regulator: refcount fixes
[linux-2.6/cjktty.git] / drivers / regulator / core.c
blob944887578d66e68c7a671dff7a0482c346102aa7
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
26 #define REGULATOR_VERSION "0.5"
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
33 * struct regulator_map
35 * Used to provide symbolic supply names to devices.
37 struct regulator_map {
38 struct list_head list;
39 struct device *dev;
40 const char *supply;
41 struct regulator_dev *regulator;
45 * struct regulator
47 * One for each consumer device.
49 struct regulator {
50 struct device *dev;
51 struct list_head list;
52 int uA_load;
53 int min_uV;
54 int max_uV;
55 char *supply_name;
56 struct device_attribute dev_attr;
57 struct regulator_dev *rdev;
60 static int _regulator_is_enabled(struct regulator_dev *rdev);
61 static int _regulator_disable(struct regulator_dev *rdev);
62 static int _regulator_get_voltage(struct regulator_dev *rdev);
63 static int _regulator_get_current_limit(struct regulator_dev *rdev);
64 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
65 static void _notifier_call_chain(struct regulator_dev *rdev,
66 unsigned long event, void *data);
68 /* gets the regulator for a given consumer device */
69 static struct regulator *get_device_regulator(struct device *dev)
71 struct regulator *regulator = NULL;
72 struct regulator_dev *rdev;
74 mutex_lock(&regulator_list_mutex);
75 list_for_each_entry(rdev, &regulator_list, list) {
76 mutex_lock(&rdev->mutex);
77 list_for_each_entry(regulator, &rdev->consumer_list, list) {
78 if (regulator->dev == dev) {
79 mutex_unlock(&rdev->mutex);
80 mutex_unlock(&regulator_list_mutex);
81 return regulator;
84 mutex_unlock(&rdev->mutex);
86 mutex_unlock(&regulator_list_mutex);
87 return NULL;
90 /* Platform voltage constraint check */
91 static int regulator_check_voltage(struct regulator_dev *rdev,
92 int *min_uV, int *max_uV)
94 BUG_ON(*min_uV > *max_uV);
96 if (!rdev->constraints) {
97 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
98 rdev->desc->name);
99 return -ENODEV;
101 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
102 printk(KERN_ERR "%s: operation not allowed for %s\n",
103 __func__, rdev->desc->name);
104 return -EPERM;
107 if (*max_uV > rdev->constraints->max_uV)
108 *max_uV = rdev->constraints->max_uV;
109 if (*min_uV < rdev->constraints->min_uV)
110 *min_uV = rdev->constraints->min_uV;
112 if (*min_uV > *max_uV)
113 return -EINVAL;
115 return 0;
118 /* current constraint check */
119 static int regulator_check_current_limit(struct regulator_dev *rdev,
120 int *min_uA, int *max_uA)
122 BUG_ON(*min_uA > *max_uA);
124 if (!rdev->constraints) {
125 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126 rdev->desc->name);
127 return -ENODEV;
129 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
130 printk(KERN_ERR "%s: operation not allowed for %s\n",
131 __func__, rdev->desc->name);
132 return -EPERM;
135 if (*max_uA > rdev->constraints->max_uA)
136 *max_uA = rdev->constraints->max_uA;
137 if (*min_uA < rdev->constraints->min_uA)
138 *min_uA = rdev->constraints->min_uA;
140 if (*min_uA > *max_uA)
141 return -EINVAL;
143 return 0;
146 /* operating mode constraint check */
147 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 switch (mode) {
150 case REGULATOR_MODE_FAST:
151 case REGULATOR_MODE_NORMAL:
152 case REGULATOR_MODE_IDLE:
153 case REGULATOR_MODE_STANDBY:
154 break;
155 default:
156 return -EINVAL;
159 if (!rdev->constraints) {
160 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
161 rdev->desc->name);
162 return -ENODEV;
164 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
165 printk(KERN_ERR "%s: operation not allowed for %s\n",
166 __func__, rdev->desc->name);
167 return -EPERM;
169 if (!(rdev->constraints->valid_modes_mask & mode)) {
170 printk(KERN_ERR "%s: invalid mode %x for %s\n",
171 __func__, mode, rdev->desc->name);
172 return -EINVAL;
174 return 0;
177 /* dynamic regulator mode switching constraint check */
178 static int regulator_check_drms(struct regulator_dev *rdev)
180 if (!rdev->constraints) {
181 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
182 rdev->desc->name);
183 return -ENODEV;
185 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
186 printk(KERN_ERR "%s: operation not allowed for %s\n",
187 __func__, rdev->desc->name);
188 return -EPERM;
190 return 0;
193 static ssize_t device_requested_uA_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
196 struct regulator *regulator;
198 regulator = get_device_regulator(dev);
199 if (regulator == NULL)
200 return 0;
202 return sprintf(buf, "%d\n", regulator->uA_load);
205 static ssize_t regulator_uV_show(struct device *dev,
206 struct device_attribute *attr, char *buf)
208 struct regulator_dev *rdev = dev_get_drvdata(dev);
209 ssize_t ret;
211 mutex_lock(&rdev->mutex);
212 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
213 mutex_unlock(&rdev->mutex);
215 return ret;
217 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219 static ssize_t regulator_uA_show(struct device *dev,
220 struct device_attribute *attr, char *buf)
222 struct regulator_dev *rdev = dev_get_drvdata(dev);
224 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228 static ssize_t regulator_name_show(struct device *dev,
229 struct device_attribute *attr, char *buf)
231 struct regulator_dev *rdev = dev_get_drvdata(dev);
232 const char *name;
234 if (rdev->constraints->name)
235 name = rdev->constraints->name;
236 else if (rdev->desc->name)
237 name = rdev->desc->name;
238 else
239 name = "";
241 return sprintf(buf, "%s\n", name);
244 static ssize_t regulator_print_opmode(char *buf, int mode)
246 switch (mode) {
247 case REGULATOR_MODE_FAST:
248 return sprintf(buf, "fast\n");
249 case REGULATOR_MODE_NORMAL:
250 return sprintf(buf, "normal\n");
251 case REGULATOR_MODE_IDLE:
252 return sprintf(buf, "idle\n");
253 case REGULATOR_MODE_STANDBY:
254 return sprintf(buf, "standby\n");
256 return sprintf(buf, "unknown\n");
259 static ssize_t regulator_opmode_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
262 struct regulator_dev *rdev = dev_get_drvdata(dev);
264 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268 static ssize_t regulator_print_state(char *buf, int state)
270 if (state > 0)
271 return sprintf(buf, "enabled\n");
272 else if (state == 0)
273 return sprintf(buf, "disabled\n");
274 else
275 return sprintf(buf, "unknown\n");
278 static ssize_t regulator_state_show(struct device *dev,
279 struct device_attribute *attr, char *buf)
281 struct regulator_dev *rdev = dev_get_drvdata(dev);
283 return regulator_print_state(buf, _regulator_is_enabled(rdev));
285 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287 static ssize_t regulator_status_show(struct device *dev,
288 struct device_attribute *attr, char *buf)
290 struct regulator_dev *rdev = dev_get_drvdata(dev);
291 int status;
292 char *label;
294 status = rdev->desc->ops->get_status(rdev);
295 if (status < 0)
296 return status;
298 switch (status) {
299 case REGULATOR_STATUS_OFF:
300 label = "off";
301 break;
302 case REGULATOR_STATUS_ON:
303 label = "on";
304 break;
305 case REGULATOR_STATUS_ERROR:
306 label = "error";
307 break;
308 case REGULATOR_STATUS_FAST:
309 label = "fast";
310 break;
311 case REGULATOR_STATUS_NORMAL:
312 label = "normal";
313 break;
314 case REGULATOR_STATUS_IDLE:
315 label = "idle";
316 break;
317 case REGULATOR_STATUS_STANDBY:
318 label = "standby";
319 break;
320 default:
321 return -ERANGE;
324 return sprintf(buf, "%s\n", label);
326 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328 static ssize_t regulator_min_uA_show(struct device *dev,
329 struct device_attribute *attr, char *buf)
331 struct regulator_dev *rdev = dev_get_drvdata(dev);
333 if (!rdev->constraints)
334 return sprintf(buf, "constraint not defined\n");
336 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340 static ssize_t regulator_max_uA_show(struct device *dev,
341 struct device_attribute *attr, char *buf)
343 struct regulator_dev *rdev = dev_get_drvdata(dev);
345 if (!rdev->constraints)
346 return sprintf(buf, "constraint not defined\n");
348 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352 static ssize_t regulator_min_uV_show(struct device *dev,
353 struct device_attribute *attr, char *buf)
355 struct regulator_dev *rdev = dev_get_drvdata(dev);
357 if (!rdev->constraints)
358 return sprintf(buf, "constraint not defined\n");
360 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364 static ssize_t regulator_max_uV_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
369 if (!rdev->constraints)
370 return sprintf(buf, "constraint not defined\n");
