE_CACHE_SIZE
;
6668 stat
->blocks
= (inode_get_bytes(inode
) +
6669 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
6673 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6674 struct inode
*new_dir
, struct dentry
*new_dentry
)
6676 struct btrfs_trans_handle
*trans
;
6677 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6678 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6679 struct inode
*new_inode
= new_dentry
->d_inode
;
6680 struct inode
*old_inode
= old_dentry
->d_inode
;
6681 struct timespec ctime
= CURRENT_TIME
;
6686 if (new_dir
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6689 /* we only allow rename subvolume link between subvolumes */
6690 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
6693 if (old_inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
6694 (new_inode
&& new_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
))
6697 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
6698 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
6701 * we're using rename to replace one file with another.
6702 * and the replacement file is large. Start IO on it now so
6703 * we don't add too much work to the end of the transaction
6705 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
6706 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
6707 filemap_flush(old_inode
->i_mapping
);
6709 /* close the racy window with snapshot create/destroy ioctl */
6710 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6711 down_read(&root
->fs_info
->subvol_sem
);
6713 * We want to reserve the absolute worst case amount of items. So if
6714 * both inodes are subvols and we need to unlink them then that would
6715 * require 4 item modifications, but if they are both normal inodes it
6716 * would require 5 item modifications, so we'll assume their normal
6717 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6718 * should cover the worst case number of items we'll modify.
6720 trans
= btrfs_start_transaction(root
, 20);
6722 return PTR_ERR(trans
);
6724 btrfs_set_trans_block_group(trans
, new_dir
);
6727 btrfs_record_root_in_trans(trans
, dest
);
6729 ret
= btrfs_set_inode_index(new_dir
, &index
);
6733 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6734 /* force full log commit if subvolume involved. */
6735 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
6737 ret
= btrfs_insert_inode_ref(trans
, dest
,
6738 new_dentry
->d_name
.name
,
6739 new_dentry
->d_name
.len
,
6741 new_dir
->i_ino
, index
);
6745 * this is an ugly little race, but the rename is required
6746 * to make sure that if we crash, the inode is either at the
6747 * old name or the new one. pinning the log transaction lets
6748 * us make sure we don't allow a log commit to come in after
6749 * we unlink the name but before we add the new name back in.
6751 btrfs_pin_log_trans(root
);
6754 * make sure the inode gets flushed if it is replacing
6757 if (new_inode
&& new_inode
->i_size
&&
6758 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
6759 btrfs_add_ordered_operation(trans
, root
, old_inode
);
6762 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
6763 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
6764 old_inode
->i_ctime
= ctime
;
6766 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
6767 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
6769 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6770 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
6771 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
6772 old_dentry
->d_name
.name
,
6773 old_dentry
->d_name
.len
);
6775 btrfs_inc_nlink(old_dentry
->d_inode
);
6776 ret
= btrfs_unlink_inode(trans
, root
, old_dir
,
6777 old_dentry
->d_inode
,
6778 old_dentry
->d_name
.name
,
6779 old_dentry
->d_name
.len
);
6784 new_inode
->i_ctime
= CURRENT_TIME
;
6785 if (unlikely(new_inode
->i_ino
==
6786 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
6787 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
6788 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
6790 new_dentry
->d_name
.name
,
6791 new_dentry
->d_name
.len
);
6792 BUG_ON(new_inode
->i_nlink
== 0);
6794 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
6795 new_dentry
->d_inode
,
6796 new_dentry
->d_name
.name
,
6797 new_dentry
->d_name
.len
);
6800 if (new_inode
->i_nlink
== 0) {
6801 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
6806 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
6807 new_dentry
->d_name
.name
,
6808 new_dentry
->d_name
.len
, 0, index
);
6811 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
6812 struct dentry
*parent
= dget_parent(new_dentry
);
6813 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
6815 btrfs_end_log_trans(root
);
6818 btrfs_end_transaction_throttle(trans
, root
);
6820 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6821 up_read(&root
->fs_info
->subvol_sem
);
6827 * some fairly slow code that needs optimization. This walks the list
6828 * of all the inodes with pending delalloc and forces them to disk.
