4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_alloc_sem (various)
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * (code doesn't rely on that order, so you could switch it around)
106 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __remove_from_page_cache(struct page
*page
)
117 struct address_space
*mapping
= page
->mapping
;
119 radix_tree_delete(&mapping
->page_tree
, page
->index
);
120 page
->mapping
= NULL
;
122 __dec_zone_page_state(page
, NR_FILE_PAGES
);
123 if (PageSwapBacked(page
))
124 __dec_zone_page_state(page
, NR_SHMEM
);
125 BUG_ON(page_mapped(page
));
128 * Some filesystems seem to re-dirty the page even after
129 * the VM has canceled the dirty bit (eg ext3 journaling).
131 * Fix it up by doing a final dirty accounting check after
132 * having removed the page entirely.
134 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
135 dec_zone_page_state(page
, NR_FILE_DIRTY
);
136 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
140 void remove_from_page_cache(struct page
*page
)
142 struct address_space
*mapping
= page
->mapping
;
143 void (*freepage
)(struct page
*);
145 BUG_ON(!PageLocked(page
));
147 freepage
= mapping
->a_ops
->freepage
;
148 spin_lock_irq(&mapping
->tree_lock
);
149 __remove_from_page_cache(page
);
150 spin_unlock_irq(&mapping
->tree_lock
);
151 mem_cgroup_uncharge_cache_page(page
);
156 EXPORT_SYMBOL(remove_from_page_cache
);
158 static int sync_page(void *word
)
160 struct address_space
*mapping
;
163 page
= container_of((unsigned long *)word
, struct page
, flags
);
166 * page_mapping() is being called without PG_locked held.
167 * Some knowledge of the state and use of the page is used to
168 * reduce the requirements down to a memory barrier.
169 * The danger here is of a stale page_mapping() return value
170 * indicating a struct address_space different from the one it's
171 * associated with when it is associated with one.
172 * After smp_mb(), it's either the correct page_mapping() for
173 * the page, or an old page_mapping() and the page's own
174 * page_mapping() has gone NULL.
175 * The ->sync_page() address_space operation must tolerate
176 * page_mapping() going NULL. By an amazing coincidence,
177 * this comes about because none of the users of the page
178 * in the ->sync_page() methods make essential use of the
179 * page_mapping(), merely passing the page down to the backing
180 * device's unplug functions when it's non-NULL, which in turn
181 * ignore it for all cases but swap, where only page_private(page) is
182 * of interest. When page_mapping() does go NULL, the entire
183 * call stack gracefully ignores the page and returns.
187 mapping
= page_mapping(page
);
188 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
189 mapping
->a_ops
->sync_page(page
);
194 static int sync_page_killable(void *word
)
197 return fatal_signal_pending(current
) ? -EINTR
: 0;
201 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
202 * @mapping: address space structure to write
203 * @start: offset in bytes where the range starts
204 * @end: offset in bytes where the range ends (inclusive)
205 * @sync_mode: enable synchronous operation
207 * Start writeback against all of a mapping's dirty pages that lie
208 * within the byte offsets <start, end> inclusive.
210 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
211 * opposed to a regular memory cleansing writeback. The difference between
212 * these two operations is that if a dirty page/buffer is encountered, it must
213 * be waited upon, and not just skipped over.
215 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
216 loff_t end
, int sync_mode
)
219 struct writeback_control wbc
= {
220 .sync_mode
= sync_mode
,
221 .nr_to_write
= LONG_MAX
,
222 .range_start
= start
,
226 if (!mapping_cap_writeback_dirty(mapping
))
229 ret
= do_writepages(mapping
, &wbc
);
233 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
236 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
239 int filemap_fdatawrite(struct address_space
*mapping
)
241 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
243 EXPORT_SYMBOL(filemap_fdatawrite
);
245 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
248 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
250 EXPORT_SYMBOL(filemap_fdatawrite_range
);
253 * filemap_flush - mostly a non-blocking flush
254 * @mapping: target address_space
256 * This is a mostly non-blocking flush. Not suitable for data-integrity
257 * purposes - I/O may not be started against all dirty pages.
259 int filemap_flush(struct address_space
*mapping
)
261 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
263 EXPORT_SYMBOL(filemap_flush
);
266 * filemap_fdatawait_range - wait for writeback to complete
267 * @mapping: address space structure to wait for
268 * @start_byte: offset in bytes where the range starts
269 * @end_byte: offset in bytes where the range ends (inclusive)
271 * Walk the list of under-writeback pages of the given address space
272 * in the given range and wait for all of them.
274 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
277 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
278 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
283 if (end_byte
< start_byte
)
286 pagevec_init(&pvec
, 0);
287 while ((index
<= end
) &&
288 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
289 PAGECACHE_TAG_WRITEBACK
,
290 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
293 for (i
= 0; i
< nr_pages
; i
++) {
294 struct page
*page
= pvec
.pages
[i
];
296 /* until radix tree lookup accepts end_index */
297 if (page
->index
> end
)
300 wait_on_page_writeback(page
);
301 if (TestClearPageError(page
))
304 pagevec_release(&pvec
);
308 /* Check for outstanding write errors */
309 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
311 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
316 EXPORT_SYMBOL(filemap_fdatawait_range
);
319 * filemap_fdatawait - wait for all under-writeback pages to complete
320 * @mapping: address space structure to wait for
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
325 int filemap_fdatawait(struct address_space
*mapping
)
327 loff_t i_size
= i_size_read(mapping
->host
);
332 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
334 EXPORT_SYMBOL(filemap_fdatawait
);
336 int filemap_write_and_wait(struct address_space
*mapping
)
340 if (mapping
->nrpages
) {
341 err
= filemap_fdatawrite(mapping
);
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
349 int err2
= filemap_fdatawait(mapping
);
356 EXPORT_SYMBOL(filemap_write_and_wait
);
359 * filemap_write_and_wait_range - write out & wait on a file range
360 * @mapping: the address_space for the pages
361 * @lstart: offset in bytes where the range starts
362 * @lend: offset in bytes where the range ends (inclusive)
364 * Write out and wait upon file offsets lstart->lend, inclusive.
366 * Note that `lend' is inclusive (describes the last byte to be written) so
367 * that this function can be used to write to the very end-of-file (end = -1).
369 int filemap_write_and_wait_range(struct address_space
*mapping
,
370 loff_t lstart
, loff_t lend
)
374 if (mapping
->nrpages
) {
375 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
377 /* See comment of filemap_write_and_wait() */
379 int err2
= filemap_fdatawait_range(mapping
,
387 EXPORT_SYMBOL(filemap_write_and_wait_range
);
390 * add_to_page_cache_locked - add a locked page to the pagecache
392 * @mapping: the page's address_space
393 * @offset: page index
394 * @gfp_mask: page allocation mode
396 * This function is used to add a page to the pagecache. It must be locked.