372 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376 static ssize_t regulator_total_uA_show(struct device *dev,
377 struct device_attribute *attr, char *buf)
379 struct regulator_dev *rdev = dev_get_drvdata(dev);
380 struct regulator *regulator;
381 int uA = 0;
383 mutex_lock(&rdev->mutex);
384 list_for_each_entry(regulator, &rdev->consumer_list, list)
385 uA += regulator->uA_load;
386 mutex_unlock(&rdev->mutex);
387 return sprintf(buf, "%d\n", uA);
389 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391 static ssize_t regulator_num_users_show(struct device *dev,
392 struct device_attribute *attr, char *buf)
394 struct regulator_dev *rdev = dev_get_drvdata(dev);
395 return sprintf(buf, "%d\n", rdev->use_count);
398 static ssize_t regulator_type_show(struct device *dev,
399 struct device_attribute *attr, char *buf)
401 struct regulator_dev *rdev = dev_get_drvdata(dev);
403 switch (rdev->desc->type) {
404 case REGULATOR_VOLTAGE:
405 return sprintf(buf, "voltage\n");
406 case REGULATOR_CURRENT:
407 return sprintf(buf, "current\n");
409 return sprintf(buf, "unknown\n");
412 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
413 struct device_attribute *attr, char *buf)
415 struct regulator_dev *rdev = dev_get_drvdata(dev);
417 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
420 regulator_suspend_mem_uV_show, NULL);
422 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
423 struct device_attribute *attr, char *buf)
425 struct regulator_dev *rdev = dev_get_drvdata(dev);
427 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
430 regulator_suspend_disk_uV_show, NULL);
432 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
433 struct device_attribute *attr, char *buf)
435 struct regulator_dev *rdev = dev_get_drvdata(dev);
437 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
440 regulator_suspend_standby_uV_show, NULL);
442 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
447 return regulator_print_opmode(buf,
448 rdev->constraints->state_mem.mode);
450 static DEVICE_ATTR(suspend_mem_mode, 0444,
451 regulator_suspend_mem_mode_show, NULL);
453 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
454 struct device_attribute *attr, char *buf)
456 struct regulator_dev *rdev = dev_get_drvdata(dev);
458 return regulator_print_opmode(buf,
459 rdev->constraints->state_disk.mode);
461 static DEVICE_ATTR(suspend_disk_mode, 0444,
462 regulator_suspend_disk_mode_show, NULL);
464 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
467 struct regulator_dev *rdev = dev_get_drvdata(dev);
469 return regulator_print_opmode(buf,
470 rdev->constraints->state_standby.mode);
472 static DEVICE_ATTR(suspend_standby_mode, 0444,
473 regulator_suspend_standby_mode_show, NULL);
475 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
476 struct device_attribute *attr, char *buf)
478 struct regulator_dev *rdev = dev_get_drvdata(dev);
480 return regulator_print_state(buf,
481 rdev->constraints->state_mem.enabled);
483 static DEVICE_ATTR(suspend_mem_state, 0444,
484 regulator_suspend_mem_state_show, NULL);
486 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
489 struct regulator_dev *rdev = dev_get_drvdata(dev);
491 return regulator_print_state(buf,
492 rdev->constraints->state_disk.enabled);
494 static DEVICE_ATTR(suspend_disk_state, 0444,
495 regulator_suspend_disk_state_show, NULL);
497 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
498 struct device_attribute *attr, char *buf)
500 struct regulator_dev *rdev = dev_get_drvdata(dev);
502 return regulator_print_state(buf,
503 rdev->constraints->state_standby.enabled);
505 static DEVICE_ATTR(suspend_standby_state, 0444,
506 regulator_suspend_standby_state_show, NULL);
510 * These are the only attributes are present for all regulators.
511 * Other attributes are a function of regulator functionality.
513 static struct device_attribute regulator_dev_attrs[] = {
514 __ATTR(name, 0444, regulator_name_show, NULL),
515 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
516 __ATTR(type, 0444, regulator_type_show, NULL),
517 __ATTR_NULL,
520 static void regulator_dev_release(struct device *dev)
522 struct regulator_dev *rdev = dev_get_drvdata(dev);
523 kfree(rdev);
526 static struct class regulator_class = {
527 .name = "regulator",
528 .dev_release = regulator_dev_release,
529 .dev_attrs = regulator_dev_attrs,
532 /* Calculate the new optimum regulator operating mode based on the new total
533 * consumer load. All locks held by caller */
534 static void drms_uA_update(struct regulator_dev *rdev)
536 struct regulator *sibling;
537 int current_uA = 0, output_uV, input_uV, err;
538 unsigned int mode;
540 err = regulator_check_drms(rdev);
541 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
542 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
543 return;
545 /* get output voltage */
546 output_uV = rdev->desc->ops->get_voltage(rdev);
547 if (output_uV <= 0)
548 return;
550 /* get input voltage */
551 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
552 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
553 else
554 input_uV = rdev->constraints->input_uV;
555 if (input_uV <= 0)
556 return;
558 /* calc total requested load */
559 list_for_each_entry(sibling, &rdev->consumer_list, list)
560 current_uA += sibling->uA_load;
562 /* now get the optimum mode for our new total regulator load */
563 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
564 output_uV, current_uA);
566 /* check the new mode is allowed */
567 err = regulator_check_mode(rdev, mode);
568 if (err == 0)
569 rdev->desc->ops->set_mode(rdev, mode);
572 static int suspend_set_state(struct regulator_dev *rdev,
573 struct regulator_state *rstate)
575 int ret = 0;
577 /* enable & disable are mandatory for suspend control */
578 if (!rdev->desc->ops->set_suspend_enable ||
579 !rdev->desc->ops->set_suspend_disable) {
580 printk(KERN_ERR "%s: no way to set suspend state\n",
581 __func__);
582 return -EINVAL;
585 if (rstate->enabled)
586 ret = rdev->desc->ops->set_suspend_enable(rdev);
587 else
588 ret = rdev->desc->ops->set_suspend_disable(rdev);
589 if (ret < 0) {
590 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
591 return ret;
594 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
595 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
596 if (ret < 0) {
597 printk(KERN_ERR "%s: failed to set voltage\n",
598 __func__);
599 return ret;
603 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
604 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
605 if (ret < 0) {
606 printk(KERN_ERR "%s: failed to set mode\n", __func__);
607 return ret;
610 return ret;
613 /* locks held by caller */
614 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616 if (!rdev->constraints)
617 return -EINVAL;
619 switch (state) {
620 case PM_SUSPEND_STANDBY:
621 return suspend_set_state(rdev,
622 &rdev->constraints->state_standby);
623 case PM_SUSPEND_MEM:
624 return suspend_set_state(rdev,
625 &rdev->constraints->state_mem);
626 case PM_SUSPEND_MAX:
627 return suspend_set_state(rdev,
628 &rdev->constraints->state_disk);
629 default:
630 return -EINVAL;
634 static void print_constraints(struct regulator_dev *rdev)
636 struct regulation_constraints *constraints = rdev->constraints;
637 char buf[80];
638 int count;
640 if (rdev->desc->type == REGULATOR_VOLTAGE) {
641 if (constraints->min_uV == constraints->max_uV)
642 count = sprintf(buf, "%d mV ",
643 constraints->min_uV / 1000);
644 else
645 count = sprintf(buf, "%d <--> %d mV ",
646 constraints->min_uV / 1000,
647 constraints->max_uV / 1000);
648 } else {
649 if (constraints->min_uA == constraints->max_uA)
650 count = sprintf(buf, "%d mA ",
651 constraints->min_uA / 1000);
652 else
653 count = sprintf(buf, "%d <--> %d mA ",
654 constraints->min_uA / 1000,
655 constraints->max_uA / 1000);
657 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
658 count += sprintf(buf + count, "fast ");
659 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
660 count += sprintf(buf + count, "normal ");
661 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
662 count += sprintf(buf + count, "idle ");
663 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
664 count += sprintf(buf + count, "standby");
666 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
670 * set_machine_constraints - sets regulator constraints
671 * @rdev: regulator source
672 * @constraints: constraints to apply
674 * Allows platform initialisation code to define and constrain
675 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
676 * Constraints *must* be set by platform code in order for some
677 * regulator operations to proceed i.e. set_voltage, set_current_limit,
678 * set_mode.