6830 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
6832 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
6833 struct btrfs_inode
*binode
;
6834 struct inode
*inode
;
6836 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
6839 spin_lock(&root
->fs_info
->delalloc_lock
);
6840 while (!list_empty(head
)) {
6841 binode
= list_entry(head
->next
, struct btrfs_inode
,
6843 inode
= igrab(&binode
->vfs_inode
);
6845 list_del_init(&binode
->delalloc_inodes
);
6846 spin_unlock(&root
->fs_info
->delalloc_lock
);
6848 filemap_flush(inode
->i_mapping
);
6850 btrfs_add_delayed_iput(inode
);
6855 spin_lock(&root
->fs_info
->delalloc_lock
);
6857 spin_unlock(&root
->fs_info
->delalloc_lock
);
6859 /* the filemap_flush will queue IO into the worker threads, but
6860 * we have to make sure the IO is actually started and that
6861 * ordered extents get created before we return
6863 atomic_inc(&root
->fs_info
->async_submit_draining
);
6864 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
6865 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
6866 wait_event(root
->fs_info
->async_submit_wait
,
6867 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
6868 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
6870 atomic_dec(&root
->fs_info
->async_submit_draining
);
6874 int btrfs_start_one_delalloc_inode(struct btrfs_root
*root
, int delay_iput
,
6877 struct btrfs_inode
*binode
;
6878 struct inode
*inode
= NULL
;
6880 spin_lock(&root
->fs_info
->delalloc_lock
);
6881 while (!list_empty(&root
->fs_info
->delalloc_inodes
)) {
6882 binode
= list_entry(root
->fs_info
->delalloc_inodes
.next
,
6883 struct btrfs_inode
, delalloc_inodes
);
6884 inode
= igrab(&binode
->vfs_inode
);
6886 list_move_tail(&binode
->delalloc_inodes
,
6887 &root
->fs_info
->delalloc_inodes
);
6891 list_del_init(&binode
->delalloc_inodes
);
6892 cond_resched_lock(&root
->fs_info
->delalloc_lock
);
6894 spin_unlock(&root
->fs_info
->delalloc_lock
);
6898 filemap_write_and_wait(inode
->i_mapping
);
6900 * We have to do this because compression doesn't
6901 * actually set PG_writeback until it submits the pages
6902 * for IO, which happens in an async thread, so we could
6903 * race and not actually wait for any writeback pages
6904 * because they've not been submitted yet. Technically
6905 * this could still be the case for the ordered stuff
6906 * since the async thread may not have started to do its
6907 * work yet. If this becomes the case then we need to
6908 * figure out a way to make sure that in writepage we
6909 * wait for any async pages to be submitted before
6910 * returning so that fdatawait does what its supposed to
6913 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
6915 filemap_flush(inode
->i_mapping
);
6918 btrfs_add_delayed_iput(inode
);
6926 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
6927 const char *symname
)
6929 struct btrfs_trans_handle
*trans
;
6930 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6931 struct btrfs_path
*path
;
6932 struct btrfs_key key
;
6933 struct inode
*inode
= NULL
;
6941 struct btrfs_file_extent_item
*ei
;
6942 struct extent_buffer
*leaf
;
6943 unsigned long nr
= 0;
6945 name_len
= strlen(symname
) + 1;
6946 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
6947 return -ENAMETOOLONG
;
6949 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
6953 * 2 items for inode item and ref
6954 * 2 items for dir items
6955 * 1 item for xattr if selinux is on
6957 trans
= btrfs_start_transaction(root
, 5);
6959 return PTR_ERR(trans
);
6961 btrfs_set_trans_block_group(trans
, dir
);
6963 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6964 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
6965 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
6967 err
= PTR_ERR(inode
);
6971 err
= btrfs_init_inode_security(trans
, inode
, dir
);
6977 btrfs_set_trans_block_group(trans
, inode
);
6978 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6982 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6983 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
6984 inode
->i_fop
= &btrfs_file_operations