397 * This function does not add the page to the LRU. The caller must do that.
399 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
400 pgoff_t offset
, gfp_t gfp_mask
)
404 VM_BUG_ON(!PageLocked(page
));
406 error
= mem_cgroup_cache_charge(page
, current
->mm
,
407 gfp_mask
& GFP_RECLAIM_MASK
);
411 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
413 page_cache_get(page
);
414 page
->mapping
= mapping
;
415 page
->index
= offset
;
417 spin_lock_irq(&mapping
->tree_lock
);
418 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
419 if (likely(!error
)) {
421 __inc_zone_page_state(page
, NR_FILE_PAGES
);
422 if (PageSwapBacked(page
))
423 __inc_zone_page_state(page
, NR_SHMEM
);
424 spin_unlock_irq(&mapping
->tree_lock
);
426 page
->mapping
= NULL
;
427 spin_unlock_irq(&mapping
->tree_lock
);
428 mem_cgroup_uncharge_cache_page(page
);
429 page_cache_release(page
);
431 radix_tree_preload_end();
433 mem_cgroup_uncharge_cache_page(page
);
437 EXPORT_SYMBOL(add_to_page_cache_locked
);
439 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
440 pgoff_t offset
, gfp_t gfp_mask
)
445 * Splice_read and readahead add shmem/tmpfs pages into the page cache
446 * before shmem_readpage has a chance to mark them as SwapBacked: they
447 * need to go on the anon lru below, and mem_cgroup_cache_charge
448 * (called in add_to_page_cache) needs to know where they're going too.
450 if (mapping_cap_swap_backed(mapping
))
451 SetPageSwapBacked(page
);
453 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
455 if (page_is_file_cache(page
))
456 lru_cache_add_file(page
);
458 lru_cache_add_anon(page
);
462 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
465 struct page
*__page_cache_alloc(gfp_t gfp
)
470 if (cpuset_do_page_mem_spread()) {
472 n
= cpuset_mem_spread_node();
473 page
= alloc_pages_exact_node(n
, gfp
, 0);
477 return alloc_pages(gfp
, 0);
479 EXPORT_SYMBOL(__page_cache_alloc
);
482 static int __sleep_on_page_lock(void *word
)
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
498 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
500 const struct zone
*zone
= page_zone(page
);
502 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
505 static inline void wake_up_page(struct page
*page
, int bit
)
507 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
510 void wait_on_page_bit(struct page
*page
, int bit_nr
)
512 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
514 if (test_bit(bit_nr
, &page
->flags
))
515 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
516 TASK_UNINTERRUPTIBLE
);
518 EXPORT_SYMBOL(wait_on_page_bit
);
521 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
522 * @page: Page defining the wait queue of interest
523 * @waiter: Waiter to add to the queue
525 * Add an arbitrary @waiter to the wait queue for the nominated @page.
527 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
529 wait_queue_head_t
*q
= page_waitqueue(page
);
532 spin_lock_irqsave(&q
->lock
, flags
);
533 __add_wait_queue(q
, waiter
);
534 spin_unlock_irqrestore(&q
->lock
, flags
);
536 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
539 * unlock_page - unlock a locked page
542 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
543 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
544 * mechananism between PageLocked pages and PageWriteback pages is shared.
545 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
547 * The mb is necessary to enforce ordering between the clear_bit and the read
548 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
550 void unlock_page(struct page
*page
)
552 VM_BUG_ON(!PageLocked(page
));
553 clear_bit_unlock(PG_locked
, &page
->flags
);
554 smp_mb__after_clear_bit();
555 wake_up_page(page
, PG_locked
);
557 EXPORT_SYMBOL(unlock_page
);
560 * end_page_writeback - end writeback against a page
563 void end_page_writeback(struct page
*page
)
565 if (TestClearPageReclaim(page
))
566 rotate_reclaimable_page(page
);
568 if (!test_clear_page_writeback(page
))
571 smp_mb__after_clear_bit();
572 wake_up_page(page
, PG_writeback
);
574 EXPORT_SYMBOL(end_page_writeback
);
577 * __lock_page - get a lock on the page, assuming we need to sleep to get it
578 * @page: the page to lock
580 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
581 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
582 * chances are that on the second loop, the block layer's plug list is empty,
583 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
585 void __lock_page(struct page
*page
)
587 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
589 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
590 TASK_UNINTERRUPTIBLE
);
592 EXPORT_SYMBOL(__lock_page
);
594 int __lock_page_killable(struct page
*page
)
596 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
598 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
599 sync_page_killable
, TASK_KILLABLE
);
601 EXPORT_SYMBOL_GPL(__lock_page_killable
);
604 * __lock_page_nosync - get a lock on the page, without calling sync_page()
605 * @page: the page to lock
607 * Variant of lock_page that does not require the caller to hold a reference
608 * on the page's mapping.
610 void __lock_page_nosync(struct page
*page
)
612 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
613 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
614 TASK_UNINTERRUPTIBLE
);
617 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
620 if (!(flags
& FAULT_FLAG_ALLOW_RETRY
)) {
624 up_read(&mm
->mmap_sem
);
625 wait_on_page_locked(page
);
631 * find_get_page - find and get a page reference
632 * @mapping: the address_space to search
633 * @offset: the page index
635 * Is there a pagecache struct page at the given (mapping, offset) tuple?
636 * If yes, increment its refcount and return it; if no, return NULL.
638 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
646 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
648 page
= radix_tree_deref_slot(pagep
);
651 if (radix_tree_deref_retry(page
))
654 if (!page_cache_get_speculative(page
))
658 * Has the page moved?
659 * This is part of the lockless pagecache protocol. See
660 * include/linux/pagemap.h for details.
662 if (unlikely(page
!= *pagep
)) {
663 page_cache_release(page
);
672 EXPORT_SYMBOL(find_get_page
);
675 * find_lock_page - locate, pin and lock a pagecache page
676 * @mapping: the address_space to search
677 * @offset: the page index
679 * Locates the desired pagecache page, locks it, increments its reference
680 * count and returns its address.
682 * Returns zero if the page was not present. find_lock_page() may sleep.