680 static int set_machine_constraints(struct regulator_dev *rdev,
681 struct regulation_constraints *constraints)
683 int ret = 0;
684 const char *name;
685 struct regulator_ops *ops = rdev->desc->ops;
687 if (constraints->name)
688 name = constraints->name;
689 else if (rdev->desc->name)
690 name = rdev->desc->name;
691 else
692 name = "regulator";
694 /* constrain machine-level voltage specs to fit
695 * the actual range supported by this regulator.
697 if (ops->list_voltage && rdev->desc->n_voltages) {
698 int count = rdev->desc->n_voltages;
699 int i;
700 int min_uV = INT_MAX;
701 int max_uV = INT_MIN;
702 int cmin = constraints->min_uV;
703 int cmax = constraints->max_uV;
705 /* it's safe to autoconfigure fixed-voltage supplies */
706 if (count == 1 && !cmin) {
707 cmin = INT_MIN;
708 cmax = INT_MAX;
711 /* voltage constraints are optional */
712 if ((cmin == 0) && (cmax == 0))
713 goto out;
715 /* else require explicit machine-level constraints */
716 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
717 pr_err("%s: %s '%s' voltage constraints\n",
718 __func__, "invalid", name);
719 ret = -EINVAL;
720 goto out;
723 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
724 for (i = 0; i < count; i++) {
725 int value;
727 value = ops->list_voltage(rdev, i);
728 if (value <= 0)
729 continue;
731 /* maybe adjust [min_uV..max_uV] */
732 if (value >= cmin && value < min_uV)
733 min_uV = value;
734 if (value <= cmax && value > max_uV)
735 max_uV = value;
738 /* final: [min_uV..max_uV] valid iff constraints valid */
739 if (max_uV < min_uV) {
740 pr_err("%s: %s '%s' voltage constraints\n",
741 __func__, "unsupportable", name);
742 ret = -EINVAL;
743 goto out;
746 /* use regulator's subset of machine constraints */
747 if (constraints->min_uV < min_uV) {
748 pr_debug("%s: override '%s' %s, %d -> %d\n",
749 __func__, name, "min_uV",
750 constraints->min_uV, min_uV);
751 constraints->min_uV = min_uV;
753 if (constraints->max_uV > max_uV) {
754 pr_debug("%s: override '%s' %s, %d -> %d\n",
755 __func__, name, "max_uV",
756 constraints->max_uV, max_uV);
757 constraints->max_uV = max_uV;
761 rdev->constraints = constraints;
763 /* do we need to apply the constraint voltage */
764 if (rdev->constraints->apply_uV &&
765 rdev->constraints->min_uV == rdev->constraints->max_uV &&
766 ops->set_voltage) {
767 ret = ops->set_voltage(rdev,
768 rdev->constraints->min_uV, rdev->constraints->max_uV);
769 if (ret < 0) {
770 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
771 __func__,
772 rdev->constraints->min_uV, name);
773 rdev->constraints = NULL;
774 goto out;
778 /* do we need to setup our suspend state */
779 if (constraints->initial_state) {
780 ret = suspend_prepare(rdev, constraints->initial_state);
781 if (ret < 0) {
782 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
783 __func__, name);
784 rdev->constraints = NULL;
785 goto out;
789 if (constraints->initial_mode) {
790 if (!ops->set_mode) {
791 printk(KERN_ERR "%s: no set_mode operation for %s\n",
792 __func__, name);
793 ret = -EINVAL;
794 goto out;
797 ret = ops->set_mode(rdev, constraints->initial_mode);
798 if (ret < 0) {
799 printk(KERN_ERR
800 "%s: failed to set initial mode for %s: %d\n",
801 __func__, name, ret);
802 goto out;
806 /* If the constraints say the regulator should be on at this point
807 * and we have control then make sure it is enabled.
809 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
810 ret = ops->enable(rdev);
811 if (ret < 0) {
812 printk(KERN_ERR "%s: failed to enable %s\n",
813 __func__, name);
814 rdev->constraints = NULL;
815 goto out;
817 rdev->use_count = 1;
820 print_constraints(rdev);
821 out:
822 return ret;
826 * set_supply - set regulator supply regulator
827 * @rdev: regulator name
828 * @supply_rdev: supply regulator name
830 * Called by platform initialisation code to set the supply regulator for this
831 * regulator. This ensures that a regulators supply will also be enabled by the
832 * core if it's child is enabled.
834 static int set_supply(struct regulator_dev *rdev,
835 struct regulator_dev *supply_rdev)
837 int err;
839 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
840 "supply");
841 if (err) {
842 printk(KERN_ERR
843 "%s: could not add device link %s err %d\n",
844 __func__, supply_rdev->dev.kobj.name, err);
845 goto out;
847 rdev->supply = supply_rdev;
848 list_add(&rdev->slist, &supply_rdev->supply_list);
849 out:
850 return err;
854 * set_consumer_device_supply: Bind a regulator to a symbolic supply
855 * @rdev: regulator source
856 * @consumer_dev: device the supply applies to
857 * @supply: symbolic name for supply
859 * Allows platform initialisation code to map physical regulator
860 * sources to symbolic names for supplies for use by devices. Devices
861 * should use these symbolic names to request regulators, avoiding the
862 * need to provide board-specific regulator names as platform data.