;
6985 inode
->i_op
= &btrfs_file_inode_operations
;
6986 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6988 btrfs_update_inode_block_group(trans
, inode
);
6989 btrfs_update_inode_block_group(trans
, dir
);
6993 path
= btrfs_alloc_path();
6995 key
.objectid
= inode
->i_ino
;
6997 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
6998 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
6999 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7005 leaf
= path
->nodes
[0];
7006 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7007 struct btrfs_file_extent_item
);
7008 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7009 btrfs_set_file_extent_type(leaf
, ei
,
7010 BTRFS_FILE_EXTENT_INLINE
);
7011 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7012 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7013 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7014 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7016 ptr
= btrfs_file_extent_inline_start(ei
);
7017 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7018 btrfs_mark_buffer_dirty(leaf
);
7019 btrfs_free_path(path
);
7021 inode
->i_op
= &btrfs_symlink_inode_operations
;
7022 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7023 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7024 inode_set_bytes(inode
, name_len
);
7025 btrfs_i_size_write(inode
, name_len
- 1);
7026 err
= btrfs_update_inode(trans
, root
, inode
);
7031 nr
= trans
->blocks_used
;
7032 btrfs_end_transaction_throttle(trans
, root
);
7034 inode_dec_link_count(inode
);
7037 btrfs_btree_balance_dirty(root
, nr
);
7041 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7042 u64 start
, u64 num_bytes
, u64 min_size
,
7043 loff_t actual_len
, u64
*alloc_hint
,
7044 struct btrfs_trans_handle
*trans
)
7046 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7047 struct btrfs_key ins
;
7048 u64 cur_offset
= start
;
7051 bool own_trans
= true;
7055 while (num_bytes
> 0) {
7057 trans
= btrfs_start_transaction(root
, 3);
7058 if (IS_ERR(trans
)) {
7059 ret
= PTR_ERR(trans
);
7064 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7065 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7068 btrfs_end_transaction(trans
, root
);
7072 ret
= insert_reserved_file_extent(trans
, inode
,
7073 cur_offset
, ins
.objectid
,
7074 ins
.offset
, ins
.offset
,
7075 ins
.offset
, 0, 0, 0,
7076 BTRFS_FILE_EXTENT_PREALLOC
);
7078 btrfs_drop_extent_cache(inode
, cur_offset
,
7079 cur_offset
+ ins
.offset
-1, 0);
7081 num_bytes
-= ins
.offset
;
7082 cur_offset
+= ins
.offset
;
7083 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7085 inode
->i_ctime
= CURRENT_TIME
;
7086 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7087 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7088 (actual_len
> inode
->i_size
) &&
7089 (cur_offset
> inode
->i_size
)) {
7090 if (cur_offset
> actual_len
)
7091 i_size
= actual_len
;
7093 i_size
= cur_offset
;
7094 i_size_write(inode
, i_size
);
7095 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7098 ret
= btrfs_update_inode(trans
, root
, inode
);
7102 btrfs_end_transaction(trans
, root
);
7107 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7108 u64 start
, u64 num_bytes
, u64 min_size
,
7109 loff_t actual_len
, u64
*alloc_hint
)
7111 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7112 min_size
, actual_len
, alloc_hint
,
7116 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7117 struct btrfs_trans_handle
*trans
, int mode
,
7118 u64 start
, u64 num_bytes
, u64 min_size
,
7119 loff_t actual_len
, u64
*alloc_hint
)
7121 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7122 min_size
, actual_len
, alloc_hint
, trans
);
7125 static int btrfs_set_page_dirty(struct page
*page
)
7127 return __set_page_dirty_nobuffers(page
);
7130 static int btrfs_permission(struct inode
*inode
, int mask
, unsigned int flags
)
7132 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7134 if (btrfs_root_readonly(root
) && (mask
& MAY_WRITE
))
7136 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
7138 return generic_permission(inode