684 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
689 page
= find_get_page(mapping
, offset
);
692 /* Has the page been truncated? */
693 if (unlikely(page
->mapping
!= mapping
)) {
695 page_cache_release(page
);
698 VM_BUG_ON(page
->index
!= offset
);
702 EXPORT_SYMBOL(find_lock_page
);
705 * find_or_create_page - locate or add a pagecache page
706 * @mapping: the page's address_space
707 * @index: the page's index into the mapping
708 * @gfp_mask: page allocation mode
710 * Locates a page in the pagecache. If the page is not present, a new page
711 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
712 * LRU list. The returned page is locked and has its reference count
715 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
718 * find_or_create_page() returns the desired page's address, or zero on
721 struct page
*find_or_create_page(struct address_space
*mapping
,
722 pgoff_t index
, gfp_t gfp_mask
)
727 page
= find_lock_page(mapping
, index
);
729 page
= __page_cache_alloc(gfp_mask
);
733 * We want a regular kernel memory (not highmem or DMA etc)
734 * allocation for the radix tree nodes, but we need to honour
735 * the context-specific requirements the caller has asked for.
736 * GFP_RECLAIM_MASK collects those requirements.
738 err
= add_to_page_cache_lru(page
, mapping
, index
,
739 (gfp_mask
& GFP_RECLAIM_MASK
));
741 page_cache_release(page
);
749 EXPORT_SYMBOL(find_or_create_page
);
752 * find_get_pages - gang pagecache lookup
753 * @mapping: The address_space to search
754 * @start: The starting page index
755 * @nr_pages: The maximum number of pages
756 * @pages: Where the resulting pages are placed
758 * find_get_pages() will search for and return a group of up to
759 * @nr_pages pages in the mapping. The pages are placed at @pages.
760 * find_get_pages() takes a reference against the returned pages.
762 * The search returns a group of mapping-contiguous pages with ascending
763 * indexes. There may be holes in the indices due to not-present pages.
765 * find_get_pages() returns the number of pages which were found.
767 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
768 unsigned int nr_pages
, struct page
**pages
)
772 unsigned int nr_found
;
776 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
777 (void ***)pages
, start
, nr_pages
);
779 for (i
= 0; i
< nr_found
; i
++) {
782 page
= radix_tree_deref_slot((void **)pages
[i
]);
785 if (radix_tree_deref_retry(page
)) {
787 start
= pages
[ret
-1]->index
;
791 if (!page_cache_get_speculative(page
))
794 /* Has the page moved? */
795 if (unlikely(page
!= *((void **)pages
[i
]))) {
796 page_cache_release(page
);
808 * find_get_pages_contig - gang contiguous pagecache lookup
809 * @mapping: The address_space to search
810 * @index: The starting page index
811 * @nr_pages: The maximum number of pages
812 * @pages: Where the resulting pages are placed
814 * find_get_pages_contig() works exactly like find_get_pages(), except
815 * that the returned number of pages are guaranteed to be contiguous.
817 * find_get_pages_contig() returns the number of pages which were found.
819 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
820 unsigned int nr_pages
, struct page
**pages
)
824 unsigned int nr_found
;
828 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
829 (void ***)pages
, index
, nr_pages
);
831 for (i
= 0; i
< nr_found
; i
++) {
834 page
= radix_tree_deref_slot((void **)pages
[i
]);
837 if (radix_tree_deref_retry(page
))
840 if (!page_cache_get_speculative(page
))
843 /* Has the page moved? */
844 if (unlikely(page
!= *((void **)pages
[i
]))) {
845 page_cache_release(page
);
850 * must check mapping and index after taking the ref.
851 * otherwise we can get both false positives and false
852 * negatives, which is just confusing to the caller.
854 if (page
->mapping
== NULL
|| page
->index
!= index
) {
855 page_cache_release(page
);
866 EXPORT_SYMBOL(find_get_pages_contig
);
869 * find_get_pages_tag - find and return pages that match @tag
870 * @mapping: the address_space to search
871 * @index: the starting page index
872 * @tag: the tag index
873 * @nr_pages: the maximum number of pages
874 * @pages: where the resulting pages are placed
876 * Like find_get_pages, except we only return pages which are tagged with
877 * @tag. We update @index to index the next page for the traversal.
879 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
880 int tag
, unsigned int nr_pages
, struct page
**pages
)
884 unsigned int nr_found
;
888 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
889 (void ***)pages
, *index
, nr_pages
, tag
);
891 for (i
= 0; i
< nr_found
; i
++) {
894 page
= radix_tree_deref_slot((void **)pages
[i
]);
897 if (radix_tree_deref_retry(page
))
900 if (!page_cache_get_speculative(page
))
903 /* Has the page moved? */
904 if (unlikely(page
!= *((void **)pages
[i
]))) {
905 page_cache_release(page
);
915 *index
= pages
[ret
- 1]->index
+ 1;
919 EXPORT_SYMBOL(find_get_pages_tag
);
922 * grab_cache_page_nowait - returns locked page at given index in given cache
923 * @mapping: target address_space
924 * @index: the page index
926 * Same as grab_cache_page(), but do not wait if the page is unavailable.
927 * This is intended for speculative data generators, where the data can
928 * be regenerated if the page couldn't be grabbed. This routine should
929 * be safe to call while holding the lock for another page.
931 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
932 * and deadlock against the caller's locked page.
935 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
937 struct page
*page
= find_get_page(mapping
, index
);
940 if (trylock_page(page
))
942 page_cache_release(page
);
945 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
946 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
947 page_cache_release(page
);
952 EXPORT_SYMBOL(grab_cache_page_nowait
);
955 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
956 * a _large_ part of the i/o request. Imagine the worst scenario:
958 * ---R__________________________________________B__________
959 * ^ reading here ^ bad block(assume 4k)
961 * read(R) => miss => readahead(R...B) => media error => frustrating retries
962 * => failing the whole request => read(R) => read(R+1) =>
963 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
964 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
965 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
967 * It is going insane. Fix it by quickly scaling down the readahead size.
969 static void shrink_readahead_size_eio(struct file
*filp
,
970 struct file_ra_state
*ra
)
976 * do_generic_file_read - generic file read routine
977 * @filp: the file to read
978 * @ppos: current file position
979 * @desc: read_descriptor
980 * @actor: read method
982 * This is a generic file read routine, and uses the
983 * mapping->a_ops->readpage() function for the actual low-level stuff.
985 * This is really ugly. But the goto's actually try to clarify some
986 * of the logic when it comes to error handling etc.