864 static int set_consumer_device_supply(struct regulator_dev *rdev,
865 struct device *consumer_dev, const char *supply)
867 struct regulator_map *node;
869 if (supply == NULL)
870 return -EINVAL;
872 list_for_each_entry(node, &regulator_map_list, list) {
873 if (consumer_dev != node->dev)
874 continue;
875 if (strcmp(node->supply, supply) != 0)
876 continue;
878 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
879 dev_name(&node->regulator->dev),
880 node->regulator->desc->name,
881 supply,
882 dev_name(&rdev->dev), rdev->desc->name);
883 return -EBUSY;
886 node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
887 if (node == NULL)
888 return -ENOMEM;
890 node->regulator = rdev;
891 node->dev = consumer_dev;
892 node->supply = supply;
894 list_add(&node->list, &regulator_map_list);
895 return 0;
898 static void unset_consumer_device_supply(struct regulator_dev *rdev,
899 struct device *consumer_dev)
901 struct regulator_map *node, *n;
903 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
904 if (rdev == node->regulator &&
905 consumer_dev == node->dev) {
906 list_del(&node->list);
907 kfree(node);
908 return;
913 static void unset_regulator_supplies(struct regulator_dev *rdev)
915 struct regulator_map *node, *n;
917 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
918 if (rdev == node->regulator) {
919 list_del(&node->list);
920 kfree(node);
921 return;
926 #define REG_STR_SIZE 32
928 static struct regulator *create_regulator(struct regulator_dev *rdev,
929 struct device *dev,
930 const char *supply_name)
932 struct regulator *regulator;
933 char buf[REG_STR_SIZE];
934 int err, size;
936 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
937 if (regulator == NULL)
938 return NULL;
940 mutex_lock(&rdev->mutex);
941 regulator->rdev = rdev;
942 list_add(&regulator->list, &rdev->consumer_list);
944 if (dev) {
945 /* create a 'requested_microamps_name' sysfs entry */
946 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
947 supply_name);
948 if (size >= REG_STR_SIZE)
949 goto overflow_err;
951 regulator->dev = dev;
952 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
953 if (regulator->dev_attr.attr.name == NULL)
954 goto attr_name_err;
956 regulator->dev_attr.attr.owner = THIS_MODULE;
957 regulator->dev_attr.attr.mode = 0444;
958 regulator->dev_attr.show = device_requested_uA_show;
959 err = device_create_file(dev, &regulator->dev_attr);
960 if (err < 0) {
961 printk(KERN_WARNING "%s: could not add regulator_dev"
962 " load sysfs\n", __func__);
963 goto attr_name_err;
966 /* also add a link to the device sysfs entry */
967 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
968 dev->kobj.name, supply_name);
969 if (size >= REG_STR_SIZE)
970 goto attr_err;
972 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
973 if (regulator->supply_name == NULL)
974 goto attr_err;
976 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
977 buf);
978 if (err) {
979 printk(KERN_WARNING
980 "%s: could not add device link %s err %d\n",
981 __func__, dev->kobj.name, err);
982 device_remove_file(dev, &regulator->dev_attr);
983 goto link_name_err;
986 mutex_unlock(&rdev->mutex);
987 return regulator;
988 link_name_err:
989 kfree(regulator->supply_name);
990 attr_err:
991 device_remove_file(regulator->dev, &regulator->dev_attr);
992 attr_name_err:
993 kfree(regulator->dev_attr.attr.name);
994 overflow_err:
995 list_del(&regulator->list);
996 kfree(regulator);
997 mutex_unlock(&rdev->mutex);
998 return NULL;
1002 * regulator_get - lookup and obtain a reference to a regulator.
1003 * @dev: device for regulator "consumer"
1004 * @id: Supply name or regulator ID.
1006 * Returns a struct regulator corresponding to the regulator producer,
1007 * or IS_ERR() condition containing errno.
1009 * Use of supply names configured via regulator_set_device_supply() is
1010 * strongly encouraged. It is recommended that the supply name used
1011 * should match the name used for the supply and/or the relevant
1012 * device pins in the datasheet.
1014 struct regulator *regulator_get(struct device *dev, const char *id)
1016 struct regulator_dev *rdev;
1017 struct regulator_map *map;
1018 struct regulator *regulator = ERR_PTR(-ENODEV);
1020 if (id == NULL) {
1021 printk(KERN_ERR "regulator: get() with no identifier\n");
1022 return regulator;
1025 mutex_lock(&regulator_list_mutex);
1027 list_for_each_entry(map, &regulator_map_list, list) {
1028 if (dev == map->dev &&
1029 strcmp(map->supply, id) == 0) {
1030 rdev = map->regulator;
1031 goto found;
1034 mutex_unlock(&regulator_list_mutex);
1035 return regulator;
1037 found:
1038 if (!try_module_get(rdev->owner))
1039 goto out;
1041 regulator = create_regulator(rdev, dev, id);
1042 if (regulator == NULL) {
1043 regulator = ERR_PTR(-ENOMEM);
1044 module_put(rdev->owner);
1047 out:
1048 mutex_unlock(&regulator_list_mutex);
1049 return regulator;
1051 EXPORT_SYMBOL_GPL(regulator_get);
1054 * regulator_put - "free" the regulator source
1055 * @regulator: regulator source
1057 * Note: drivers must ensure that all regulator_enable calls made on this
1058 * regulator source are balanced by regulator_disable calls prior to calling
1059 * this function.
1061 void regulator_put(struct regulator *regulator)
1063 struct regulator_dev *rdev;
1065 if (regulator == NULL || IS_ERR(regulator))
1066 return;
1068 mutex_lock(&regulator_list_mutex);
1069 rdev = regulator->rdev;
1071 /* remove any sysfs entries */
1072 if (regulator->dev) {
1073 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1074 kfree(regulator->supply_name);
1075 device_remove_file(regulator->dev, &regulator->dev_attr);
1076 kfree(regulator->dev_attr.attr.name);
1078 list_del(&regulator->list);
1079 kfree(regulator);
1081 module_put(rdev->owner);
1082 mutex_unlock(&regulator_list_mutex);
1084 EXPORT_SYMBOL_GPL(regulator_put);
1086 /* locks held by regulator_enable() */
1087 static int _regulator_enable(struct regulator_dev *rdev)
1089 int ret = -EINVAL;
1091 if (!rdev->constraints) {
1092 printk(KERN_ERR "%s: %s has no constraints\n",
1093 __func__, rdev->desc->name);
1094 return ret;
1097 /* do we need to enable the supply regulator first */
1098 if (rdev->supply) {
1099 ret = _regulator_enable(rdev->supply);
1100 if (ret < 0) {
1101 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1102 __func__, rdev->desc->name, ret);
1103 return ret;
1107 /* check voltage and requested load before enabling */
1108 if (rdev->desc->ops->enable) {
1110 if (rdev->constraints &&
1111 (rdev->constraints->valid_ops_mask &
1112 REGULATOR_CHANGE_DRMS))
1113 drms_uA_update(rdev);
1115 ret = rdev->desc->ops->enable(rdev);
1116 if (ret < 0) {
1117 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1118 __func__, rdev->desc->name, ret);
1119 return ret;
1121 rdev->use_count++;
1122 return ret;
1125 return ret;
1129 * regulator_enable - enable regulator output
1130 * @regulator: regulator source
1132 * Request that the regulator be enabled with the regulator output at
1133 * the predefined voltage or current value. Calls to regulator_enable()
1134 * must be balanced with calls to regulator_disable().
1136 * NOTE: the output value can be set by other drivers, boot loader or may be
1137 * hardwired in the regulator.