, mask
, flags
, btrfs_check_acl
);
7141 static const struct inode_operations btrfs_dir_inode_operations
= {
7142 .getattr
= btrfs_getattr
,
7143 .lookup
= btrfs_lookup
,
7144 .create
= btrfs_create
,
7145 .unlink
= btrfs_unlink
,
7147 .mkdir
= btrfs_mkdir
,
7148 .rmdir
= btrfs_rmdir
,
7149 .rename
= btrfs_rename
,
7150 .symlink
= btrfs_symlink
,
7151 .setattr
= btrfs_setattr
,
7152 .mknod
= btrfs_mknod
,
7153 .setxattr
= btrfs_setxattr
,
7154 .getxattr
= btrfs_getxattr
,
7155 .listxattr
= btrfs_listxattr
,
7156 .removexattr
= btrfs_removexattr
,
7157 .permission
= btrfs_permission
,
7159 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7160 .lookup
= btrfs_lookup
,
7161 .permission
= btrfs_permission
,
7164 static const struct file_operations btrfs_dir_file_operations
= {
7165 .llseek
= generic_file_llseek
,
7166 .read
= generic_read_dir
,
7167 .readdir
= btrfs_real_readdir
,
7168 .unlocked_ioctl
= btrfs_ioctl
,
7169 #ifdef CONFIG_COMPAT
7170 .compat_ioctl
= btrfs_ioctl
,
7172 .release
= btrfs_release_file
,
7173 .fsync
= btrfs_sync_file
,
7176 static struct extent_io_ops btrfs_extent_io_ops
= {
7177 .fill_delalloc
= run_delalloc_range
,
7178 .submit_bio_hook
= btrfs_submit_bio_hook
,
7179 .merge_bio_hook
= btrfs_merge_bio_hook
,
7180 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7181 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7182 .writepage_start_hook
= btrfs_writepage_start_hook
,
7183 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
7184 .set_bit_hook
= btrfs_set_bit_hook
,
7185 .clear_bit_hook
= btrfs_clear_bit_hook
,
7186 .merge_extent_hook
= btrfs_merge_extent_hook
,
7187 .split_extent_hook
= btrfs_split_extent_hook
,
7191 * btrfs doesn't support the bmap operation because swapfiles
7192 * use bmap to make a mapping of extents in the file. They assume
7193 * these extents won't change over the life of the file and they
7194 * use the bmap result to do IO directly to the drive.
7196 * the btrfs bmap call would return logical addresses that aren't
7197 * suitable for IO and they also will change frequently as COW
7198 * operations happen. So, swapfile + btrfs == corruption.
7200 * For now we're avoiding this by dropping bmap.
7202 static const struct address_space_operations btrfs_aops
= {
7203 .readpage
= btrfs_readpage
,
7204 .writepage
= btrfs_writepage
,
7205 .writepages
= btrfs_writepages
,
7206 .readpages
= btrfs_readpages
,
7207 .sync_page
= block_sync_page
,
7208 .direct_IO
= btrfs_direct_IO
,
7209 .invalidatepage
= btrfs_invalidatepage
,
7210 .releasepage
= btrfs_releasepage
,
7211 .set_page_dirty
= btrfs_set_page_dirty
,
7212 .error_remove_page
= generic_error_remove_page
,
7215 static const struct address_space_operations btrfs_symlink_aops
= {
7216 .readpage
= btrfs_readpage
,
7217 .writepage
= btrfs_writepage
,
7218 .invalidatepage
= btrfs_invalidatepage
,
7219 .releasepage
= btrfs_releasepage
,
7222 static const struct inode_operations btrfs_file_inode_operations
= {
7223 .truncate
= btrfs_truncate
,
7224 .getattr
= btrfs_getattr
,
7225 .setattr
= btrfs_setattr
,
7226 .setxattr
= btrfs_setxattr
,
7227 .getxattr
= btrfs_getxattr
,
7228 .listxattr
= btrfs_listxattr
,
7229 .removexattr
= btrfs_removexattr
,
7230 .permission
= btrfs_permission
,
7231 .fiemap
= btrfs_fiemap
,
7233 static const struct inode_operations btrfs_special_inode_operations
= {
7234 .getattr
= btrfs_getattr
,
7235 .setattr
= btrfs_setattr
,
7236 .permission
= btrfs_permission
,
7237 .setxattr
= btrfs_setxattr
,
7238 .getxattr
= btrfs_getxattr
,
7239 .listxattr
= btrfs_listxattr
,
7240 .removexattr
= btrfs_removexattr
,
7242 static const struct inode_operations btrfs_symlink_inode_operations
= {
7243 .readlink
= generic_readlink
,
7244 .follow_link
= page_follow_link_light
,
7245 .put_link
= page_put_link
,
7246 .getattr
= btrfs_getattr
,
7247 .permission
= btrfs_permission
,
7248 .setxattr
= btrfs_setxattr
,
7249 .getxattr
= btrfs_getxattr
,
7250 .listxattr
= btrfs_listxattr
,
7251 .removexattr
= btrfs_removexattr
,
7254 const struct dentry_operations btrfs_dentry_operations
= {
7255 .d_delete
= btrfs_dentry_delete
,