988 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
989 read_descriptor_t
*desc
, read_actor_t actor
)
991 struct address_space
*mapping
= filp
->f_mapping
;
992 struct inode
*inode
= mapping
->host
;
993 struct file_ra_state
*ra
= &filp
->f_ra
;
997 unsigned long offset
; /* offset into pagecache page */
998 unsigned int prev_offset
;
1001 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1002 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1003 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1004 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1005 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1011 unsigned long nr
, ret
;
1015 page
= find_get_page(mapping
, index
);
1017 page_cache_sync_readahead(mapping
,
1019 index
, last_index
- index
);
1020 page
= find_get_page(mapping
, index
);
1021 if (unlikely(page
== NULL
))
1022 goto no_cached_page
;
1024 if (PageReadahead(page
)) {
1025 page_cache_async_readahead(mapping
,
1027 index
, last_index
- index
);
1029 if (!PageUptodate(page
)) {
1030 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1031 !mapping
->a_ops
->is_partially_uptodate
)
1032 goto page_not_up_to_date
;
1033 if (!trylock_page(page
))
1034 goto page_not_up_to_date
;
1035 /* Did it get truncated before we got the lock? */
1037 goto page_not_up_to_date_locked
;
1038 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1040 goto page_not_up_to_date_locked
;
1045 * i_size must be checked after we know the page is Uptodate.
1047 * Checking i_size after the check allows us to calculate
1048 * the correct value for "nr", which means the zero-filled
1049 * part of the page is not copied back to userspace (unless
1050 * another truncate extends the file - this is desired though).
1053 isize
= i_size_read(inode
);
1054 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1055 if (unlikely(!isize
|| index
> end_index
)) {
1056 page_cache_release(page
);
1060 /* nr is the maximum number of bytes to copy from this page */
1061 nr
= PAGE_CACHE_SIZE
;
1062 if (index
== end_index
) {
1063 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1065 page_cache_release(page
);
1071 /* If users can be writing to this page using arbitrary
1072 * virtual addresses, take care about potential aliasing
1073 * before reading the page on the kernel side.
1075 if (mapping_writably_mapped(mapping
))
1076 flush_dcache_page(page
);
1079 * When a sequential read accesses a page several times,
1080 * only mark it as accessed the first time.
1082 if (prev_index
!= index
|| offset
!= prev_offset
)
1083 mark_page_accessed(page
);
1087 * Ok, we have the page, and it's up-to-date, so
1088 * now we can copy it to user space...
1090 * The actor routine returns how many bytes were actually used..
1091 * NOTE! This may not be the same as how much of a user buffer
1092 * we filled up (we may be padding etc), so we can only update
1093 * "pos" here (the actor routine has to update the user buffer
1094 * pointers and the remaining count).
1096 ret
= actor(desc
, page
, offset
, nr
);
1098 index
+= offset
>> PAGE_CACHE_SHIFT
;
1099 offset
&= ~PAGE_CACHE_MASK
;
1100 prev_offset
= offset
;
1102 page_cache_release(page
);
1103 if (ret
== nr
&& desc
->count
)
1107 page_not_up_to_date
:
1108 /* Get exclusive access to the page ... */
1109 error
= lock_page_killable(page
);
1110 if (unlikely(error
))
1111 goto readpage_error
;
1113 page_not_up_to_date_locked
:
1114 /* Did it get truncated before we got the lock? */
1115 if (!page
->mapping
) {
1117 page_cache_release(page
);
1121 /* Did somebody else fill it already? */
1122 if (PageUptodate(page
)) {
1129 * A previous I/O error may have been due to temporary
1130 * failures, eg. multipath errors.
1131 * PG_error will be set again if readpage fails.
1133 ClearPageError(page
);
1134 /* Start the actual read. The read will unlock the page. */
1135 error
= mapping
->a_ops
->readpage(filp
, page
);
1137 if (unlikely(error
)) {
1138 if (error
== AOP_TRUNCATED_PAGE
) {
1139 page_cache_release(page
);
1142 goto readpage_error
;
1145 if (!PageUptodate(page
)) {
1146 error
= lock_page_killable(page
);
1147 if (unlikely(error
))
1148 goto readpage_error
;
1149 if (!PageUptodate(page
)) {
1150 if (page
->mapping
== NULL
) {
1152 * invalidate_mapping_pages got it
1155 page_cache_release(page
);
1159 shrink_readahead_size_eio(filp
, ra
);
1161 goto readpage_error
;
1169 /* UHHUH! A synchronous read error occurred. Report it */
1170 desc
->error
= error
;
1171 page_cache_release(page
);
1176 * Ok, it wasn't cached, so we need to create a new
1179 page
= page_cache_alloc_cold(mapping
);
1181 desc
->error
= -ENOMEM
;
1184 error
= add_to_page_cache_lru(page
, mapping
,
1187 page_cache_release(page
);
1188 if (error
== -EEXIST
)
1190 desc
->error
= error
;
1197 ra
->prev_pos
= prev_index
;
1198 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1199 ra
->prev_pos
|= prev_offset
;
1201 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1202 file_accessed(filp
);
1205 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1206 unsigned long offset
, unsigned long size
)
1209 unsigned long left
, count
= desc
->count
;
1215 * Faults on the destination of a read are common, so do it before
1218 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1219 kaddr
= kmap_atomic(page
, KM_USER0
);
1220 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1221 kaddr
+ offset
, size
);
1222 kunmap_atomic(kaddr
, KM_USER0
);
1227 /* Do it the slow way */
1229 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1234 desc
->error
= -EFAULT
;
1237 desc
->count
= count
- size
;
1238 desc
->written
+= size
;
1239 desc
->arg
.buf
+= size
;
1244 * Performs necessary checks before doing a write
1245 * @iov: io vector request
1246 * @nr_segs: number of segments in the iovec
1247 * @count: number of bytes to write
1248 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1250 * Adjust number of segments and amount of bytes to write (nr_segs should be
1251 * properly initialized first). Returns appropriate error code that caller
1252 * should return or zero in case that write should be allowed.
1254 int generic_segment_checks(const struct iovec
*iov
,
1255 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1259 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1260 const struct iovec
*iv
= &iov
[seg
];
1263 * If any segment has a negative length, or the cumulative
1264 * length ever wraps negative then return -EINVAL.
1267 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1269 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1274 cnt
-= iv
->iov_len
; /* This segment is no good */
1280 EXPORT_SYMBOL(generic_segment_checks
);
1283 * generic_file_aio_read - generic filesystem read routine
1284 * @iocb: kernel I/O control block
1285 * @iov: io vector request
1286 * @nr_segs: number of segments in the iovec
1287 * @pos: current file position
1289 * This is the "read()" routine for all filesystems
1290 * that can use the page cache directly.