1139 int regulator_enable(struct regulator *regulator)
1141 struct regulator_dev *rdev = regulator->rdev;
1142 int ret = 0;
1144 mutex_lock(&rdev->mutex);
1145 ret = _regulator_enable(rdev);
1146 mutex_unlock(&rdev->mutex);
1147 return ret;
1149 EXPORT_SYMBOL_GPL(regulator_enable);
1151 /* locks held by regulator_disable() */
1152 static int _regulator_disable(struct regulator_dev *rdev)
1154 int ret = 0;
1156 if (WARN(rdev->use_count <= 0,
1157 "unbalanced disables for %s\n",
1158 rdev->desc->name))
1159 return -EIO;
1161 /* are we the last user and permitted to disable ? */
1162 if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1164 /* we are last user */
1165 if (rdev->desc->ops->disable) {
1166 ret = rdev->desc->ops->disable(rdev);
1167 if (ret < 0) {
1168 printk(KERN_ERR "%s: failed to disable %s\n",
1169 __func__, rdev->desc->name);
1170 return ret;
1174 /* decrease our supplies ref count and disable if required */
1175 if (rdev->supply)
1176 _regulator_disable(rdev->supply);
1178 rdev->use_count = 0;
1179 } else if (rdev->use_count > 1) {
1181 if (rdev->constraints &&
1182 (rdev->constraints->valid_ops_mask &
1183 REGULATOR_CHANGE_DRMS))
1184 drms_uA_update(rdev);
1186 rdev->use_count--;
1188 return ret;
1192 * regulator_disable - disable regulator output
1193 * @regulator: regulator source
1195 * Disable the regulator output voltage or current. Calls to
1196 * regulator_enable() must be balanced with calls to
1197 * regulator_disable().
1199 * NOTE: this will only disable the regulator output if no other consumer
1200 * devices have it enabled, the regulator device supports disabling and
1201 * machine constraints permit this operation.
1203 int regulator_disable(struct regulator *regulator)
1205 struct regulator_dev *rdev = regulator->rdev;
1206 int ret = 0;
1208 mutex_lock(&rdev->mutex);
1209 ret = _regulator_disable(rdev);
1210 mutex_unlock(&rdev->mutex);
1211 return ret;
1213 EXPORT_SYMBOL_GPL(regulator_disable);
1215 /* locks held by regulator_force_disable() */
1216 static int _regulator_force_disable(struct regulator_dev *rdev)
1218 int ret = 0;
1220 /* force disable */
1221 if (rdev->desc->ops->disable) {
1222 /* ah well, who wants to live forever... */
1223 ret = rdev->desc->ops->disable(rdev);
1224 if (ret < 0) {
1225 printk(KERN_ERR "%s: failed to force disable %s\n",
1226 __func__, rdev->desc->name);
1227 return ret;
1229 /* notify other consumers that power has been forced off */
1230 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1231 NULL);
1234 /* decrease our supplies ref count and disable if required */
1235 if (rdev->supply)
1236 _regulator_disable(rdev->supply);
1238 rdev->use_count = 0;
1239 return ret;
1243 * regulator_force_disable - force disable regulator output
1244 * @regulator: regulator source
1246 * Forcibly disable the regulator output voltage or current.
1247 * NOTE: this *will* disable the regulator output even if other consumer
1248 * devices have it enabled. This should be used for situations when device
1249 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1251 int regulator_force_disable(struct regulator *regulator)
1253 int ret;
1255 mutex_lock(&regulator->rdev->mutex);
1256 regulator->uA_load = 0;
1257 ret = _regulator_force_disable(regulator->rdev);
1258 mutex_unlock(&regulator->rdev->mutex);
1259 return ret;
1261 EXPORT_SYMBOL_GPL(regulator_force_disable);
1263 static int _regulator_is_enabled(struct regulator_dev *rdev)
1265 int ret;
1267 mutex_lock(&rdev->mutex);
1269 /* sanity check */
1270 if (!rdev->desc->ops->is_enabled) {
1271 ret = -EINVAL;
1272 goto out;
1275 ret = rdev->desc->ops->is_enabled(rdev);
1276 out:
1277 mutex_unlock(&rdev->mutex);
1278 return ret;
1282 * regulator_is_enabled - is the regulator output enabled
1283 * @regulator: regulator source
1285 * Returns positive if the regulator driver backing the source/client
1286 * has requested that the device be enabled, zero if it hasn't, else a
1287 * negative errno code.
1289 * Note that the device backing this regulator handle can have multiple
1290 * users, so it might be enabled even if regulator_enable() was never
1291 * called for this particular source.
1293 int regulator_is_enabled(struct regulator *regulator)
1295 return _regulator_is_enabled(regulator->rdev);
1297 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1300 * regulator_count_voltages - count regulator_list_voltage() selectors
1301 * @regulator: regulator source
1303 * Returns number of selectors, or negative errno. Selectors are
1304 * numbered starting at zero, and typically correspond to bitfields
1305 * in hardware registers.
1307 int regulator_count_voltages(struct regulator *regulator)
1309 struct regulator_dev *rdev = regulator->rdev;
1311 return rdev->desc->n_voltages ? : -EINVAL;
1313 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1316 * regulator_list_voltage - enumerate supported voltages
1317 * @regulator: regulator source
1318 * @selector: identify voltage to list
1319 * Context: can sleep
1321 * Returns a voltage that can be passed to @regulator_set_voltage(),
1322 * zero if this selector code can't be used on this sytem, or a
1323 * negative errno.
1325 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1327 struct regulator_dev *rdev = regulator->rdev;
1328 struct regulator_ops *ops = rdev->desc->ops;
1329 int ret;
1331 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1332 return -EINVAL;
1334 mutex_lock(&rdev->mutex);
1335 ret = ops->list_voltage(rdev, selector);
1336 mutex_unlock(&rdev->mutex);
1338 if (ret > 0) {
1339 if (ret < rdev->constraints->min_uV)
1340 ret = 0;
1341 else if (ret > rdev->constraints->max_uV)
1342 ret = 0;
1345 return ret;
1347 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1350 * regulator_set_voltage - set regulator output voltage
1351 * @regulator: regulator source
1352 * @min_uV: Minimum required voltage in uV
1353 * @max_uV: Maximum acceptable voltage in uV
1355 * Sets a voltage regulator to the desired output voltage. This can be set
1356 * during any regulator state. IOW, regulator can be disabled or enabled.
1358 * If the regulator is enabled then the voltage will change to the new value
1359 * immediately otherwise if the regulator is disabled the regulator will
1360 * output at the new voltage when enabled.
1362 * NOTE: If the regulator is shared between several devices then the lowest
1363 * request voltage that meets the system constraints will be used.
1364 * Regulator system constraints must be set for this regulator before
1365 * calling this function otherwise this call will fail.
1367 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1369 struct regulator_dev *rdev = regulator->rdev;
1370 int ret;
1372 mutex_lock(&rdev->mutex);
1374 /* sanity check */
1375 if (!rdev->desc->ops->set_voltage) {
1376 ret = -EINVAL;
1377 goto out;
1380 /* constraints check */
1381 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1382 if (ret < 0)
1383 goto out;
1384 regulator->min_uV = min_uV;
1385 regulator->max_uV = max_uV;
1386 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1388 out:
1389 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1390 mutex_unlock(&rdev->mutex);
1391 return ret;
1393 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1395 static int _regulator_get_voltage(struct regulator_dev *rdev)
1397 /* sanity check */
1398 if (rdev->desc->ops->get_voltage)
1399 return rdev->desc->ops->get_voltage(rdev);
1400 else
1401 return -EINVAL;
1405 * regulator_get_voltage - get regulator output voltage
1406 * @regulator: regulator source
1408 * This returns the current regulator voltage in uV.