1293 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1294 unsigned long nr_segs
, loff_t pos
)
1296 struct file
*filp
= iocb
->ki_filp
;
1298 unsigned long seg
= 0;
1300 loff_t
*ppos
= &iocb
->ki_pos
;
1303 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1307 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1308 if (filp
->f_flags
& O_DIRECT
) {
1310 struct address_space
*mapping
;
1311 struct inode
*inode
;
1313 mapping
= filp
->f_mapping
;
1314 inode
= mapping
->host
;
1316 goto out
; /* skip atime */
1317 size
= i_size_read(inode
);
1319 retval
= filemap_write_and_wait_range(mapping
, pos
,
1320 pos
+ iov_length(iov
, nr_segs
) - 1);
1322 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1326 *ppos
= pos
+ retval
;
1331 * Btrfs can have a short DIO read if we encounter
1332 * compressed extents, so if there was an error, or if
1333 * we've already read everything we wanted to, or if
1334 * there was a short read because we hit EOF, go ahead
1335 * and return. Otherwise fallthrough to buffered io for
1336 * the rest of the read.
1338 if (retval
< 0 || !count
|| *ppos
>= size
) {
1339 file_accessed(filp
);
1346 for (seg
= 0; seg
< nr_segs
; seg
++) {
1347 read_descriptor_t desc
;
1351 * If we did a short DIO read we need to skip the section of the
1352 * iov that we've already read data into.
1355 if (count
> iov
[seg
].iov_len
) {
1356 count
-= iov
[seg
].iov_len
;
1364 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1365 desc
.count
= iov
[seg
].iov_len
- offset
;
1366 if (desc
.count
== 0)
1369 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1370 retval
+= desc
.written
;
1372 retval
= retval
?: desc
.error
;
1381 EXPORT_SYMBOL(generic_file_aio_read
);
1384 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1385 pgoff_t index
, unsigned long nr
)
1387 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1390 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1394 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1402 if (file
->f_mode
& FMODE_READ
) {
1403 struct address_space
*mapping
= file
->f_mapping
;
1404 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1405 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1406 unsigned long len
= end
- start
+ 1;
1407 ret
= do_readahead(mapping
, file
, start
, len
);
1413 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1414 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1416 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1418 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1423 * page_cache_read - adds requested page to the page cache if not already there
1424 * @file: file to read
1425 * @offset: page index
1427 * This adds the requested page to the page cache if it isn't already there,
1428 * and schedules an I/O to read in its contents from disk.
1430 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1432 struct address_space
*mapping
= file
->f_mapping
;
1437 page
= page_cache_alloc_cold(mapping
);
1441 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1443 ret
= mapping
->a_ops
->readpage(file
, page
);
1444 else if (ret
== -EEXIST
)
1445 ret
= 0; /* losing race to add is OK */
1447 page_cache_release(page
);
1449 } while (ret
== AOP_TRUNCATED_PAGE
);
1454 #define MMAP_LOTSAMISS (100)
1457 * Synchronous readahead happens when we don't even find
1458 * a page in the page cache at all.
1460 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1461 struct file_ra_state
*ra
,
1465 unsigned long ra_pages
;
1466 struct address_space
*mapping
= file
->f_mapping
;
1468 /* If we don't want any read-ahead, don't bother */
1469 if (VM_RandomReadHint(vma
))
1472 if (VM_SequentialReadHint(vma
) ||
1473 offset
- 1 == (ra
->prev_pos
>> PAGE_CACHE_SHIFT
)) {
1474 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1479 if (ra
->mmap_miss
< INT_MAX
)
1483 * Do we miss much more than hit in this file? If so,
1484 * stop bothering with read-ahead. It will only hurt.
1486 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1492 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1494 ra
->start
= max_t(long, 0, offset
- ra_pages
/2);
1495 ra
->size
= ra_pages
;
1497 ra_submit(ra
, mapping
, file
);
1502 * Asynchronous readahead happens when we find the page and PG_readahead,
1503 * so we want to possibly extend the readahead further..
1505 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1506 struct file_ra_state
*ra
,
1511 struct address_space
*mapping
= file
->f_mapping
;
1513 /* If we don't want any read-ahead, don't bother */
1514 if (VM_RandomReadHint(vma
))
1516 if (ra
->mmap_miss
> 0)
1518 if (PageReadahead(page
))
1519 page_cache_async_readahead(mapping
, ra
, file
,
1520 page
, offset
, ra
->ra_pages
);
1524 * filemap_fault - read in file data for page fault handling
1525 * @vma: vma in which the fault was taken
1526 * @vmf: struct vm_fault containing details of the fault
1528 * filemap_fault() is invoked via the vma operations vector for a
1529 * mapped memory region to read in file data during a page fault.
1531 * The goto's are kind of ugly, but this streamlines the normal case of having
1532 * it in the page cache, and handles the special cases reasonably without
1533 * having a lot of duplicated code.
1535 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1538 struct file
*file
= vma
->vm_file
;
1539 struct address_space
*mapping
= file
->f_mapping
;
1540 struct file_ra_state
*ra
= &file
->f_ra
;
1541 struct inode
*inode
= mapping
->host
;
1542 pgoff_t offset
= vmf
->pgoff
;
1547 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1549 return VM_FAULT_SIGBUS
;
1552 * Do we have something in the page cache already?
1554 page
= find_get_page(mapping
, offset
);
1557 * We found the page, so try async readahead before
1558 * waiting for the lock.
1560 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1562 /* No page in the page cache at all */
1563 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1564 count_vm_event(PGMAJFAULT
);
1565 ret
= VM_FAULT_MAJOR
;
1567 page
= find_get_page(mapping
, offset
);
1569 goto no_cached_page
;
1572 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1573 page_cache_release(page
);
1574 return ret
| VM_FAULT_RETRY
;
1577 /* Did it get truncated? */
1578 if (unlikely(page
->mapping
!= mapping
)) {
1583 VM_BUG_ON(page
->index
!= offset
);
1586 * We have a locked page in the page cache, now we need to check
1587 * that it's up-to-date. If not, it is going to be due to an error.
1589 if (unlikely(!PageUptodate(page
)))
1590 goto page_not_uptodate
;
1593 * Found the page and have a reference on it.
1594 * We must recheck i_size under page lock.
1596 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1597 if (unlikely(offset
>= size
)) {
1599 page_cache_release(page
);
1600 return VM_FAULT_SIGBUS
;
1603 ra
->prev_pos
= (loff_t
)offset
<< PAGE_CACHE_SHIFT
;
1605 return ret
| VM_FAULT_LOCKED
;
1609 * We're only likely to ever get here if MADV_RANDOM is in
1612 error
= page_cache_read(file
, offset
);
1615 * The page we want has now been added to the page cache.
1616 * In the unlikely event that someone removed it in the
1617 * meantime, we'll just come back here and read it again.