1410 * NOTE: If the regulator is disabled it will return the voltage value. This
1411 * function should not be used to determine regulator state.
1413 int regulator_get_voltage(struct regulator *regulator)
1415 int ret;
1417 mutex_lock(&regulator->rdev->mutex);
1419 ret = _regulator_get_voltage(regulator->rdev);
1421 mutex_unlock(&regulator->rdev->mutex);
1423 return ret;
1425 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1428 * regulator_set_current_limit - set regulator output current limit
1429 * @regulator: regulator source
1430 * @min_uA: Minimuum supported current in uA
1431 * @max_uA: Maximum supported current in uA
1433 * Sets current sink to the desired output current. This can be set during
1434 * any regulator state. IOW, regulator can be disabled or enabled.
1436 * If the regulator is enabled then the current will change to the new value
1437 * immediately otherwise if the regulator is disabled the regulator will
1438 * output at the new current when enabled.
1440 * NOTE: Regulator system constraints must be set for this regulator before
1441 * calling this function otherwise this call will fail.
1443 int regulator_set_current_limit(struct regulator *regulator,
1444 int min_uA, int max_uA)
1446 struct regulator_dev *rdev = regulator->rdev;
1447 int ret;
1449 mutex_lock(&rdev->mutex);
1451 /* sanity check */
1452 if (!rdev->desc->ops->set_current_limit) {
1453 ret = -EINVAL;
1454 goto out;
1457 /* constraints check */
1458 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1459 if (ret < 0)
1460 goto out;
1462 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1463 out:
1464 mutex_unlock(&rdev->mutex);
1465 return ret;
1467 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1469 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1471 int ret;
1473 mutex_lock(&rdev->mutex);
1475 /* sanity check */
1476 if (!rdev->desc->ops->get_current_limit) {
1477 ret = -EINVAL;
1478 goto out;
1481 ret = rdev->desc->ops->get_current_limit(rdev);
1482 out:
1483 mutex_unlock(&rdev->mutex);
1484 return ret;
1488 * regulator_get_current_limit - get regulator output current
1489 * @regulator: regulator source
1491 * This returns the current supplied by the specified current sink in uA.
1493 * NOTE: If the regulator is disabled it will return the current value. This
1494 * function should not be used to determine regulator state.
1496 int regulator_get_current_limit(struct regulator *regulator)
1498 return _regulator_get_current_limit(regulator->rdev);
1500 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1503 * regulator_set_mode - set regulator operating mode
1504 * @regulator: regulator source
1505 * @mode: operating mode - one of the REGULATOR_MODE constants
1507 * Set regulator operating mode to increase regulator efficiency or improve
1508 * regulation performance.
1510 * NOTE: Regulator system constraints must be set for this regulator before
1511 * calling this function otherwise this call will fail.
1513 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1515 struct regulator_dev *rdev = regulator->rdev;
1516 int ret;
1518 mutex_lock(&rdev->mutex);
1520 /* sanity check */
1521 if (!rdev->desc->ops->set_mode) {
1522 ret = -EINVAL;
1523 goto out;
1526 /* constraints check */
1527 ret = regulator_check_mode(rdev, mode);
1528 if (ret < 0)
1529 goto out;
1531 ret = rdev->desc->ops->set_mode(rdev, mode);
1532 out:
1533 mutex_unlock(&rdev->mutex);
1534 return ret;
1536 EXPORT_SYMBOL_GPL(regulator_set_mode);
1538 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1540 int ret;
1542 mutex_lock(&rdev->mutex);
1544 /* sanity check */
1545 if (!rdev->desc->ops->get_mode) {
1546 ret = -EINVAL;
1547 goto out;
1550 ret = rdev->desc->ops->get_mode(rdev);
1551 out:
1552 mutex_unlock(&rdev->mutex);
1553 return ret;
1557 * regulator_get_mode - get regulator operating mode
1558 * @regulator: regulator source
1560 * Get the current regulator operating mode.
1562 unsigned int regulator_get_mode(struct regulator *regulator)
1564 return _regulator_get_mode(regulator->rdev);
1566 EXPORT_SYMBOL_GPL(regulator_get_mode);
1569 * regulator_set_optimum_mode - set regulator optimum operating mode
1570 * @regulator: regulator source
1571 * @uA_load: load current
1573 * Notifies the regulator core of a new device load. This is then used by
1574 * DRMS (if enabled by constraints) to set the most efficient regulator
1575 * operating mode for the new regulator loading.
1577 * Consumer devices notify their supply regulator of the maximum power
1578 * they will require (can be taken from device datasheet in the power
1579 * consumption tables) when they change operational status and hence power
1580 * state. Examples of operational state changes that can affect power
1581 * consumption are :-
1583 * o Device is opened / closed.
1584 * o Device I/O is about to begin or has just finished.
1585 * o Device is idling in between work.
1587 * This information is also exported via sysfs to userspace.
1589 * DRMS will sum the total requested load on the regulator and change
1590 * to the most efficient operating mode if platform constraints allow.
1592 * Returns the new regulator mode or error.
1594 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1596 struct regulator_dev *rdev = regulator->rdev;
1597 struct regulator *consumer;
1598 int ret, output_uV, input_uV, total_uA_load = 0;
1599 unsigned int mode;
1601 mutex_lock(&rdev->mutex);
1603 regulator->uA_load = uA_load;
1604 ret = regulator_check_drms(rdev);
1605 if (ret < 0)
1606 goto out;
1607 ret = -EINVAL;
1609 /* sanity check */
1610 if (!rdev->desc->ops->get_optimum_mode)
1611 goto out;
1613 /* get output voltage */
1614 output_uV = rdev->desc->ops->get_voltage(rdev);
1615 if (output_uV <= 0) {
1616 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1617 __func__, rdev->desc->name);
1618 goto out;
1621 /* get input voltage */
1622 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1623 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1624 else
1625 input_uV = rdev->constraints->input_uV;
1626 if (input_uV <= 0) {
1627 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1628 __func__, rdev->desc->name);
1629 goto out;
1632 /* calc total requested load for this regulator */
1633 list_for_each_entry(consumer, &rdev->consumer_list, list)
1634 total_uA_load += consumer->uA_load;
1636 mode = rdev->desc->ops->get_optimum_mode(rdev,
1637 input_uV, output_uV,
1638 total_uA_load);
1639 ret = regulator_check_mode(rdev, mode);
1640 if (ret < 0) {
1641 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1642 " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1643 total_uA_load, input_uV, output_uV);
1644 goto out;
1647 ret = rdev->desc->ops->set_mode(rdev, mode);
1648 if (ret < 0) {
1649 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1650 __func__, mode, rdev->desc->name);
1651 goto out;
1653 ret = mode;
1654 out:
1655 mutex_unlock(&rdev->mutex);
1656 return ret;
1658 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1661 * regulator_register_notifier - register regulator event notifier
1662 * @regulator: regulator source
1663 * @nb: notifier block
1665 * Register notifier block to receive regulator events.
1667 int regulator_register_notifier(struct regulator *regulator,
1668 struct notifier_block *nb)
1670 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1671 nb);
1673 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1676 * regulator_unregister_notifier - unregister regulator event notifier
1677 * @regulator: regulator source
1678 * @nb: notifier block
1680 * Unregister regulator event notifier block.