1623 * An error return from page_cache_read can result if the
1624 * system is low on memory, or a problem occurs while trying
1627 if (error
== -ENOMEM
)
1628 return VM_FAULT_OOM
;
1629 return VM_FAULT_SIGBUS
;
1633 * Umm, take care of errors if the page isn't up-to-date.
1634 * Try to re-read it _once_. We do this synchronously,
1635 * because there really aren't any performance issues here
1636 * and we need to check for errors.
1638 ClearPageError(page
);
1639 error
= mapping
->a_ops
->readpage(file
, page
);
1641 wait_on_page_locked(page
);
1642 if (!PageUptodate(page
))
1645 page_cache_release(page
);
1647 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1650 /* Things didn't work out. Return zero to tell the mm layer so. */
1651 shrink_readahead_size_eio(file
, ra
);
1652 return VM_FAULT_SIGBUS
;
1654 EXPORT_SYMBOL(filemap_fault
);
1656 const struct vm_operations_struct generic_file_vm_ops
= {
1657 .fault
= filemap_fault
,
1660 /* This is used for a general mmap of a disk file */
1662 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1664 struct address_space
*mapping
= file
->f_mapping
;
1666 if (!mapping
->a_ops
->readpage
)
1668 file_accessed(file
);
1669 vma
->vm_ops
= &generic_file_vm_ops
;
1670 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1675 * This is for filesystems which do not implement ->writepage.
1677 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1679 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1681 return generic_file_mmap(file
, vma
);
1684 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1688 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1692 #endif /* CONFIG_MMU */
1694 EXPORT_SYMBOL(generic_file_mmap
);
1695 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1697 static struct page
*__read_cache_page(struct address_space
*mapping
,
1699 int (*filler
)(void *,struct page
*),
1706 page
= find_get_page(mapping
, index
);
1708 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1710 return ERR_PTR(-ENOMEM
);
1711 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1712 if (unlikely(err
)) {
1713 page_cache_release(page
);
1716 /* Presumably ENOMEM for radix tree node */
1717 return ERR_PTR(err
);
1719 err
= filler(data
, page
);
1721 page_cache_release(page
);
1722 page
= ERR_PTR(err
);
1728 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1730 int (*filler
)(void *,struct page
*),
1739 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1742 if (PageUptodate(page
))
1746 if (!page
->mapping
) {
1748 page_cache_release(page
);
1751 if (PageUptodate(page
)) {
1755 err
= filler(data
, page
);
1757 page_cache_release(page
);
1758 return ERR_PTR(err
);
1761 mark_page_accessed(page
);
1766 * read_cache_page_async - read into page cache, fill it if needed
1767 * @mapping: the page's address_space
1768 * @index: the page index
1769 * @filler: function to perform the read
1770 * @data: destination for read data
1772 * Same as read_cache_page, but don't wait for page to become unlocked
1773 * after submitting it to the filler.
1775 * Read into the page cache. If a page already exists, and PageUptodate() is
1776 * not set, try to fill the page but don't wait for it to become unlocked.
1778 * If the page does not get brought uptodate, return -EIO.
1780 struct page
*read_cache_page_async(struct address_space
*mapping
,
1782 int (*filler
)(void *,struct page
*),
1785 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1787 EXPORT_SYMBOL(read_cache_page_async
);
1789 static struct page
*wait_on_page_read(struct page
*page
)
1791 if (!IS_ERR(page
)) {
1792 wait_on_page_locked(page
);
1793 if (!PageUptodate(page
)) {
1794 page_cache_release(page
);
1795 page
= ERR_PTR(-EIO
);
1802 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1803 * @mapping: the page's address_space
1804 * @index: the page index
1805 * @gfp: the page allocator flags to use if allocating
1807 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1808 * any new page allocations done using the specified allocation flags. Note
1809 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1810 * expect to do this atomically or anything like that - but you can pass in
1811 * other page requirements.
1813 * If the page does not get brought uptodate, return -EIO.
1815 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1819 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1821 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1823 EXPORT_SYMBOL(read_cache_page_gfp
);
1826 * read_cache_page - read into page cache, fill it if needed
1827 * @mapping: the page's address_space
1828 * @index: the page index
1829 * @filler: function to perform the read
1830 * @data: destination for read data
1832 * Read into the page cache. If a page already exists, and PageUptodate() is
1833 * not set, try to fill the page then wait for it to become unlocked.
1835 * If the page does not get brought uptodate, return -EIO.
1837 struct page
*read_cache_page(struct address_space
*mapping
,
1839 int (*filler
)(void *,struct page
*),
1842 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1844 EXPORT_SYMBOL(read_cache_page
);
1847 * The logic we want is
1849 * if suid or (sgid and xgrp)
1852 int should_remove_suid(struct dentry
*dentry
)
1854 mode_t mode
= dentry
->d_inode
->i_mode
;
1857 /* suid always must be killed */
1858 if (unlikely(mode
& S_ISUID
))
1859 kill
= ATTR_KILL_SUID
;
1862 * sgid without any exec bits is just a mandatory locking mark; leave
1863 * it alone. If some exec bits are set, it's a real sgid; kill it.
1865 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1866 kill
|= ATTR_KILL_SGID
;
1868 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1873 EXPORT_SYMBOL(should_remove_suid
);
1875 static int __remove_suid(struct dentry
*dentry
, int kill
)
1877 struct iattr newattrs
;
1879 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1880 return notify_change(dentry
, &newattrs
);
1883 int file_remove_suid(struct file
*file
)
1885 struct dentry
*dentry
= file
->f_path
.dentry
;
1886 int killsuid
= should_remove_suid(dentry
);
1887 int killpriv
= security_inode_need_killpriv(dentry
);
1893 error
= security_inode_killpriv(dentry
);
1894 if (!error
&& killsuid
)
1895 error
= __remove_suid(dentry
, killsuid
);
1899 EXPORT_SYMBOL(file_remove_suid
);
1901 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1902 const struct iovec
*iov
, size_t base
, size_t bytes
)
1904 size_t copied
= 0, left
= 0;
1907 char __user
*buf
= iov
->iov_base
+ base
;
1908 int copy
= min(bytes
, iov
->iov_len
- base
);
1911 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
1920 return copied
- left
;
1924 * Copy as much as we can into the page and return the number of bytes which
1925 * were successfully copied. If a fault is encountered then return the number of
1926 * bytes which were copied.
1928 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1929 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1934 BUG_ON(!in_atomic());
1935 kaddr
= kmap_atomic(page
, KM_USER0
);
1936 if (likely(i
->nr_segs
== 1)) {
1938 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1939 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
1940 copied
= bytes
- left
;
1942 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1943 i
->iov
, i
->iov_offset
, bytes
);
1945 kunmap_atomic(kaddr
, KM_USER0
);
1949 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1952 * This has the same sideeffects and return value as
1953 * iov_iter_copy_from_user_atomic().
1954 * The difference is that it attempts to resolve faults.
1955 * Page must not be locked.
1957 size_t iov_iter_copy_from_user(struct page
*page
,
1958 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1964 if (likely(i
->nr_segs
== 1)) {
1966 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1967 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
1968 copied
= bytes
- left
;
1970 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1971 i
->iov
, i
->iov_offset
, bytes
);
1976 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1978 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1980 BUG_ON(i
->count
< bytes
);
1982 if (likely(i
->nr_segs
== 1)) {
1983 i
->iov_offset
+= bytes
;
1986 const struct iovec
*iov
= i
->iov
;
1987 size_t base
= i
->iov_offset
;
1990 * The !iov->iov_len check ensures we skip over unlikely
1991 * zero-length segments (without overruning the iovec).
1993 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
1996 copy
= min(bytes
, iov
->iov_len
- base
);
1997 BUG_ON(!i
->count
|| i
->count
< copy
);
2001 if (iov
->iov_len
== base
) {
2007 i
->iov_offset
= base
;
2010 EXPORT_SYMBOL(iov_iter_advance
);
2013 * Fault in the first iovec of the given iov_iter, to a maximum length
2014 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2015 * accessed (ie. because it is an invalid address).
2017 * writev-intensive code may want this to prefault several iovecs -- that
2018 * would be possible (callers must not rely on the fact that _only_ the
2019 * first iovec will be faulted with the current implementation).
2021 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2023 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2024 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2025 return fault_in_pages_readable(buf
, bytes
);
2027 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2030 * Return the count of just the current iov_iter segment.
2032 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2034 const struct iovec
*iov
= i
->iov
;
2035 if (i
->nr_segs
== 1)
2038 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2040 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2043 * Performs necessary checks before doing a write
2045 * Can adjust writing position or amount of bytes to write.
2046 * Returns appropriate error code that caller should return or
2047 * zero in case that write should be allowed.
2049 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2051 struct inode
*inode
= file
->f_mapping
->host
;
2052 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2054 if (unlikely(*pos
< 0))
2058 /* FIXME: this is for backwards compatibility with 2.4 */
2059 if (file
->f_flags
& O_APPEND
)
2060 *pos
= i_size_read(inode
);
2062 if (limit
!= RLIM_INFINITY
) {
2063 if (*pos
>= limit
) {
2064 send_sig(SIGXFSZ
, current
, 0);
2067 if (*count
> limit
- (typeof(limit
))*pos
) {
2068 *count
= limit
- (typeof(limit
))*pos
;
2076 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2077 !(file
->f_flags
& O_LARGEFILE
))) {
2078 if (*pos
>= MAX_NON_LFS
) {
2081 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2082 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2087 * Are we about to exceed the fs block limit ?
2089 * If we have written data it becomes a short write. If we have
2090 * exceeded without writing data we send a signal and return EFBIG.
2091 * Linus frestrict idea will clean these up nicely..
2093 if (likely(!isblk
)) {
2094 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2095 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2098 /* zero-length writes at ->s_maxbytes are OK */
2101 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2102 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2106 if (bdev_read_only(I_BDEV(inode
)))
2108 isize
= i_size_read(inode
);
2109 if (*pos
>= isize
) {
2110 if (*count
|| *pos
> isize
)
2114 if (*pos
+ *count
> isize
)
2115 *count
= isize
- *pos
;
2122 EXPORT_SYMBOL(generic_write_checks
);
2124 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2125 loff_t pos
, unsigned len
, unsigned flags
,
2126 struct page
**pagep
, void **fsdata
)
2128 const struct address_space_operations
*aops
= mapping
->a_ops
;
2130 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2133 EXPORT_SYMBOL(pagecache_write_begin
);
2135 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2136 loff_t pos
, unsigned len
, unsigned copied
,
2137 struct page
*page
, void *fsdata
)
2139 const struct address_space_operations
*aops
= mapping
->a_ops
;
2141 mark_page_accessed(page
);
2142 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2144 EXPORT_SYMBOL(pagecache_write_end
);
2147 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2148 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2149 size_t count
, size_t ocount
)
2151 struct file
*file
= iocb
->ki_filp
;
2152 struct address_space
*mapping
= file
->f_mapping
;
2153 struct inode
*inode
= mapping
->host
;
2158 if (count
!= ocount
)
2159 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2161 write_len
= iov_length(iov
, *nr_segs
);
2162 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2164 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2169 * After a write we want buffered reads to be sure to go to disk to get
2170 * the new data. We invalidate clean cached page from the region we're
2171 * about to write. We do this *before* the write so that we can return
2172 * without clobbering -EIOCBQUEUED from ->direct_IO().
2174 if (mapping
->nrpages
) {
2175 written
= invalidate_inode_pages2_range(mapping
,
2176 pos
>> PAGE_CACHE_SHIFT
, end
);
2178 * If a page can not be invalidated, return 0 to fall back
2179 * to buffered write.
2182 if (written
== -EBUSY
)
2188 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2191 * Finally, try again to invalidate clean pages which might have been
2192 * cached by non-direct readahead, or faulted in by get_user_pages()
2193 * if the source of the write was an mmap'ed region of the file
2194 * we're writing. Either one is a pretty crazy thing to do,
2195 * so we don't support it 100%. If this invalidation
2196 * fails, tough, the write still worked...
2198 if (mapping
->nrpages
) {
2199 invalidate_inode_pages2_range(mapping
,
2200 pos
>> PAGE_CACHE_SHIFT
, end
);
2205 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2206 i_size_write(inode
, pos
);
2207 mark_inode_dirty(inode
);
2214 EXPORT_SYMBOL(generic_file_direct_write
);
2217 * Find or create a page at the given pagecache position. Return the locked
2218 * page. This function is specifically for buffered writes.
2220 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2221 pgoff_t index
, unsigned flags
)
2225 gfp_t gfp_notmask
= 0;
2226 if (flags
& AOP_FLAG_NOFS
)
2227 gfp_notmask
= __GFP_FS
;
2229 page
= find_lock_page(mapping
, index
);
2233 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2236 status
= add_to_page_cache_lru(page
, mapping
, index
,
2237 GFP_KERNEL
& ~gfp_notmask
);
2238 if (unlikely(status
)) {
2239 page_cache_release(page
);
2240 if (status
== -EEXIST
)
2246 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2248 static ssize_t
generic_perform_write(struct file
*file
,
2249 struct iov_iter
*i
, loff_t pos
)
2251 struct address_space
*mapping
= file
->f_mapping
;
2252 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2254 ssize_t written
= 0;
2255 unsigned int flags
= 0;
2258 * Copies from kernel address space cannot fail (NFSD is a big user).