1682 int regulator_unregister_notifier(struct regulator *regulator,
1683 struct notifier_block *nb)
1685 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1686 nb);
1688 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1690 /* notify regulator consumers and downstream regulator consumers.
1691 * Note mutex must be held by caller.
1693 static void _notifier_call_chain(struct regulator_dev *rdev,
1694 unsigned long event, void *data)
1696 struct regulator_dev *_rdev;
1698 /* call rdev chain first */
1699 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1701 /* now notify regulator we supply */
1702 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1703 mutex_lock(&_rdev->mutex);
1704 _notifier_call_chain(_rdev, event, data);
1705 mutex_unlock(&_rdev->mutex);
1710 * regulator_bulk_get - get multiple regulator consumers
1712 * @dev: Device to supply
1713 * @num_consumers: Number of consumers to register
1714 * @consumers: Configuration of consumers; clients are stored here.
1716 * @return 0 on success, an errno on failure.
1718 * This helper function allows drivers to get several regulator
1719 * consumers in one operation. If any of the regulators cannot be
1720 * acquired then any regulators that were allocated will be freed
1721 * before returning to the caller.
1723 int regulator_bulk_get(struct device *dev, int num_consumers,
1724 struct regulator_bulk_data *consumers)
1726 int i;
1727 int ret;
1729 for (i = 0; i < num_consumers; i++)
1730 consumers[i].consumer = NULL;
1732 for (i = 0; i < num_consumers; i++) {
1733 consumers[i].consumer = regulator_get(dev,
1734 consumers[i].supply);
1735 if (IS_ERR(consumers[i].consumer)) {
1736 dev_err(dev, "Failed to get supply '%s'\n",
1737 consumers[i].supply);
1738 ret = PTR_ERR(consumers[i].consumer);
1739 consumers[i].consumer = NULL;
1740 goto err;
1744 return 0;
1746 err:
1747 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1748 regulator_put(consumers[i].consumer);
1750 return ret;
1752 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1755 * regulator_bulk_enable - enable multiple regulator consumers
1757 * @num_consumers: Number of consumers
1758 * @consumers: Consumer data; clients are stored here.
1759 * @return 0 on success, an errno on failure
1761 * This convenience API allows consumers to enable multiple regulator
1762 * clients in a single API call. If any consumers cannot be enabled
1763 * then any others that were enabled will be disabled again prior to
1764 * return.
1766 int regulator_bulk_enable(int num_consumers,
1767 struct regulator_bulk_data *consumers)
1769 int i;
1770 int ret;
1772 for (i = 0; i < num_consumers; i++) {
1773 ret = regulator_enable(consumers[i].consumer);
1774 if (ret != 0)
1775 goto err;
1778 return 0;
1780 err:
1781 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1782 for (i = 0; i < num_consumers; i++)
1783 regulator_disable(consumers[i].consumer);
1785 return ret;
1787 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1790 * regulator_bulk_disable - disable multiple regulator consumers
1792 * @num_consumers: Number of consumers
1793 * @consumers: Consumer data; clients are stored here.
1794 * @return 0 on success, an errno on failure
1796 * This convenience API allows consumers to disable multiple regulator
1797 * clients in a single API call. If any consumers cannot be enabled
1798 * then any others that were disabled will be disabled again prior to
1799 * return.
1801 int regulator_bulk_disable(int num_consumers,
1802 struct regulator_bulk_data *consumers)
1804 int i;
1805 int ret;
1807 for (i = 0; i < num_consumers; i++) {
1808 ret = regulator_disable(consumers[i].consumer);
1809 if (ret != 0)
1810 goto err;
1813 return 0;
1815 err:
1816 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1817 for (i = 0; i < num_consumers; i++)
1818 regulator_enable(consumers[i].consumer);
1820 return ret;
1822 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1825 * regulator_bulk_free - free multiple regulator consumers
1827 * @num_consumers: Number of consumers
1828 * @consumers: Consumer data; clients are stored here.
1830 * This convenience API allows consumers to free multiple regulator
1831 * clients in a single API call.
1833 void regulator_bulk_free(int num_consumers,
1834 struct regulator_bulk_data *consumers)
1836 int i;
1838 for (i = 0; i < num_consumers; i++) {
1839 regulator_put(consumers[i].consumer);
1840 consumers[i].consumer = NULL;
1843 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1846 * regulator_notifier_call_chain - call regulator event notifier
1847 * @rdev: regulator source
1848 * @event: notifier block
1849 * @data: callback-specific data.
1851 * Called by regulator drivers to notify clients a regulator event has
1852 * occurred. We also notify regulator clients downstream.
1853 * Note lock must be held by caller.
1855 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1856 unsigned long event, void *data)
1858 _notifier_call_chain(rdev, event, data);
1859 return NOTIFY_DONE;
1862 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1865 * To avoid cluttering sysfs (and memory) with useless state, only
1866 * create attributes that can be meaningfully displayed.
1868 static int add_regulator_attributes(struct regulator_dev *rdev)
1870 struct device *dev = &rdev->dev;
1871 struct regulator_ops *ops = rdev->desc->ops;
1872 int status = 0;
1874 /* some attributes need specific methods to be displayed */
1875 if (ops->get_voltage) {
1876 status = device_create_file(dev, &dev_attr_microvolts);
1877 if (status < 0)
1878 return status;
1880 if (ops->get_current_limit) {
1881 status = device_create_file(dev, &dev_attr_microamps);
1882 if (status < 0)
1883 return status;
1885 if (ops->get_mode) {
1886 status = device_create_file(dev, &dev_attr_opmode);
1887 if (status < 0)
1888 return status;
1890 if (ops->is_enabled) {
1891 status = device_create_file(dev, &dev_attr_state);
1892 if (status < 0)
1893 return status;
1895 if (ops->get_status) {
1896 status = device_create_file(dev, &dev_attr_status);
1897 if (status < 0)
1898 return status;
1901 /* some attributes are type-specific */
1902 if (rdev->desc->type == REGULATOR_CURRENT) {
1903 status = device_create_file(dev, &dev_attr_requested_microamps);
1904 if (status < 0)
1905 return status;
1908 /* all the other attributes exist to support constraints;
1909 * don't show them if there are no constraints, or if the
1910 * relevant supporting methods are missing.
1912 if (!rdev->constraints)
1913 return status;
1915 /* constraints need specific supporting methods */
1916 if (ops->set_voltage) {
1917 status = device_create_file(dev, &dev_attr_min_microvolts);
1918 if (status < 0)
1919 return status;
1920 status = device_create_file(dev, &dev_attr_max_microvolts);
1921 if (status < 0)
1922 return status;
1924 if (ops->set_current_limit) {
1925 status = device_create_file(dev, &dev_attr_min_microamps);
1926 if (status < 0)
1927 return status;
1928 status = device_create_file(dev, &dev_attr_max_microamps);
1929 if (status < 0)
1930 return status;
1933 /* suspend mode constraints need multiple supporting methods */
1934 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1935 return status;
1937 status = device_create_file(dev, &dev_attr_suspend_standby_state);
1938 if (status < 0)
1939 return status;
1940 status = device_create_file(dev, &dev_attr_suspend_mem_state);
1941 if (status < 0)
1942 return status;
1943 status = device_create_file(dev, &dev_attr_suspend_disk_state);
1944 if (status < 0)
1945 return status;
1947 if (ops->set_suspend_voltage) {
1948 status = device_create_file(dev,
1949 &dev_attr_suspend_standby_microvolts);
1950 if (status < 0)
1951 return status;
1952 status = device_create_file(dev,
1953 &dev_attr_suspend_mem_microvolts);
1954 if (status < 0)
1955 return status;
1956 status = device_create_file(dev,
1957 &dev_attr_suspend_disk_microvolts);
1958 if (status < 0)
1959 return status;
1962 if (ops->set_suspend_mode) {
1963 status = device_create_file(dev,
1964 &dev_attr_suspend_standby_mode);
1965 if (status < 0)
1966 return status;
1967 status = device_create_file(dev,
1968 &dev_attr_suspend_mem_mode);
1969 if (status < 0)
1970 return status;
1971 status = device_create_file(dev,
1972 &dev_attr_suspend_disk_mode);
1973 if (status < 0)
1974 return status;
1977 return status;
1981 * regulator_register - register regulator
1982 * @regulator_desc: regulator to register
1983 * @dev: struct device for the regulator
1984 * @init_data: platform provided init data, passed through by driver
1985 * @driver_data: private regulator data
1987 * Called by regulator drivers to register a regulator.
1988 * Returns 0 on success.
1990 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1991 struct device *dev, struct regulator_init_data *init_data,
1992 void *driver_data)
1994 static atomic_t regulator_no = ATOMIC_INIT(0);
1995 struct regulator_dev *rdev;
1996 int ret, i;
1998 if (regulator_desc == NULL)
1999 return ERR_PTR(-EINVAL);
2001 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2002 return ERR_PTR(-EINVAL);
2004 if (!regulator_desc->type == REGULATOR_VOLTAGE &&
2005 !regulator_desc->type == REGULATOR_CURRENT)
2006 return ERR_PTR(-EINVAL);
2008 if (!init_data)
2009 return ERR_PTR(-EINVAL);
2011 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2012 if (rdev == NULL)
2013 return ERR_PTR(-ENOMEM);
2015 mutex_lock(&regulator_list_mutex);
2017 mutex_init(&rdev->mutex);
2018 rdev->reg_data = driver_data;
2019 rdev->owner = regulator_desc->owner;
2020 rdev->desc = regulator_desc;
2021 INIT_LIST_HEAD(&rdev->consumer_list);
2022 INIT_LIST_HEAD(&rdev->supply_list);
2023 INIT_LIST_HEAD(&rdev->list);
2024 INIT_LIST_HEAD(&rdev->slist);
2025 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2027 /* preform any regulator specific init */
2028 if (init_data->regulator_init) {
2029 ret = init_data->regulator_init(rdev->reg_data);
2030 if (ret < 0)
2031 goto clean;
2034 /* register with sysfs */
2035 rdev->dev.class = &regulator_class;
2036 rdev->dev.parent = dev;
2037 dev_set_name(&rdev->dev, "regulator.%d",
2038 atomic_inc_return(&regulator_no) - 1);
2039 ret = device_register(&rdev->dev);
2040 if (ret != 0)
2041 goto clean;
2043 dev_set_drvdata(&rdev->dev, rdev);
2045 /* set regulator constraints */
2046 ret = set_machine_constraints(rdev, &init_data->constraints);
2047 if (ret < 0)
2048 goto scrub;
2050 /* add attributes supported by this regulator */
2051 ret = add_regulator_attributes(rdev);
2052 if (ret < 0)
2053 goto scrub;
2055 /* set supply regulator if it exists */
2056 if (init_data->supply_regulator_dev) {
2057 ret = set_supply(rdev,
2058 dev_get_drvdata(init_data->supply_regulator_dev));
2059 if (ret < 0)
2060 goto scrub;
2063 /* add consumers devices */
2064 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2065 ret = set_consumer_device_supply(rdev,
2066 init_data->consumer_supplies[i].dev,
2067 init_data->consumer_supplies[i].supply);
2068 if (ret < 0) {
2069 for (--i; i >= 0; i--)
2070 unset_consumer_device_supply(rdev,
2071 init_data->consumer_supplies[i].dev);
2072 goto scrub;
2076 list_add(&rdev->list, &regulator_list);
2077 out:
2078 mutex_unlock(&regulator_list_mutex);
2079 return rdev;
2081 scrub:
2082 device_unregister(&rdev->dev);
2083 clean:
2084 kfree(rdev);
2085 rdev = ERR_PTR(ret);
2086 goto out;
2088 EXPORT_SYMBOL_GPL(regulator_register);
2091 * regulator_unregister - unregister regulator
2092 * @rdev: regulator to unregister
2094 * Called by regulator drivers to unregister a regulator.
2096 void regulator_unregister(struct regulator_dev *rdev)
2098 if (rdev == NULL)
2099 return;
2101 mutex_lock(&regulator_list_mutex);
2102 unset_regulator_supplies(rdev);
2103 list_del(&rdev->list);
2104 if (rdev->supply)
2105 sysfs_remove_link(&rdev->dev.kobj, "supply");
2106 device_unregister(&rdev->dev);
2107 mutex_unlock(&regulator_list_mutex);
2109 EXPORT_SYMBOL_GPL(regulator_unregister);
2112 * regulator_suspend_prepare - prepare regulators for system wide suspend
2113 * @state: system suspend state
2115 * Configure each regulator with it's suspend operating parameters for state.
2116 * This will usually be called by machine suspend code prior to supending.
2118 int regulator_suspend_prepare(suspend_state_t state)
2120 struct regulator_dev *rdev;
2121 int ret = 0;
2123 /* ON is handled by regulator active state */
2124 if (state == PM_SUSPEND_ON)
2125 return -EINVAL;
2127 mutex_lock(&regulator_list_mutex);
2128 list_for_each_entry(rdev, &regulator_list, list) {
2130 mutex_lock(&rdev->mutex);
2131 ret = suspend_prepare(rdev, state);
2132 mutex_unlock(&rdev->mutex);
2134 if (ret < 0) {
2135 printk(KERN_ERR "%s: failed to prepare %s\n",
2136 __func__, rdev->desc->name);
2137 goto out;
2140 out:
2141 mutex_unlock(&regulator_list_mutex);
2142 return ret;
2144 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2147 * rdev_get_drvdata - get rdev regulator driver data
2148 * @rdev: regulator
2150 * Get rdev regulator driver private data. This call can be used in the
2151 * regulator driver context.
2153 void *rdev_get_drvdata(struct regulator_dev *rdev)
2155 return rdev->reg_data;
2157 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2160 * regulator_get_drvdata - get regulator driver data
2161 * @regulator: regulator
2163 * Get regulator driver private data. This call can be used in the consumer
2164 * driver context when non API regulator specific functions need to be called.
2166 void *regulator_get_drvdata(struct regulator *regulator)
2168 return regulator->rdev->reg_data;
2170 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2173 * regulator_set_drvdata - set regulator driver data
2174 * @regulator: regulator
2175 * @data: data
2177 void regulator_set_drvdata(struct regulator *regulator, void *data)
2179 regulator->rdev->reg_data = data;
2181 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2184 * regulator_get_id - get regulator ID
2185 * @rdev: regulator
2187 int rdev_get_id(struct regulator_dev *rdev)
2189 return rdev->desc->id;
2191 EXPORT_SYMBOL_GPL(rdev_get_id);
2193 struct device *rdev_get_dev(struct regulator_dev *rdev)
2195 return &rdev->dev;
2197 EXPORT_SYMBOL_GPL(rdev_get_dev);
2199 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2201 return reg_init_data->driver_data;
2203 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2205 static int __init regulator_init(void)
2207 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2208 return class_register(&regulator_class);
2211 /* init early to allow our consumers to complete system booting */
2212 core_initcall(regulator_init);