2260 if (segment_eq(get_fs(), KERNEL_DS
))
2261 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2265 unsigned long offset
; /* Offset into pagecache page */
2266 unsigned long bytes
; /* Bytes to write to page */
2267 size_t copied
; /* Bytes copied from user */
2270 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2271 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2277 * Bring in the user page that we will copy from _first_.
2278 * Otherwise there's a nasty deadlock on copying from the
2279 * same page as we're writing to, without it being marked
2282 * Not only is this an optimisation, but it is also required
2283 * to check that the address is actually valid, when atomic
2284 * usercopies are used, below.
2286 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2291 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2293 if (unlikely(status
))
2296 if (mapping_writably_mapped(mapping
))
2297 flush_dcache_page(page
);
2299 pagefault_disable();
2300 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2302 flush_dcache_page(page
);
2304 mark_page_accessed(page
);
2305 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2307 if (unlikely(status
< 0))
2313 iov_iter_advance(i
, copied
);
2314 if (unlikely(copied
== 0)) {
2316 * If we were unable to copy any data at all, we must
2317 * fall back to a single segment length write.
2319 * If we didn't fallback here, we could livelock
2320 * because not all segments in the iov can be copied at
2321 * once without a pagefault.
2323 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2324 iov_iter_single_seg_count(i
));
2330 balance_dirty_pages_ratelimited(mapping
);
2332 } while (iov_iter_count(i
));
2334 return written
? written
: status
;
2338 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2339 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2340 size_t count
, ssize_t written
)
2342 struct file
*file
= iocb
->ki_filp
;
2346 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2347 status
= generic_perform_write(file
, &i
, pos
);
2349 if (likely(status
>= 0)) {
2351 *ppos
= pos
+ status
;
2354 return written
? written
: status
;
2356 EXPORT_SYMBOL(generic_file_buffered_write
);
2359 * __generic_file_aio_write - write data to a file
2360 * @iocb: IO state structure (file, offset, etc.)
2361 * @iov: vector with data to write
2362 * @nr_segs: number of segments in the vector
2363 * @ppos: position where to write
2365 * This function does all the work needed for actually writing data to a
2366 * file. It does all basic checks, removes SUID from the file, updates
2367 * modification times and calls proper subroutines depending on whether we
2368 * do direct IO or a standard buffered write.
2370 * It expects i_mutex to be grabbed unless we work on a block device or similar
2371 * object which does not need locking at all.
2373 * This function does *not* take care of syncing data in case of O_SYNC write.
2374 * A caller has to handle it. This is mainly due to the fact that we want to
2375 * avoid syncing under i_mutex.
2377 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2378 unsigned long nr_segs
, loff_t
*ppos
)
2380 struct file
*file
= iocb
->ki_filp
;
2381 struct address_space
* mapping
= file
->f_mapping
;
2382 size_t ocount
; /* original count */
2383 size_t count
; /* after file limit checks */
2384 struct inode
*inode
= mapping
->host
;
2390 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2397 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2399 /* We can write back this queue in page reclaim */
2400 current
->backing_dev_info
= mapping
->backing_dev_info
;
2403 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2410 err
= file_remove_suid(file
);
2414 file_update_time(file
);
2416 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2417 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2419 ssize_t written_buffered
;
2421 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2422 ppos
, count
, ocount
);
2423 if (written
< 0 || written
== count
)
2426 * direct-io write to a hole: fall through to buffered I/O
2427 * for completing the rest of the request.
2431 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2432 nr_segs
, pos
, ppos
, count
,
2435 * If generic_file_buffered_write() retuned a synchronous error
2436 * then we want to return the number of bytes which were
2437 * direct-written, or the error code if that was zero. Note
2438 * that this differs from normal direct-io semantics, which
2439 * will return -EFOO even if some bytes were written.
2441 if (written_buffered
< 0) {
2442 err
= written_buffered
;
2447 * We need to ensure that the page cache pages are written to
2448 * disk and invalidated to preserve the expected O_DIRECT
2451 endbyte
= pos
+ written_buffered
- written
- 1;
2452 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2454 written
= written_buffered
;
2455 invalidate_mapping_pages(mapping
,
2456 pos
>> PAGE_CACHE_SHIFT
,
2457 endbyte
>> PAGE_CACHE_SHIFT
);
2460 * We don't know how much we wrote, so just return
2461 * the number of bytes which were direct-written
2465 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2466 pos
, ppos
, count
, written
);
2469 current
->backing_dev_info
= NULL
;
2470 return written
? written
: err
;
2472 EXPORT_SYMBOL(__generic_file_aio_write
);
2475 * generic_file_aio_write - write data to a file
2476 * @iocb: IO state structure
2477 * @iov: vector with data to write
2478 * @nr_segs: number of segments in the vector
2479 * @pos: position in file where to write
2481 * This is a wrapper around __generic_file_aio_write() to be used by most
2482 * filesystems. It takes care of syncing the file in case of O_SYNC file
2483 * and acquires i_mutex as needed.
2485 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2486 unsigned long nr_segs
, loff_t pos
)
2488 struct file
*file
= iocb
->ki_filp
;
2489 struct inode
*inode
= file
->f_mapping
->host
;
2492 BUG_ON(iocb
->ki_pos
!= pos
);
2494 mutex_lock(&inode
->i_mutex
);
2495 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2496 mutex_unlock(&inode
->i_mutex
);
2498 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2501 err
= generic_write_sync(file
, pos
, ret
);
2502 if (err
< 0 && ret
> 0)
2507 EXPORT_SYMBOL(generic_file_aio_write
);
2510 * try_to_release_page() - release old fs-specific metadata on a page
2512 * @page: the page which the kernel is trying to free
2513 * @gfp_mask: memory allocation flags (and I/O mode)
2515 * The address_space is to try to release any data against the page
2516 * (presumably at page->private). If the release was successful, return `1'.
2517 * Otherwise return zero.
2519 * This may also be called if PG_fscache is set on a page, indicating that the
2520 * page is known to the local caching routines.
2522 * The @gfp_mask argument specifies whether I/O may be performed to release
2523 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2526 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2528 struct address_space
* const mapping
= page
->mapping
;
2530 BUG_ON(!PageLocked(page
));
2531 if (PageWriteback(page
))
2534 if (mapping
&& mapping
->a_ops
->releasepage
)
2535 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2536 return try_to_free_buffers(page
);
2539 EXPORT_SYMBOL(try_to_release_page
);